1
|
Tijani AS, Daba TM, Ubong IA, Olufunke O, Ani EJ, Farombi EO. Co-administration of thymol and sulfoxaflor impedes the expression of reproductive toxicity in male rats. Drug Chem Toxicol 2024; 47:618-632. [PMID: 37403475 DOI: 10.1080/01480545.2023.2232564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
This study investigated the capability of a co-delivery system of thymol (THY) and sulfoxaflor that can serve to minimize the development of epididymal and testicular injury arise from SFX exposures alone. Forty-eight adult male rats were orally treated by gavage for 28 consecutive days. The rats were divided into six groups comprising control, THY alone (30 mg/kg), low SFX alone (79.4 mg/kg), high SFX alone (205 mg/kg) and co-exposure groups. After euthanasia, the rats epididymal and testicular damage and antioxidant status markers, myeloperoxidase (MPO) activity, levels of nitric oxide, total antioxidant capacity (TAC), total oxidative stress (TOS) and lipid peroxidation (LPO) were analyzed. Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 b (IL-1β) and caspase-3 activity were assessed using ELISA kits. The results revealed that SFX exposure caused a significant (p < 0.05) decrease in the body weight, sperm functional parameters, serum testosterone level with widespread histological abnormalities in a dose-dependent manner. Increased relative organ weights, serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were observed in low SFX-treated rats. Similarly, the epididymal and testicular myeloperoxidase activity, malondialdehyde (MDA), reactive oxygen species (RONS), tumor necrosis-α, interleukin-1β levels and caspase-3 activity were significant (p < 0.05) increased and a significant (p < 0.05) reduction in antioxidant enzyme activities and reduced glutathione (GSH) were revealed in SFX-treated rats. However, co-treatment of THY with SFX prevented SFX-induced epididymal and testicular toxicities. Thus, thymol protected against potential epididymis and testes alterations elicited by oxido-inflammatory mediators and up regulated antioxidant status.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Tolessa M Daba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ime A Ubong
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Onaadepo Olufunke
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Elemi J Ani
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Paul A, Danjou AMN, Deygas F, Guth M, Coste A, Lefevre M, Dananché B, Kromhout H, Spinosi J, Béranger R, Pérol O, Boyle H, Hersant C, Loup-Cabaniols V, Veau S, Bujan L, Olsson A, Schüz J, Fervers B, Charbotel B. Parental occupations at birth and risk of adult testicular germ cell tumors in offspring: a French nationwide case-control study. Front Public Health 2024; 11:1303998. [PMID: 38292387 PMCID: PMC10825020 DOI: 10.3389/fpubh.2023.1303998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Testicular germ cell tumors (TGCT) are the most frequent cancer in young men in developed countries. Parental occupational exposures during early-life periods are suspected to increase TGCT risk. The objective was to estimate the association between parental occupations at birth and adult TGCT. Methods A case-control study was conducted, including 454 TGCT cases aged 18-45 from 20 French university hospitals, matched to 670 controls based on region and year of birth. Data collected from participants included parental jobs at birth coded according to the International Standard Classification of Occupation-1968 and the French nomenclature of activities-1999. Odds ratios (OR) for TGCT and 95% confidence intervals (CI) were estimated using conditional logistic regression, adjusting for TGCT risk factors. Results Paternal jobs at birth as service workers (OR = 1.98, CI 1.18-3.30), protective service workers (OR = 2.40, CI 1.20-4.81), transport equipment operators (OR = 1.96, CI 1.14-3.37), specialized farmers (OR = 2.66, CI 1.03-6.90), and maternal jobs as secondary education teachers (OR = 2.27, CI 1.09-4.76) or in secondary education (OR = 2.35, CI 1.13-4.88) were significantly associated with adult TGCT. The risk of seminoma was increased for the above-mentioned paternal jobs and that of non-seminomas for public administration and defence; compulsory social security (OR = 1.99, CI 1.09-3.65); general, economic, and social administration (OR = 3.21, CI 1.23-8.39) for fathers; and secondary education teacher (OR = 4.67, CI 1.87-11.67) and secondary education (OR = 3.50, CI 1.36-9.01) for mothers. Conclusion Some paternal jobs, such as service workers, transport equipment operators, or specialized farmers, and maternal jobs in secondary education seem to be associated with an increased risk of TGCT with specific features depending on the histological type. These data allow hypotheses to be put forward for further studies as to the involvement of occupational exposures in the risk of developing TGCT, such as exposure to pesticides, solvents, or heavy metals.
Collapse
Affiliation(s)
- Adèle Paul
- UMRESTTE (Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment), Lyon 1 University, Eiffel University, Lyon, France
- Department of Occupational Health, AMEBAT, Nantes, France
| | - Aurélie M. N. Danjou
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Floriane Deygas
- UMRESTTE (Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment), Lyon 1 University, Eiffel University, Lyon, France
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Margot Guth
- UMRESTTE (Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment), Lyon 1 University, Eiffel University, Lyon, France
| | - Astrid Coste
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Marie Lefevre
- UMRESTTE (Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment), Lyon 1 University, Eiffel University, Lyon, France
| | - Brigitte Dananché
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Hans Kromhout
- Department of Environmental Epidemiology, Institute or Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Spinosi
- UMRESTTE (Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment), Lyon 1 University, Eiffel University, Lyon, France
- Direction Santé Travail, Santé Public France, Saint Maurice, France
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Rennes, France
| | - Olivia Pérol
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Helen Boyle
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | | | - Vanessa Loup-Cabaniols
- Department of Reproductive Biology, CECOS, University Hospital of Montpellier, Montpellier, France
| | - Ségolène Veau
- Department of Reproductive Medicine and Biology, CECOS, CHU Rennes, Rennes, France
| | - Louis Bujan
- DEFE (Développement Embryonnaire, Fertilité, Environnement) INSERM 1202 Universités Montpellier et Toulouse 3, CECOS Hôpital Paule de Viguier, CHU de Toulouse, Toulouse, France
- Fédération Française des CECOS, Paris, France
| | - Ann Olsson
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Béatrice Fervers
- Département Prévention, Cancer et Environnement, Centre Léon Bérard, Lyon, France
- Inserm UA1296 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Barbara Charbotel
- UMRESTTE (Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment), Lyon 1 University, Eiffel University, Lyon, France
- CRPPE Lyon (Centre Régional de Pathologies Professionnelles et Environnementales), Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
3
|
Kumar R, Nehra M, Kumar D, Saharan BS, Chawla P, Sadh PK, Manuja A, Duhan JS. Evaluation of Cytotoxicity, Release Behavior and Phytopathogens Control by Mancozeb-Loaded Guar Gum Nanoemulsions for Sustainable Agriculture. J Xenobiot 2023; 13:270-283. [PMID: 37367496 DOI: 10.3390/jox13020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Chemical fungicides are the backbone of modern agriculture, but an alternative formulation is necessary for sustainable crop production to address human health issues and soil/water environmental pollution. So, a green chemistry approach was used to form guar gum nanoemulsions (NEs) of 186.5-394.1 nm containing the chemical fungicide mancozeb and was characterized using various physio-chemical techniques. An 84.5% inhibition was shown by 1.5 mg/mL mancozeb-loaded NEs (GG-1.5) against A. alternata, comparable to commercial mancozeb (86.5 ± 0.7%). The highest mycelial inhibition was exhibited against S. lycopersici and S. sclerotiorum. In tomatoes and potatoes, NEs showed superior antifungal efficacy in pot conditions besides plant growth parameters (germination percentage, root/shoot ratio and dry biomass). About 98% of the commercial mancozeb was released in just two h, while only about 43% of mancozeb was released from nanoemulsions (0.5, 1.0 and 1.5) for the same time. The most significant results for cell viability were seen at 1.0 mg/mL concentration of treatment, where wide gaps in cell viability were observed for commercial mancozeb (21.67%) and NEs treatments (63.83-71.88%). Thus, this study may help to combat the soil and water pollution menace of harmful chemical pesticides besides protecting vegetable crops.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Manju Nehra
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar 144411, India
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Anju Manuja
- ICAR-National Research Centre on Equines, Hisar 125001, India
| | | |
Collapse
|
4
|
Tijani AS, Farombi EO, Olori DO. Thymol co-administration abrogates hexachlorobenzene-induced reproductive toxicities in male rats. Hum Exp Toxicol 2023; 42:9603271221149201. [PMID: 36606752 DOI: 10.1177/09603271221149201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This present study was designed to investigate ameliorating potential of thymol (THY) on hexachlorobenzene (HBC)-induced epididymal and testicular toxicities in adult male rats. Forty adult male rats were orally treated by gavage daily for 28 consecutive days and divided into four groups; control group administered with corn oil, HBC-treated group (16 mg/kg b. wt), thymol-treated group (30 mg/kg b. wt), and HBC + THY-treated group. The results revealed that HBC exposure caused a significant decrease in the body weight change, organ weights, sperm functional parameters, serum testosterone level with widespread histological abnormalities. Furthermore, HBC-treated rats showed increased in the serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), epididymal and testicular myeloperoxidase activity, tumor necrosis-α, interleukin-1β level and caspase-3 activity, induced oxidative damage as evidenced by elevated malondialdehyde (MDA), reactive oxygen species (RONS) levels and significant reduction in antioxidant enzyme activities and reduced glutathione (GSH). However, co-treatment of THY with HBC alleviated the HBC-induced epididymal and testicular toxicities. Our findings revealed that HBC acts as a reproductive toxicant in rats and thymol could be a potential remedial agent for HBC-induced reproductive toxicity.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, 58987University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, 58987University of Ibadan, Ibadan, Nigeria
| | - David O Olori
- Department of Biochemistry, Bowen University, Iwo, Nigeria
| |
Collapse
|
5
|
Zhang Y, Wen R, Bao J, Gong Y, Wang X. Mancozeb induces nephrotoxicity by impairing the oxidative phosphorylation pathway: A transcriptome study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114471. [PMID: 38321686 DOI: 10.1016/j.ecoenv.2022.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
This study analyzed the mechanism underlying mancozeb (MCZ)-induced kidney injury by detecting kidney function indicators, combined with transcriptome and metabolome sequencing. Twenty mice were randomly assigned into two groups (control and MCZ groups) to explore the MCZ-induced kidney toxicity. The control group was gavaged with 0.2 mL of deionized water, and the MCZ group with 0.2 mL of 100 mg/kg MCZ for 30 days. The kidney structure of the MCZ group was damaged, with slight hyaline degeneration in the kidney tubular epithelial envelope. The creatinine (CRE) and uric acid (UA) were significantly increased in the MCZ group than in the control group. Moreover, the reactive oxygen species (ROS) significantly accumulated in the MCZ group kidneys. Compared to the control group, superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were significantly decreased in the MCZ group, while the MDA content was substantially increased. The differentially expressed genes (DEGs) in the MCZ group were mainly enriched in the oxidative phosphorylation pathway. Besides, in the MCZ group, ndufs1 and ndufab1 genes were significantly up-regulated, while cox5b, ndufa5, and ndufa6 genes were significantly down-regulated, consistent with the PCR verification results. The metabolomic analysis identified cGMP-PKG signaling pathway of MCZ-induced nephrotoxicity, with Guanosine monophosphate and Adenosine 5'-monophosphate as the main altered metabolites. These results indicated that MCZ impairs the mice kidneys by obstructing the oxidative phosphorylation pathway, which increases oxidative stress in the kidneys, resulting in kidney injury.
Collapse
Affiliation(s)
- Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ran Wen
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yinglan Gong
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
6
|
Quds R, Amiruddin Hashmi M, Iqbal Z, Mahmood R. Interaction of mancozeb with human hemoglobin: Spectroscopic, molecular docking and molecular dynamic simulation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121503. [PMID: 35717929 DOI: 10.1016/j.saa.2022.121503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Mancozeb is a broad-spectrum fungicide used extensively in agriculture to protect plants from numerous diseases. Hemolysis of human erythrocytes on exposure to mancozeb has been reported. In the present study, we investigated the interaction of mancozeb with human hemoglobin (Hb) using multi-spectroscopic techniques, molecular docking and molecular dynamic simulation. UV-visible spectroscopy studies suggested intimate binding of mancozeb to Hb. Mancozeb quenched the intrinsic fluorescence of Hb and Stern-Volmer plots revealed that the quenching mechanism was of static type. Evaluation of thermodynamic parameters indicated that the binding of Hb to mancozeb was spontaneous, with van der Waals forces and hydrogen bonding being the key contributors in the binding reaction. Synchronous fluorescence experiments demonstrated that mancozeb altered the microenvironment around tryptophan residues, whereas polarity around tyrosine residues was not changed. Circular dichroism studies showed a decrease in the α helical content of Hb upon interaction with mancozeb. The inhibition of esterase activity showed that mancozeb can impair the enzymatic functions of Hb. Molecular docking study revealed that strong binding affinity existed between mancozeb and Hb, with hydrophobic forces playing a crucial role in the interaction. Molecular dynamic simulation showed that mancozeb formed a stable complex with Hb resulting in slight unfolding of the protein. To sum up, the results of this study show that mancozeb binds strongly to Hb, induces conformational changes in Hb and adversely affects its function.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
7
|
Carbamate Pesticides: Shedding Light on Their Impact on the Male Reproductive System. Int J Mol Sci 2022; 23:ijms23158206. [PMID: 35897782 PMCID: PMC9332211 DOI: 10.3390/ijms23158206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Carbamates are widely used and known around the world as pesticides in spite of also having medical applications. This class of chemicals is classified as acetylcholinesterase inhibitors, blocking acetylcholine hydrolyzation in a reversible manner. Their lack of species selectivity and their reported high toxicity can induce, upon exposure, adverse outcomes in male fertility that may lead to infertility. In addition, they are also considered endocrine-disrupting chemicals and can interfere with the hypothalamic–pituitary–testicular axis, essential for the normal function of the male reproductive system, thus being able to provoke male reproductive dysfunctions. Although the molecular mechanisms are not fully understood, various signaling pathways, such as those mediated by acetylcholine or kisspeptin, are affected by exposure to carbamates, thus compromising steroidogenesis and spermatogenesis. Over the last decades, several studies, both in vitro and in vivo, have reported a myriad of negative effects of carbamates on the male reproductive system. In this review, an up-to-date overview of the impact of carbamates on the male reproductive system is discussed, with an emphasis on the role of these compounds on acetylcholine regulation and the male endocrine system.
Collapse
|
8
|
Nugroho R, Aryani R, Manurung H, Anindita DF, Hidayati FSN, Prahastika W, Rudianto R. Effects of the Ethanol Extracts of Ficus deltoidea leaves on the Reproductive Parameters in Male Mice. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Indonesia, and in particular East Kalimantan, has a very high diversity of flora that has the potential to be used as traditional medicine. One type of flora is the leaves of Ficus deltoidea Jack. At present, there are no available data about the impact of F. deltoidea leaf ethanol extract on the male reproductive system.
AIM: The present study aims to investigate the effect of F. deltoidea leaf ethanol extract on several parameters of reproductive function in male mice, including changes in testicular biochemistry, reproductive hormones profile, and histopathology of the testes after subchronic exposure.
METHODS: In total, 25 male mice were divided into five groups: The control group and four treatment groups that received extract doses of 125, 250, 500, and 1000 mg/kgbw for 28 days, respectively. At the end of the treatment, surgery was performed, weight of body and reproductive organs (testis, epididymis, and seminal vesicles) were measured, and testicular biochemistry, reproductive hormone profile, antioxidant activity, and testes histopathology were analyzed.
RESULTS: In the subchronic toxicity test, there were no significant changes in body weight or in weight and relative weight of reproductive organs. Levels of testosterone, luteinizing hormone and follicle-stimulating hormone, protein, cholesterol, and activity of enzymes in the testes (alkaline phosphatase, lactate dehydrogenase, and glutamyltransferase) and activity of the enzyme superoxide dismutase increased significantly in the treated mice when compared to control mice (p < 0.05). Glycogen levels were not significantly different, but lipid peroxide (MDA) decreased significantly, though it did not change the histological structure of the testes.
CONCLUSION: Ethanolic extract of the leaves of F. deltoidea Jack does not cause toxic effects and even has a beneficial effect on the reproduction of male mice by increasing fertility, reproductive hormones, and antioxidant activity, and it does not change the histological structure of the testes.
Collapse
|
9
|
Mohammadi-Sardoo M, Mandegary A, Nematollahi-Mahani SN, Moballegh Nasery M, Nabiuni M, Amirheidari B. Cytotoxicity of mancozeb on Sertoli-germ cell co-culture system: Role of MAPK signaling pathway. Toxicol Ind Health 2021; 37:674-684. [PMID: 34644184 DOI: 10.1177/07482337211044028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mancozeb (MZB) is a worldwide fungicide for the management of fungal diseases in agriculture and industrial contexts. Human exposure occurs by consuming contaminated plants, drinking water, and occupational exposure. There are reports on MZB's reprotoxicity such as testicular structure damage, sperm abnormalities, and decrease in sperm parameters (number, viability, and motility), but its molecular mechanism on apoptosis in testis remains limited. To investigate the molecular mechanisms involved in male reprotoxicity induced by MZB, we used primary cultures of mouse Sertoli-germ cells. Cells were exposed to MZB (1.5, 2.5, and 3.5 μM) for 3 h to evaluate viability by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) generation, and oxidative stress parameters (lipid peroxidation). Cell death and mitogen-activated protein kinase (MAPK) signaling were measured in these cells using flow cytometry and western blotting. In addition, some groups were exposed to N-acetylcysteine (NAC, 5 mM) in the form of co-treatment with MZB. Mancozeb reduced viability and increased the level of intracellular ROS, p38 and c-Jun N-terminal kinases (JNK) MAPK proteins phosphorylation, and apoptotic cell death, which could be blocked by NAC as an inhibitor of oxidative stress. The present study indicated for the first time the toxic manifestations of MZB on the Sertoli-germ cell co-culture. Redox imbalance and p38 and JNK signaling pathway activation might play critical roles in MZB-induced apoptosis in the male reproductive system.
Collapse
Affiliation(s)
| | - Ali Mandegary
- Department of Toxicology & Pharmacology, School of Pharmacy, 426058Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahshid Moballegh Nasery
- Department of Toxicology & Pharmacology, School of Pharmacy, 426058Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Nabiuni
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, 145440Kharazmi University, Tehran, Iran
| | - Bagher Amirheidari
- Department of Biotechnology, School of Pharmacy, 426058Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Garcia MS, Cavalcante DNDC, Araújo Santiago MDS, de Medeiros PDC, do Nascimento CC, Fonseca GFC, Le Sueur-Maluf L, Perobelli JE. Reproductive toxicity in male juvenile rats: Antagonistic effects between isolated agrochemicals and in binary or ternary combinations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111766. [PMID: 33348257 DOI: 10.1016/j.ecoenv.2020.111766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The management of agrochemicals in Brazilian agriculture impacts global environmental sustainability and food security, since this country is one of the major agro-food exporters in the world. Acephate, carbendazim, and dithiocarbamates (DTCs) such as mancozeb, are among the most detected agrochemicals in Brazilian agro-food products, occurring in combination in several crops, especially in fruit cultures. The present study evaluated the impact of the exposure to isolated agrochemicals and all the combined possible mixtures (binary and ternary forms) on the reproductive parameters of male juvenile rats, known to be a vulnerable biological system and developmental window. Data were analyzed using Generalized Linear Models (GzLM), considering each agrochemical as an independent factor. The study revealed higher reproductive toxicity exerted by isolated agrochemicals when compared to the combined treatments, which exhibited mostly an antagonistic effect. Results suggest endocrine disruptive effects of each one separately on the weight of reproductive organs and testicular histomorphometry, besides changes in testicular SOD activity. The full factorial experimental design employed here allowed us to conclude that it is not possible to scale-up the effects of the isolated treatments to the mixtures, showing how difficult it is to know beforehand the response and cross-talk among the multiple physiological mechanisms disturbed by complex mixtures. Considering that food products are shared on a global scale and that some of these three agrochemicals have already been prohibited in EU countries, the consumption of some Brazilian products puts global human health at risk, that of children.
Collapse
Affiliation(s)
- Mariana Simões Garcia
- Experimental Toxicology Laboratory, Instituto do Mar, Federal University of Sao Paulo - UNIFESP, Santos, SP, Brazil
| | | | | | - Paloma Da Cunha de Medeiros
- Experimental Toxicology Laboratory, Instituto do Mar, Federal University of Sao Paulo - UNIFESP, Santos, SP, Brazil
| | | | | | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Federal University of Sao Paulo - UNIFESP, Santos, SP, Brazil
| | - Juliana Elaine Perobelli
- Experimental Toxicology Laboratory, Instituto do Mar, Federal University of Sao Paulo - UNIFESP, Santos, SP, Brazil.
| |
Collapse
|
11
|
Owumi SE, Anaikor RA, Arunsi UO, Adaramoye OA, Oyelere AK. Chlorogenic acid co-administration abates tamoxifen-mediated reproductive toxicities in male rats: An experimental approach. J Food Biochem 2021; 45:e13615. [PMID: 33491243 DOI: 10.1111/jfbc.13615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Reports over the years have demonstrated toxic side effect-including reproductive toxicity- of tamoxifen (TAM), a drug of choice in the management of primary breast cancer. Chlorogenic acid (CGA), a dietary polyphenol, reportedly elicits beneficial pharmacological effects. However, the impact of CGA on TAM-associated reproductive toxicity is absent in the literature. We, therefore, experimented on CGA's effect and TAM-mediated reproductive toxicity in rats. Cohorts of rats were treated with TAM (50 mg/kg) or co-treated with CGA (25 or 50 mg/kg) for 14 consecutive days. The result showed that treatment of CGA significantly increases testosterone, LH, and FSH levels compared to the TAM group. However, prolactin level was markedly decreased after pretreatment of CGA in TAM-treated rats. CGA abated TAM-induced decreases acid phosphatase, alkaline phosphatase, and antioxidant enzymes in the testis. CGA alleviated TAM-facilitated surges of reactive oxygen and nitrogen species, myeloperoxidase, nitric oxide, interleukin-1β, and tumor necrosis factor-alpha in rats epididymis and testes. Additionally, CGA increased anti-inflammatory cytokine -interleukin-10-, suppressed caspase-3 activity, and reduced pathological lesions in the examined organs of rats co-treated with CGA and TAM. CGA phytoprotective effect improved reproductive function occasioned by TAM-mediated toxicities in rats, by abating oxido-inflammatory damages and downregulating apoptotic responses. PRACTICAL APPLICATIONS: CGA protects against the damaging oxido-inflammatory responses incumbent on TAM metabolism. As an antioxidant abundant in plant-derived foods, CGA reportedly protects against inflammatory damage, hypertension, and neurodegenerative diseases. We present evidence that CGA ameliorates TAM-induced reproductive dysfunction by suppressing oxidative and inflammation stress downregulate apoptosis and improve reproductive function biomarker in rats.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Biochemistry Department, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ruth A Anaikor
- Cancer Research and Molecular Biology Laboratories, Biochemistry Department, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| | - Oluwatosin A Adaramoye
- Molecular Drug Metabolism and Toxicology Research Laboratories, Biochemistry Department, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
12
|
Wang Z, Kottawatta KSA, Kodithuwakku SP, Fernando TS, Lee YL, Ng EHY, Yeung WSB, Lee KF. The fungicide Mancozeb reduces spheroid attachment onto endometrial epithelial cells through downregulation of estrogen receptor β and integrin β3 in Ishikawa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111606. [PMID: 33396126 DOI: 10.1016/j.ecoenv.2020.111606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Mancozeb is a metal-containing ethylene bis-dithiocarbamate fungicide widely used in agriculture. Ethylene thiourea (ETU) is the primary metabolite of Mancozeb. Mancozeb has been associated with spontaneous abortions and abnormal menstruation in women. However, the effects of Mancozeb and ETU on embryo attachment remain unknown. The human blastocyst surrogate trophoblastic spheroids (JEG-3), endometrial epithelial surrogate adenocarcinoma cells (Ishikawa), or human primary endometrial epithelial cells (EECs) monolayer were used in the spheroid attachment models. Ishikawa and EECs were pretreated with different concentrations of Mancozeb or ETU for 48 h before the attachment assay. Gene expression profiles of Ishikawa cells were examined to understand how Mancozeb modulates endometrial receptivity with Microarray. The genes altered by Mancozeb were confirmed by qPCR and compared with the ETU treated groups. Mancozeb and ETU treatment inhibited cell viability at 10 μg/mL and 5000 µg/mL, respectively. At non-cytotoxic concentrations, Mancozeb at 3 μg/mL and ETU at 300 μg/mL reduced JEG-3 spheroid attachment onto Ishikawa cells. A similar result was observed with human primary endometrial epithelial cells. Mancozeb at 3 μg/mL modified the transcription of 158 genes by at least 1.5-fold in Microarray analysis. The expression of 10 differentially expressed genes were confirmed by qPCR. Furthermore, Mancozeb decreased spheroid attachment possibly through downregulating the expression of endometrial estrogen receptor β and integrin β3, but not mucin 1. These results were confirmed in both overexpression and knockdown experiments and co-culture assay. Mancozeb but not its metabolite ETU reduced spheroid attachment through modulating gene expression profile and decreasing estrogen receptor β and integrin β3 expression of endometrial epithelial cells.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Obstetrics and Gynaecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kottawattage S A Kottawatta
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, The University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Suranga P Kodithuwakku
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Animal Science, Faculty of Agriculture, The University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Thevarathanthrige S Fernando
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yin-Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China.
| |
Collapse
|
13
|
Skalny A, Aschner M, Paoliello M, Santamaria A, Nikitina N, Rejniuk V, Jiang Y, Rocha J, Tinkov A. Endocrine-disrupting activity of mancozeb. ARHIV ZA FARMACIJU 2021; 71:491-507. [PMID: 35990020 PMCID: PMC9390121 DOI: 10.5937/arhfarm71-34359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
The objective of the present study was to review the existing data on the mechanisms involved in the endocrine disrupting activity of mancozeb (MCZ) in its main targets, including thyroid and gonads, as well as other endocrine tissues that may be potentially affected by MCZ. MCZ exposure was shown to interfere with thyroid functioning through impairment of thyroid hormone synthesis due to inhibition of sodium-iodine symporter (NIS) and thyroid peroxidase (TPO) activity, as well as thyroglobulin expression. Direct thyrotoxic effect may also contribute to thyroid pathology upon MCZ exposure. Gonadal effects of MCZ involve inhibition of sex steroid synthesis due to inhibition of P450scc (CYP11A1), as well as 3β-HSD and 17β-HSD. In parallel with altered hormone synthesis, MCZ was shown to down-regulate androgen and estrogen receptor signaling. Taken together, these gonad-specific effects result in development of both male and female reproductive dysfunction. In parallel with clearly estimated targets for MCZ endocrine disturbing activity, namely thyroid and gonads, other endocrine tissues may be also involved. Specifically, the fungicide was shown to affect cortisol synthesis that may be mediated by modulation of CYP11B1 activity. Moreover, MCZ exposure was shown to interfere with PPARγ signaling, being a key regulator of adipogenesis. The existing data also propose that endocrine-disrupting effects of MCZ exposure may be mediated by modulation of hypothalamus-pituitary-target axis. It is proposed that MCZ neurotoxicity may at least partially affect central mechanisms of endocrine system functioning. However, further studies are required to unravel the mechanisms of MCZ endocrine disrupting activity and overall toxicity.
Collapse
Affiliation(s)
- Anatoly Skalny
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Bioelementology, Orenburg State University, Orenburg 460018, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Monica Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Natalia Nikitina
- IM Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Vladimir Rejniuk
- Golikov Research Center of Toxicology, Saint Petersburg 192019, Russia
| | - Yueming Jiang
- Department of Toxicology,School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - João Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey Tinkov
- Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Institute of Bioelementology, Orenburg State University, Orenburg 460018, Russia
- Yaroslavl State University, Yaroslavl 150000, Russia
| |
Collapse
|
14
|
Protocatechuic acid modulates reproductive dysfunction linked to furan exposure in rats. Toxicology 2020; 442:152556. [DOI: 10.1016/j.tox.2020.152556] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
|
15
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
16
|
Preventative Effects of Vitamin E on Testicular Damage and Sperm Parameters in the First-Generation Mice Pups due to Pre- and Postnatal Mancozeb Exposure. J Toxicol 2019; 2019:4763684. [PMID: 31467525 PMCID: PMC6699294 DOI: 10.1155/2019/4763684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to evaluate the effects of vitamin E on mancozeb-induced testis damage of the first-generation pups during intrauterine and lactating periods. Two groups of pregnant NMRI mice received 500 mg/kg mancozeb (MNZ) as MNZ group and 200 mg/kg vitamin E as MNZ+vit.E group before receiving MNZ. In addition, a vehicle and a control group were designed every other day in gestation and lactation periods. The male pups from each group were maintained until adulthood (8-10 W). The left testes and epididymides were removed following the sacrifice of the pups. Then, they were weighed, and sperm parameters including number, viability, motility, and morphology and testis structure were evaluated. A significant decrease occurred in sperm parameters of the mancozeb-treated pups compared to the control and vehicle groups. Treatment with vitamin E reversed the deleterious effects of MNZ to a nearly normal condition. Testis parameters including the weight, gonadosomatic index, seminiferous tubule diameters, and Johnsen's score, as well as the number of germ cells such as spermatogonia, spermatocyte, spermatid, and Sertoli, decreased significantly in the MNZ group, compared to the amount in the control and vehicle groups. Interestingly, the treatment with vitamin E was reversed in most of these parameters. Based on the results, the exposure of pups to mancozeb during pregnancy and lactating periods negatively affects the reproductive system of male pups. However, the coadministration of vitamin E could prevent the deleterious effects of mancozeb on sperm and testis parameters.
Collapse
|