1
|
Dewulf M, Van Eetvelde M, Wiczkowski W, Opsomer G. Dairy calves are exposed to isoflavones during the developmentally most sensitive period of their life. Theriogenology 2023; 201:53-58. [PMID: 36841122 DOI: 10.1016/j.theriogenology.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Isoflavones represent a class of phytoestrogens present in plants. In dairy cows, dietary isoflavones have been shown to negatively affect reproductive performance. To the best of our knowledge, no studies have yet been conducted to determine if calves are pre- or neonatally confronted with isoflavones and their metabolites. In the present study, we hypothesize that isoflavones are passed on from the dam to the offspring in utero. Twenty-three pregnant Holstein Friesian dams and their calves, originating from three commercial dairy farms in Belgium, were included. Heparin blood samples were collected during the first, second, and third trimester of gestation from all pregnant dams. Heparin blood and hair samples were obtained from the offspring within 24 h after parturition. Colostrum samples were collected from a subset of eight dams to determine the concentration of isoflavones and their metabolites. During the first and second trimester of gestation, the dams were fed either a youngstock (nulliparous dams) or a lactation (multiparous dams) diet. During the third trimester, both groups received a similar dry cow diet. Genistein and daidzein levels were unaffected by diet type, while their metabolite [equol, dihydrodaidzein (DHD), and o-desmethylangolensin (ODMA)] concentrations were significantly higher in the lactation group. Furthermore, metabolite concentrations decreased significantly during gestation. Isoflavones and their metabolites were detected in all colostrum samples. No correlation could be found between levels in colostrum and blood of pregnant dams or calves. Peripheral levels of isoflavones and their metabolites were significantly lower in newborn calves in comparison to their dams. Genistein and daidzein concentrations were found to be significantly higher in the calves' hair versus blood samples, suggesting prenatal exposure to isoflavones for an extended period of time. In contrast, no isoflavone metabolites were detected in the calves' hair samples. This is the first study to demonstrate that dairy calves are exposed to isoflavones during the developmentally most sensitive period of their lives. Results obtained pave the way for more extensive research to examine which effects isoflavones might have on developing organ systems like the reproductive system.
Collapse
Affiliation(s)
- Manon Dewulf
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Mieke Van Eetvelde
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
2
|
Abdul Aziz D, Salim CAM, Zaman AK, Azhari H, Makpol S, Ishak S, Latiff Z. Novel cord blood and urinary phytoestrogens levels in male neonates with normal external genitalia. J Clin Neonatol 2023. [DOI: 10.4103/jcn.jcn_95_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
3
|
Messina M, Duncan A, Messina V, Lynch H, Kiel J, Erdman JW. The health effects of soy: A reference guide for health professionals. Front Nutr 2022; 9:970364. [PMID: 36034914 PMCID: PMC9410752 DOI: 10.3389/fnut.2022.970364] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Soy is a hotly debated and widely discussed topic in the field of nutrition. However, health practitioners may be ill-equipped to counsel clients and patients about the use of soyfoods because of the enormous, and often contradictory, amount of research that has been published over the past 30 years. As interest in plant-based diets increases, there will be increased pressure for practitioners to gain a working knowledge of this area. The purpose of this review is to provide concise literature summaries (400-500 words) along with a short perspective on the current state of knowledge of a wide range of topics related to soy, from the cholesterol-lowering effects of soy protein to the impact of isoflavones on breast cancer risk. In addition to the literature summaries, general background information on soyfoods, soy protein, and isoflavones is provided. This analysis can serve as a tool for health professionals to be used when discussing soyfoods with their clients and patients.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Alison Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Heidi Lynch
- Kinesiology Department, Point Loma Nazarene University, San Diego, CA, United States
| | - Jessica Kiel
- Scientific and Clinical Affairs, Medifast Inc., Baltimore, MD, United States
| | - John W. Erdman
- Division of Nutritional Sciences and Beckman Institute, Department of Food Science and Human Nutrition, University of Illinois at Urbana/Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Godschalk RWL, Janssen MCM, Vanhees K, van Doorn-Khosrovani SBVW, van Schooten FJ. Maternal exposure to genistein during pregnancy and oxidative DNA damage in testes of male mouse offspring. Front Nutr 2022; 9:904368. [PMID: 35923192 PMCID: PMC9340160 DOI: 10.3389/fnut.2022.904368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background Genistein is a dietary supplement with phyto-estrogenic properties. Therefore, high intake of genistein during pregnancy may have adverse effects on the genetic integrity of testes and germ cells of male offspring. In this study, we examined whether maternal exposure to genistein during pregnancy induced oxidative DNA damage in the male germline at adolescence. Methods Atm-ΔSRI mice have lower glucose-6-phosphate dehydrogenase (G6PDH) activity, which is important for maintaining levels of reduced glutathione and therefore these mice have an increased susceptibility to oxidative stress. Parental heterozygous Atm-ΔSRI mice received a genistein-rich or control diet, after which they were mated to obtain offspring. During pregnancy, mothers remained on the respective diets and after delivery all animals received control diets. Redox status and oxidative DNA damage were assessed in testes and sperm of 12 weeks old male offspring. Gene expression of Cyp1b1, Comt, and Nqo1 was assessed in testes, and DNA methylation as possible mechanism for transmission of effects to later life. Results Intake of genistein during pregnancy increased oxidative DNA damage in testes of offspring, especially in heterozygous Atm-ΔSRI mice. These increased DNA damage levels coincided with decreased expression of Comt and Nqo1. Heterozygous Atm-ΔSRI mice had higher levels of DNA strand breaks in sperm compared to wild type littermates, and DNA damage was further enhanced by a genistein-rich maternal diet. G6PDH activity was higher in mice with high maternal intake of genistein compared to control diets, suggesting compensation against oxidative stress. A positive correlation was observed between the levels of DNA methylation and oxidative DNA damage in testes. Conclusion These data indicate that prenatal exposure to genistein altered gene expression and increased DNA damage in testes and sperm of adolescent male offspring. These effects of genistein on DNA damage in later life coincided with alterations in DNA methylation.
Collapse
|
5
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
6
|
Yu L, Rios E, Castro L, Liu J, Yan Y, Dixon D. Genistein: Dual Role in Women's Health. Nutrients 2021; 13:3048. [PMID: 34578926 PMCID: PMC8472782 DOI: 10.3390/nu13093048] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Advanced research in recent years has revealed the important role of nutrients in the protection of women's health and in the prevention of women's diseases. Genistein is a phytoestrogen that belongs to a class of compounds known as isoflavones, which structurally resemble endogenous estrogen. Genistein is most often consumed by humans via soybeans or soya products and is, as an auxiliary medicinal, used to treat women's diseases. In this review, we focused on analyzing the geographic distribution of soybean and soya product consumption, global serum concentrations of genistein, and its metabolism and bioactivity. We also explored genistein's dual effects in women's health through gathering, evaluating, and summarizing evidence from current in vivo and in vitro studies, clinical observations, and epidemiological surveys. The dose-dependent effects of genistein, especially when considering its metabolites and factors that vary by individuals, indicate that consumption of genistein may contribute to beneficial effects in women's health and disease prevention and treatment. However, consumption and exposure levels are nuanced because adverse effects have been observed at lower concentrations in in vitro models. Therefore, this points to the duplicity of genistein as a possible therapeutic agent in some instances and as an endocrine disruptor in others.
Collapse
Affiliation(s)
| | | | | | | | | | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch (MTB), Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, Durham, NC 27709, USA; (L.Y.); (E.R.); (L.C.); (J.L.); (Y.Y.)
| |
Collapse
|
7
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
8
|
Padmanabhan V, Moeller J, Puttabyatappa M. Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:279-346. [PMID: 34452689 DOI: 10.1016/bs.apha.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the advent of industrialization, humans are exposed to a wide range of environmental chemicals, many with endocrine disrupting potential. As successful maintenance of pregnancy and fetal development are under tight hormonal control, the gestational exposure to environmental endocrine disrupting chemicals (EDC) have the potential to adversely affect the maternal milieu and support to the fetus, fetal developmental trajectory and birth outcomes. This chapter summarizes the impact of exposure to EDCs both individually and as mixtures during pregnancy, the immediate and long-term consequences of such exposures on the mother and fetus, the direct and indirect mechanisms through which they elicit their effects, factors that modify their action, and the research directions to focus future investigations.
Collapse
Affiliation(s)
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
9
|
Sridevi V, Naveen P, Karnam VS, Reddy PR, Arifullah M. Beneficiary and Adverse Effects of Phytoestrogens: A Potential Constituent of Plant-based Diet. Curr Pharm Des 2021; 27:802-815. [PMID: 32942973 DOI: 10.2174/1381612826999200917154747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phytoestrogens are non-endocrine, non-steroidal secondary derivatives of plants and consumed through a plant-based diet also named as "dietary estrogens". The major sources of phytoestrogens are soy and soy-based foods, flaxseed, chickpeas, green beans, dairy products, etc. The dietary inclusion of phytoestrogen based foods plays a crucial role in the maintenance of metabolic syndrome cluster, including obesity, diabetes, blood pressure, cancer, inflammation, cardiovascular diseases, postmenopausal ailments and their complications. In recent days, phytoestrogens are the preferred molecules for hormone replacement therapy. On the other hand, they act as endocrine disruptors via estrogen receptor-mediated pathways. These effects are not restricted to adult males or females and identified even in development. OBJECTIVE Since phytoestrogenic occurrence is high at daily meals for most people worldwide, they focused to study for its beneficiary effects towards developing pharmaceutical drugs for treating various metabolic disorders by observing endocrine disruption. CONCLUSION The present review emphasizes the pros and cons of phytoestrogens on human health, which may help to direct the pharmaceutical industry to produce various phytoestrongen based drugs against various metabolic disorders.
Collapse
Affiliation(s)
- Vaadala Sridevi
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Ponneri Naveen
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | | | - Pamuru R Reddy
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Mohammed Arifullah
- Institute of Food Security and Sustainable Agriculture (IFSSA) & Faculty of Agrobased Industry (FIAT), Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli 17600, Kelantan, Malaysia
| |
Collapse
|
10
|
Chen Y, Li T, Ji H, Wang X, Sun X, Miao M, Wang Y, Wu Q, Liang H, Yuan W. Associations of maternal soy product consumption and urinary isoflavone concentrations with neonatal anthropometry: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115752. [PMID: 33190984 DOI: 10.1016/j.envpol.2020.115752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Isoflavones (ISOs) are naturally occurring endocrine-disrupting compounds. Few human studies have evaluated the effects of ISO exposure on neonatal anthropometry. This study aimed to examine the associations of maternal soy product consumption and urinary ISO concentrations, including genistein, daidzein, glycitein, and equol, with neonatal anthropometry, based on a Chinese cohort study. In Shanghai-Minhang Birth Cohort Study, pregnant women at 12-16 weeks of gestation were recruited, and they completed a structured questionnaire to assess soy product consumption during pregnancy. They also provided a single spot urine sample for the ISO assay. Neonatal anthropometric indices (birth weight; arm, waist, and head circumference; and triceps, back, and abdominal skinfold thickness) were measured at birth. Multivariable linear regression analysis was performed among the 1188 mother-infant pairs to examine the associations between maternal soy product consumption and neonatal anthropometry. The same statistical model was applied to examine the associations between maternal ISO exposure and neonatal anthropometry among 480 mother-infant pairs. Neonate girls born to mothers who "sometimes" and "frequent" consumed soy products had 169.1 g (95% confidence interval [CI], -68.9-407.1) and 256.5 g (95% CI, 17.1-495.8) higher birth weight, respectively, than those born to mothers who "never" consumed soy products during pregnancy. We observed consistent associations between higher maternal urine ISO concentrations and increased anthropometric indices (birth weight, arm and waist circumference, and triceps and abdominal skinfold thickness) in neonate girls, while no association was observed among boys. The findings suggested that maternal dietary ISO intake during pregnancy is associated with fetal development in a sex-specific pattern. In addition, follow-up studies are required to evaluate whether the observed changes in anthropometric indices at birth are associated with health conditions later in life.
Collapse
Affiliation(s)
- Yao Chen
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | - Tao Li
- Affiliated Hospital of Shanghai Institute of Planned Parenthood Research, China
| | - Honglei Ji
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | - Xin Wang
- Affiliated Hospital of Shanghai Institute of Planned Parenthood Research, China
| | - Xiaowei Sun
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiaotong University, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China.
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| |
Collapse
|
11
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
12
|
Domínguez-López I, Yago-Aragón M, Salas-Huetos A, Tresserra-Rimbau A, Hurtado-Barroso S. Effects of Dietary Phytoestrogens on Hormones throughout a Human Lifespan: A Review. Nutrients 2020; 12:E2456. [PMID: 32824177 PMCID: PMC7468963 DOI: 10.3390/nu12082456] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary phytoestrogens are bioactive compounds with estrogenic activity. With the growing popularity of plant-based diets, the intake of phytoestrogen-rich legumes (especially soy) and legume-derived foods has increased. Evidence from preclinical studies suggests these compounds may have an effect on hormones and health, although the results of human trials are unclear. The effects of dietary phytoestrogens depend on the exposure (phytoestrogen type, matrix, concentration, and bioavailability), ethnicity, hormone levels (related to age, sex, and physiological condition), and health status of the consumer. In this review, we have summarized the results of human studies on dietary phytoestrogens with the aim of assessing the possible hormone-dependent outcomes and health effects of their consumption throughout a lifespan, focusing on pregnancy, childhood, adulthood, and the premenopausal and postmenopausal stages. In pregnant women, an improvement of insulin metabolism has been reported in only one study. Sex hormone alterations have been found in the late stages of childhood, and goitrogenic effects in children with hypothyroidism. In premenopausal and postmenopausal women, the reported impacts on hormones are inconsistent, although beneficial goitrogenic effects and improved glycemic control and cardiovascular risk markers have been described in postmenopausal individuals. In adult men, different authors report goitrogenic effects and a reduction of insulin in non-alcoholic fatty liver patients. Further carefully designed studies are warranted to better elucidate the impact of phytoestrogen consumption on the endocrine system at different life stages.
Collapse
Affiliation(s)
- Inés Domínguez-López
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.D.-L.); (M.Y.-A.); (S.H.-B.)
| | - Maria Yago-Aragón
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.D.-L.); (M.Y.-A.); (S.H.-B.)
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA;
| | - Anna Tresserra-Rimbau
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.D.-L.); (M.Y.-A.); (S.H.-B.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain
| | - Sara Hurtado-Barroso
- Department of Nutrition, Food Science and Gastronomy, XaRTA, INSA, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.D.-L.); (M.Y.-A.); (S.H.-B.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Testa I, Salvatori C, Di Cara G, Latini A, Frati F, Troiani S, Principi N, Esposito S. Soy-Based Infant Formula: Are Phyto-Oestrogens Still in Doubt? Front Nutr 2018; 5:110. [PMID: 30533415 PMCID: PMC6265372 DOI: 10.3389/fnut.2018.00110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Although Scientific Societies have stated that there are very few indications for the use of soy-based formula (SF) in infant nutrition, their utilization rates have been repeatedly found to be higher than expected. It is likely that a significant role in this regard is played by the belief that the use of SF during infancy can reduce the risk of the development of several diseases later in life. Although no definitive data that can substantiate these claims have been collected, many people perceive soy consumption to confer significant health benefits and might also use soy for infant nutrition. However, not all the problems regarding safety of SF in infants have been definitively solved. Among risks, the potentially toxic role of the phyto-oestrogens contained in SF is not definitively established. In vitro and animal studies have raised suspicions that SF could have potentially negative effects on sexual development and reproductive function, neurobehavioral development, immune function, and thyroid function. Several studies in humans have aimed to assess whether the results of animal studies can be applied to humans and whether SF can be used in infants following the official recommendations. The results are somewhat conflicting. The aim of this narrative review is to discuss what is presently known regarding the impact of phyto-oestrogens in SF on early and late child development. PubMed was used to search for the studies published from January 1980 to June 2017 using the keywords: “soy,” “soy formula,” “child,” “phytoestrogens.” Analysis of the literature showed that a global evaluation of the impact of modern SFs on human development seems to suggest that their use is not associated with relevant abnormalities. Only children with congenital hypothyroidism need adequate monitoring of thyroid function.
Collapse
Affiliation(s)
- Ilaria Testa
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Cristina Salvatori
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Giuseppe Di Cara
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Arianna Latini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Frati
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Stefania Troiani
- Neonatology and Neonatal Intensive Care Unit, Azienda Ospedaliera Santa Maria della Misericordia, Perugia, Italy
| | - Nicola Principi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
14
|
Bugel SM, Tanguay RL. Multidimensional chemobehavior analysis of flavonoids and neuroactive compounds in zebrafish. Toxicol Appl Pharmacol 2018; 344:23-34. [PMID: 29499247 DOI: 10.1016/j.taap.2018.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/23/2022]
Abstract
The comparative analysis of complex behavioral phenotypes is valuable as a reductionist tool for both drug discovery and defining chemical bioactivity. Flavonoids are a diverse class of chemicals that elicit robust neuroactive and hormonal actions, though bioactivity information is limited for many, particularly for neurobehavioral endpoints. Here, we used a zebrafish larval chemomotor response (LCR) bioassay to comparatively evaluate a suite of 24 flavonoids, and in addition a panel of 30 model neuroactive compounds representing diverse modes of action (e.g. caffeine, chlorpyrifos, methamphetamine, nicotine, picrotoxin). Naïve larval zebrafish were exposed to concentration ranges of each compound at 120 hour post-fertilization (hpf) and locomotor activity measured for 5 h. The model neuroactive compounds were largely behaviorally bioactive (20 of 30) with most effects phenotypic of their known modes of action. Flavonoids rapidly and broadly elicited hyperactive locomotor effects (22 of 24). Multidimensional analyses compared responses over time and identified three distinct bioactive groups of flavonoids based on efficacy and potency. Using GABAergics to modulate hyperactive responses, two flavonoids, (S)-equol and kaempferol were tested for GABAA receptor antagonism, as well as a known GABAA receptor antagonist, picrotoxin. Pharmacological intervention with positive allosteric modulators of the GABAA receptor, alfaxalone and chlormethiazole, ameliorated the hyperactive response to picrotoxin, but not for (S)-equol or kaempferol. Taken together, these studies demonstrate that flavonoids are differentially bioactive and that the chemobehavioral effects likely do not involve a GABAA receptor mediated mode of action. Overall, the integrative zebrafish platform provides a useful framework for comparatively evaluating high-content chemobehavioral data for sets of structurally- and mechanistically-related flavonoids and neuroactive compounds.
Collapse
Affiliation(s)
- Sean M Bugel
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97333, United States.
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97333, United States.
| |
Collapse
|
15
|
Patisaul HB. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 2017; 76:130-144. [PMID: 27389644 PMCID: PMC5646220 DOI: 10.1017/s0029665116000677] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is 'synthetic' v. what is 'natural,' shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences,Center for Human Health and the Environment,NC State University,Raleigh,NC 27695,USA
| |
Collapse
|
16
|
Guidry AL, Tibbs ZE, Runge-Morris M, Falany CN. Expression, purification and characterization of human cytosolic sulfotransferase (SULT) 1C4. Horm Mol Biol Clin Investig 2017; 29:27-36. [PMID: 28222028 DOI: 10.1515/hmbci-2016-0053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Human cytosolic sulfotransferase 1C4 (hSULT1C4) is a dimeric Phase II drug-metabolizing enzyme primarily expressed in the developing fetus. SULTs facilitate the transfer of a hydrophilic sulfonate moiety from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) onto an acceptor substrate altering the substrate's biological activity and increasing the compound's water solubility. While several of the hSULTs' endogenous and xenobiotic substrates have been identified, the physiological function of hSULT1C4 remains unknown. The fetal expression of hSULT1C4 leads to the hypothesis that the function of this enzyme may be to regulate metabolic and hormonal signaling molecules, such as estrogenic compounds, that may be generated or consumed by the mother during fetal development. Human SULT1C4 has previously been shown to sulfonate estrogenic compounds, such as catechol estrogens; therefore, this study focused on the expression and purification of hSULT1C4 in order to further characterize this enzyme's sulfonation of estrogenic compounds. Molecular modeling of the enzyme's native properties helped to establish a novel purification protocol for hSULT1C4. The optimal activity assay conditions for hSULT1C4 were determined to be pH 7.4 at 37°C for up to 10 min. Kinetic analysis revealed the enzyme's reduced affinity for PAPS compared to PAP. Human SULT1C4 sulfonated all the estrogenic compounds tested, including dietary flavonoids and environmental estrogens; however, the enzyme has a higher affinity for sulfonation of flavonoids. These results suggest hSULT1C4 could be metabolizing and regulating hormone signaling pathways during human fetal development.
Collapse
|
17
|
Abstract
Uterine fibroids, also known as uterine leiomyoma (UL), are monoclonal tumors of the smooth muscle tissue layer (myometrium) of the uterus. Although ULs are considered benign, uterine fibroids are the source of major quality-of-life issues for approximately 25% of all women, who suffer from clinically significant symptoms of UL. Despite the prevalence of UL, there is no treatment option for UL which is long term, cost-effective, and leaves fertility intact. The lack of understanding about the etiology of UL contributes to the scarcity of medical therapies available. Studies have identified an important role for sex steroid hormones in the pathogenesis of UL, and have driven the use of hormonal treatment for fibroids, with mixed results. Dysregulation of cell signaling pathways, miRNA expression, and cytogenetic abnormalities have also been implicated in UL etiology. Recent discoveries on the etiology of UL and the development of relevant genetically modified rodent models of UL have started to revitalize UL research. This review outlines the major characteristics of fibroids; major contributors to UL etiology, including steroid hormones; and available preclinical animal models for UL.
Collapse
Affiliation(s)
- Michelle M McWilliams
- Department of Molecular and Integrative Physiology, Center for Reproductive Sciences, IRHRM, University of Kansas Medical Center, Kansas
| | - Vargheese M Chennathukuzhi
- Department of Molecular and Integrative Physiology, Center for Reproductive Sciences, IRHRM, University of Kansas Medical Center, Kansas
| |
Collapse
|
18
|
Fleck SC, Churchwell MI, Doerge DR, Teeguarden JG. Urine and serum biomonitoring of exposure to environmental estrogens II: Soy isoflavones and zearalenone in pregnant women. Food Chem Toxicol 2016; 95:19-27. [PMID: 27255803 DOI: 10.1016/j.fct.2016.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Urine and serum biomonitoring was used to measure internal exposure to selected dietary estrogens in a cohort of 30 pregnant women. Exposure was measured over a period comprising one-half day in the field (6 h) and one day in a clinic (24 h). Biomonitoring of the dietary phytoestrogens genistein (GEN), daidzein (DDZ) and equol (EQ), as well as the mycoestrogen, zearalenone (ZEN) and its congeners, was conducted using UPLC-MS/MS. Biomonitoring revealed evidence of internal exposure to naturally occurring dietary estrogens during pregnancy. Urinary concentrations of total GEN, DDZ and EQ were similar to levels reported for general adult U.S. POPULATION Measurable concentrations of total (parent and metabolites) GEN, DDZ and EQ were present in 240, 207 and 2 of 270 serum samples, respectively. Six out of 30 subjects had measurable concentrations of unconjugated GEN and/or DDZ in serum between 0.6 and 7.1 nM. Urine to serum total isoflavone ratios for GEN, DDZ and EQ were 13, 47, and 180, respectively. ZEN and its reductive metabolite, α-zearalenol (α-ZEL), were present in pregnant women (11 out of 30 subjects) as conjugates at levels near the limit of quantification. The average total urinary concentration was 0.10 μg/L for ZEN and 0.11 μg/L for α-ZEL.
Collapse
Affiliation(s)
- Stefanie C Fleck
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Justin G Teeguarden
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 93771, USA.
| |
Collapse
|
19
|
Bugel SM, Bonventre JA, Tanguay RL. Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System. Toxicol Sci 2016; 154:55-68. [PMID: 27492224 DOI: 10.1093/toxsci/kfw139] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids are a large, structurally diverse class of bioactive naturally occurring chemicals commonly detected in breast milk, soy based infant formulas, amniotic fluid, and fetal cord blood. The potential for pervasive early life stage exposures raises concerns for perturbation of embryogenesis, though developmental toxicity and bioactivity information is limited for many flavonoids. Therefore, we evaluated a suite of 24 flavonoid and flavonoid-like chemicals using a zebrafish embryo-larval toxicity bioassay-an alternative model for investigating developmental toxicity of environmentally relevant chemicals. Embryos were exposed to 1-50 µM of each chemical from 6 to 120 h postfertilization (hpf), and assessed for 26 adverse developmental endpoints at 24, 72, and 120 hpf. Behavioral changes were evaluated in morphologically normal animals at 24 and 72 hpf, at 120 hpf using a larval photomotor response (LPR) assay. Gene expression was comparatively evaluated for all compounds for effects on biomarker transcripts indicative of AHR (cyp1a) and ER (cyp19a1b, esr1, lhb, vtg) pathway bioactivity. Overall, 15 of 24 flavonoids elicited adverse effects on one or more of the developmental or behavioral endpoints. Hierarchical clustering and principle component analyses compared toxicity profiles and identified 3 distinct groups of bioactive flavonoids. Despite robust induction of multiple estrogen-responsive biomarkers, co-exposure with ER and GPER antagonists did not ameliorate toxicity, suggesting ER-independence and alternative modes of action. Taken together, these studies demonstrate that development is sensitive to perturbation by bioactive flavonoids in zebrafish that are not related to traditional estrogen receptor mode of action pathways. This integrative zebrafish platform provides a useful framework for evaluating flavonoid developmental toxicity and hazard prioritization.
Collapse
Affiliation(s)
- Sean M Bugel
- *Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, and the Sinnhuber Aquatic Research Laboratory
| | - Josephine A Bonventre
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Robert L Tanguay
- *Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, and the Sinnhuber Aquatic Research Laboratory
| |
Collapse
|
20
|
Effects of quercetin on predator stress-related hematological and behavioural alterations in pregnant rats and their offspring. J Biosci 2016; 41:237-49. [DOI: 10.1007/s12038-016-9613-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Development of a molecular recognition based approach for multi-residue extraction of estrogenic endocrine disruptors from biological fluids coupled to liquid chromatography-tandem mass spectrometry measurement. Anal Bioanal Chem 2015; 407:8713-23. [DOI: 10.1007/s00216-015-9024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
|
22
|
Kohara Y, Kuwahara R, Kawaguchi S, Jojima T, Yamashita K. Perinatal exposure to genistein, a soy phytoestrogen, improves spatial learning and memory but impairs passive avoidance learning and memory in offspring. Physiol Behav 2014; 130:40-6. [PMID: 24637062 DOI: 10.1016/j.physbeh.2014.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/07/2014] [Indexed: 01/21/2023]
Abstract
This study investigated the effects of perinatal genistein (GEN) exposure on the central nervous system of rat offspring. Pregnant dams orally received GEN (1 or 10 mg/kg/day) or vehicle (1 ml/kg/day) from gestation day 10 to postnatal day 14. In order to assess the effects of GEN on rat offspring, we used a battery of behavioral tests, including the open-field, elevated plus-maze, MAZE and step-through passive avoidance tests. MAZE test is an appetite-motivation test, and we used this mainly for assessing spatial learning and memory. In the MAZE test, GEN groups exhibited shorter latency from start to goal than the vehicle-treated group in both sexes. On the other hand, performances in the step-through passive avoidance test were non-monotonically inhibited by GEN in both sexes, and a significant difference was observed in low dose of the GEN-treated group compared to the vehicle-treated group in female rats. Furthermore, we found that perinatal exposure to GEN did not significantly alter locomotor activity or emotionality as assessed by the open-field and elevated-plus maze tests. These results suggest that perinatal exposure to GEN improved spatial learning and memory of rat offspring, but impaired their passive avoidance learning and memory.
Collapse
Affiliation(s)
- Yumi Kohara
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Rika Kuwahara
- Graduate School of Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Shinichiro Kawaguchi
- Graduate School of Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Takeshi Jojima
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kimihiro Yamashita
- Division of Environmental Chemistry and Ecotoxicology, Institute of Environmental Studies, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan.
| |
Collapse
|
23
|
Soy and legume seeds as sources of isoflavones: selected individual determinants of their consumption in a group of perimenopausal women. MENOPAUSE REVIEW 2014; 13:27-31. [PMID: 26327825 PMCID: PMC4520332 DOI: 10.5114/pm.2014.41081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
Abstract
The aim of this study The aim of this study was to analyze selected individual determinants of consumption of soy products and legumes by menopausal women. The analyzed individual characteristics included the level of general self-efficacy, optimism, and satisfaction with life. The study, using a questionnaire for the assessment of food product consumption frequency, and psychological tests (GSES, LOT-R, SWLS), was conducted in a group of 320 women aged between 45 and 55 years. Spearman's coefficient of rank correlation and the Kruskal-Wallis test with the Dunn test for multiple comparisons were used for statistical analysis (p < 0.05). Material and methods The analyzed 45-55-year-old women consumed legume seeds several times a month on average, while the frequency of soy/soy product consumption was lower than once a month. Statistical analysis revealed that the frequency of soy product consumption increased with the level of self-efficacy, optimism and satisfaction with life (p < 0.01). Also the increased frequency of legume seed consumption was associated with higher level of optimism and satisfaction with life (p < 0.01). Results Intergroup comparisons of the average consumption frequency of these products confirmed that legume seeds were significantly more frequently chosen by women characterized by high rather than low levels of optimism (3.36 vs. 2.62, p < 0.001) and satisfaction with life (3.36 vs. 2.65, p < 0.01). Also soy products were preferred significantly more often by women with higher levels of optimism (2.00 vs. 1.38, p < 0.05) and satisfaction with life (2.02 vs. 1.39, p < 0.05). Conclusions The consumption of legume seeds, and especially soy products, was revealed to be very low among perimenopausal women, and varied depending on the analyzed individual traits, with a tendency to more frequent ingestion by individuals with higher levels of self-efficacy, optimism, and satisfaction with life.
Collapse
|
24
|
Zhang T, Liang X, Shi L, Wang L, Chen J, Kang C, Zhu J, Mi M. Estrogen receptor and PI3K/Akt signaling pathway involvement in S-(-)equol-induced activation of Nrf2/ARE in endothelial cells. PLoS One 2013; 8:e79075. [PMID: 24260155 PMCID: PMC3833998 DOI: 10.1371/journal.pone.0079075] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022] Open
Abstract
S-(-)equol, a natural product of the isoflavone daidzein, has been reported to offer cytoprotective effects with respect to the cardiovascular system, but how this occurs is unclear. Interestingly, S-(-)equol is produced by the human gut, suggesting a role in physiological processes. We report that treatment of human umbilical vein endothelial cells and EA.hy926 cells with S-(-)equol induces ARE-luciferase reporter gene activity that is dose and time dependent. S-(-)equol (10-250 nM) increases nuclear factor-erythroid 2-related factor 2 (Nrf2) as well as gene products of Nrf2 target genes heme oxygenase-1 (HO-1) and NAD(P)H (nicotinamide-adenine-dinucleotide-phosphate) quinone oxidoreductase 1 (NQO1). Endothelial cells transfected with an HA-Nrf2 expression plasmid had elevated HA-Nrf2, HO-1, and NQO1 in response to S-(-)equol exposure. S-(-)equol treatment affected Nrf2 mRNA only slightly but significantly increased HO-1 and NQO1 mRNA. The pretreatment of cells with specific ER inhibitors or PI3K/Akt (ICI182,780 and LY294002) increased Nrf2, HO-1, and NQO1 protein, impaired nuclear translocation of HA-Nrf2, and decreased ARE-luciferase activity. Identical experiments were conducted with daidzein, which had effects similar to S-(-)equol. In addition, DPN treatment (an ERβ agonist) induced the ARE-luciferase reporter gene, promoting Nrf2 nuclear translocation. Cell pretreatment with an ERβ antagonist (PHTPP) impaired S-(-)equol-induced Nrf2 activation. Pre-incubation of cells followed by co-treatment with S-(-)equol significantly improved cell survival in response to H2O2 or tBHP and reduced apoptotic and TUNEL-positively-stained cells. Notably, the ability of S-(-)equol to protect against H2O2-induced cell apoptosis was attenuated in cells transfected with an siRNA against Nrf2. Thus, beneficial effects of S-(-)equol with respect to cytoprotective antioxidant gene activation may represent a novel strategy to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Ting Zhang
- Research Center for Nutrition and Food Safety, The Third Military Medical University, Chongqing, PR China
| | - Xinyu Liang
- Research Center for Nutrition and Food Safety, The Third Military Medical University, Chongqing, PR China
| | - Linying Shi
- Research Center for Nutrition and Food Safety, The Third Military Medical University, Chongqing, PR China
| | - Li Wang
- Research Center for Nutrition and Food Safety, The Third Military Medical University, Chongqing, PR China
| | - Junli Chen
- Research Center for Nutrition and Food Safety, The Third Military Medical University, Chongqing, PR China
| | - Chao Kang
- Research Center for Nutrition and Food Safety, The Third Military Medical University, Chongqing, PR China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, The Third Military Medical University, Chongqing, PR China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, The Third Military Medical University, Chongqing, PR China
- * E-mail:
| |
Collapse
|
25
|
Singh H, Singh S, Srivastava A, Tandon P, Bharti P, Kumar S, Maurya R. Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:405-15. [PMID: 24211623 DOI: 10.1016/j.saa.2013.10.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/02/2013] [Accepted: 10/09/2013] [Indexed: 05/26/2023]
Abstract
Daidzein (C15H10O4) is a type of isoflavone. It was isolated from Butea monosperma that belongs to the Fabaceae family. Soybeans and soy products are the abundant source of daidzein. It is the subject of investigation for many reasons, as it has got wide applications, such as anti-tumor, anti-estrogen, weak pro-estrogen and anti-cancer activities. In the present study, a complete vibrational assignment is provided for the observed IR and Raman spectra of daidzein. Electronic properties have been analyzed using TD-DFT method for both gaseous and solvent phase. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of daidzein have been determined using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and a good correlation was found between observed and calculated values. The double well potential energy curve of the molecule about three bonds, has been plotted, as obtained from DFT/6-31G basis. The HOMO-LUMO energy gap of possible conformers has been calculated for comparing their chemical activity. Global reactivity descriptors have been calculated for predicting the chemical reactivity and the stability of chemical systems. Electrostatic potential surface has been plotted for predicting the structure activity relationship. NBO analysis has also been performed to study the stability of the molecule. NLO study reveals the nonlinear properties of the molecule. 1H and 13C NMR spectra have also been studied. Finally, the calculated results were used to simulate infrared and Raman spectra of the title compound which showed a good agreement with the observed spectra.
Collapse
Affiliation(s)
- Harshita Singh
- Department of Physics, University of Lucknow, Lucknow 226007, India
| | - Swapnil Singh
- Department of Physics, University of Lucknow, Lucknow 226007, India
| | | | - Poonam Tandon
- Department of Physics, University of Lucknow, Lucknow 226007, India.
| | - Purnima Bharti
- Department of Physics, University of Lucknow, Lucknow 226007, India
| | - Sudhir Kumar
- Medicinal and Process Chemistry Division, Central Drug Research Institute (CDRI), Lucknow 226031, India
| | - Rakesh Maurya
- Medicinal and Process Chemistry Division, Central Drug Research Institute (CDRI), Lucknow 226031, India
| |
Collapse
|
26
|
Individual and combined developmental toxicity assessment of bisphenol A and genistein using the embryonic stem cell test in vitro. Food Chem Toxicol 2013; 60:497-505. [DOI: 10.1016/j.fct.2013.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 08/01/2013] [Accepted: 08/04/2013] [Indexed: 11/23/2022]
|
27
|
Effects of perinatal daidzein exposure on subsequent behavior and central estrogen receptor α expression in the adult male mouse. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:157-67. [PMID: 23268192 DOI: 10.1016/j.pnpbp.2012.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Daidzein is one of the most important isoflavones present in soy and it is unique as it can be further metabolized to equol, a compound with greater estrogenic activity than other isoflavones. The potential role of daidzein in the prevention of some chronic diseases has drawn public attention and increased its consumption in human, including in pregnant women and adolescent. It is unclear whether perinatal exposure to daidzein through maternal diets affects subsequent behavior and central estrogen receptor α (ERα) expression in male adults. Following developmental exposure to daidzein through maternal diets during perinatal period, subsequent anxiety-like behavior, social behavior, spatial learning and memory of male mice at adulthood were assessed using a series of tests. The levels of central ER α expression were also examined using immunocytochemistry. Compared with the controls, adult male mice exposed to daidzein during the perinatal period showed significantly less exploration, higher levels of anxiety and aggression. They also displayed more social investigation for females and a tendency to improve spatial learning and memory. The mice with this early daidzein treatment demonstrated significantly higher levels of ERα expression in several brain regions such as the bed nucleus of the stria terminalis, medial preoptic, arcuate hypothalamic nucleus and central amygdaloid mucleus, but decreased it in the lateral septum. Our results indicated that perinatal exposure to daidzein enhanced masculinization on male behaviors which is assocciated with alterations in ERα expression levels led by perinatal daidzein exposure.
Collapse
|
28
|
Toumi ML, Merzoug S, Baudin B, Tahraoui A. Quercetin alleviates predator stress-induced anxiety-like and brain oxidative signs in pregnant rats and immune count disturbance in their offspring. Pharmacol Biochem Behav 2013; 107:1-10. [PMID: 23541492 DOI: 10.1016/j.pbb.2013.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/28/2013] [Accepted: 03/16/2013] [Indexed: 11/30/2022]
Abstract
This study was performed in rats to investigate the effect of a psychogenic stress during late gestation on the immediate behavior and brain oxidative status in dams as well as on the immune cell counts in their offspring up to weaning. Besides, the ability of quercetin (a natural flavonoid) to prevent stress effects was evaluated. Quercetin was orally administered for 6 consecutive days before the pregnant rats were acutely exposed to predator stress on gestational day 19. Post-stress corticosterone level, brain oxidative stress parameters and anxiety-like behavior were assessed in dams, whereas immune cell counts were postnatally determined in both male and female pups. Predator stress caused an oxidative stress in the brain and elicited an elevation in plasma corticosterone with concomitant behavioral impairment in dams. Prenatally-stressed pups mainly showed a decrease in total leukocytes and lymphocytes along with monocytosis and granulocytosis, but these changes were sex-dependent throughout the postnatal period studied. Quercetin pretreatment blocked the stress-induced corticosterone release and alleviated the brain oxidative stress with the maternal anxiety measures being slightly attenuated, whereas its effects on the offspring immune cell counts were mostly revealed at birth. Our findings suggest that late gestational exposure to traumatic events may cause anxiety symptoms in dams, in which corticosterone and brain oxidative stress play a certain role, and trigger negative immune changes in the early postnatal life of progeny. Notably, quercetin intake before such adverse events seems to be beneficial against negative outcomes in both dams and offspring.
Collapse
Affiliation(s)
- Mohamed Lamine Toumi
- Laboratoire de Neuro-endocrinologie Appliquée, Département de Biologie, Université Badji Mokhtar, BP 12, 23000 Annaba, Algeria.
| | | | | | | |
Collapse
|
29
|
Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct 2013; 4:200-12. [PMID: 23160185 PMCID: PMC3678366 DOI: 10.1039/c2fo30199g] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes is a result of chronic insulin resistance and loss of functional pancreatic β-cell mass. Strategies to preserve β-cell mass and a greater understanding of the mechanisms underlying β-cell turnover are needed to prevent and treat this devastating disease. Genistein, a naturally occurring soy isoflavone, is reported to have numerous health benefits attributed to multiple biological functions. Over the past 10 years, numerous studies have demonstrated that genistein has anti-diabetic effects, in particular, direct effects on β-cell proliferation, glucose-stimulated insulin secretion and protection against apoptosis, independent of its functions as an estrogen receptor agonist, antioxidant, or tyrosine kinase inhibitor. Effects are structure-specific and not common to all flavonoids. While there are limited data on the effects of genistein consumption in humans with diabetes, there are a plethora of animal and cell-culture studies that demonstrate a direct effect of genistein on β-cells at physiologically relevant concentrations (<10 μM). The effects appear to involve cAMP/PKA signaling and there are some studies that suggest an effect on epigenetic regulation of gene expression. This review focuses on the anti-diabetic effects of genistein in both in vitro and in vivo models and potential mechanisms underlying its direct effects on β-cells.
Collapse
Affiliation(s)
- Elizabeth. R. Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
30
|
Abstract
Kawasaki disease (KD) is a diffuse vasculitis occurring in children and showing predilection for the coronary arteries. The etiology remains unknown, although some risk factors for susceptibility have been defined. Asian ethnicity is a primary risk factor. Several theories have circulated regarding the differences in KD ethnic incidence. Those theories implicating genetic differences among populations as the cause for this discrepancy have dominated and are areas of active investigation by multiple research groups. Differences in diet between Asians and Westerners are touted as reasons for certain ethnic-related discrepancies in susceptibility to cardiovascular disease and cancer in adults. Surprisingly, these cultural dietary differences have not been previously considered as the source of the discrepancy in KD incidence among these ethnic populations. Recent data from genetic studies have highlighted the role of specific immune receptors in the pathogenesis of KD. Functions of the Fcγ receptors (FcGRs) are modulated by isoflavones in soy, in particular, genistein. Epidemiological data from Hawaiian populations support an association between soy consumption and KD. These observations form the basis of a hypothesis: isoflavones participate in KD pathogenesis by modulating function of the FcGRs and by disrupting the balance between activation and inhibition of the inflammatory response.
Collapse
Affiliation(s)
- Michael A Portman
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
31
|
Salleh N, Helmy MM, Fadila KN, Yeong SO. Isoflavone genistein induces fluid secretion and morphological changes in the uteri of post-pubertal rats. Int J Med Sci 2013; 10:665-75. [PMID: 23569430 PMCID: PMC3619115 DOI: 10.7150/ijms.5207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/04/2013] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED A reported increase in the incidence of infertility following high genistein intake could be related to alteration in the normal fluid volume and morphology of the uterus in adult female. In view of this, we investigated the effect of this compound on fluid secretion, fluid volume and morphology of the uterus in post-pubertal rats. METHODS Ovariectomised SD rats were treated with 17-β oestradiol (E) (0.8 X 10(-4) mg/kg/day) and genistein (0.5, 5, 10, 25, 50 and 100 mg/kg/day) for three days. Following drug treatment, in-vivo uterine perfusion was performed and the rate of fluid secretion and the volume of fluid in the uterus were determined via changes in weight (μl/min) and F-dextran concentration of the perfusate respectively. The animals were then sacrificed and the uteri were removed for weight determination, morphological analyses and proliferative cell nuclear antigen (PCNA) expression analyses by Western blotting. RESULTS Subcutaneous genistein treatment resulted in a dose-dependent increase in fluid secretion rate, fluid volume and uterine wet weight. Treatment with 100 mg/kg/day genistein resulted in a remarkable increase in the rate of uterine fluid secretion, the volume of the uterine luminal fluid as well as the circumference of the uterine and uterine glandular lumen suggesting an excessive fluid accumulation. Meanwhile, there were evidence of glandular hyperplasia and an increase in the expression of PCNA following treatment with 50 and 100 mg/kg/day genistein. CONCLUSION High genistein intake could potentially cause adverse effects on the uterus by inducing excessive fluid secretion and accumulation as well as hyperplasia.
Collapse
Affiliation(s)
- Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
32
|
Patisaul HB. Effects of environmental endocrine disruptors and phytoestrogens on the kisspeptin system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:455-79. [PMID: 23550019 DOI: 10.1007/978-1-4614-6199-9_21] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sex steroid hormones, most notably estradiol, play a pivotal role in the sex-specific organization and function of the kisspeptin system. Endocrine--disrupting compounds are anthropogenic or naturally occurring compounds that interact with steroid hormone signaling. Thus, these compounds have the potential to disrupt the sexually dimorphic ontogeny and function of kisspeptin signaling pathways, resulting in adverse effects on neuroendocrine physiology. This chapter reviews the small but growing body of evidence for endocrine disruption of the kisspeptin system by the exogenous estrogenic compounds bisphenol A, polychlorinated biphenyl mixtures, and the phytoestrogen genistein. Disruption is region, sex, and compound specific, and associated with shifts in the timing of pubertal onset, irregular estrous cycles, and altered sociosexual behavior. These effects highlight that disruption of kisspeptin signaling pathways could have wide ranging effects across multiple organ systems, and potentially underlies a suite of adverse human health trends including precocious female puberty, idiopathic infertility, and metabolic syndrome.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
33
|
Viñas R, Jeng YJ, Watson CS. Non-genomic effects of xenoestrogen mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2694-714. [PMID: 23066391 PMCID: PMC3447581 DOI: 10.3390/ijerph9082694] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Xenoestrogens (XEs) are chemicals derived from a variety of natural and anthropogenic sources that can interfere with endogenous estrogens by either mimicking or blocking their responses via non-genomic and/or genomic signaling mechanisms. Disruption of estrogens' actions through the less-studied non-genomic pathway can alter such functional end points as cell proliferation, peptide hormone release, catecholamine transport, and apoptosis, among others. Studies of potentially adverse effects due to mixtures and to low doses of endocrine-disrupting chemicals have recently become more feasible, though few so far have included actions via the non-genomic pathway. Physiologic estrogens and XEs evoke non-monotonic dose responses, with different compounds having different patterns of actions dependent on concentration and time, making mixture assessments all the more challenging. In order to understand the spectrum of toxicities and their mechanisms, future work should focus on carefully studying individual and mixture components across a range of concentrations and cellular pathways in a variety of tissue types.
Collapse
Affiliation(s)
- René Viñas
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
34
|
Zou P, Xing L, Tang Q, Liu R, Hao W. Comparative evaluation of the teratogenicity of genistein and genistin using rat whole embryo culture and limbud micromass culture methods. Food Chem Toxicol 2012; 50:2831-6. [PMID: 22617716 DOI: 10.1016/j.fct.2012.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 11/16/2022]
Abstract
Genistein (GEN) is one kind of phytoestrogen. Several studies have demonstrated the teratogenic potential of GEN in vitro by postimplantation rat whole embryo culture (WEC) assay, but GEN showed no teratogenic effects in vivo even at a dose up to 1000 mg/kg bw/day. The mechanism of such discrepancy is still unclear. Because more than 80% of total genistein (free plus glycoside form) in circulation is its glycoside metabolite, genistin (GIN), we thus hypothesize that genistin is non-teratogenic. To prove this hypothesis, rat whole embryo culture (WEC) and limbud micromass culture methods were applied to compare the teratogenic effects of GEN and GIN on developing embryos in vitro. In WEC assay, we found that the development of embryos was affected by GEN treatment dose-dependently, while GIN-treated embryos displayed slight developmental defects only at the highest dose (222 μM). In micromass culture assay, the IC50 of cell proliferation and differentiation for GEN were 15.6 and 37.2 μM, respectively, while neither was influenced by GIN treatment up to 111 μM. Collectively, our study indicated that GEN showed no teratogenic effects in vivo probably due to its transformation to the non-teratogenic metabolite, GIN.
Collapse
Affiliation(s)
- Peng Zou
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | | | | | | | | |
Collapse
|
35
|
The Interplay between Estrogen and Fetal Adrenal Cortex. J Nutr Metab 2012; 2012:837901. [PMID: 22536492 PMCID: PMC3321452 DOI: 10.1155/2012/837901] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022] Open
Abstract
Estrogen is a steroid hormone that regulates embryogenesis, cell proliferation and differentiation, organogenesis, the timing of parturition, and fetal imprinting by carrying chemical messages from glands to cells within tissues or organs in the body. During development, placenta is the primary source of estrogen production but estrogen can only be produced if the fetus or the mother supplies dehydroepiandrosterone (DHEA), the estrogen prohormone. Studies show that the fetal zone of the fetal adrenal cortex supplies 60% of DHEA for placental estrogen production, and that placental estrogen in turn modulates the morphological and functional development of the fetal adrenal cortex. As such, in developed countries where humans are exposed daily to environmental estrogens, there is concern that the development of fetal adrenal cortex, and in turn, placental estrogen production may be disrupted. This paper discusses fetal adrenal gland development, how endogenous estrogen regulates the structure and function of the fetal adrenal cortex, and highlights the potential role that early life exposure to environmental estrogens may have on the development and endocrinology of the fetal adrenal cortex.
Collapse
|
36
|
Park YJ, Mohamed ESA, Kwon WS, You YA, Ryu BY, Pang MG. Xenoestrogenic chemicals effectively alter sperm functional behavior in mice. Reprod Toxicol 2011; 32:418-24. [PMID: 22036770 DOI: 10.1016/j.reprotox.2011.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/30/2011] [Accepted: 09/28/2011] [Indexed: 01/03/2023]
Abstract
Xenoestrogenic compounds (XCs) can disrupt endogenous hormone function and affect sperm function by binding to receptors on sperm membrane. Albeit spermatozoa are potentially a useful model for screening estrogenic activities of endocrine disruptors, high-quality in vitro test system that examination of the XCs effects on sperm function is required. The objective of this study was to compare the effects of XCs (genistein and 4-tert-octylphenol) to those of steroids (estrogen and progesterone) and heparin on in vitro capacitation and acrosome reaction (AR) in mouse spermatozoa. Mouse spermatozoa were incubated with various concentrations (0.001-100 μM) of each chemical for 15 or 30 min, and then capacitation and AR were assessed using chlortetracycline. All chemicals studied effectively alter capacitation and/or AR in mouse spermatozoa with different manner. Therefore, we believed that our system will provide a good in vitro model system to characterize the physiological effect of XCs especially when compared with steroids.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science and Technology, School of Bioresource and Bioscience, Chung-Ang University, Ansung, Gyeonggi-Do, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
37
|
Watson CS, Jeng YJ, Guptarak J. Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways. J Steroid Biochem Mol Biol 2011; 127:44-50. [PMID: 21300151 PMCID: PMC3106143 DOI: 10.1016/j.jsbmb.2011.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/27/2011] [Accepted: 01/30/2011] [Indexed: 12/21/2022]
Abstract
When inappropriate (non-physiologic) estrogens affect organisms at critical times of estrogen sensitivity, disruption of normal endocrine functions can result. Non-physiologic estrogen mimetics (environmental, dietary, and pharmaceutical) can signal rapidly and potently via the membrane versions of estrogen receptors, as can physiologic estrogens. Both physiologic and non-physiologic estrogens activate multiple signaling pathways, leading to altered cellular functions (e.g. peptide release, cell proliferation or death, transport). Xenoestrogens' mimicry of physiologic estrogens is imperfect. When superimposed, xenoestrogens can alter endogenous estrogens' signaling and thereby disrupt normal signaling pathways, leading to malfunctions in many tissue types. Though these xenoestrogen actions occur rapidly via nongenomic signaling pathways, they can be sustained with continuing ligand stimulation, combinations of ligands, and signaling that perpetuates downstream, eventually also impinging on genomic regulation by controlling the activation state of transcription factors. Because via these pathways estrogens and xenoestrogens cause nonmonotonic stimulation patterns, they must be carefully tested for activity and toxicity over wide dose ranges. Nongenomic actions of xenoestrogens in combination with each other, and with physiologic estrogens, are still largely unexplored from these mechanistic perspectives.
Collapse
Affiliation(s)
- Cheryl S. Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555-0645, USA
| | - Yow-Juin Jeng
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555-0645, USA
| | - Jutatip Guptarak
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX 77555-0645, USA
| |
Collapse
|
38
|
Frankenfeld CL. O-desmethylangolensin: the importance of equol's lesser known cousin to human health. Adv Nutr 2011; 2:317-24. [PMID: 22332073 PMCID: PMC3125681 DOI: 10.3945/an.111.000539] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The objective for this paper was to review human studies of O-desmethylangolensin (O-DMA) concentrations and of O-DMA producers compared with nonproducers in the context of results from in vitro studies. O-DMA is an intestinal bacterial metabolite of daidzein, an isoflavone compound observed to have phytoestrogenic properties. Not all individuals harbor bacteria capable of metabolizing daidzein to O-DMA, and individuals can be classified as O-DMA producers and nonproducers. O-DMA is less structurally similar to 17β-estradiol than its parent compound, daidzein; thus, it may exhibit different biological actions than daidzein. Evidence from in vitro studies suggests that O-DMA has several cancer-related biological actions. However, results from human metabolic studies and observational studies of disease risk suggest that these actions may not be physiologically relevant in vivo due to the amount and form (primarily glucuronide) of circulating O-DMA. Apart from circulating O-DMA concentrations, the underlying bacteria may have a distinct physiological role. Urinary excretion of O-DMA in humans is a marker of harboring intestinal bacteria capable of C-ring cleavage. Bacterial C-ring cleavage reactions are relevant to other phytochemicals that may exert biological actions in vivo that are stronger than the actions of O-DMA; thus, the role of the phenotype may extend beyond daidzein metabolism. There are a limited number of studies that have evaluated disease risk factors in relation to being an O-DMA producer, with mixed results. Further research evaluating disease risk in relation to the O-DMA-producer phenotype from the perspective of intestinal microbial composition is recommended.
Collapse
|
39
|
Impact of perinatal exposure to equol enantiomers on reproductive development in rodents. Reprod Toxicol 2011; 32:33-42. [PMID: 21620954 DOI: 10.1016/j.reprotox.2011.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/15/2011] [Accepted: 05/12/2011] [Indexed: 11/22/2022]
Abstract
There is now considerable interest in the intestinally derived soy isoflavone metabolite, equol, which occurs in the enantiomeric forms, S-(-)equol and R-(+)equol, both differing in biological actions. Little is known about effects of either enantiomer on reproductive development, yet such knowledge is fundamental because of the recent commercialization of S-(-)equol as a dietary supplement. S-(-)equol and R-(+)equol were therefore investigated to determine their effects on reproductive development and fertility in the Sprague-Dawley rat. Neither enantiomer affected fertility, number of litters produced, number of pups per litter, number of male and female pups born, birth weight, anogenital distance, testicular descent or vaginal opening. Histological analysis showed no major abnormalities in ovary, testis, prostate or seminal vesicle tissue with dietary exposure to S-(-)equol or R-(+)equol, but both enantiomers triggered hyperplasia of uterine tissue. With R-(+)equol this stimulatory effect subsided after exposure was discontinued, but the effect of S-(-)equol was prolonged.
Collapse
|
40
|
Bonacasa B, Siow RCM, Mann GE. Impact of dietary soy isoflavones in pregnancy on fetal programming of endothelial function in offspring. Microcirculation 2011; 18:270-85. [PMID: 21418378 DOI: 10.1111/j.1549-8719.2011.00088.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological evidence suggests that soy-based diets containing phytoestrogens (isoflavones) afford protection against cardiovascular diseases (CVDs); however, supplementation trials have largely reported only marginal health benefits. The molecular mechanisms by which the isoflavones genistein, daidzein, and equol afford protection against oxidative stress remain to be investigated in large scale clinical trials. Isoflavones are transferred across the placenta in both rodents and humans, yet there is limited information on their actions in pregnancy and the developmental origins of disease. Our studies established that feeding a soy isoflavone-rich diet during pregnancy, weaning, and postweaning affords cardiovascular protection in aged male rats. Notably, rats exposed to a soy isoflavone-deficient diet throughout pregnancy and adult life exhibited increased oxidative stress, diminished antioxidant enzyme and eNOS levels, endothelial dysfunction, and elevated blood pressure in vivo. The beneficial effects of refeeding isoflavones to isoflavone-deficient rats include an increased production of nitric oxide and EDHF, an upregulation of antioxidant defense enzymes and lowering of blood pressure in vivo. This review focuses on the role that isoflavones in the fetal circulation may play during fetal development in affording protection against CVD in the offspring via their ability to activate eNOS, EDHF, and redox-sensitive gene expression.
Collapse
Affiliation(s)
- Barbara Bonacasa
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
41
|
Vanhees K, de Bock L, Godschalk RWL, van Schooten FJ, van Waalwijk van Doorn-Khosrovani SB. Prenatal exposure to flavonoids: implication for cancer risk. Toxicol Sci 2010; 120:59-67. [PMID: 21177254 DOI: 10.1093/toxsci/kfq388] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids are potent antioxidants, freely available as high-dose dietary supplements. However, they can induce DNA double-strand breaks (DSB) and rearrangements in the mixed-lineage leukemia (MLL) gene, which are frequently observed in childhood leukemia. We hypothesize that a deficient DSB repair, as a result of an Atm mutation, may reinforce the clastogenic effect of dietary flavonoids and increase the frequency of Mll rearrangements. Therefore, we examined the effects of in vitro and transplacental exposure to high, but biological amounts of flavonoids in mice with different genetic capacities for DSB repair (homozygous/heterozygous knock-in for human Atm mutation [Atm-ΔSRI] vs. wild type [wt]). In vitro exposure to genistein/quercetin induced higher numbers of Mll rearrangements in bone marrow cells of Atm-ΔSRI mutant mice compared with wt mice. Subsequently, heterozygous Atm-ΔSRI mice were placed on either a flavonoid-poor or a genistein-enriched (270 mg/kg) or quercetin-enriched (302 mg/kg) feed throughout pregnancy. Prenatal exposure to flavonoids associated with higher frequencies of Mll rearrangements and a slight increase in the incidence of malignancies in DNA repair-deficient mice. These data suggest that prenatal exposure to both genistein and quercetin supplements could increase the risk on Mll rearrangements especially in the presence of compromised DNA repair.
Collapse
Affiliation(s)
- Kimberly Vanhees
- Department of Health Risk Analysis and Toxicology, Nutrition and Toxicology Research, Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Ovarian function in adults is controlled by hormones circulating in the body. The primary hormone responsible for cyclicity in animals and humans is estrogen. Estrogen is mostly produced in the ovary and enters the circulation where it then signals the brain for a response. The parts of the brain that controls reproductive hormones are the hypothalamus and anterior pituitary. Estrogen stimulates the hypothalamus to produce gonadotropin releasing hormone, which in turn signals the anterior pituitary to produce follicle stimulating hormone and luteinizing hormone. These hormones enter the circulation and signal the ovary to ovulate. Substances with estrogenic activity can potentially interfere with this signaling if levels of activity are sufficient to cause a response. Soy foods contain estrogenic substances called phytoestrogens. The predominant phytoestrogens found in soy are genistein and daidzein. The female reproductive system is dependent on hormones for proper function and phytoestrogens at very high levels can interfere with this process. This paper summarizes the literature on adult soy consumption and its effect on ovarian function.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
43
|
Vanhees K, Coort S, Ruijters EJB, Godschalk RWL, van Schooten FJ, Barjesteh van Waalwijk van Doorn-Khosrovani S. Epigenetics: prenatal exposure to genistein leaves a permanent signature on the hematopoietic lineage. FASEB J 2010; 25:797-807. [PMID: 21048042 DOI: 10.1096/fj.10-172155] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies demonstrate that maternal diet during pregnancy results in long-lasting effects on the progeny. Supplementation of maternal diet with genistein, a phytoestrogen ubiquitous in the daily diet, altered coat color of agouti mice due to epigenetic changes. We studied hematopoiesis of mice prenatally exposed to genistein (270 mg/kg feed) compared with that of mice prenatally exposed to phytoestrogen-poor feed and observed a significant increase in granulopoiesis, erythropoiesis, and mild macrocytosis at the adult age of 12 wk. Genistein exposure was associated with hypermethylation of certain repetitive elements, which coincided with a significant down-regulation of estrogen-responsive genes and genes involved in hematopoiesis in bone marrow cells of genistein-exposed mice, as assessed by microarray technology. Although genistein exposure did not affect global methylation in fetal liver of fetuses at embryonic day 14.5, it accelerated the switch from primitive to definitive erythroid lineage. Taken together, our data demonstrate that prenatal exposure to genistein affects fetal erythropoiesis and exerts lifelong alterations in gene expression and DNA methylation of hematopoietic cells.
Collapse
Affiliation(s)
- Kimberly Vanhees
- Department of Health Risk Analysis and Toxicology, Research Institute NUTRIM, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Xiao Y, Liu R, Xing L, Xu Y, Shang L, Hao W. Combined developmental toxicity of bisphenol A and genistein in micromass cultures of rat embryonic limb bud and midbrain cells. Toxicol In Vitro 2010; 25:153-9. [PMID: 21034807 DOI: 10.1016/j.tiv.2010.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 08/31/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Bisphenol A (BPA), widely used in industry and dentistry, and genistein (GEN), the predominant component of soy product, are both known environmental estrogen. In the present study, we investigated the developmental toxicity of BPA and GEN and their combined effect using micromass test, which is one of three standard alternative developmental toxicity tests recommended by European Center for the Validation of Alternative Methods (ECVAM). The results showed that IC50-P (cell proliferation) and IC50-D (cell differentiation) of BPA and GEN were approximately 20 and 5 μg/ml, respectively. No observed adverse effect level (NOAEL) of BPA and GEN were 10 and 0.94 μg/ml, respectively. The manifestation of BPA as a teratogen was insufficient, although the "low dose" effect should be paid attention to. While the evidence of GEN as a teratogen was solid, especially with the consideration of "high dose" application in clinical treatment. The combined effect of BPA and GEN was generally additive action except that in MB proliferation.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
45
|
Jefferson WN, Williams CJ. Circulating levels of genistein in the neonate, apart from dose and route, predict future adverse female reproductive outcomes. Reprod Toxicol 2010; 31:272-9. [PMID: 20955782 DOI: 10.1016/j.reprotox.2010.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/08/2010] [Accepted: 10/04/2010] [Indexed: 11/16/2022]
Abstract
Developmental exposure to estrogenic compounds can disrupt sexual differentiation and adult reproductive function in many animals including humans. Phytoestrogens (plant estrogens) in the diet comprise a significant source of estrogenic exposure to humans, particularly in infants who are fed soy-based infant formula. Animal models have been developed to test the effects of phytoestrogen exposure on the developing fetus and neonate. Here we review studies quantifying the amount of phytoestrogen exposure in human adults and infants and discuss the few available epidemiological studies that have addressed long-term consequences of developmental phytoestrogen exposure. We then describe in detail rodent models of developmental exposure to the most prevalent phytoestrogen in soy products, genistein, and the effects of this exposure on female reproductive function. These models have used various dosing strategies to mimic the phytoestrogen levels in human populations. Serum circulating levels of genistein following each of the models and their correlation to reproductive outcomes are also discussed. Taken together, the studies clearly demonstrate that environmentally relevant doses of genistein have significant negative impacts on ovarian differentiation, estrous cyclicity, and fertility in the rodent model. Additional studies of reproductive function in human populations exposed to high levels of phytoestrogens during development are warranted.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States.
| | | |
Collapse
|
46
|
Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol 2010; 31:400-19. [PMID: 20347861 PMCID: PMC3074428 DOI: 10.1016/j.yfrne.2010.03.003] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 02/07/2023]
Abstract
Phytoestrogens are plant derived compounds found in a wide variety of foods, most notably soy. A litany of health benefits including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms, are frequently attributed to phytoestrogens but many are also considered endocrine disruptors, indicating that they have the potential to cause adverse health effects as well. Consequently, the question of whether or not phytoestrogens are beneficial or harmful to human health remains unresolved. The answer is likely complex and may depend on age, health status, and even the presence or absence of specific gut microflora. Clarity on this issue is needed because global consumption is rapidly increasing. Phytoestrogens are present in numerous dietary supplements and widely marketed as a natural alternative to estrogen replacement therapy. Soy infant formula now constitutes up to a third of the US market, and soy protein is now added to many processed foods. As weak estrogen agonists/antagonists with molecular and cellular properties similar to synthetic endocrine disruptors such as Bisphenol A (BPA), the phytoestrogens provide a useful model to comprehensively investigate the biological impact of endocrine disruptors in general. This review weighs the evidence for and against the purported health benefits and adverse effects of phytoestrogens.
Collapse
|
47
|
Siow RCM, Mann GE. Dietary isoflavones and vascular protection: activation of cellular antioxidant defenses by SERMs or hormesis? Mol Aspects Med 2010; 31:468-77. [PMID: 20837051 DOI: 10.1016/j.mam.2010.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/02/2010] [Indexed: 12/14/2022]
Abstract
During the past decade nutrigenomic studies in humans, animal models and cultured cells have provided important and novel insights into the mechanisms by which dietary isoflavones afford protection against vascular dysfunction through the amelioration of oxidative modifications and upregulation of endogenous antioxidant signaling pathways. In this review, we highlight that increased generation of nitric oxide (NO) and reactive oxygen species (ROS) in the vessel wall in response to dietary isoflavones enhance the activity of antioxidant defense enzymes in endothelial and smooth muscle cells. The estrogenic properties of isoflavones are likely to contribute to the molecular mechanisms by which these compounds activate signal transduction pathways involved in sustaining endothelial function and transcriptional activation of antioxidant defense genes in vascular cells. We evaluate the recent literature that estrogenic and hormetic properties of phytoestrogens are of benefit for the maintenance of vascular function, and conclude that dietary isoflavones can protect against cardiovascular diseases by virtue of their ability to activate signaling pathways leading to increased NO bioavailability and regulation of phase II and antioxidant enzyme expression via the redox sensitive transcription factor Nrf2. In context of epigenetics and the developmental origins of adult disease, it is noteworthy that exposure to dietary soy during fetal development reduces the susceptibility to CVD and obesity in adulthood. Thus, the Nrf2/Keap1 defense pathway provides a key mechanism by which isoflavones can act as hormetic agents to modulate intracellular redox signaling in the vasculature to prolong healthspan and reduce the incidence of age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Richard C M Siow
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | | |
Collapse
|
48
|
Watson CS, Alyea RA, Cunningham KA, Jeng YJ. Estrogens of multiple classes and their role in mental health disease mechanisms. Int J Womens Health 2010; 2:153-66. [PMID: 21072308 PMCID: PMC2971739 DOI: 10.2147/ijwh.s6907] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Indexed: 12/21/2022] Open
Abstract
Gender and sex hormones can influence a variety of mental health states, including mood, cognitive development and function, and vulnerability to neurodegenerative diseases and brain damage. Functions of neuronal cells may be altered by estrogens depending upon the availability of different physiological estrogenic ligands; these ligands and their effects vary with life stages, the genetic or postgenetic regulation of receptor levels in specific tissues, or the intercession of competing nonphysiological ligands (either intentional or unintentional, beneficial to health or not). Here we review evidence for how different estrogens (physiological and environmental/dietary), acting via different estrogen receptor subtypes residing in alternative subcellular locations, influence brain functions and behavior. We also discuss the families of receptors and transporters for monoamine neurotransmitters and how they may interact with the estrogenic signaling pathways.
Collapse
|
49
|
Maternal exposure to daidzein alters behaviour and oestrogen receptor α expression in adult female offspring. Behav Pharmacol 2010; 21:283-91. [DOI: 10.1097/fbp.0b013e32833aec1a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Jeng YJ, Kochukov M, Nauduri D, Kaphalia BS, Watson CS. Subchronic exposure to phytoestrogens alone and in combination with diethylstilbestrol - pituitary tumor induction in Fischer 344 rats. Nutr Metab (Lond) 2010; 7:40. [PMID: 20459739 PMCID: PMC2881934 DOI: 10.1186/1743-7075-7-40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/10/2010] [Indexed: 11/10/2022] Open
Abstract
Background Subchronic administration of the potent pharmaceutical estrogen diethylstilbestrol (DES) to female Fischer 344 (F344) rats induces growth of large, hemorrhagic pituitaries that progress to tumors. Phytoestrogens (dietary plant estrogens) are hypothesized to be potential tumor inhibitors in tissues prone to estrogen-induced cancers, and have been suggested as "safer" estrogen replacements. However, it is unknown if they might themselves establish or exacerbate the growth of estrogen-responsive cancers, such as in pituitary. Methods We implanted rats with silastic capsules containing 5 mg of four different phytoestrogens - either coumestrol, daidzein, genistein, or trans-resveratrol, in the presence or absence of DES. We examined pituitary and other organ weights, blood levels of prolactin (PRL) and growth hormone (GH), body weights, and pituitary tissue histology. Results Blood level measurements of the administered phytoestrogens confirmed successful exposure of the animals to high levels of these compounds. By themselves, no phytoestrogen increased pituitary weights or serum PRL levels after 10 weeks of treatment. DES, genistein, and resveratrol increased GH levels during this time. Phytoestrogens neither changed any wet organ weight (uterus, ovary, cervix, liver, and kidney) after 10 weeks of treatment, nor reversed the adverse effects of DES on pituitaries, GH and PRL levels, or body weight gain after 8 weeks of co-treatment. However, they did reverse the DES-induced weight increase on the ovary and cervix. Morphometric examination of pituitaries revealed that treatment with DES, either alone or in combination with phytoestrogens, caused gross structural changes that included decreases in tissue cell density, increases in vascularity, and multiple hemorrhagic areas. DES, especially in combination with phytoestrogens, caused the development of larger and more heterogeneous nuclear sizes in pituitary. Conclusions High levels of phytoestrogens by themselves did not cause pituitary precancerous growth or change weights of other estrogen-sensitive organs, though when combined with DES, they counteracted the growth effects of DES on reproductive organs. In the pituitary, phytoestrogens did not reverse the effects of DES, but they did increase the sizes and size heterogeneity of nuclei. Therefore, phytoestrogens may oppose some but not all estrogen-responsive tissue abnormalities caused by DES overstimulation, and appear to exacerbate DES-induced nuclear changes.
Collapse
Affiliation(s)
- Yow-Jiun Jeng
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| | | | | | | | | |
Collapse
|