1
|
Graham JC, Anand SS, Bercu J, Besenhofer L, de Zafra C, Feng Y, Fisher C, Hillegass J, Hutchinson R, Jolly R, Moudgal C, Nicholas T, Olszova D, Schmitz M, Semmelmann F. Safety assessment of protein A and derivation of a parenteral health-based exposure limit. Regul Toxicol Pharmacol 2024; 153:105700. [PMID: 39243930 DOI: 10.1016/j.yrtph.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Protein A (PA) is a bacterial cell wall component of Staphylococcus aureus whose function is to bind to Immunoglobulin G (IgG). Given its ability to bind IgG as well as its stability and resistance to harsh acidic and basic cleaning conditions, it is commonly used in the affinity chromotography purification of biotherapeutics. This use can result in levels of PA being present in a drug product and subsequent patient exposure. Interestingly, PA was previously evaluated in clinical trials as well as supporting nonclinical studies, resulting in a database that enables the derivation of a health-based exposure limit (HBEL). Given the widespread use of PA in the pharmaceutical industry, the IQ DruSafe Impurities Safety Working Group (WG) evaluated the available information with the purpose of establishing a harmonized parenteral HBEL for PA. Based on this thorough, collaborative evaluation of nonclinical and clinical data available for PA, a parenteral HBEL of 1.2 μg/kg/dose (60 μg/dose for a 50 kg individual) is expected to be health protective for patients when it is present as an impurity in a biotherapeutic.
Collapse
Affiliation(s)
- Jessica C Graham
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | | | - Joel Bercu
- Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | | | | | - Yu Feng
- Merck & Co., Inc., 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ, 07065, USA
| | - Craig Fisher
- Takeda Development Center Americas, Inc., 35 Landsdowne St, Cambridge, MA, 02139, USA
| | - Jedd Hillegass
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08901, USA
| | - Richard Hutchinson
- Johnson & Johnson Innovative Medicine, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Robert Jolly
- Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | | | - Daniela Olszova
- Gilead Sciences, Inc., 4010 Ocean Ranch Blvd., Oceanside, CA, 92056, USA
| | - Matthew Schmitz
- Takeda Development Center Americas, Inc., 35 Landsdowne St, Cambridge, MA, 02139, USA
| | | |
Collapse
|
2
|
Niang M, Reponen T, Talaska G, Ying J, Reichard JF, Pecquet A, Maier A. Preliminary human health risk assessment of antibiotic exposures in human waste handling occupations. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:721-740. [PMID: 39388718 DOI: 10.1080/15459624.2024.2405405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Exposure to biosolids in human waste handling occupations is associated with a risk for illness due to microbial infections. Although several years of exposure to biosolids might be hypothesized to be a prophylaxis against infection, the risks associated with infections from antibiotic-resistant organisms can also be a potential concern. Therefore, this study aimed to conduct a screening level risk assessment by deriving occupational exposure limits (OELs) characterizing the risks of adverse health effects among workers in human waste handling occupations with a focus on exposure to two pharmaceuticals commonly found in biosolids: ciprofloxacin (CIP) and azithromycin (AZ). Epidemiological and exposure studies of workers exposed to biosolids were identified through searches of major scientific databases. Screening OELs (sOELs) for these antibiotics were derived using a standardized methodology. The airborne concentrations of CIP and AZ antibiotics were determined using an exposure factors approach. The health-based exposure limits (i.e., sOELs) and the acceptable daily exposure (ADE) values for both of these antibiotics were derived as 80 μg/m3 and 12 μg/kg-day, respectively. An exposure factor approach suggested that inhalation route exposures to CIP and AZ are well below the sOELs and ADE daily doses, and likely too low to cause direct adverse health effects through antibiotic inhalation. A critical review of epidemiological studies on different occupations handling biosolids showed that the workers in industries with potential biosolids exposure have experienced an increased incidence of microbial-exposure-related illness. The health effects seen in the workers have been attributed to bacterial, viral, and protozoan infections. To the extent that bacteria are the pathogen of concern, it is not clear whether these bacteria are resistant to antibiotics commonly found in biosolids. It is also unclear whether the presence of antibiotics or antibiotic-resistant bacteria increases the susceptibility of these workers. Additional studies will provide more definitive estimates of inhalation and dermal exposures to CIP and AZ and could verify the exposure estimates in this study based on the literature and common exposure factors.
Collapse
Affiliation(s)
- Mamadou Niang
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Tiina Reponen
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Glenn Talaska
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Jun Ying
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - John F Reichard
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Alison Pecquet
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
3
|
Pecquet AM, Bridgwood K, Cowie D, Hofstra A, Wu Y, Whalley S, Webb SD. Data derived extrapolation factors (DDEFs) for rat to human interspecies extrapolation for the HPPD inhibitor mesotrione. Crit Rev Toxicol 2024; 54:418-429. [PMID: 38869005 DOI: 10.1080/10408444.2024.2353174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
In the risk assessment of agrochemicals, there has been a historical paucity of using data to refine the default adjustment factors, even though large datasets are available to support this. The current state of the science for addressing uncertainty regarding animal to human extrapolation (AFA) is to develop a "data-derived" adjustment factor (DDEF) to quantify such differences, if data are available. Toxicokinetic (TK) and toxicodynamic (TD) differences between species can be utilized for the DDEF, with human datasets being ideal yet rare. We identified a case for a currently registered herbicide, mesotrione, in which human TK and TD are available. This case study outlines an approach for the development of DDEFs using comparative human and animal data and based on an adverse outcome pathway (AOP) for inhibition of 4-hydroxyphenol pyruvate dioxygenase (HHPD). The calculated DDEF for rat to human extrapolation (AFA) for kinetics (AFAK = 2.5) was multiplied by the AFA for dynamics (AFAD = 0.3) resulting in a composite DDEF of ∼1 (AFA = 0.75). This reflects the AOP and available scientific evidence that humans are less sensitive than rats to the effects of HPPD inhibitors. Further analyses were conducted utilizing in vitro datasets from hepatocytes and liver cytosols and extrapolated to whole animal using in vitro to in vivo extrapolation (IVIVE) to support toxicodynamic extrapolation. The in vitro datasets resulted in the same AFAD as derived for in vivo data (AFAD = 0.3). These analyses demonstrate that a majority of the species differences are related to toxicodynamics. Future work with additional in vitro/in vivo datasets for other HPPD inhibitors and cell types will further support this result. This work demonstrates utilization of all available toxicokinetic and toxicodynamic data to replace default uncertainty factors for agrochemical human health risk assessment.
Collapse
Affiliation(s)
- Alison M Pecquet
- Product Safety, Syngenta Crop Protection LLC, Greensboro, NC, USA
| | - Katy Bridgwood
- Syngenta Jealott's Hill International Research Centre, Bracknell, UK
| | - David Cowie
- Syngenta Jealott's Hill International Research Centre, Bracknell, UK
| | | | - Yaoxing Wu
- Product Safety, Syngenta Crop Protection LLC, Greensboro, NC, USA
| | - Sarah Whalley
- Syngenta Jealott's Hill International Research Centre, Bracknell, UK
| | - Steven D Webb
- Syngenta Jealott's Hill International Research Centre, Bracknell, UK
| |
Collapse
|
4
|
Sehner C, Bernier T, Blum K, Clemann N, Glogovac M, Hawkins WA, Kohan M, Linker F, Lovsin-Barle E, Osadolor O, Pfister T, Schulze E, Schwind M, Tuschl G, Wiesner L. Comparison of permitted daily exposure (PDE) values for active pharmaceutical ingredients (APIs) - Evidence of a robust approach. Regul Toxicol Pharmacol 2024; 150:105649. [PMID: 38782234 DOI: 10.1016/j.yrtph.2024.105649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/20/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Permitted Daily Exposure Limits (PDEs) are set for Active Pharmaceutical Ingredients (APIs) to control cross-contamination when manufacturing medicinal products in shared facilities. With the lack of official PDE lists for pharmaceuticals, PDEs have to be set by each company separately. Although general rules and guidelines for the setting of PDEs exist, inter-company variations in the setting of PDEs occur and are considered acceptable within a certain range. To evaluate the robustness of the PDE approach between different pharmaceutical companies, data on PDE setting of five marketed APIs (amlodipine, hydrochlorothiazide, metformin, morphine, and omeprazole) were collected and compared. Findings show that the variability between PDE values is within acceptable ranges (below 10-fold) for all compounds, with the highest difference for morphine due to different Point of Departures (PODs) and Adjustment Factors (AFs). Factors of PDE variability identified and further discussed are: (1) availability of data, (2) selection of POD, (3) assignment of AFs, (4) route-to-route extrapolation, and (5) expert judgement and differences in company policies. We conclude that the investigated PDE methods and calculations are robust and scientifically defensible. Additionally, we provide further recommendations to harmonize PDE calculation approaches across the pharmaceutical industry.
Collapse
Affiliation(s)
- Claudia Sehner
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany.
| | - Tanja Bernier
- Abbott Laboratories GmbH, 31535, Neustadt Am Rübenberge, Germany
| | - Kamila Blum
- GlaxoSmithKline, Prinzregentenplatz 9, 81675, Munich, Germany
| | | | | | - William A Hawkins
- SafeBridge Europe Ltd., 33 St Andrews Street South, Bury St Edmunds, IP33 3PH, Suffolk, United Kingdom
| | - Martin Kohan
- SafeBridge Europe Ltd., 33 St Andrews Street South, Bury St Edmunds, IP33 3PH, Suffolk, United Kingdom
| | - Fenneke Linker
- Grünenthal GmbH, Zieglerstraße 6, 52078, Aachen, Germany
| | | | - Osahon Osadolor
- AstraZeneca, Francis Crick Avenue, Cambridge, United Kingdom
| | | | - Elisa Schulze
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Markus Schwind
- Sanofi-Aventis Deutschland GmbH, 65926, Frankfurt, Germany
| | - Gregor Tuschl
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Lisa Wiesner
- Takeda Pharmaceuticals International AG, Glattpark-Opfikon, Switzerland
| |
Collapse
|
5
|
Araya S, Pfister T, Blum K, Clemann N, Faltermann S, Wiesner L, Hawkins W, van de Gevel I, Versyck K. Controlling cleaning agent residues in pharmaceutical manufacturing: A harmonized scientific strategy. Regul Toxicol Pharmacol 2023:105430. [PMID: 37308050 DOI: 10.1016/j.yrtph.2023.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
This paper proposes a scientifically justified and harmonized strategy to control cleaning agent ingredients' (CAIs) residues in pharmaceutical manufacturing. Firstly, we demonstrate that worst-case cleaning validation calculations on CAI residuals with representative GMP standard cleaning limits (SCLs) are enough to control CAI residues of low concern to safe levels. Secondly, a new harmonized strategy for the toxicological assessment of CAI residuals is presented and validated. The results establish a framework applicable to cleaning agent mixtures based on hazard and exposure considerations. This framework is primarily based on the hierarchy of a single CAI's critical effect, where the lowest resulting limit may become the driver of the cleaning validation process. The six critical effect groups are: (1) CAIs of low concern based on safe exposure reasoning; (2) CAIs of low concern based on the mode of action reasoning; (3) CAIs with local concentration-dependent critical effects; (4) CAIs with dose-dependent systemic critical effects for which a route-specific PDE should be calculated; (5) poorly characterized CAIs with unknown critical effect for which a default value of 100 μg/day is proposed; (6) poorly characterized CAIs which should be avoided because of potential mutagenicity and/or potency.
Collapse
Affiliation(s)
| | - T Pfister
- F. Hoffmann-La Roche AG, Switzerland
| | - K Blum
- GlaxoSmithKline GmbH & Co. KG, Germany
| | - N Clemann
- F. Hoffmann-La Roche AG, Switzerland
| | | | | | - W Hawkins
- SafeBridge Europe Ltd., United Kingdom
| | - I van de Gevel
- Janssen Pharmaceutical Companies of Johnson & Johnson, Belgium
| | - K Versyck
- Janssen Pharmaceutical Companies of Johnson & Johnson, Belgium
| |
Collapse
|
6
|
Fung ES, Parker JA, Powell AM, Maier A. Estimating inhalation bioavailability for peptides and proteins 1 to 10 kDa in size. Regul Toxicol Pharmacol 2022; 137:105314. [PMID: 36463983 DOI: 10.1016/j.yrtph.2022.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Inhalation is a critical route for occupational exposure. To protect workers from adverse effects, health-based exposure limits (HBELs) are derived using chemical-specific information including inhalation bioavailability. Inhalation bioavailability of large proteins is well studied and generally accepted to be 1% or less. However, the inhalation bioavailability of peptides and proteins 1-10 kDa in size is not well defined. The goal of this study was to expand upon previous analyses and evaluate the inhalation bioavailability of small peptides. Inhalation bioavailability data for 72 peptides and protein samples ranging from 1.1 to 10.9 kDa in size were evaluated. The median inhalation bioavailability was 20%, which is in agreement with previously published analyses. Inhalation bioavailabilities for the vast majority were below 50%. Interestingly, species, peptide size, and peptide identity did not correlate with inhalation bioavailability. Other factors including inhalation dosimetry, peptide degradation, and chemical characteristics also decrease the amount of peptide available for absorption. Together, the median bioavailability of 20% is likely an appropriate estimate of systemic exposure and is sufficiently protective in most cases for the purposes of occupational exposure safety. Thus, in the absence of peptide-specific data or concerns, an inhalation bioavailability default of 20% is recommended for 1-10 kDa peptide and proteins.
Collapse
|
7
|
Jolly RA, Bandara S, Bercu J, Callis CM, Dolan DG, Graham J, HaMai D, Barle EL, Maier A, Masuda-Herrera M, Moudgal C, Parker JA, Reichard J, Sandhu R, Fung ES. Setting impurity limits for endogenous substances: Recommendations for a harmonized procedure and an example using fatty acids. Regul Toxicol Pharmacol 2022; 134:105242. [PMID: 35964842 DOI: 10.1016/j.yrtph.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Endogenous substances, such as fatty, amino, and nucleic acids, are often purposefully used in parenterally pharmaceuticals, but may be present as impurities. Currently, no consensus guidance exists on setting impurity limits for these substances. Specific procedures are needed, as the amount and types of toxicity data available for endogenous substances are typically far less than those for other chemical impurities. Additionally, the parenteral route of administration of these substances is inherently non-physiological, resulting in potentially different or increased severity of toxicity. Risk Assessment Process Maps (RAPMAPs) are proposed as a model to facilitate the development of health-based exposure limits (HBELs) for endogenous substances. This yielded a framework that was applied to derive HBELs for several fatty acids commonly used in parenteral pharmaceuticals. This approach was used to derive HBELs with further vetting based on anticipated perturbations in physiological serum levels, impacts of dose-rate, and consideration of intermittent dosing. Parenteral HBELs of 100-500 mg/day were generated for several fatty acids, and a proposed class-based limit of 50 mg/day to be used in the absence of chemical-specific data. This default limit is consistent with the low toxicity of this chemical class and ICH Q3C value for Class 3 solvents.
Collapse
|
8
|
Wiesner L, Araya S, Lovsin Barle E. Identifying non-hazardous substances in pharmaceutical manufacturing and setting default Health-Based Exposure Limits (HBELs). J Appl Toxicol 2022; 42:1443-1457. [PMID: 35315528 DOI: 10.1002/jat.4323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
Contract Development and Manufacturing Organizations (CDMOs) that manufacture large, diverse portfolio of chemical and pharmaceutical substances require pragmatic risk-based decisions with respect to the safe carry-over between different chemical entities, as well as for worker protection. Additionally, CDMOs may not have access to primary study data or data is generally lacking for a specific substance. While pharmaceuticals require the establishment of health-based exposure limits (HBELs) (e.g., occupational exposure limits, permitted daily exposure limits), the limits for non-hazardous substances could be set in a protective and pragmatic way by using default values, when internally required. Since there is no aligned definition provided by authorities, nor agreed default values for non-hazardous substances, we provide a decision tree in order to help qualified experts (such as qualified toxicologists) to identify the group of non-hazardous substances and to assign default HBEL values for specific routes of exposure. The non-hazardous substances discussed within this publication are part of the following subgroups: (I) inactive pharmaceutical ingredients, (II) pharmaceutical excipients or cosmetic ingredients, (III) substances Generally Recognized as Safe (GRAS), and (IV) food ingredients, additives and contact materials. The proposed default limit values are 1 mg/m3 for the OEL, and 50 mg/day for the PDE oral and IV (intravenous) route.
Collapse
|
9
|
Araya S, Pfister T, Gromek K, Hawkins W, Thomsen ST, Clemann N, Faltermann S, Wiesner L. PDE concept for controlling cleaning agent residues in pharmaceuticals- A critical analysis. Regul Toxicol Pharmacol 2021; 128:105095. [PMID: 34890761 DOI: 10.1016/j.yrtph.2021.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Cleaning agents (CAs) are used in multipurpose facilities to control carryover contamination of active pharmaceutical ingredients (APIs) to scientifically justified limits. While this is often done with the PDE methodology used for API impurities, it is unclear if it is justifiable and necessary for cleaning agents, which generally represent a comparatively lower health risk. Comparing calculated oral PDE values for CA ingredients (CAIs) from four companies with PDEs of a selected number of small-molecule APIs showed that the toxicity of CAIs is several orders of magnitude lower. Furthermore, a critical review of the toxicity and everyday exposure to the general population of the main CAIs functional groups showed that the expected health risks are generally negligible. This is particularly true if the associated mode of actions cause local toxicity that is usually irrelevant at the concentration of potential residue carryover. This work points towards alternative approaches to the PDE concept to control CAIs' contamination and provides some guidance on grouping and identifying compounds with lower health risks based on exposure and mode of action reasoning. In addition, this work supports the concept that limit values should only be set for CAIs of toxicological concern.
Collapse
Affiliation(s)
| | | | | | - W Hawkins
- SafeBridge Europe Ltd., United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Ahuja V, Krishnappa M. Approaches for setting occupational exposure limits in the pharmaceutical industry. J Appl Toxicol 2021; 42:154-167. [PMID: 34254327 DOI: 10.1002/jat.4218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 11/09/2022]
Abstract
The use of pharmaceutical drugs has provided a cure for many diseases. However, unintended exposure to drugs in the manufacturing workplace can cause significant health hazards to workers. It is important to protect the workforce from these deleterious effects by limiting exposure to an acceptable level, the occupational exposure limit (OEL). OEL is defined as airborne concentrations (expressed as a time-weighted average for a conventional 8-h workday and a 40-h work week) of a substance to which nearly all workers may be repeatedly exposed (for a working lifetime) without adverse effects. Determination of OELs has become very challenging over time, requiring an overall assessment of the preclinical and clinical data of the drug being manufactured. Previously, to derive OEL values, toxicologists used animal no-observed-adverse-effect level (NOAEL) data, which have been replaced with the overall assessment of animal and human data, placing a higher emphasis on human health-based data. A major advantage of working with human pharmaceuticals is that sufficient clinical data are available for them in most cases. The present manuscript reviews the latest knowledge regarding the derivation of occupational exposure limits as health-based exposure limits (HBELs) for pharmaceuticals. We have provided examples of OEL calculations for various drugs including levofloxacin (CAS No. 100986-85-4), dienogest (CAS no. 65928-58-7), and acetylsalicylic acid (ASA, CAS no. 50-78-2) using human data. This report will benefit professionals in the OEL domain in understanding this highly important, growing, and challenging field.
Collapse
Affiliation(s)
- Varun Ahuja
- Safety Assessment Department, Syngene International Limited, Bangalore, India
| | - Mohan Krishnappa
- Safety Assessment Department, Syngene International Limited, Bangalore, India
| |
Collapse
|
11
|
Active pharmaceutical contaminants in dietary supplements: A tier-based risk assessment approach. Regul Toxicol Pharmacol 2021; 123:104955. [PMID: 34022259 DOI: 10.1016/j.yrtph.2021.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/10/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022]
Abstract
The presence of active pharmaceutical ingredients (APIs) in adulterated or contaminated dietary supplements is a current product safety concern. Since there are limited guidelines, and no published consensus methods, we developed a tier-based framework incorporating typical lines of evidence for determining the human health risk associated with APIs in dietary supplements. Specifically, the tiered approach outlines hazard identification and decision to test for APIs in products based on criteria for likelihood of contamination or adulteration, and evaluation of manufacturer production standards. For products with detectable levels of APIs, a variety of default approaches, including the use of fraction of the therapeutic dose and the threshold of toxicological concern (TTC), as well as health-based exposure limits (HBELs) are applied. In order to demonstrate its practical use, as well as any limitations and/or special considerations, this framework was applied to five dietary supplements (currently available to the public). We found that the detected levels of APIs in some dietary supplements were above the recommended dose of the drugs, and thus, pose a significant health risk to consumers and potentially workers involved in manufacturing of these supplements. The results support the value of increased product quality surveillance and perhaps regulatory activity.
Collapse
|
12
|
Drewe WC, Dobo KL, Sobol Z, Bercu JP, Parris P, Nicolette J. Deriving Compound-Specific Exposure Limits for Chemicals Used in Pharmaceutical Synthesis: Challenges in Expert Decision-Making Exemplified Through a Case Study-Based Workshop. Int J Toxicol 2021; 40:285-298. [PMID: 33525949 DOI: 10.1177/1091581820982547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A workshop entitled "Deriving Compound-Specific Exposure Limits for Chemicals Used in Pharmaceutical Synthesis" was held at the 2018 Genetic Toxicology Association annual meeting. The objectives of the workshop were to provide an educational forum and use case studies and live multiple-choice polling to establish the degree of similarity/diversity in approach/opinion of the industry experts and other delegates present for some of the more challenging decision points that need to be considered when developing a compound-specific exposure limit (ie, acceptable intake or permissible or permitted daily exposure). Herein we summarize the relevant background and case study information for each decision point topic presented as well as highlight significant polling responses and discussion points. A common observation throughout was the requirement for expert judgment to be applied at each of the decision points presented which often results in different reasoning being applied by the risk assessor when deriving a compound-specific exposure limit. This supports the value of precompetitive cross-industry collaborations to develop compound-specific limits and harmonize the methodology applied, thus reducing the associated uncertainty inherent in the application of isolated expert judgment in this context. An overview of relevant precompetitive cross-industry collaborations working to achieve this goal is described.
Collapse
Affiliation(s)
| | - Krista L Dobo
- 390190Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Zhanna Sobol
- 390190Pfizer Worldwide Research and Development, Groton, CT, USA
| | | | - Patricia Parris
- Pfizer Worldwide Research and Development, Sandwich, Kent, UK
| | | |
Collapse
|
13
|
Parris P, Martin EA, Stanard B, Glowienke S, Dolan DG, Li K, Binazon O, Giddings A, Whelan G, Masuda-Herrera M, Bercu J, Broschard T, Bruen U, Callis CM, Stults CL, Erexson GL, Cruz MT, Nagao LM. Considerations when deriving compound-specific limits for extractables and leachables from pharmaceutical products: Four case studies. Regul Toxicol Pharmacol 2020; 118:104802. [DOI: 10.1016/j.yrtph.2020.104802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
|
14
|
Deriving harmonised permitted daily exposures (PDEs) for paracetamol (acetaminophen) CAS #: 103-90-2. Regul Toxicol Pharmacol 2020; 115:104692. [DOI: 10.1016/j.yrtph.2020.104692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
|
15
|
Juvonen RO, Pentikäinen O, Huuskonen J, Timonen J, Kärkkäinen O, Heikkinen A, Fashe M, Raunio H. In vitro sulfonation of 7-hydroxycoumarin derivatives in liver cytosol of human and six animal species. Xenobiotica 2020; 50:885-893. [PMID: 31903849 DOI: 10.1080/00498254.2020.1711544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sulfonation is an important high affinity elimination pathway for phenolic compounds.In this study sulfonation of 7-hydroxycoumarin and 13 its derivatives were evaluated in liver cytosols of human and six animal species. 7-hydroxycoumarin and its derivatives are strongly fluorescent, and their sulfate conjugates are nonfluorescent at excitation 405 nm and emission 460 nm. A convenient fluorescence based kinetic assay of sulfonation was established.The sulfonation rate of most of the 7-hydroxycoumarin derivatives was low in liver cytosol of human and pig, whereas it was high with most compounds in dog and intermediate in rat, mouse, rabbit, and sheep. Sulfonation of the 7-hydroxycoumarin derivatives followed Michaelis-Menten kinetics with Km values of 0.1-12 µM, Vmax of 0.005-1.7 µmol/(min * g protein) and intrinsic clearance (Vmax/Km) of 0.004-1.9 L/(min * g cytosolic protein).Fluorescence based measurement of sulfonation of 7-hydroxycoumarin derivatives provides a sensitive and convenient high-throughput assay to determine sulfonation rate in different species and tissues and can be applied to evaluate sulfonation kinetics and inhibition.
Collapse
Affiliation(s)
- Risto O Juvonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Pentikäinen
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juhani Huuskonen
- Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
| | - Juri Timonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Muluneh Fashe
- Reproductive & Developmental Biology Laboratory/Pharmacogenetics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hannu Raunio
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Liu J, Chen Y, Cao H, Zhang A. Burden of typical diseases attributed to the sources of PM 2.5-bound toxic metals in Beijing: An integrated approach to source apportionment and QALYs. ENVIRONMENT INTERNATIONAL 2019; 131:105041. [PMID: 31377599 DOI: 10.1016/j.envint.2019.105041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
PM2.5-bound toxic metals (TMs) are derived from various sources, and they can cause many adverse health effects on the human body. To effectively reduce the disease burden of TMs by controlling the relative sources, an integrated approach of quality-adjusted life years (QALYs) and source-apportionment (positive matrix factorization, PMF) was proposed and applied to some typical diseases induced by TMs in 2017 in Beijing. The estimation included two parts; first, the number of potentially affected people was calculated based on the source mass contribution from PMF and the inhalation unit risk of TMs; second, the QALYs lost per affected person was calculated based on the disease duration, expected years of life lost (EYLL) and quality of life (QoL) for both affected people and the general population. The results showed that QALYs lost per person for renal cancer (17.3 QALYs), pneumonia (14.4 QALYs), lung cancer (14.2 QALYs), skin cancer (12.7 QALYs) and diabetes mellitus (12.6 QALYs) were higher than those for other diseases. Combined with PMF, the source contributions to the overall burden of typical diseases from the TMs followed the order of coal combustion (50.2%) > vehicle emissions (24.4%) > fuel oil combustion (11.4%) > Cr-related industry (10.9%) > resuspended dust (3.0%). The rank was further compared with that assessed for noncancer and cancer risks, and we verified the reasonability of the QALYs method. For seasonal contributions to coal combustion, winter and spring had the highest contributions, which coincided with the fact that coal was the main fuel for heating in Beijing. The QALYs lost attributed to TMs for coal combustion decreased by 49.1% from 2016 to 2017, which may indicate an effective policy associated with coal control. Overall, the integrated approach was successfully employed for estimating the disease burden induced by TMs from each source and was an effective solution to identify the control rank of sources for TM reduction.
Collapse
Affiliation(s)
- Jianwei Liu
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanjiao Chen
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Hongbin Cao
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Aichen Zhang
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Etchie AT, Etchie TO, Shen H, Pillarisetti A, Popovicheva O. Burden of disease at the same limit of exposure to airborne polycyclic aromatic hydrocarbons varies significantly across countries depending on the gap in longevity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:420-429. [PMID: 31108419 DOI: 10.1016/j.ecoenv.2019.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric polycyclic aromatic hydrocarbons (PAHs) disproportionately affect human health across the globe, and differential exposure is believed to drive the unequal health burden. Therefore, this study assessed and compared the burden of disease, in disability-adjusted life years (DALYs), at the same level (or limit) of exposure to atmospheric PAHs in nine countries. We calculated the DALYs per person-year per ng/m3 of benzo[a]pyrene from ten cancers and thirty-four non-cancer adverse outcomes using published toxicity information and country-specific disease severity. Exposure duration was averaged over 30 years and we adjusted for early-life vulnerability to cancer. The DALYs per person-year per ng/m3 of fifteen other individual PAHs was calculated using relative potency factors, and toxicity factors derived from quantitative structure-activity relationships. We found that even at the same level of exposure to PAHs, the incremental burdens of disease varied substantially across countries. For instance, they varied by about 2-3 folds between Nigeria and the USA. Countries having the lowest longevity had the highest DALYs per person-year per ng/m3 of each PAH. Kruskal-Wallis test (α = 0.05) showed that the variation across countries was significant. The post hoc tests detected a significant difference between two countries when the gap in longevity was >10 years. This suggests that countries having very low average life expectancy require more stringent PAH limit. Linear or exponential function of average longevity gave valid approximation of the DALYs per person-year per ng/m3 of benzo[a]pyrene or phenanthrene, respectively. Furthermore, we used global gridded surface benzo[a]pyrene concentrations and global population dataset for 2007, with spatial resolution of 0.1° × 0.1°, to calculate the contribution of differential exposures to the estimated DALYs per person-year. We found that in six out of nine countries, differential exposures to PAH contribute less to the estimated health loss than differential severities of the diseases. This indicates that the risk to health from PAHs may be underreported if the severities of the diseases in the countries are not considered.
Collapse
Affiliation(s)
| | | | - Huizhong Shen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA.
| | | | - Olga Popovicheva
- Department of Microelectronics, Institute of Nuclear Physics, Moscow State University, Leninskie Gory, Moscow, Russia.
| |
Collapse
|
18
|
Sehner C, Schwind M, Tuschl G, Lovsin Barle E. What to consider for a good quality PDE document? Pharm Dev Technol 2019; 24:803-811. [DOI: 10.1080/10837450.2019.1592188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Claudia Sehner
- Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Markus Schwind
- HSE Germany, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Gregor Tuschl
- Global Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany
| | | |
Collapse
|
19
|
Lovsin Barle E, Pfister T, Fux C, Röthlisberger D, Jere D, Mahler HC. Use of the permitted daily exposure (PDE) concept for contaminants of intravitreal (IVT) drugs in multipurpose manufacturing facilities. Regul Toxicol Pharmacol 2019; 101:29-34. [PMID: 30367903 DOI: 10.1016/j.yrtph.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/13/2018] [Accepted: 10/20/2018] [Indexed: 01/01/2023]
Abstract
A toxicological evaluation to determine the product specific permitted daily exposure (PDE) value is an accepted method to determine a safe limit for the carry-over of product residues in multipurpose manufacturing facilities. The PDE calculation for intravitreal (IVT) injection of small and large molecular weight (MW) drugs follows the guiding principles set for systemic administration. However, there are specific differences with respect to the volume administered with IVT administration, pharmacokinetic and pharmacodynamics (PK-PD) parameters and potential for toxicity. In this publication, we have proposed a method to derive PDEIVT in the presence of IVT dose. In the absence of an IVT dose we have a proposed default extrapolationof the systemic PDE for intravenous (IV) administration to the PDEIVT dose by applying a factor of 500 based on comparison of the volume of vitreous humour with the plasma volume, as well as provided examples for PK-PD and toxicity considerations.
Collapse
|
20
|
Bioavailability of protein therapeutics in rats following inhalation exposure: Relevance to occupational exposure limit calculations. Regul Toxicol Pharmacol 2018; 100:35-44. [PMID: 30291877 DOI: 10.1016/j.yrtph.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 11/23/2022]
Abstract
Protein therapeutics represent a rapidly growing proportion of new medicines being developed by the pharmaceutical industry. As with any new drug, an Occupational Exposure Limit (OEL) should be developed to ensure worker safety. Part of the OEL determination addresses bioavailability (BA) after inhalation, which is poorly understood for protein therapeutics. To explore this, male Sprague-Dawley rats were exposed intravenously or by nose-only inhalation to one of five test proteins of varying molecular size (10-150 kDa), including a polyethylene glycol-conjugated protein. Blood, lung tissue and bronchoalveolar lavage (BAL) fluid were collected over various time-points depending on the expected test protein clearance (8 minutes-56 days), and analyzed to determine the pharmacokinetic profiles. Since the BAL half-life of the test proteins was observed to be > 4.5 h after an inhalation exposure, accumulation and direct lung effects should be considered in the hazard assessment for protein therapeutics with lung-specific targets. The key finding was the low systemic bioavailability after inhalation exposure for all test proteins (∼≤1%) which did not appear molecular weight-dependent. Given that this study examined the inhalation of typical protein therapeutics in a manner mimicking worker exposure, a default 1% BA assumption is reasonable to utilize when calculating OELs for protein therapeutics.
Collapse
|
21
|
Etchie TO, Sivanesan S, Etchie AT, Adewuyi GO, Krishnamurthi K, George KV, Rao PS. The burden of disease attributable to ambient PM2.5-bound PAHs exposure in Nagpur, India. CHEMOSPHERE 2018; 204:277-289. [PMID: 29665530 DOI: 10.1016/j.chemosphere.2018.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure to PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) can elicit several types of cancer and non-cancer effects. Previous studies reported substantial burdens of PAH-induced lung cancer, but the burdens of other cancer types and non-cancer effects remain unknown. Thus, we estimate the cancer and non-cancer burden of disease, in disability-adjusted life years (DALYs), attributable to ambient PM2.5-bound PAHs exposure in Nagpur district, India, using risk-based approach. We measured thirteen PAHs in airborne PM2.5 sampled from nine sites covering urban, peri-urban and rural areas, from February 2013 to June 2014. We converted PAHs concentrations to benzo[a]pyrene equivalence (B[a]Peq) for cancer and non-cancer effects using relative potency factors, and relative toxicity factors derived from quantitative structure-activity relationships, respectively. We calculated time-weighted exposure to B[a]Peq, averaged over 30 years, and adjusted for early-life susceptibility to cancer. We estimated the DALYs/year using B[a]Peq exposure levels, published toxicity data, and severity of the diseases from Global Burden of Disease 2016 database. The annual average concentration of total PM2.5-bound PAHs was 458 ± 246 ng/m3 and resulted in 49,500 DALYs/year (0.011 DALYs/person/year). The PAH-related DALYs followed this order: developmental (mostly cardiovascular) impairments (55.1%) > cancer (26.5%) or lung cancer (23.1%) > immunological impairments (18.0%) > reproductive abnormalities (0.4%).
Collapse
Affiliation(s)
- Tunde O Etchie
- Meteorology, Environment & Demographic Surveillance (MEDsurveillance) Ltd, Port Harcourt, Nigeria.
| | - Saravanadevi Sivanesan
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | | | | | - Kannan Krishnamurthi
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | - K V George
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| | - Padma S Rao
- National Environmental Engineering Research Institute, Council of Scientific and Industrial Research (CSIR-NEERI), Nagpur, India.
| |
Collapse
|
22
|
Jandard C, Hemming H, Prause M, Sehner C, Schwind M, Abromovitz M, Lovsin Barle E. Applicability of surface sampling and calculation of surface limits for pharmaceutical drug substances for occupational health purposes. Regul Toxicol Pharmacol 2017; 95:434-441. [PMID: 29288720 DOI: 10.1016/j.yrtph.2017.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/28/2022]
Abstract
Within the context of Occupational Hygiene (OH), surface sampling has been employed as a method to assess surface levels of Active Pharmaceutical Ingredients (APIs). There are potentially a number of reasons surface samples are collected including assessing potential health risks, housekeeping and cleaning effectiveness. There are no internationally accepted standards relating to collecting or interpreting surface samples for OH purposes. In the past, surface sampling results have been applied not only for estimating risks due to dermal contact, but also for other routes of exposure (e.g. inhalation, ingestion, etc). In this publication, we provide a decision tree to support the decision and value of performing surface sampling. For scenarios without conceivable skin exposure due to applied risk mitigation measures or for substances that do not penetrate the skin, surface sampling may not be needed. If the workers' health is determined to be at risk for systemic effects via skin, we propose to use the skin Permitted Daily Exposure (PDEskin), a safe skin dose independent of the exposure scenario that takes into consideration skin absorption properties of substances. For the purpose of OH monitoring, the likelihood of dermal exposure has to be understood before taking any samples, using both the PDEskin to calculate the surface limit and appropriate validated monitoring method for the surface.
Collapse
Affiliation(s)
| | | | - Maarten Prause
- Novartis Pharma AG, Postfach, CH-4002 Basel, Switzerland
| | | | - Markus Schwind
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | |
Collapse
|
23
|
Poulin P, Arnett R. Integration of a plasma protein binding factor to the Chemical-Specific Adjustment Factor (CSAF) for facilitating the estimation of uncertainties in interspecies extrapolations when deriving health-based exposure limits for active pharmaceutical ingredients: Investigation of recent drug datasets. Regul Toxicol Pharmacol 2017; 91:142-150. [PMID: 29107009 DOI: 10.1016/j.yrtph.2017.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022]
Abstract
The objective was to challenge cross-species extrapolation factors with which to scale animal doses to human by any route for non-carcinogenic endpoints. The conventional hypothesis of the toxicokinetics (TK)-toxicodynamics (TD) relationship was equal toxicity at equal plasma level of the total drug moiety in each species, but this should also follow the free drug assumption, which states that only the unbound drug moiety in plasma may elicit a TD effect in tissue. Therefore, a protein binding factor (PBF) was combined with the Chemical-Specific Adjustment Factor (CSAF) (i.e., CSAF x PBF). The value of PBF of each drug was set equal to the ratio between human and animals of the unbound fraction in plasma (fup). Recent drug datasets were investigated. Our results indicate that any CSAF value would be increased or decreased while PBF deviates to the unity, and this required more attention. Accordingly, further testing indicated that the CSAF values set equal to basic allometric uncertainty factors according to the conventional hypothesis (dog∼2, monkey∼3.1, rat∼7, mouse∼12) would increase by including PBF for 30% of the drugs tested that showed a superior fup value in human compared to animals. However, default uncertainty factors in the range of 10-100 were less frequently exceeded. Overall, PBF could be combined with any other uncertainty factor to get reliable estimate of CSAF for each bound drug in deriving health-based exposure limits.
Collapse
Affiliation(s)
- Patrick Poulin
- Consultant Patrick Poulin Inc., Québec City, Québec, Canada; Department of Occupational and Environmental Health, School of Public Health, IRSPUM, Université de Montréal, Québec, Canada.
| | - Richard Arnett
- Industrial Hygiene, Pharmascience Inc., 100, boul. de l'Industrie, Candiac, Québec Canada
| |
Collapse
|
24
|
Wiesner L, Prause M, Lovsin Barle E. Topical otic drugs in a multi-purpose manufacturing facility: a guide on determination and application of permitted daily exposure (PDE). Pharm Dev Technol 2017; 23:261-264. [PMID: 28535123 DOI: 10.1080/10837450.2017.1334665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to newly introduced EU GMP (Good Manufacturing Practice) guideline for Medicinal Products for Human and Veterinary use, product specific permitted daily exposure (PDE) for toxicological evaluation in multi-purpose facilities are required within a documented process for risk assessment. European Medicines Agency (EMA) guidance on setting PDE limits so far focused on systemic administration routes such as intravenous (IV), oral or inhalation. This article provides guidance on setting PDE values for risk management purposes in multi-purpose facilities for active pharmaceutical ingredients (APIs) applied as topical otic drugs to the outer ear canal. The therewith determined PDE otic, is used for the calculation of maximum safe carry-over (MSC) in manufacturing scenarios where a topical otic product is manufactured followed by another topical otic product.
Collapse
Affiliation(s)
- Lisa Wiesner
- a Novartis Pharma AG, Postfach , Basel , Switzerland
| | | | | |
Collapse
|
25
|
Lovsin Barle E, Bizec JC, Glogovac M, Gromek K, Winkler GC. Determination and application of the permitted daily exposure (PDE) for topical ocular drugs in multipurpose manufacturing facilities. Pharm Dev Technol 2017; 23:225-230. [PMID: 28361586 DOI: 10.1080/10837450.2017.1312442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Limits for the carry-over of product residues should be based on toxicological evaluation such as described in the "Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities". The toxicological evaluation should be performed also for locally administered drugs to ensure patient safety. Currently, there is no guidance on setting PDE for ocular drug substances in particular. The purpose of this investigation was to identify and describe a method for calculating a PDE value for topical ocular drugs (PDEocular). As an alternative method, extrapolation of a PDE for systemically administered drugs to a PDEocular is presented. These methods may be applied in cross-contamination risk assessments for manufacturing of topical ocular drugs. Similarly, the methods apply to systemically administered drugs, if their production precedes manufacturing of a topical ocular drug. We have examined pharmacokinetic (PK) properties of topical ocular drugs and compared them to the PK parameters of systemically administered drugs. Furthermore, we examined possible adverse effects of the carry-over in topical ocular drugs at therapeutic doses.
Collapse
Affiliation(s)
| | | | | | - Kamila Gromek
- a Novartis Pharma AG, Postfach , Basel , Switzerland
| | | |
Collapse
|
26
|
Streeter AJ, Faria EC. Analysis of the variability of the pharmacokinetics of multiple drugs in young adult and elderly subjects and its implications for acceptable daily exposures and cleaning validation limits. Int J Hyg Environ Health 2017; 220:659-672. [PMID: 28396010 DOI: 10.1016/j.ijheh.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
Abstract
The elderly constitute a significant, potentially sensitive, subpopulation within the general population, which must be taken into account when performing risk assessments including determining an acceptable daily exposure (ADE) for the purpose of a cleaning validation. Known differences in the pharmacokinetics of drugs between young adults (who are typically the subjects recruited into clinical trials) and the elderly are potential contributors affecting the interindividual uncertainty factor (UFH) component of the ADE calculation. The UFH values were calculated for 206 drugs for young adult and elderly groups separately and combined (with the elderly assumed to be a sensitive subpopulation) from published studies where the pharmacokinetics of the young adult and elderly groups were directly compared. Based on the analysis presented here, it is recommended to use a default UFH value of 10 for worker populations (which are assumed to be approximately equivalent to the young adult groups) where no supporting pharmacokinetic data exist, while it is recommended to use a default UFH value of 15 for the general population, to take the elderly into consideration when calculating ADE values. The underlying reasons for the large differences between the exposures in the young adult and elderly subjects for the 10 compounds which show the greatest separation are different in almost every case, involving the OCT2 transporter, glucuronidation, hydrolysis, CYP1A2, CYP2A6, CYP2C19, CYP2D6, CYP3A4 or CYP3A5. Therefore, there is no consistent underlying mechanism which appears responsible for the largest differences in pharmacokinetic parameters between young adult and elderly subjects.
Collapse
Affiliation(s)
- Anthony J Streeter
- Janssen Research & Development LLC, Spring House, PA and Raritan, NJ, USA.
| | - Ellen C Faria
- Janssen Research & Development LLC, Spring House, PA and Raritan, NJ, USA.
| |
Collapse
|
27
|
Bercu JP, Morinello EJ, Sehner C, Shipp BK, Weideman PA. Point of departure (PoD) selection for the derivation of acceptable daily exposures (ADEs) for active pharmaceutical ingredients (APIs). Regul Toxicol Pharmacol 2016; 79 Suppl 1:S48-56. [DOI: 10.1016/j.yrtph.2016.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 01/02/2023]
|
28
|
Olson MJ, Faria EC, Hayes EP, Jolly RA, Barle EL, Molnar LR, Naumann BD, Pecquet AM, Shipp BK, Sussman RG, Weideman PA. Issues and approaches for ensuring effective communication on acceptable daily exposure (ADE) values applied to pharmaceutical cleaning. Regul Toxicol Pharmacol 2016; 79 Suppl 1:S19-27. [DOI: 10.1016/j.yrtph.2016.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
|
29
|
Weideman PA, Pecquet AM, Maier MA. Harmonization efforts for deriving health-based exposure limits in the pharmaceutical industry – Advancing the current science and practice. Regul Toxicol Pharmacol 2016; 79 Suppl 1:S1-2. [DOI: 10.1016/j.yrtph.2016.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
Sargent EV, Flueckiger A, Barle EL, Luo W, Molnar LR, Sandhu R, Weideman PA. The regulatory framework for preventing cross-contamination of pharmaceutical products: History and considerations for the future. Regul Toxicol Pharmacol 2016; 79 Suppl 1:S3-S10. [PMID: 27230736 DOI: 10.1016/j.yrtph.2016.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 01/14/2023]
Abstract
Cross-contamination in multi-product pharmaceutical manufacturing facilities can impact both product safety and quality. This issue has been recognized by regulators and industry for some time, leading to publication of a number of continually evolving guidelines. This manuscript provides a historical overview of the regulatory framework for managing cross-contamination in multi-product facilities to provide context for current approaches. Early guidelines focused on the types of pharmaceuticals for which dedicated facilities and control systems were needed, and stated the requirements for cleaning validation. More recent guidelines have promoted the idea of using Acceptable Daily Exposures (ADEs) to establish cleaning limits for actives and other potentially hazardous substances. The ADE approach is considered superior to previous methods for setting cleaning limits such as using a predetermined general limit (e.g., 10 ppm or a fraction of the median lethal dose (LD50) or therapeutic dose). The ADEs can be used to drive the cleaning process and as part of the overall assessment of whether dedicated production facilities are required. While great strides have been made in using the ADE approach, work remains to update good manufacturing practices (GMPs) to ensure that the approaches are clear, consistent with the state-of-the-science, and broadly applicable yet flexible enough for adaptation to unique products and situations.
Collapse
|
31
|
Gould J, Callis CM, Dolan DG, Stanard B, Weideman PA. Special endpoint and product specific considerations in pharmaceutical acceptable daily exposure derivation. Regul Toxicol Pharmacol 2016; 79 Suppl 1:S79-93. [PMID: 27233924 DOI: 10.1016/j.yrtph.2016.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Recently, a guideline has been published by the European Medicines Agency (EMA) on setting safe limits, permitted daily exposures (PDE) [also called acceptable daily exposures (ADE)], for medicines manufactured in multi-product facilities. The ADE provides a safe exposure limit for inadvertent exposure of a drug due to cross-contamination in manufacturing. The ADE determination encompasses a standard risk assessment, requiring an understanding of the toxicological and pharmacological effects, the mechanism of action, drug compound class, and the dose-response as well as the pharmacokinetic properties of the compound. While the ADE concept has broad application in pharmaceutical safety there are also nuances and specific challenges associated with some toxicological endpoints or drug product categories. In this manuscript we discuss considerations for setting ADEs when the following specific adverse health endpoints may constitute the critical effect: genotoxicity, developmental and reproductive toxicity (DART), and immune system modulation (immunostimulation or immunosuppression), and for specific drug classes, including antibody drug conjugates (ADCs), emerging medicinal therapeutic compounds, and compounds with limited datasets. These are challenging toxicological scenarios that require a careful evaluation of all of the available information in order to establish a health-based safe level.
Collapse
|
32
|
Sussman RG, Naumann BD, Pfister T, Sehner C, Seaman C, Weideman PA. A harmonization effort for acceptable daily exposure derivation - Considerations for application of adjustment factors. Regul Toxicol Pharmacol 2016; 79 Suppl 1:S57-66. [PMID: 27221789 DOI: 10.1016/j.yrtph.2016.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022]
Abstract
Acceptable daily exposures (ADEs) are established to determine the quantity of one drug substance that can contaminate another drug product without causing harm to the patient. An important part in setting an ADE for a drug substance, after identification of the unwanted critical effect(s) of the compound (see Bercu et al., 2016, this issue), is the determination of an appropriate overall margin of safety that is need to be maintained below the dose causing a certain critical effect (i.e., the point of departure or PoD). The overall margin of safety used to protect the general patient population from critical effects is derived as the product (i.e., composite adjustment factor) of various individual factors that account for variability and uncertainty in extrapolating from the PoD to an ADE. These factors address the considerations of interindividual variability, interspecies extrapolation, LOAEL-to-NOAEL extrapolation, exposure duration adjustment, effect severity, and database completeness. The factors are considered individually, but are not necessarily independent and their interdependence should be identified, with subsequent adjustment to the composite factor, as appropriate. It is important to identify all sources of variability and uncertainty pertinent to the derivation of the ADE and ensure each is considered in the assessment, at least by one of the adjustment factors. This manuscript highlights the basis for and selection of factors that address variability and uncertainty as used in the guidance documents on setting ADEs or other related health-based limits.
Collapse
|
33
|
Lovsin Barle E, Winkler GC, Glowienke S, Elhajouji A, Nunic J, Martus HJ. Setting Occupational Exposure Limits for Genotoxic Substances in the Pharmaceutical Industry. Toxicol Sci 2016; 151:2-9. [PMID: 27207978 PMCID: PMC4914798 DOI: 10.1093/toxsci/kfw028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the pharmaceutical industry, genotoxic drug substances are developed for life-threatening indications such as cancer. Healthy employees handle these substances during research, development, and manufacturing; therefore, safe handling of genotoxic substances is essential. When an adequate preclinical dataset is available, a risk-based decision related to exposure controls for manufacturing is made following a determination of safe health-based limits, such as an occupational exposure limit (OEL). OELs are calculated for substances based on a threshold dose-response once a threshold is identified. In this review, we present examples of genotoxic mechanisms where thresholds can be demonstrated and OELs can be calculated, including a holistic toxicity assessment. We also propose a novel approach for inhalation Threshold of Toxicological Concern (TTC) limit for genotoxic substances in cases where the database is not adequate to determine a threshold.
Collapse
Affiliation(s)
| | | | | | | | - Jana Nunic
- Lek Pharmaceuticals D.D, Verovškova 57, 1526 Ljubljana, Slovenia
| | | |
Collapse
|