1
|
Tourneix F, Carron L, Jouffe L, Hoffmann S, Alépée N. Deriving a Continuous Point of Departure for Skin Sensitization Risk Assessment Using a Bayesian Network Model. TOXICS 2024; 12:536. [PMID: 39195638 PMCID: PMC11360414 DOI: 10.3390/toxics12080536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Regulations of cosmetic ingredients and products have been the most advanced in embracing new approach methodologies (NAMs). Consequently, the cosmetic industry has assumed a forerunner role in the development and implementation of animal-free next-generation risk assessment (NGRA) that incorporates defined approaches (DAs) to assess the skin sensitization potency of ingredients. A Bayesian network DA predicting four potency categories (SkinSens-BN) was constructed against reference Local Lymph Node Assay data for a total of 297 substances, achieving a predictive performance similar to that of other DAs. With the aim of optimally informing risk assessment with a continuous point of departure (PoD), a weighted sum of the SkinSens-BN probabilities for four potency classes (non-, weak, moderate, and strong/extreme sensitizer) was calculated, using fixed weights based on associated LLNA EC3-values. The approach was promising, e.g., the derived PoDs for substances classified as non-sensitizers did not overlap with any others and 77% of PoDs were similar or more conservative than LLNA EC3. In addition, the predictions were assigned a level of confidence based on the probabilities to inform the evaluation of uncertainty in an NGRA context. In conclusion, the PoD derivation approach can substantially contribute to reliable skin sensitization NGRAs.
Collapse
Affiliation(s)
- Fleur Tourneix
- L’Oréal, Research & Innovation, 1Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Leopold Carron
- L’Oréal, Research & Innovation, 1Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Lionel Jouffe
- Bayesia S.A.S., Parc Cérès, Bâtiment N 21, rue Ferdinand Buisson, 53810 Changé, France
| | | | - Nathalie Alépée
- L’Oréal, Research & Innovation, 1Eugène Schueller, 93600 Aulnay-sous-Bois, France
| |
Collapse
|
2
|
de Souza IR, Iulini M, Galbiati V, Rodrigues AC, Gradia DF, Andrade AJM, Firman JW, Pestana C, Leme DM, Corsini E. The evaluation of skin sensitization potential of the UVCB substance diisopentyl phthalate by in silico and in vitro methods. Arch Toxicol 2024; 98:2153-2171. [PMID: 38806720 PMCID: PMC11169023 DOI: 10.1007/s00204-024-03738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 05/30/2024]
Abstract
Diisopentyl phthalate (DiPeP) is primarily used as a plasticizer or additive within the production of polyvinyl chloride (PVC), and has many additional industrial applications. Its metabolites were recently found in urinary samples of pregnant women; thus, this substance is of concern as relates to human exposure. Depending upon the nature of the alcohol used in its synthesis, DiPeP may exist either as a mixture consisting of several branched positional isomers, or as a single defined structure. This article investigates the skin sensitization potential and immunomodulatory effects of DiPeP CAS No. 84777-06-0, which is currently marketed and classified as a UVCB substance, by in silico and in vitro methods. Our findings showed an immunomodulatory effect for DiPeP in LPS-induced THP-1 activation assay (increased CD54 expression). In silico predictions using QSAR TOOLBOX 4.5, ToxTree, and VEGA did not identify DiPeP, in the form of a discrete compound, as a skin sensitizer. The keratinocyte activation (Key Event 2 (KE2) of the adverse outcome pathway (AOP) for skin sensitization) was evaluated by two different test methods (HaCaT assay and RHE assay), and results were discordant. While the HaCaT assay showed that DiPeP can activate keratinocytes (increased levels of IL-6, IL-8, IL-1α, and ILA gene expression), in the RHE assay, DiPeP slightly increased IL-6 release. Although inconclusive for KE2, the role of DiPeP in KE3 (dendritic cell activation) was demonstrated by the increased levels of CD54 and IL-8 and TNF-α in THP-1 cells (THP-1 activation assay). Altogether, findings were inconclusive regarding the skin sensitization potential of the UVCB DiPeP-disagreeing with the results of DiPeP in the form of discrete compound (skin sensitizer by the LLNA assay). Additional studies are needed to elucidate the differences between DiPeP isomer forms, and to better understand the applicability domains of non-animal methods in identifying skin sensitization hazards of UVCB substances.
Collapse
Affiliation(s)
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Ana Carolina Rodrigues
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Fiori Gradia
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Anderson J M Andrade
- Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Cynthia Pestana
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, SP, Brazil
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
3
|
Kolle SN. Response to the Letter to the Editor by David W Roberts "Dealing with substances with no defined molecular weight in non-animal assays for skin sensitization. A comment on "Plant extracts, polymers and new approach methods: Practical experience with skin sensitization assessment" ()". Regul Toxicol Pharmacol 2024; 148:105593. [PMID: 38428632 DOI: 10.1016/j.yrtph.2024.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
|
4
|
Gao Y, Ryan CA, Ellingson K, Krutz N, Kern PS. A botanical reference set illustrating a weight of evidence approach for skin sensitization risk assessment. Food Chem Toxicol 2024; 184:114413. [PMID: 38128687 DOI: 10.1016/j.fct.2023.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Recent years have seen an increase in the use of botanicals and natural substances (BNS) in consumer products such as cosmetics and household care products. Most work conducted to date to assess botanicals for human safety has focused their use as dietary supplements and thus on systemic toxicity. However, the induction of skin sensitization is a possible adverse effect of natural products in particular those that come into skin contact, especially for cosmetics that remain on the skin and are not rinsed off following use. Assessments of BNS ingredients are often challenging for a number of reasons: the BNS are complex mixtures that can be of mostly unknown composition; the composition can be highly variable even within the same plant species and dependent on how processed; the physical form of the BNS raw material can vary from a highly concentrated powdered extract to a liquid extract containing only a small percentage of the BNS; testing of the BNS raw materials in New Approach Methods (NAM) has uncertainty as these methods are often not developed or validated for complex mixtures. In this study, a reference set of 14 selected BNS which span the range of skin sensitization potential was complied. These data were used in a Weight of Evidence (WoE) approach to evaluate their skin sensitization potential with each of the data rich BNS being classified as either having strong evidence of inducing skin sensitization based on human topical use history, animal data, clinical data, composition data and NAM data, or having some but more limited (weak) evidence of inducing skin sensitization, or having strong evidence of no skin sensitization potential. When available data have sufficient potency related information, sensitization potency assessment is also provided based on WoE, classifying these BNS as either strong, moderate, or weak sensitizers, or non-sensitizers. An outline for a BNS skin sensitization risk assessment framework is proposed starting with exposure-based waiving and WoE assessment for higher exposures. In addition to demonstrating the application of the WoE approach, the reference set presented here provides a set of 'data rich' botanicals which cover a range of sensitization potencies that could be used for evaluating existing test methods or aid in the development of new predictive models for skin sensitization.
Collapse
Affiliation(s)
- Yuan Gao
- Procter & Gamble Technology (Beijing) Co., Ltd., Beijing, China.
| | | | - Kim Ellingson
- Procter & Gamble, Mason Business Center, 8700 Mason Montgomery Road, Mason, OH, 45040, USA
| | - Nora Krutz
- Procter & Gamble Services Company NV, Strombeek-Bever, Belgium
| | - Petra S Kern
- Procter & Gamble Services Company NV, Strombeek-Bever, Belgium
| |
Collapse
|
5
|
Carvalho MJ, Pedrosa SS, Mendes A, Azevedo-Silva J, Fernandes J, Pintado M, Oliveira ALS, Madureira AR. Anti-Aging Potential of a Novel Ingredient Derived from Sugarcane Straw Extract (SSE). Int J Mol Sci 2023; 25:21. [PMID: 38203191 PMCID: PMC10778757 DOI: 10.3390/ijms25010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Natural and sustainable anti-aging ingredients have gained attention from the cosmetic industry. This study evaluated the anti-aging potential of a sugarcane straw extract-based (SSE) cosmetic ingredient. First, cytotoxicity tests were assessed in keratinocytes and fibroblast cell lines, and sensitization was carried out through the direct peptide reactivity assay. Subsequently, various anti-aging properties were investigated, including inhibiting skin aging-related enzymes, promoting elastin and hyaluronic acid synthesis, and anti-pollution activity. Finally, a permeability assay using a synthetic membrane resembling skin was conducted. The results demonstrated that the SSE ingredient effectively inhibited elastase (55%), collagenase (25%), and tyrosinase (47%) while promoting hyaluronic acid production at non-cytotoxic and low-sensitizer concentrations. Moreover, it reduced the inflammatory response provoked by urban pollution, as evidenced by decreased levels of IL1-α and IL-6. However, it was observed that the phenolic compounds predominantly reached the skin's surface, indicating a limited ability to penetrate deeper layers of the skin. Therefore, it can be concluded that the SSE ingredient holds anti-aging properties, albeit with limited penetration into deeper skin layers. Further research and formulation advancements are needed to optimize the ingredient's ability to reach and exert its effects in deeper skin layers.
Collapse
Affiliation(s)
- Maria João Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Sílvia Santos Pedrosa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Adélia Mendes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - João Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
- Amyris Bio Products Portugal, Unipessoal Lda., Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana L. S. Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.J.C.); (S.S.P.); (A.M.); (J.A.-S.); (J.F.); (M.P.)
| |
Collapse
|
6
|
Sanvido O, Basketter DA, Berthet A, Bloch D, Ezendam J, Hopf NB, Kleinstreuer N, Merolla LL, Uter W, Wiemann C, Wilks MF. Quantitative risk assessment of skin sensitising pesticides: Clinical and toxicological considerations. Regul Toxicol Pharmacol 2023; 144:105493. [PMID: 37717614 DOI: 10.1016/j.yrtph.2023.105493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Like many other consumer and occupational products, pesticide formulations may contain active ingredients or co-formulants which have the potential to cause skin sensitisation. Currently, there is little evidence they do, but that could just reflect lack of clinical investigation. Consequently, it is necessary to carry out a safety evaluation process, quantifying risks so that they can be properly managed. A workshop on this topic in 2022 discussed how best to undertake quantitative risk assessment (QRA) for pesticide products, including learning from the experience of industries, notably cosmetics, that already undertake such a process routinely. It also addressed ways to remedy the matter of clinical investigation, even if only to demonstrate the absence of a problem. Workshop participants concluded that QRA for skin sensitisers in pesticide formulations was possible, but required careful justification of any safety factors applied, as well as improvements to the estimation of skin exposure. The need for regulations to stay abreast of the science was also noted. Ultimately, the success of any risk assessment/management for skin sensitisers must be judged by the clinical picture. Accordingly, the workshop participants encouraged the development of more active skin health monitoring amongst groups most exposed to the products.
Collapse
Affiliation(s)
- Olivier Sanvido
- State Secretariat for Economic Affairs SECO, Holzikofenweg 36, 3003, Bern, Switzerland.
| | | | - Aurélie Berthet
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 2, 1066, Epalinges, Lausanne, Switzerland
| | - Denise Bloch
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Janine Ezendam
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Antonie van Leeuwenhoeklaan 9, 3721, MA, Bilthoven, the Netherlands
| | - Nancy B Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 2, 1066, Epalinges, Lausanne, Switzerland
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for Evaluation of Alternative Toxicological Methods (NICEATM), Research Triangle Park, NC, 27711, USA
| | | | - Wolfgang Uter
- Friedrich-Alexander Universität, Department of Medical Informatics, Biometry and Epidemiology, Erlangen, Germany
| | | | - Martin F Wilks
- University of Basel, Swiss Centre for Applied Human Toxicology, Missionsstrasse 64, CH-4055, Basel, Switzerland
| |
Collapse
|
7
|
Mahdi I, Fahsi N, Annaz H, Drissi B, Barakate M, Mahmoud MF, Sobeh M. Thymus satureioides Coss.: Mineral Composition, Nutritional Value, Phytochemical Profiling, and Dermatological Properties. Molecules 2023; 28:4636. [PMID: 37375191 DOI: 10.3390/molecules28124636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Zaitra, Thymus satureioides, is an aromatic plant with a long history of use in traditional medicine. In this study, we assessed the mineral composition, nutritional value, phytocontents, and dermatological properties of the aerial parts of T. satureioides. The plant contained high contents of calcium and iron, moderate levels of magnesium, manganese, and zinc, and low contents of total nitrogen, total phosphorus, total potassium, and copper. It is rich in several amino acids, including asparagine, 4-hydroxyproline, isoleucine, and leucine, and the essential amino acids account for 60.8%. The extract contains considerable amounts of polyphenols and flavonoids (TPC = 118.17 mg GAE/g extract and TFC = 32.32 mg quercetin/g extract). It also comprises 46 secondary metabolites, identified through LC-MS/MS analysis, belonging to phenolic acids, chalcones, and flavonoids. The extract elicited pronounced antioxidant activities, inhibited the growth of P. aeruginosa (MIC = 50 mg/mL), and reduced biofilm formation by up to 35.13% using the ¼ sub-MIC of 12.5 mg/mL. Moreover, bacterial extracellular proteins and exopolysaccharides were diminished by 46.15% and 69.04%, respectively. Likewise, the swimming of the bacterium was impaired (56.94% decrease) in the presence of the extract. In silico, skin permeability and sensitization effects revealed that out of the 46 identified compounds, 33 were predicted to be exempt from any skin sensitivity risk (Human Sensitizer Score ≤ 0.5), while extensive skin permeabilities were observed (Log Kp = -3.35--11.98 cm/s). This study provides scientific evidence about the pronounced activities of T. satureioides, supports its traditional uses, and promotes its utilization in the development of new drugs, food supplements, and dermatological agents.
Collapse
Affiliation(s)
- Ismail Mahdi
- AgroBioSciences Department, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Nidal Fahsi
- AgroBioSciences Department, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Hassan Annaz
- AgroBioSciences Department, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Badreddine Drissi
- AgroBioSciences Department, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Mustapha Barakate
- AgroBioSciences Department, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
- Laboratory of Microbial Biotechnology, AgroSciences and Environment, CNRST Labeled Research Unit N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mansour Sobeh
- AgroBioSciences Department, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|