1
|
Lan F, Wang X, Wang X, Ruan Y, Ding L, Liu D, Zhang T, Wang J. Simultaneous determination of four fungicide residues in figs using liquid chromatography tandem mass spectrometry. Biomed Chromatogr 2024; 38:e5935. [PMID: 38924114 DOI: 10.1002/bmc.5935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Dissipative behavior and final residue levels of difenoconazole, prochloraz, propiconazole, and pyraclostrobin in figs were investigated using field trials and laboratory assays. A three-factor, three-level orthogonal test was designed to optimize the pretreatment conditions of the method. A method was established using high-performance liquid chromatography tandem mass spectrometry for the determination of difenoconazole, prochloraz, propiconazole, and pyraclostrobin residues in figs. The limit of quantification for all four targets in figs was 0.002 mg/kg. Difenoconazole, prochloraz, propiconazole, and pyraclostrobin are readily digestible pesticides in figs with half-lives of 6.4, 6.2, 4.8, and 7.9 days, respectively. Residues of difenoconazole, prochloraz, propiconazole, and pyraclostrobin in figs were below the European Union established residue levels of 0.1, 0.03, 0.01, and 0.02 mg/kg, respectively, at day 7 after application. Pyraclostrobin, propiconazole, difenoconazole, and prochloraz were applied twice at doses of 75, 125, 150, and 200 mg a.i./kg at 7-day intervals, and the residues of the four fungicides in figs were acceptable 7 days after the last application. Therefore, the safety interval can be set at 7 days for 70% difenoconazole-prochloraz wettable powder and 40% pyraclostrobin-propiconazole aqueous emulsion according to the protocol.
Collapse
Affiliation(s)
- Feng Lan
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Xinyu Wang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Xuejing Wang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Yinwei Ruan
- Regulatory Affair Department, Shandong Cynda Chemical Company Limited, Jinan, P. R. China
| | - Li Ding
- General Section, Weihai Academy of Agricultural Sciences in Shandong Province, Weihai, P. R. China
| | - Daliang Liu
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Tongliang Zhang
- Regulatory Affair Department, Shandong Cynda Chemical Company Limited, Jinan, P. R. China
| | - Jianping Wang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| |
Collapse
|
2
|
Wang L, Li F, Meng L, Wang K, Li W, Fan F, Zhang X, Jiang X, Mu W, Pang X. Assessment of the Dissipation Behaviors, Residues, and Dietary Risk of Oxine-Copper in Cucumber and Watermelon by UPLC-MS/MS. ACS OMEGA 2024; 9:29471-29477. [PMID: 39005790 PMCID: PMC11238219 DOI: 10.1021/acsomega.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
During production, agricultural products are often susceptible to potential harm caused by residual traces of pesticides. Oxine-copper is a broad spectrum and efficient protective fungicide widely used in the production of fruits and vegetables. The present study was carried out to profile the dissipation behaviors and residues of oxine-copper on cucumber and watermelon using QuEChERS pretreatment and UPLC-MS/MS. Its storage stability and dietary risk assessment were also estimated. The method validation displayed good linearity (R 2 ≥ 0.9980), sensitivity (limits of quantification ≤0.01 mg/kg), and recoveries (75.5-95.8%) with relative standard deviations of 2.27-8.26%. According to first-order kinetics, the half-lives of oxine-copper in cucumber and watermelon were 1.77-2.11 and 3.57-4.68 d, respectively. The terminal residues of oxine-copper in cucumber and watermelon samples were within <0.01-0.264 and <0.01-0.0641 mg/kg, respectively. Based on dietary risk assessment, the estimated long-term dietary risk probability value of oxine-copper in cucumber and watermelon is 64.11%, indicating that long-term consumption of cucumber and watermelon contaminated with oxine-copper would not pose dietary risks to the general population. The results provide scientific guidance for the rational utilization of oxine-copper in field ecosystems of cucumber and watermelon.
Collapse
Affiliation(s)
- Lu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Fengyu Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lingtao Meng
- Shandong Binnong Technology Co., Ltd., Binzhou 256600, China
| | - Kai Wang
- Shandong Binnong Technology Co., Ltd., Binzhou 256600, China
| | - Wenying Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Fangming Fan
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaobing Zhang
- Shandong Weifang Rainbow Chemical Co., Ltd., Weifang 261108, China
| | - Xinyue Jiang
- University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuyu Pang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| |
Collapse
|
3
|
Zhang Y, Qin K, Liu C. Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133459. [PMID: 38219581 DOI: 10.1016/j.jhazmat.2024.133459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-antibiotic chemicals in farmlands, including microplastics (MPs) and pesticides, have the potential to influence the soil microbiome and the dissemination of antibiotic resistance genes (ARGs). Despite this, there is limited understanding of the combined effects of MPs and pesticides on microbial communities and ARGs transmission in soil ecosystems. In this study, we observed that low-density polyethylene (LDPE) microplastic enhance the accumulation of pyraclostrobin in earthworms, resulting in reduced weight and causing severe oxidative damage. Analysis of 16 S rRNA amplification revealed that exposure to pyraclostrobin and/or LDPE disrupts the microbial community structure at the phylum and genus levels, leading to reduced alpha diversity in both the soil and earthworm gut. Furthermore, co-exposure to LDPE and pyraclostrobin increased the relative abundance of ARGs in the soil and earthworm gut by 2.15 and 1.34 times, respectively, compared to exposure to pyraclostrobin alone. It correlated well with the increasing relative abundance of genera carrying ARGs. Our findings contribute novel insights into the impact of co-exposure to MPs and pesticides on soil and earthworm microbiomes, highlighting their role in promoting the transfer of ARGs. This knowledge is crucial for managing the risk associated with the dissemination of ARGs in soil ecosystems.
Collapse
Affiliation(s)
- Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
4
|
Yu J, Hou J, Xu Z, Yu R, Zhang C, Chen L, Zhao X. Dissipation behavior and dietary risk assessment of cyclaniliprole and its metabolite in cabbage under field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125907-125914. [PMID: 38008836 DOI: 10.1007/s11356-023-31146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Cyclaniliprole, a novel diamide insecticide, can successfully control Spodoptera litura (Fabricius, 1775) in cabbage. Understanding the residual level of cyclaniliprole in crops and the risk related to its dietary intake is imperative for safe application. Here, we established a simplified, sensitive method for simultaneous analysis of cyclaniliprole and its metabolite NK-1375 (3-bromo-2-((2-bromo-4H-pyrazolo[1,5-d]pyrido[3,2-b]-[1,4]oxazin-4-ylidene)amino)-5-chloro-N-(1-cyclopropylethyl)benzamide) in cabbage by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate their dissipation behavior and residual characteristics. Cyclaniliprole showed rapid dissipation in cabbage and had a half-life of 1.8-2.7 days. The highest residue of total cyclaniliprole (sum of cyclaniliprole and NK-1375) in cabbage from different pre-harvest intervals (3 and 5 days) was 0.25 mg/kg. Our results confirmed the generally low dietary risk quotient of cyclaniliprole (0.243-1.036%) among different age and gender groups in China. Therefore, cyclaniliprole did not pose an unacceptable risk to consumers. This study contributes to setting cyclaniliprole maximum residue limit in cabbage by assessing its dissipation fate and food safety risks.
Collapse
Affiliation(s)
- Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jiayin Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruixian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
5
|
Yu X, Hu J. Residue levels and dietary risk assessment of fluopimomide, pyraclostrobin and its metabolite BF-500-3 in garlic ecosystems under field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19803-19813. [PMID: 36241836 DOI: 10.1007/s11356-022-23512-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
To evaluate the residue levels of fluopimomide, pyraclostrobin and its metabolite BF-500-3 in garlic ecosystems, supervised garlic field trials with a commercial formulation (pyraclostrobin·fluopimomide 30% suspension concentrate (SC)) were conducted in six regions of China according to the Good Agricultural Practices (GAP). The residues of fluopimomide, pyraclostrobin and BF-500-3 in field samples were determined using a QuEChERS method combined with high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The average recoveries of all target compounds were 76-94% with relative standard deviations (RSDs) of 1.0-14.5% and limits of quantitation (LOQs) of 0.002 mg/kg. At the recommended pre-harvest interval (PHI, 10 days), the residues of fluopimomide, pyraclostrobin and BF-500-3 were below 0.16, 0.77 and 0.12 mg/kg in garlic chive; below 0.027, 0.22 and 0.002 mg/kg in garlic scape; and below 0.002, 0.002 and 0.002 mg/kg in garlic, respectively. Dietary intake risks were calculated using risk quotients (RQs) based on field residual data, toxicological data and dietary patterns. The chronic dietary risk quotients (RQc) of pyraclostrobin and fluopimomide were 48.42% and 0.36%, respectively. The acute dietary risk quotients (RQa) of pyraclostrobin in garlic were 0.06-0.15%. These results indicated a low dietary risk for consumers. This study could provide scientific guidance for the application of pyraclostrobin and fluopimomide in garlic.
Collapse
Affiliation(s)
- Xiaoxu Yu
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jiye Hu
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
6
|
Zhao E, Xie A, Wang D, Du X, Liu B, Chen L, He M, Yu P, Jing J. Residue behavior and risk assessment of pyraclostrobin and tebuconazole in peppers under different growing conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84096-84105. [PMID: 36264460 DOI: 10.1007/s11356-022-23469-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
This study evaluates the residue behavior and risks of pyraclostrobin and tebuconazole in peppers. An analytical method for the simultaneous determination of the concentration of these fungicides in peppers was developed using ultra-high performance liquid chromatography-triple quadrupole mass spectrometry. Pepper samples were extracted with acetonitrile and cleaned with primary secondary amine and graphitized carbon black. The average recoveries of pyraclostrobin and tebuconazole under three fortification levels were 86.7-101.4% and 81.7-104.4%, with relative standard deviations of 4.0-7.2% and 3.8-10.9%, respectively. The limit of quantification of both fungicides in peppers was 0.01 mg/kg. The terminal residue trial of 30% pyraclostrobin and tebuconazole suspension concentrate was investigated for samples cultivated in open fields and greenhouses. The results showed that the terminal residues of pyraclostrobin and tebuconazole in peppers were lower than the maximum residue limits established by GB 2763-2021 (0.5 mg/kg for pyraclostrobin and 2 mg/kg for tebuconazole). The results of a statistical t-test indicated that there was no significant difference between samples grown in open fields and greenhouses. According to the international estimate of short-term intake (IESTI) calculation model, provided by the Joint FAO/WHO Meeting on Pesticide Residues, the acute dietary exposure risk of both fungicides in peppers was acceptable for the general population, with an IESTI of 0-3% and 0-5% of the acute reference dose for pyraclostrobin and tebuconazole, respectively.
Collapse
Affiliation(s)
- Ercheng Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Anqi Xie
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Dong Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Xiaoying Du
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Bingjie Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Li Chen
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Min He
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Pingzhong Yu
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Junjie Jing
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
7
|
Li X, Sun Z, Yan T, Li Y, Zhang X, Liu M, Lin Y, Zhang Z, Xu H. Residue and distribution of drip irrigation and spray application of two diamide pesticides in corn and dietary risk assessment for different consumer groups. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6676-6686. [PMID: 35608937 DOI: 10.1002/jsfa.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As the use of diamide insecticides on corn continues to increase, there is growing concern about their residue levels on corn and dietary risks to populations. In this study, the distribution, dispersion and transfer efficiency of two diamide insecticides (tetrachlorantraniliprole (TCAP) and cyantraniliprole (CNAP)) in different parts of corn and soil were investigated in a 1-year field trial in Guangzhou and Lanzhou using two different application methods - spray and drip irrigation, respectively - and the dietary risk of the insecticides to different consumer populations was assessed under the two application methods. RESULTS The results showed that drip irrigation had a longer persistence period than spraying, and there was a hysteresis in the absorption distribution of the agent in different parts of corn, which was gradually transferred to the leaves after absorption from the roots. The average TE1 (transfer efficiency) and TE2 were 0.230-0.261 and 1.749-1.851 for TCAP and 0.168-0.187 and 2.363-2.815 for CNAP, respectively. At corn harvest, both TCAP and CNAP were below detectable levels in soil and corn. For different consumer populations, hazard quotients ranged from 0.001 to 0.066 for TCAP and from 0.003 to 0.568 for CNAP - both well below 100%. CONCLUSION This study indicates that TCAP and CNAP applied by spray or drip irrigation are safe for long-term risk of human intake and also provides guidance for the use of both insecticides in agricultural production to control corn pests, especially in arid and semi-arid areas. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianjia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zheng Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Tiantian Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yuan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Miaojiao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yigang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Du Y, Wang Q, Yang G, Han F. Determination of 43 pesticide residues in intact grape berries (Vitis Vinifera L.) by using an ultrasound-assisted acetonitrile extraction method followed by LC–MS/MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Dissipation Residue Behaviors and Dietary Risk Assessment of Boscalid and Pyraclostrobin in Watermelon by HPLC-MS/MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144410. [PMID: 35889283 PMCID: PMC9318032 DOI: 10.3390/molecules27144410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/17/2023]
Abstract
Fungicides containing active ingredients of boscalid and pyraclostrobin have been widely applied in watermelon disease control. To provide data for avoiding health hazards caused by fungicides, we investigated its terminal residues and evaluated the dietary risk. In this work, watermelon samples were collected from field sites in six provinces and analyzed with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The average recoveries of boscalid and pyraclostrobin in the watermelon matrix were 97–108% and 93–103%, respectively, with the relative standard deviations (RSDs) ≤ 9.1%. The limits of quantifications (LOQs) were 0.01 and 0.005 mg/kg for boscalid and pyraclostrobin. Twenty-one days after applying the test pesticide with 270 g a.i./ha, the terminal residues of boscalid and pyraclostrobin were all below 0.05 mg/kg and below the maximum residue limits (MRLs) recommended by European Food Safety Authority (EFSA). According to the national estimated daily intake (NEDI), the risk quotients (RQs) of boscalid and pyraclostrobin were 48.4% and 62.6%, respectively. That indicated the pesticide evaluated in watermelon exhibited a low dietary risk to consumers. All data provide a reference for the MRL establishment of boscalid in watermelon for China.
Collapse
|
10
|
Yu J, Hou J, Yu R, Hu X, Xu Z, Zhao X, Chen L. Dissipation and dietary exposure risk assessment of pyraclostrobin, fluxapyroxad, difenoconazole, and azoxystrobin in the Fritillaria field ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51758-51767. [PMID: 35253103 DOI: 10.1007/s11356-022-19511-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Fritillaria (Beimu in Chinese) is a well-known traditional Chinese medicinal herbal and valuable health food, which has attracted more and more attention. In this study, an efficient method was developed to determine pyraclostrobin, fluxapyroxad, difenoconazole, and azoxystrobin in plants, fresh Fritillaria, dry Fritillaria, and soil via liquid chromatography-tandem mass spectrometry. The average recoveries of the method were 78.9-109.7% with relative standard deviations of 0.94-11.1%. The dissipation half-lives of the four fungicides were 4.4-7.7 days in the Fritillaria plant and 11.6-18.2 days in the soil. The terminal residues of four fungicides were 0.033-0.13 mg/kg in fresh Fritillaria, 0.096-0.42 mg/kg in dry Fritillaria, and 0.12-0.74 mg/kg in soil. In the risk assessment of dietary exposure, all the chronic hazard quotient and acute hazard quotient index values were far below 100%, which were both acceptable to consumers. Accordingly, 7 days was recommended as the pre-harvest interval for the four fungicides in Fritillaria. This work could guide the safe use of these fungicides in Fritillaria and also give a reference for the Chinese government to establish the maximum residue limits (MRLs).
Collapse
Affiliation(s)
- Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiayin Hou
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ruixian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiuqing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
11
|
Modern Analytical Methods for the Analysis of Pesticides in Grapes: A Review. Foods 2022; 11:foods11111623. [PMID: 35681373 PMCID: PMC9180315 DOI: 10.3390/foods11111623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, research on the determination of pesticides in food products is very popular. Information obtained from research conducted so far mainly concerns the development of a methodology to determine the content of pesticides in food products. However, they do not describe the content of the pesticide used in viticulture in the resulting product. Over the past decade, this study has examined analytical methodologies for assessing pesticide residues in grapes. Scopus, Web of Science, Science Direct, PubMed, and Springer databases were searched for relevant publications. The phrases “pesticides” and “grapes” and their combinations were used to search for articles. The titles and annotations of the extracted articles have been read and studied to ensure that they meet the review criteria. The selected articles were used to compile a systematic review based on scientific research and reliable sources. The need to study the detection of pesticide residues in grapes using advanced analytical methods is confirmed by our systematic review. This review also highlights modern methods of sample preparation, such as QuEChERS, SPME, PLE, dLLME, and ADLL-ME, as well as the most used methods of separation and identification of pesticides in grapes. An overview of the countries where residual grape pesticide amounts are most studied is presented, along with the data on commonly used pesticides to control pests and diseases in grape cultivation. Finally, future possibilities and trends in the analysis of pesticide residues in grapes are discussed by various analytical methods.
Collapse
|
12
|
Zhao H, Hou H, Hu J. Residue levels, household processing evolution and risk assessment of chlorothalonil, SDS-3701, metalaxyl and dimethomorph in Dendrobium officinale Kimura et Migo. Biomed Chromatogr 2022; 36:e5418. [PMID: 35635721 DOI: 10.1002/bmc.5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022]
Abstract
Dendrobium officinale, a minor crop with medicinal and edible value, is increasingly entering people's diets, but the pesticide residues on it have received little attention. In this work, field trials were conducted under good agricultural practice (GAP) conditions to investigate the residues of chlorothalonil, SDS-3701, metalaxyl and dimethomorph in D. officinale, then the evolution of these pesticides after household processing were studied. The results indicated that chlorothalonil, SDS-3701, metalaxyl and dimethomorph were 2.41-30.12, 0.20-1.23, 0.07-0.80, 0.19-7.90 mg kg-1 respectively in stems at recommended preharvest interval (PHI, 30 d). Washing and soaking removed the pesticides in fresh stems with the processing factors (PFs) of 0.41-1.14 and 0.12-1.13, respectively. In brewing test, the transfer rates (TRs) of pesticides in dry stems decreased from the first time (4.27-95.40%) to the third time (3.89-15.57%). Intake risk assessments were also conducted and the risk quotients (RQs) were no more than 27.02% for all compounds in different samples, which indicated acceptable risks for consumers. As effective risk-reducing home processing methods, washing, soaking and multiple brewing were suggested in this work, hoping to help consumers with diet safety.
Collapse
Affiliation(s)
- Honglei Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, PR China
| | - Huizhen Hou
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, PR China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, PR China
| |
Collapse
|
13
|
Dissipation and Residues of Pyraclostrobin in Rosa roxburghii and Soil under Filed Conditions. Foods 2022; 11:foods11050669. [PMID: 35267302 PMCID: PMC8909010 DOI: 10.3390/foods11050669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Rosa roxburghii has been widely planted in China. Powdery mildew is the most serious disease of R. roxburghii cultivation. Pyraclostrobin was widely used as a novel fungicide to control powdery mildew of R. roxburghii. To assess the safety of pyraclostrobin for use on R. roxburghii fruits, its residue rapid analysis as well as an investigation on its dissipation behaviors and terminal residues in R. roxburghii and soil under field conditions were carried out. The QuEChERS method was simplified using LC−MS/MS detection and combined with liquid−liquid extraction purification to allow determination of pyraclostrobin levels in R. roxburghii fruits and the soil. The fortified recoveries at 0.1~5.0 mg/kg were 93.48~102.48%, with the relative standard deviation of 0.64~3.21%. The limit of detection of the analytical method was 0.16 and 0.15 µg/kg for R. roxburghii fruit and soil, respectively. The effects of different spray equipment and formulations on the persistence of pyraclostrobin in R.roxburghii were as follows: gaston gasoline piggyback agricultural sprayer (5.38 d) > manual agricultural backpack sprayer (3.37 d) > knapsack multi-function electric sprayer (2.91 d), suspension concentrate (SC) (6.78 d) > wettable powder (WP) (5.64 d) > water dispersible granule (WG) (4.69 d). The degradation of pyraclostrobin followed the first-order kinetics and its half-lives in R.roxburghii and soil were 6.20~7.79 days and 3.86~5.95 days, respectively. The terminal residues of pyraclostrobin in R. roxburghii and soil were 0.169~1.236 mg/kg and 0.105~3.153 mg/kg, respectively. This study provides data for the establishment of the maximum residue limit (MRL) as well as the safe and rational use of pyraclostrobin in R. roxburghii production.
Collapse
|
14
|
Fan R, Zhang W, Jia L, Li L, Zhao J, Zhao Z, Peng S, Chen Y, Yuan X. Combined Developmental Toxicity of the Pesticides Difenoconazole and Dimethomorph on Embryonic Zebrafish. Toxins (Basel) 2021; 13:toxins13120854. [PMID: 34941692 PMCID: PMC8706556 DOI: 10.3390/toxins13120854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Difenoconazole (DIF) and dimethomorph (DIM) are widely used pesticides frequently detected together in environmental samples, so the deleterious effects of combined exposure warrant detailed examination. In this study, the individual and combined effects of DIM and DIF on conventional developmental parameters (hatching rate, deformity rate, lethality) and gene expression were measured in embryonic zebrafish. Both DIF and DIM interfered with normal zebrafish embryo development, and the most sensitive toxicity index for both was 96 h post-fertilization (hpf) deformity rate (BMDL10 values of 0.30 and 1.10 mg/L, respectively). The combination of DIF and DIM had mainly synergistic deleterious effects on 96 hpf deformity and mortality rates. Transcriptome analysis showed that these compounds markedly downregulated expression of mcm family genes, cdk1, and cdc20, thereby potentially disrupting DNA replication and cell cycle progression. Enhanced surveillance for this pesticide combination is recommended as simultaneous environmental exposure may be substantially more harmful than exposure to either compound alone.
Collapse
Affiliation(s)
- Ruiqi Fan
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (R.F.); (W.Z.); (L.J.); (L.L.); (J.Z.); (Z.Z.); (S.P.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Wanjun Zhang
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (R.F.); (W.Z.); (L.J.); (L.L.); (J.Z.); (Z.Z.); (S.P.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Li Jia
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (R.F.); (W.Z.); (L.J.); (L.L.); (J.Z.); (Z.Z.); (S.P.)
| | - Lizhong Li
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (R.F.); (W.Z.); (L.J.); (L.L.); (J.Z.); (Z.Z.); (S.P.)
| | - Jun Zhao
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (R.F.); (W.Z.); (L.J.); (L.L.); (J.Z.); (Z.Z.); (S.P.)
| | - Zengming Zhao
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (R.F.); (W.Z.); (L.J.); (L.L.); (J.Z.); (Z.Z.); (S.P.)
| | - Shuangqing Peng
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (R.F.); (W.Z.); (L.J.); (L.L.); (J.Z.); (Z.Z.); (S.P.)
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xiaoyan Yuan
- Center of Disease Control and Prevention, PLA, Beijing 100073, China; (R.F.); (W.Z.); (L.J.); (L.L.); (J.Z.); (Z.Z.); (S.P.)
- School of Nursing and Health, Henan University, Kaifeng 475000, China
- Correspondence:
| |
Collapse
|
15
|
Jankowska M, Kaczyński P, Łozowicka B. Dissipation kinetics and processing behavior of boscalid and pyraclostrobin in greenhouse dill plant (Anethum graveolens L.) and soil. PEST MANAGEMENT SCIENCE 2021; 77:3349-3357. [PMID: 33773022 DOI: 10.1002/ps.6379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Determining the environmental behavior and fate of chemical compounds during technological processing of plants is a task of great significance nowadays. However, the current knowledge is still incomplete for unique herbal matrices belonging to minor crops. The research in this article presents, for the first time, the dissipation kinetics and processing behavior of carboxamide boscalid (BOS) and stobilurin pyraclostrobin (PYR) fungicides during glasshouse dill (Anethum graveolens L.) cultivation. RESULTS The half-lives (t1/2 ) of BOS and PYR after application at the recommended and double dosage were in the range: 1.62-2.01 days in plant and 2.08-4.85 days in soil, respectively. The processing behavior in dill was estimated after washing, hot air drying and drying in sunlight without/with pretreatment. Processing factors (PFs) were above 1 after drying (PF = 1.24-1.39 hot air; PF = 1.15-1.28 sunlight) and below this value when the washing step was applied (PF = 0.31-0.42 hot air; PF = 0.21-0.34 sunlight), indicating the highest effectiveness of reduction, up to 73% BOS and 79% PYR. CONCLUSION BOS/PYR residues at pre-harvest intervals after both doses were below European Union (EU) maximum residue limits (MRLs). The highest effectiveness was noted for drying carried out with the washing step, which has a great influence on the concentration of residues in the final product. The findings can supplement PF databases not set for minor crops and can be used to establish MRLs and determine human exposures more accurately in risk assessment studies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Magdalena Jankowska
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Bialystok, Poland
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Bialystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Laboratory of Food and Feed Safety, Bialystok, Poland
| |
Collapse
|
16
|
Heshmati A, Mehri F, Mousavi Khaneghah A. Simultaneous multi-determination of pesticide residues in black tea leaves and infusion: a risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13725-13735. [PMID: 33197000 DOI: 10.1007/s11356-020-11658-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the concentration of 33 pesticide residues in 60 black tea samples collected from Iran, determine their transfer rate, and assess their health risk during brewing. Pesticide extraction and analysis were performed by using a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and gas chromatography/tandem mass spectrometry (GC-MS/MS), respectively. The limits of detection (LOD) and the limits of quantification (LOQ) of pesticides were ranged 0.1-7.26 and 0.8-24 μg/kg for dried tea leaves and 0.03-3.1 and 0.09-10 μg/L for the tea infusion, respectively. The levels of pesticide residue in 52 (86.67%) out of 60 tea samples were above the LOD (0.1-7.26 μg/kg). Twenty four (40%) of the samples contained pesticides in a concentration higher than the maximum residue limit (MRL) set by the European Commission (EC). Seven out of 33 validated pesticides were detected in dried tea leaf samples that only four of seven, including buprofezin, chlorpyrifos, hexaconazole, and triflumizole, were transferred into tea infusion, demonstrating that the concentrations of pesticides in infusion were raised during brewing. The risk assessment study for detected pesticides in the tea infusion samples indicated that this beverage consumption was safe for consumers, while the mean residue of some pesticides in positive samples was higher than the MRL; therefore, periodic control of these pesticides should be regularly implemented.
Collapse
Affiliation(s)
- Ali Heshmati
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80. Caixa Postal: 6121, Campinas, São Paulo, CEP: 13083-862, Brazil.
| |
Collapse
|
17
|
Zhao Z, Sun R, Su Y, Hu J, Liu X. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111236. [PMID: 32911182 DOI: 10.1016/j.ecoenv.2020.111236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The fungicides epoxiconazole and pyraclostrobin have been widely used to control wheat fusarium head blight. This study was designed to investigate the dissipation behaviors in different climate regions and provide data for the modification of maximum residue limits of the two fungicides. Wheat samples were collected from field sites in twelve different regions, China and analyzed with an HPLC-MS/MS method for simultaneous detection of epoxiconazole and pyraclostrobin in wheat. The average recoveries of epoxiconazole and pyraclostrobin in wheat matrix were 87-112% and 85-102%, respectively, with the relative standard deviations ≤8.1%. The limits of quantification of epoxiconazole and pyraclostrobin in grain and straw were both 0.01 mg/kg. The dissipations of epoxiconazole and pyraclostrobin followed first-order kinetics, with the half-lives of 10.3 days and 7.6 days, respectively. The terminal residues of epoxiconazole and pyraclostrobin in grain were below 0.034 and 0.028 mg/kg, separately, both lower than the maximum residue limits recommended by China. Based on Chinese dietary pattern and terminal residue distributions, the risk quotients of epoxiconazole and pyraclostrobin were 13.9% and 65.9%, respectively, revealing the evaluated wheat exhibited an acceptably low dietary risk to consumers.
Collapse
Affiliation(s)
- Zixi Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yue Su
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
18
|
Li P, Sun P, Li D, Li D, Li B, Dong X. Evaluation of Pyraclostrobin as an Ingredient for Soybean Seed Treatment by Analyzing its Accumulation-Dissipation Kinetics, Plant-Growth Activation, and Protection Against Phytophthora sojae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11928-11938. [PMID: 33078613 DOI: 10.1021/acs.jafc.0c04376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seed treatment with fungicides has been regarded as a principal, effective, and economic technique for soybean [Glycine max (L.) Merr.] against pathogenic microorganisms during seed germination and seedling growth. Investigation of the characteristics of seed-treatment reagents is an indispensable basis for their application. The aim of the present work is to evaluate the use of pyraclostrobin as an ingredient for soybean seed treatment by investigating its accumulation-dissipation kinetics in plants, plant-growth activation, and protection against Phytophthora sojae. The results showed that the pyraclostrobin stimulated the visible growth (root and shoot length) of soybean plants, increased the chlorophyll level and root activity, and lowered the malonaldehyde (MDA) level. The peak level and bioavailability of pyraclostrobin in soybean roots were 19.9- and 33.2-fold those in leaves, respectively, indicating that pyraclostrobin was mainly accumulated in roots. Pyraclostrobin had a continuous positive effect on the flavonoid levels and the phenylalanine ammonialyase (PAL) activity in roots and leaves, which could enhance the plant defense system. Pyraclostrobin showed in vitro toxicity to P. sojae with a half-inhibition concentration (EC50) of 1.59 and 1.24 μg/mL for pyraclostrobin and pyraclostrobin plus salicylhydroxamic acid (SHAM, an inhibitor of the alternative pathway of respiration), respectively. Seed treatment with pyraclostrobin significantly reduced the severity of Phytophthora root rot, with a control efficacy of 60.7%. To the best of our knowledge, this is the first report on the characteristics of pyraclostrobin used in soybean seed treatment and its efficacy against Phytophthora root rot.
Collapse
Affiliation(s)
- Pingliang Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Pingyang Sun
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Dong Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Delong Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Baohua Li
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiangli Dong
- College of Plant Health and Medicine, Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
19
|
Fu Y, Dou X, Lu Q, Qin J, Luo J, Yang M. Comprehensive assessment for the residual characteristics and degradation kinetics of pesticides in Panax notoginseng and planting soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136718. [PMID: 31982747 DOI: 10.1016/j.scitotenv.2020.136718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Incorrect and excess usage of pesticides during crop cultivation poses a serious threat to human health and ecosystems. In this study, we tested for the presence of 201 pesticide residues in 90 batches of Panax notoginseng (P. notoginseng) and 10 batches of planting soil. Pesticide residue characteristics and the relationship between pesticides present in P. notoginseng and the soil were discussed. Twenty-nine pesticides were detected in P. notoginseng samples and 15 pesticides were found in the soil samples. In P. notoginseng samples, the 68.9% of the identified pesticides were fungicides, and six fungicides (procymidone, iprodione, pyrimethanil, propiconazole, dimethomorph and tebuconazole) were found in >90% of the samples. Nine insecticides were found, with one insecticide, chlorpyrifos, detected in 93.3% of the P. notoginseng samples. The residual concentrations of 17 pesticides were found at levels exceeded the "non-Chinese" maximum residue levels (MRLs) for Ginseng and 17 pesticides were found at levels exceeding the MRLs set by China for "pollution-free" P. notoginseng. We observed no significant differences in pesticide residues were found on P. notoginseng from different cultivation areas. We also analyzed the degradation kinetics of pesticides in the soil, as well as their bioconcentration factors (BCFs), and found that the fungicides iprodione and myclobutanil displayed strong uptake from the soil to the root of P. notoginseng. Together, our data suggest that fungicides should be considered as key monitoring substances in P. notoginseng and planting soil.
Collapse
Affiliation(s)
- Yanwei Fu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xiaowen Dou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
20
|
Yang M, Luo F, Zhang X, Zhou L, Lou Z, Zhao M, Chen Z. Dissipation and Risk Assessment of Multiresidual Fungicides in Grapes under Field Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1071-1078. [PMID: 31841622 DOI: 10.1021/acs.jafc.9b06064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Grapes are among the most popular fruits globally, and various fungicides are widely applied to grape crops. As such, the presence of multiple fungicide residues and dietary risks in grapes has become the focus of significant attention. In this study, an easy-to-implement and sensitive UPLC-MS/MS approach was developed to simultaneously determine pyraclostrobin, dimethomorph, cymoxanil, cyazofamid and its metabolite CCIM in grapes via QuEChERS. This approach achieved 78.1-106.0% recovery and a 0.01 mg kg-1 limit of quantitation (LOQ). Field trials revealed that these compounds had degradation half-lives ranging from 0.9 to 13.3 days. And their terminal residues ranging from < LOQ to 1.36 mg kg-1 were below the official maximum residue limit (MRL) in China. The short-term risk for each tested fungicide was below 54%. The long-term risk of individual chemicals ranged from 0.0086% to 3.1%, and their cumulative risk was 4.4%. Results indicated that the dietary risk of these fungicides in grapes was minor.
Collapse
Affiliation(s)
- Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008 , China
- Key Laboratory of Tea Biology and Resources Utilization , Ministry of Agriculture , Hangzhou 310008 , China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008 , China
- Key Laboratory of Tea Biology and Resources Utilization , Ministry of Agriculture , Hangzhou 310008 , China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008 , China
- Key Laboratory of Tea Biology and Resources Utilization , Ministry of Agriculture , Hangzhou 310008 , China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008 , China
- Key Laboratory of Tea Biology and Resources Utilization , Ministry of Agriculture , Hangzhou 310008 , China
| | - Zhengyun Lou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008 , China
- Key Laboratory of Tea Biology and Resources Utilization , Ministry of Agriculture , Hangzhou 310008 , China
| | - Meiqin Zhao
- Zhejiang Tianfeng Biological Science Co. Ltd. , Jinhua 321025 , China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008 , China
- Key Laboratory of Tea Biology and Resources Utilization , Ministry of Agriculture , Hangzhou 310008 , China
| |
Collapse
|
21
|
Liu X, Yang Y, Chen Y, Zhang Q, Lu P, Hu D. Dissipation, residues and risk assessment of oxine-copper and pyraclostrobin in citrus. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1538-1550. [DOI: 10.1080/19440049.2019.1640894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiangwu Liu
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Ya Yang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Ya Chen
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Qingtao Zhang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| | - Ping Lu
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P.R. China
| | - Deyu Hu
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P.R. China
| |
Collapse
|