1
|
Gossen S, Gerstner S, Borchers A. The RhoGEF Trio is transported by microtubules and affects microtubule stability in migrating neural crest cells. Cells Dev 2024; 177:203899. [PMID: 38160720 DOI: 10.1016/j.cdev.2023.203899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.
Collapse
Affiliation(s)
- Stefanie Gossen
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Sarah Gerstner
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
2
|
Grădinaru TC, Vlad A, Gilca M. Bitter Phytochemicals as Novel Candidates for Skin Disease Treatment. Curr Issues Mol Biol 2023; 46:299-326. [PMID: 38248322 PMCID: PMC10814078 DOI: 10.3390/cimb46010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Skin diseases represent a global healthcare challenge due to their rising incidence and substantial socio-economic burden. While biological, immunological, and targeted therapies have brought a revolution in improving quality of life and survival rates for certain dermatological conditions, there remains a stringent demand for new remedies. Nature has long served as an inspiration for drug development. Recent studies have identified bitter taste receptors (TAS2Rs) in both skin cell lines and human skin. Additionally, bitter natural compounds have shown promising benefits in addressing skin aging, wound healing, inflammatory skin conditions, and even skin cancer. Thus, TAS2Rs may represent a promising target in all these processes. In this review, we summarize evidence supporting the presence of TAS2Rs in the skin and emphasize their potential as drug targets for addressing skin aging, wound healing, inflammatory skin conditions, and skin carcinogenesis. To our knowledge, this is a pioneering work in connecting information on TAS2Rs expression in skin and skin cells with the impact of bitter phytochemicals on various beneficial effects related to skin disorders.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| |
Collapse
|
3
|
Oh JH, Lee S, Thor M, Rosenstein BS, Tannenbaum A, Kerns S, Deasy JO. Predicting the germline dependence of hematuria risk in prostate cancer radiotherapy patients. Radiother Oncol 2023; 185:109723. [PMID: 37244355 PMCID: PMC10524941 DOI: 10.1016/j.radonc.2023.109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND PURPOSE Late radiation-induced hematuria can develop in prostate cancer patients undergoing radiotherapy and can negatively impact the quality-of-life of survivors. If a genetic component of risk could be modeled, this could potentially be the basis for modifying treatment for high-risk patients. We therefore investigated whether a previously developed machine learning-based modeling method using genome-wide common single nucleotide polymorphisms (SNPs) can stratify patients in terms of the risk of radiation-induced hematuria. MATERIALS AND METHODS We applied a two-step machine learning algorithm that we previously developed for genome-wide association studies called pre-conditioned random forest regression (PRFR). PRFR includes a pre-conditioning step, producing adjusted outcomes, followed by random forest regression modeling. Data was from germline genome-wide SNPs for 668 prostate cancer patients treated with radiotherapy. The cohort was stratified only once, at the outset of the modeling process, into two groups: a training set (2/3 of samples) for modeling and a validation set (1/3 of samples). Post-modeling bioinformatics analysis was conducted to identify biological correlates plausibly associated with the risk of hematuria. RESULTS The PRFR method achieved significantly better predictive performance compared to other alternative methods (all p < 0.05). The odds ratio between the high and low risk groups, each of which consisted of 1/3 of samples in the validation set, was 2.87 (p = 0.029), implying a clinically useful level of discrimination. Bioinformatics analysis identified six key proteins encoded by CTNND2, GSK3B, KCNQ2, NEDD4L, PRKAA1, and TXNL1 genes as well as four statistically significant biological process networks previously shown to be associated with the bladder and urinary tract. CONCLUSION The risk of hematuria is significantly dependent on common genetic variants. The PRFR algorithm resulted in a stratification of prostate cancer patients at differential risk levels of post-radiotherapy hematuria. Bioinformatics analysis identified important biological processes involved in radiation-induced hematuria.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Sangkyu Lee
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Allen Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Sarah Kerns
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
4
|
Donta MS, Srivastava Y, McCrea PD. Delta-Catenin as a Modulator of Rho GTPases in Neurons. Front Cell Neurosci 2022; 16:939143. [PMID: 35860313 PMCID: PMC9289679 DOI: 10.3389/fncel.2022.939143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Small Rho GTPases are molecular switches that are involved in multiple processes including regulation of the actin cytoskeleton. These GTPases are activated (turned on) and inactivated (turned off) through various upstream effector molecules to carry out many cellular functions. One such upstream modulator of small Rho GTPase activity is delta-catenin, which is a protein in the p120-catenin subfamily that is enriched in the central nervous system. Delta-catenin affects small GTPase activity to assist in the developmental formation of dendrites and dendritic spines and to maintain them once they mature. As the dendritic arbor and spine density are crucial for synapse formation and plasticity, delta-catenin's ability to modulate small Rho GTPases is necessary for proper learning and memory. Accordingly, the misregulation of delta-catenin and small Rho GTPases has been implicated in several neurological and non-neurological pathologies. While links between delta-catenin and small Rho GTPases have yet to be studied in many contexts, known associations include some cancers, Alzheimer's disease (AD), Cri-du-chat syndrome, and autism spectrum disorder (ASD). Drawing from established studies and recent discoveries, this review explores how delta-catenin modulates small Rho GTPase activity. Future studies will likely elucidate how PDZ proteins that bind delta-catenin further influence small Rho GTPases, how delta-catenin may affect small GTPase activity at adherens junctions when bound to N-cadherin, mechanisms behind delta-catenin's ability to modulate Rac1 and Cdc42, and delta-catenin's ability to modulate small Rho GTPases in the context of diseases, such as cancer and AD.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
- Program in Neuroscience, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Houston Graduate School of Biomedical Science, Houston, TX, United States
| |
Collapse
|
5
|
Bircher JE, Koleske AJ. Trio family proteins as regulators of cell migration and morphogenesis in development and disease - mechanisms and cellular contexts. J Cell Sci 2021; 134:jcs248393. [PMID: 33568469 PMCID: PMC7888718 DOI: 10.1242/jcs.248393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The well-studied members of the Trio family of proteins are Trio and kalirin in vertebrates, UNC-73 in Caenorhabditis elegans and Trio in Drosophila Trio proteins are key regulators of cell morphogenesis and migration, tissue organization, and secretion and protein trafficking in many biological contexts. Recent discoveries have linked Trio and kalirin to human disease, including neurological disorders and cancer. The genes for Trio family proteins encode a series of large multidomain proteins with up to three catalytic activities and multiple scaffolding and protein-protein interaction domains. As such, Trio family proteins engage a wide array of cell surface receptors, substrates and interaction partners to coordinate changes in cytoskeletal regulatory and protein trafficking pathways. We provide a comprehensive review of the specific mechanisms by which Trio family proteins carry out their functions in cells, highlight the biological and cellular contexts in which they occur, and relate how alterations in these functions contribute to human disease.
Collapse
Affiliation(s)
- Josie E Bircher
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| | - Anthony J Koleske
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| |
Collapse
|
6
|
Mo J, Chen J, Zhang B. Critical roles of FAM134B in ER-phagy and diseases. Cell Death Dis 2020; 11:983. [PMID: 33199694 PMCID: PMC7670425 DOI: 10.1038/s41419-020-03195-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
FAM134B (also called JK-1, RETREG1), a member of the family with sequence similarity 134, was originally discovered as an oncogene in esophageal squamous cell carcinoma. However, its most famous function is that of an ER-phagy-regulating receptor. Over the decades, the powerful biological functions of FAM134B were gradually revealed. Overwhelming evidence indicates that its dysfunction is related to pathophysiological processes such as neuropathy, viral replication, inflammation, and cancer. This review describes the biological functions of FAM134B, focusing on its role in ER-phagy. In addition, we summarize the diseases in which it is involved and review the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Mo
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Jin Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases; Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, P.R. China.
| |
Collapse
|
7
|
Bloxham CJ, Foster SR, Thomas WG. A Bitter Taste in Your Heart. Front Physiol 2020; 11:431. [PMID: 32457649 PMCID: PMC7225360 DOI: 10.3389/fphys.2020.00431] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human genome contains ∼29 bitter taste receptors (T2Rs), which are responsible for detecting thousands of bitter ligands, including toxic and aversive compounds. This sentinel function varies between individuals and is underpinned by naturally occurring T2R polymorphisms, which have also been associated with disease. Recent studies have reported the expression of T2Rs and their downstream signaling components within non-gustatory tissues, including the heart. Though the precise role of T2Rs in the heart remains unclear, evidence points toward a role in cardiac contractility and overall vascular tone. In this review, we summarize the extra-oral expression of T2Rs, focusing on evidence for expression in heart; we speculate on the range of potential ligands that may activate them; we define the possible signaling pathways they activate; and we argue that their discovery in heart predicts an, as yet, unappreciated cardiac physiology.
Collapse
Affiliation(s)
- Conor J Bloxham
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Simon R Foster
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
8
|
Liu C, Zhang L, Cui W, Du J, Li Z, Pang Y, Liu Q, Shang H, Meng L, Li W, Song L, Wang P, Xie Y, Wang Y, Liu Y, Hu J, Zhang W, Li F. Epigenetically upregulated GEFT-derived invasion and metastasis of rhabdomyosarcoma via epithelial mesenchymal transition promoted by the Rac1/Cdc42-PAK signalling pathway. EBioMedicine 2019; 50:122-134. [PMID: 31761617 PMCID: PMC6921210 DOI: 10.1016/j.ebiom.2019.10.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/02/2019] [Accepted: 10/31/2019] [Indexed: 01/12/2023] Open
Abstract
Background Metastasis of rhabdomyosarcoma (RMS) is the primary cause of tumour-related deaths. Previous studies have shown that overexpression of the guanine nucleotide exchange factor T (GEFT) is correlated with a poorer RMS prognosis, but the mechanism remains largely unexplored. Methods We focused on determining the influence of the GEFT-Rho-GTPase signalling pathway and the epithelial–mesenchymal transition (EMT) or mesenchymal–epithelial transition (MET) on RMS progression and metastasis by using RMS cell lines, BALB/c nude mice and cells and molecular biology techniques. Findings GEFT promotes RMS cell viability, migration, and invasion; GEFT also inhibits the apoptosis of RMS cells and accelerates the growth and lung metastasis of RMS by activating the Rac1/Cdc42 pathways. Interestingly, GEFT upregulates the expression levels of N-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 and reduces expression level of E-cadherin. Thus, GEFT influences the expression of markers for EMT and MET in RMS cells via the Rac1/Cdc42-PAK1 pathways. We also found that the level of GEFT gene promoter methylation in RMS is lower than that in normal striated muscle tissue. Significant differences were observed in the level of GEFT gene methylation in different histological subtypes of RMS. Interpretation These findings suggest that GEFT accelerates the tumourigenicity and metastasis of RMS by activating Rac1/Cdc42-PAK signalling pathway-induced EMT; thus, it may serve as a novel therapeutic target. Fund This work was supported by grants from the National Natural Science Foundation of China (81660441, 81460404, and 81160322) and Shihezi University Initiative Research Projects for Senior Fellows (RCZX201447). Funders had no role in the design of the study, data collection, data analysis, interpretation, or the writing of this report.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China.
| | - Liang Zhang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Wenwen Cui
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Juan Du
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Zhenzhen Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Yuwen Pang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Qianqian Liu
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Hao Shang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Lian Meng
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Wanyu Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Lingxie Song
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Ping Wang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Yuwen Xie
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Yuanyuan Wang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Yang Liu
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Jianming Hu
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Wenjie Zhang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi 832002, Xinjiang, PR China; Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
9
|
Shimizu N, Kapoor R, Naniwa S, Sakamaru N, Yamada T, Yamamura YK, Utani KI. Generation and maintenance of acentric stable double minutes from chromosome arms in inter-species hybrid cells. BMC Mol Cell Biol 2019; 20:2. [PMID: 31041889 PMCID: PMC6446505 DOI: 10.1186/s12860-019-0186-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extrachromosomal acentric double minutes (DMs) contribute to human malignancy by carrying amplified oncogenes. Recent cancer genomics revealed that the pulverization of defined chromosome arms (chromothripsis) may generate DMs, however, nobody had actually generated DMs from chromosome arm in culture. Human chromosomes are lost in human-rodent hybrid cells. RESULTS We found that human acentric DMs with amplified c-myc were stable in human-rodent hybrid cells, although the degree of stability depended on the specific rodent cell type. Based on this finding, stable human-rodent hybrids were efficiently generated by tagging human DMs with a plasmid with drug-resistance gene. After cell fusion, human chromosomes were specifically pulverised and lost. Consistent with chromothripsis, pulverization of human chromosome arms was accompanied by the incorporation into micronuclei. Such micronucleus showed different replication timing from the main nucleus. Surprisingly, we found that the hybrid cells retained not only the original DMs, but also new DMs without plasmid-tag and c-myc, but with human Alu. These DMs were devoid of telomeres and centromeres, and were stable in culture for more than 3 months. Microarray analysis showed that the new DMs were generated from several human chromosomal regions containing genes advantageous for cellular growth. Such regions were completely different from the original DMs. CONCLUSIONS The inter-species hybrid mimics the chromothripsis in culture. This is the first report that experimentally demonstrates the generation of multiple stable acentric DMs from the chromosome arm.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan.
| | - Rita Kapoor
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Shuhei Naniwa
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Naoto Sakamaru
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Taku Yamada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - You-Ki Yamamura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan
| | - Koh-Ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, 739-8521, Japan.,Present address; Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
10
|
Giulietti M, Occhipinti G, Righetti A, Bracci M, Conti A, Ruzzo A, Cerigioni E, Cacciamani T, Principato G, Piva F. Emerging Biomarkers in Bladder Cancer Identified by Network Analysis of Transcriptomic Data. Front Oncol 2018; 8:450. [PMID: 30370253 PMCID: PMC6194189 DOI: 10.3389/fonc.2018.00450] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/25/2018] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer is a very common malignancy. Although new treatment strategies have been developed, the identification of new therapeutic targets and reliable diagnostic/prognostic biomarkers for bladder cancer remains a priority. Generally, they are found among differentially expressed genes between patients and healthy subjects or among patients with different tumor stages. However, the classical approach includes processing these data taking into consideration only the expression of each single gene regardless of the expression of other genes. These complex gene interaction networks can be revealed by a recently developed systems biology approach called Weighted Gene Co-expression Network Analysis (WGCNA). It takes into account the expression of all genes assessed in an experiment in order to reveal the clusters of co-expressed genes (modules) that, very probably, are also co-regulated. If some genes are co-expressed in controls but not in pathological samples, it can be hypothesized that a regulatory mechanism was altered and that it could be the cause or the effect of the disease. Therefore, genes within these modules could play a role in cancer and thus be considered as potential therapeutic targets or diagnostic/prognostic biomarkers. Here, we have reviewed all the studies where WGCNA has been applied to gene expression data from bladder cancer patients. We have shown the importance of this new approach in identifying candidate biomarkers and therapeutic targets. They include both genes and miRNAs and some of them have already been identified in the literature to have a role in bladder cancer initiation, progression, metastasis, and patient survival.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giulia Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandra Righetti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Conti
- Department of Urology, Bressanone/Brixen Hospital, Bressanone, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Fano, Italy
| | - Elisabetta Cerigioni
- Unit of Pediatric and Specialistic Surgery, United Hospitals, "G.Salesi", Ancona, Italy
| | - Tiziana Cacciamani
- Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
| | - Giovanni Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
11
|
Mandahl N, Magnusson L, Nilsson J, Viklund B, Arbajian E, von Steyern FV, Isaksson A, Mertens F. Scattered genomic amplification in dedifferentiated liposarcoma. Mol Cytogenet 2017; 10:25. [PMID: 28652867 PMCID: PMC5483303 DOI: 10.1186/s13039-017-0325-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
Background Atypical lipomatous tumor (ALT), well differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) are cytogenetically characterized by near-diploid karyotypes with no or few other aberrations than supernumerary ring or giant marker chromosomes, although DDLS tend to have somewhat more complex rearrangements. In contrast, pleomorphic liposarcomas (PLS) have highly aberrant and heterogeneous karyotypes. The ring and giant marker chromosomes contain discontinuous amplicons, in particular including multiple copies of the target genes CDK4, HMGA2 and MDM2 from 12q, but often also sequences from other chromosomes. Results The present study presents a DDLS with an atypical hypertriploid karyotype without any ring or giant marker chromosomes. SNP array analyses revealed amplification of almost the entire 5p and discontinuous amplicons of 12q including the classical target genes, in particular CDK4. In addition, amplicons from 1q, 3q, 7p, 9p, 11q and 20q, covering from 2 to 14 Mb, were present. FISH analyses showed that sequences from 5p and 12q were scattered, separately or together, over more than 10 chromosomes of varying size. At RNA sequencing, significantly elevated expression, compared to myxoid liposarcomas, was seen for TRIO and AMACR in 5p and of CDK4, HMGA2 and MDM2 in 12q. Conclusions The observed pattern of scattered amplification does not show the characteristics of chromothripsis, but is novel and differs from the well known cytogenetic manifestations of amplification, i.e., double minutes, homogeneously staining regions and ring chromosomes. Possible explanations for this unusual distribution of amplified sequences might be the mechanism of alternative lengthening of telomeres that is frequently active in DDLS and events associated with telomere crisis. Electronic supplementary material The online version of this article (doi:10.1186/s13039-017-0325-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nils Mandahl
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Linda Magnusson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Jenny Nilsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Björn Viklund
- Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Elsa Arbajian
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Fredrik Vult von Steyern
- Department of Orthopedics, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - Anders Isaksson
- Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
12
|
Lu Q, Aguilar BJ, Li M, Jiang Y, Chen YH. Genetic alterations of δ-catenin/NPRAP/Neurojungin (CTNND2): functional implications in complex human diseases. Hum Genet 2016; 135:1107-16. [PMID: 27380241 PMCID: PMC5021578 DOI: 10.1007/s00439-016-1705-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Some genes involved in complex human diseases are particularly vulnerable to genetic variations such as single nucleotide polymorphism, copy number variations, and mutations. For example, Ras mutations account for over 30 % of all human cancers. Additionally, there are some genes that can display different variations with functional impact in different diseases that are unrelated. One such gene stands out: δ-catenin/NPRAP/Neurojungin with gene designation as CTNND2 on chromosome 5p15.2. Recent advances in genome wide association as well as molecular biology approaches have uncovered striking involvement of δ-catenin gene variations linked to complex human disorders. These disorders include cancer, bipolar disorder, schizophrenia, autism, Cri-du-chat syndrome, myopia, cortical cataract-linked Alzheimer's disease, and infectious diseases. This list has rapidly grown longer in recent years, underscoring the pivotal roles of δ-catenin in critical human diseases. δ-Catenin is an adhesive junction-associated protein in the delta subfamily of the β-catenin superfamily. δ-Catenin functions in Wnt signaling to regulate gene expression and modulate Rho GTPases of the Ras superfamily in cytoskeletal reorganization. δ-Catenin likely lies where Wnt signaling meets Rho GTPases and is a unique and vulnerable common target for mutagenesis in different human diseases.
Collapse
Affiliation(s)
- Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China.
| | - Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Mingchuan Li
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yongguang Jiang
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Pediatrics, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| |
Collapse
|
13
|
SHI XIUMIN, XU JIANTING, WANG JIHAN, CUI MEIZI, GAO YUSHUN, NIU HAITAO, JIN HAOFAN. Expression analysis of apolipoprotein E and its associated genes in gastric cancer. Oncol Lett 2015; 10:1309-1314. [PMID: 26622669 PMCID: PMC4533697 DOI: 10.3892/ol.2015.3447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/22/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a common type of cancer worldwide, and has a poor prognosis, in part due to the low rates of early diagnosis and the limited treatment methods available. Apolipoprotein E (ApoE) is involved in exogenous cholesterol transport and may be important in enabling tumor cells to fulfill their high cholesterol requirements. A number of reports have indicated that ApoE affects the development and prognosis of gastric cancer. Therefore, the aim of the present study was to investigate the genes and transcription factors that interact with ApoE during the development of gastric cancer. Using gene expression profiling, the BioGRID database and the transcriptional regulatory element database, gene expression and regulatory networks in gastric cancer tissues and adjacent normal tissues were analyzed. The data demonstrated that eight genes associated with ApoE were differentially expressed, with six of these upregulated and two downregulated. Functionally, these genes were involved in the JAK-STAT cascade, acute-phase response, acute inflammatory response, and the steroid hormone response. Among these ApoE-associated genes, expression of the signal transducer and activator of transcription 2 (STAT2) and STAT3 transcription factors was upregulated. To the best of our knowledge, this is the first study to demonstrate the network of ApoE-related genes and transcription factors in gastric cancer. Additional studies are required in order to confirm these data and to translate the results into the identification of clinical biomarkers and novel treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- XIUMIN SHI
- Cancer Centre, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - JIANTING XU
- Cancer Centre, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - JIHAN WANG
- Department of Pathogenobiology, Basic Medical College of Jilin University, Changchun, Jilin 130021, P.R. China
| | - MEIZI CUI
- Cancer Centre, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - YUSHUN GAO
- Department of Thoracic Surgical Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, P.R. China
| | - HAITAO NIU
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
- Dr Haitao Niu, Department of Urology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, P.R. China, E-mail:
| | - HAOFAN JIN
- Cancer Centre, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Correspondence to: Dr Haofan Jin, Cancer Centre, First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
14
|
Wang B, Fang J, Qu L, Cao Z, Zhou J, Deng B. Upregulated TRIO expression correlates with a malignant phenotype in human hepatocellular carcinoma. Tumour Biol 2015; 36:6901-8. [PMID: 25851347 DOI: 10.1007/s13277-015-3377-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
Triple functional domain protein (TRIO) is an evolutionarily conserved Dbl family guanine nucleotide exchange factors (GEFs) involved in cell proliferation and progression of some types of cancer. However, the expression and prognostic role of TRIO in hepatocellular carcinoma (HCC) have not yet been determined. Therefore, we attempted to determine the impact of TRIO on the clinical outcome of HCC patients to further identify its role in HCC. TRIO expression was examined using quantitative real-time PCR (qRT-PCR) and Western blotting in nonmalignant liver cells, HCC cells, and 93 paired of HCC tissues and adjacent noncancerous tissues. Statistical analyses were used to assess associations between TRIO expression and clinicopathological and prognostic factors. Small interfering RNA (siRNA)-mediated TRIO inhibition was performed in Hep3B and Huh7 cells to elucidate its roles in HCC. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to measure cell proliferation, and apoptosis assay was analyzed by flow cytometry, respectively. Adhesion and transwell invasion assay were performed to determine the invasion ability of HCC cells in vitro. TRIO was significantly upregulated in the HCC cell lines and tissues compared with the nonmalignant liver cells and adjacent noncancerous liver tissues. In addition, high TRIO expression level associated with lymph node metastasis (P = 0.0183), clinical tumor node metastasis (TNM) stage (P = 0.0.0106), and decrease in overall survival (OS) (P = 0.017). Knockdown of TRIO on Hep3B and Huh7 cell lines suppressed cell proliferation and migration and induced apoptosis. Furthermore, silencing TRIO expression led to decrease of ras-related C3 botulinum toxin substrate 1 (Rac1), p-P38, B cell lymphoma 2 (BCL-2), and matrix metallopeptidase 9 (MMP-9). Our results demonstrated that TRIO protein expression is elevated and associated with a worse over survival rates in patients with HCC. Aberrant expression of TRIO might play an important role in HCC through promoting cell proliferation and invasion, and TRIO may be a novel therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Bin Wang
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.
| | - JiaQing Fang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Lei Qu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.
| | - Zhongwei Cao
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.
| | - JianGuo Zhou
- Department of General Surgery, Shanghai Sijing Hospital, 389 Sitong Road, Shanghai, 201601, China.
| | - Biao Deng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
15
|
Nopparat J, Zhang J, Lu JP, Chen YH, Zheng D, Neufer PD, Fan JM, Hong H, Boykin C, Lu Q. δ-Catenin, a Wnt/β-catenin modulator, reveals inducible mutagenesis promoting cancer cell survival adaptation and metabolic reprogramming. Oncogene 2015; 34:1542-52. [PMID: 24727894 PMCID: PMC4197123 DOI: 10.1038/onc.2014.89] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/16/2014] [Accepted: 02/17/2014] [Indexed: 02/06/2023]
Abstract
Mutations of Wnt/β-catenin signaling pathway has essential roles in development and cancer. Although β-catenin and adenomatous polyposis coli (APC) gene mutations are well established and are known to drive tumorigenesis, discoveries of mutations in other components of the pathway lagged, which hinders the understanding of cancer mechanisms. Here we report that δ-catenin (gene designation: CTNND2), a primarily neural member of the β-catenin superfamily that promotes canonical Wnt/β-catenin/LEF-1-mediated transcription, displays exonic mutations in human prostate cancer and promotes cancer cell survival adaptation and metabolic reprogramming. When overexpressed in cells derived from prostate tumor xenografts, δ-catenin gene invariably gives rise to mutations, leading to sequence disruptions predicting functional alterations. Ectopic δ-catenin gene integrating into host chromosomes is locus nonselective. δ-Catenin mutations promote tumor development in mouse prostate with probasin promoter (ARR2PB)-driven, prostate-specific expression of Myc oncogene, whereas mutant cells empower survival advantage upon overgrowth and glucose deprivation. Reprogramming energy utilization accompanies the downregulation of glucose transporter-1 and poly (ADP-ribose) polymerase cleavage while preserving tumor type 2 pyruvate kinase expression. δ-Catenin mutations increase β-catenin translocation to the nucleus and hypoxia-inducible factor 1α (HIF-1α) expression. Therefore, introducing δ-catenin mutations is an important milestone in prostate cancer metabolic adaptation by modulating β-catenin and HIF-1α signaling under glucose shortage to amplify its tumor-promoting potential.
Collapse
Affiliation(s)
- J Nopparat
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J Zhang
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J-P Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Y-H Chen
- 1] Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [2] Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [3] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - D Zheng
- 1] Department of Kinesiology, East Carolina University, Greenville, NC, USA [2] East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - P D Neufer
- 1] Department of Kinesiology, East Carolina University, Greenville, NC, USA [2] East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA [3] Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J M Fan
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - H Hong
- Department of Pathology and Laboratory Medicine, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - C Boykin
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Q Lu
- 1] Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [2] Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [3] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Son K, Smith TC, Luna EJ. Supervillin binds the Rac/Rho-GEF Trio and increases Trio-mediated Rac1 activation. Cytoskeleton (Hoboken) 2015; 72:47-64. [PMID: 25655724 DOI: 10.1002/cm.21210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/21/2015] [Indexed: 01/06/2023]
Abstract
We investigated cross-talk between the membrane-associated, myosin II-regulatory protein supervillin and the actin-regulatory small GTPases Rac1, RhoA, and Cdc42. Supervillin knockdown reduced Rac1-GTP loading, but not the GTP loading of RhoA or Cdc42, in HeLa cells with normal levels of the Rac1-activating protein Trio. No reduction in Rac1-GTP loading was observed when supervillin levels were reduced in Trio-depleted cells. Conversely, overexpression of supervillin isoform 1 (SV1) or, especially, isoform 4 (SV4) increased Rac1 activation. Inhibition of the Trio-mediated Rac1 guanine nucleotide exchange activity with ITX3 partially blocked the SV4-mediated increase in Rac1-GTP. Both SV4 and SV1 co-localized with Trio at or near the plasma membrane in ruffles and cell surface projections. Two sequences within supervillin bound directly to Trio spectrin repeats 4-7: SV1-171, which contains N-terminal residues found in both SV1 and SV4 and the SV4-specific differentially spliced coding exons 3, 4, and 5 within SV4 (SV4-E345; SV4 amino acids 276-669). In addition, SV4-E345 interacted with the homologous sequence in rat kalirin (repeats 4-7, amino acids 531-1101). Overexpressed SV1-174 and SV4-E345 affected Rac1-GTP loading, but only in cells with endogenous levels of Trio. Trio residues 771-1057, which contain both supervillin-interaction sites, exerted a dominant-negative effect on cell spreading. Supervillin and Trio knockdowns, separately or together, inhibited cell spreading, suggesting that supervillin regulates the Rac1 guanine nucleotide exchange activity of Trio, and potentially also kalirin, during cell spreading and lamellipodia extension.
Collapse
Affiliation(s)
- Kyonghee Son
- Department of Cell and Developmental Biology, Program in Cell & Developmental Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | |
Collapse
|
17
|
Zhang JY, Bai CY, Bai YQ, Zhang JY, Wu ZY, Wang SH, Xu XE, Wu JY, Zhu Y, Rui Y, Li EM, Xu LY. The expression of δ-catenin in esophageal squamous cell carcinoma and its correlations with prognosis of patients. Hum Pathol 2014; 45:2014-22. [PMID: 25090917 DOI: 10.1016/j.humpath.2014.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/25/2014] [Accepted: 05/30/2014] [Indexed: 02/05/2023]
Abstract
As a member of the catenin family, expression of δ-catenin and its clinical implication in numerous tumors remain unclear. In the present study, expression of δ-catenin in esophageal squamous cell carcinoma (ESCC) and its correlations with patient prognosis were explored. We detected the expression of δ-catenin, by immunohistochemistry, in ESCC tissues from 299 cases and analyzed the correlation between δ-catenin expression and patient clinicopathological features. Compared with a lack of expression in adjacent normal esophageal epithelium (0%, 0/47), the frequency of δ-catenin protein was increased in ESCC tissues to 41.5% (124/299, P < .001) and expression correlated with TNM stage and lymph node metastasis (P = .025 and .019, respectively). Furthermore, Kaplan-Meier survival analysis revealed that patients with high δ-catenin expression had shorter survival than patients with low expression (P = .010), and multivariate Cox analysis revealed that high δ-catenin expression was also an independent prognostic factor (P = .001). In transwell assays, migration of ESCC cells was enhanced by δ-catenin overexpression, whereas proliferation of ESCC cells was unchanged. Together, our results suggest that δ-catenin acts as an oncoprotein when overexpressed in ESCC, and its expression is associated with poor prognosis and malignant cell behavior.
Collapse
Affiliation(s)
- Jun-Yi Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Pathology, Medical College of Chifeng University, Chifeng 024000, PR China
| | - Chun-Ying Bai
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Research Centre of Molecular Medicine, Medical College of Chifeng University, Chifeng 024000, PR China
| | - Yu-Qin Bai
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Pathology, Medical College of Chifeng University, Chifeng 024000, PR China
| | - Jing-Yi Zhang
- Department of Pathology, Medical College of Chifeng University, Chifeng 024000, PR China
| | - Zhi-Yong Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, Guangdong, PR China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jian-Yi Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Ying Zhu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yun Rui
- Department of Physiology, Medical College of Chifeng University, Chifeng 024000, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
18
|
Barrio-Real L, Benedetti LG, Engel N, Tu Y, Cho S, Sukumar S, Kazanietz MG. Subtype-specific overexpression of the Rac-GEF P-REX1 in breast cancer is associated with promoter hypomethylation. Breast Cancer Res 2014; 16:441. [PMID: 25248717 PMCID: PMC4303123 DOI: 10.1186/s13058-014-0441-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/01/2014] [Indexed: 01/30/2023] Open
Abstract
Introduction The Rac-GEF P-REX1 is a key mediator of ErbB signaling in breast cancer recently implicated in mammary tumorigenesis and metastatic dissemination. Although P-REX1 is essentially undetectable in normal human mammary epithelial tissue, this Rac-GEF is markedly upregulated in human breast carcinomas, particularly of the luminal subtype. The mechanisms underlying P-REX1 upregulation in breast cancer are unknown. Toward the goal of dissecting the mechanistic basis of P-REX1 overexpression in breast cancer, in this study we focused on the analysis of methylation of the PREX1 gene promoter. Methods To determine the methylation status of the PREX1 promoter region, we used bisulfite genomic sequencing and pyrosequencing approaches. Re-expression studies in cell lines were carried out by treatment of breast cancer cells with the demethylating agent 5-aza-2′-deoxycitidine. PREX1 gene methylation in different human breast cancer subtypes was analyzed from the TCGA database. Results We found that the human PREX1 gene promoter has a CpG island located between -1.2 kb and +1.4 kb, and that DNA methylation in this region inversely correlates with P-REX1 expression in human breast cancer cell lines. A comprehensive analysis of human breast cancer cell lines and tumors revealed significant hypomethylation of the PREX1 promoter in ER-positive, luminal subtype, whereas hypermethylation occurs in basal-like breast cancer. Treatment of normal MCF-10A or basal-like cancer cells, MDA-MB-231 with the demethylating agent 5-aza-2′-deoxycitidine in combination with the histone deacetylase inhibitor trichostatin A restores P-REX1 levels to those observed in luminal breast cancer cell lines, suggesting that aberrant expression of P-REX1 in luminal breast cancer is a consequence of PREX1 promoter demethylation. Unlike PREX1, the pro-metastatic Rho/Rac-GEF, VAV3, is not regulated by methylation. Notably, PREX1 gene promoter hypomethylation is a prognostic marker of poor patient survival. Conclusions Our study identified for the first time gene promoter hypomethylation as a distinctive subtype-specific mechanism for controlling the expression of a key regulator of Rac-mediated motility and metastasis in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0441-7) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Vincent-Chong VK, Karen-Ng LP, Abdul Rahman ZA, Yang YH, Anwar A, Zakaria Z, Jayaprasad Pradeep P, Kallarakkal TG, Kiong Tay K, Thomas Abraham M, Mazlipah Ismail S, Zain RB. Distinct pattern of chromosomal alterations and pathways in tongue and cheek squamous cell carcinoma. Head Neck 2014; 36:1268-1278. [PMID: 31615169 DOI: 10.1002/hed.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 05/10/2013] [Accepted: 08/01/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the cause of behavioral difference between tongue and cheek squamous cell carcinomas (SCCs) by verifying the copy number alterations (CNAs). METHODS Array comparative genomic hybridization (aCGH) was used to profile unique deletions and amplifications that are involved with tongue and cheek SCC, respectively. This was followed by pathway analysis relating to CNA genes from both sites. RESULTS The most frequently amplified regions in tongue SCC were 4p16.3, 11q13.4, and 13q34; whereas the most frequently deleted region was 19p12. For cheek SCC, the most frequently amplified region was identified on chromosome 9p24.1-9p23; whereas the most common deleted region was located on chromosome 8p23.1. Further analysis revealed that the most significant unique pathway related to tongue and cheek SCCs was the cytoskeleton remodeling and immune response effect on the macrophage differentiation pathway. CONCLUSION This study has showed the different genetic profiles and biological pathways between tongue and cheek SCCs. © 2013 Wiley Periodicals, Inc. Head Neck 36: 1268-1278, 2014.
Collapse
Affiliation(s)
- Vui King Vincent-Chong
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Peng Karen-Ng
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi-Hsin Yang
- Department of Dental Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung
| | - Arif Anwar
- Sengenics Sdn Bhd, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Zubaidah Zakaria
- Department of Haematology, Institute for Medical Research, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Padmaja Jayaprasad Pradeep
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Thomas George Kallarakkal
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Keng Kiong Tay
- Oral Health Division, Ministry of Health, Putrajaya, Malaysia
| | | | - Siti Mazlipah Ismail
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Abstract
Small Rho-GTPases are enzymes that are bound to GDP or GTP, which determines their inactive or active state, respectively. The exchange of GDP for GTP is catalyzed by so-called Rho-guanine nucleotide exchange factors (GEFs). Rho-GEFs are characterized by a Dbl-homology (DH) and adjacent Pleckstrin-homology (PH) domain that serves as enzymatic unit for the GDP/GTP exchange. Rho-GEFs show different GTPase specificities, meaning that a particular GEF can activate either multiple GTPases or only one specific GTPase. We recently reported that the Rho-GEF Trio, known to be able to exchange GTP on Rac1, RhoG and RhoA, regulates lamellipodia formation to mediate cell spreading and migration in a Rac1-dependent manner. In this commentary, we review the current knowledge of Trio in several aspects of cell biology.
Collapse
Affiliation(s)
- Jos van Rijssel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
21
|
Barrio-Real L, Kazanietz MG. Rho GEFs and cancer: linking gene expression and metastatic dissemination. Sci Signal 2012; 5:pe43. [PMID: 23033535 DOI: 10.1126/scisignal.2003543] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guanine nucleotide exchange factors (GEFs) that promote GTP loading onto the guanosine triphosphatases (GTPases) Rho and Rac are prominent players in cancer progression. Recent studies have highlighted the relevance of several GEFs, including the phosphatidylinositol 3,4,5-trisphosphate Rac exchangers P-Rex1 and P-Rex2a, in breast tumorigenesis. New evidence suggests that the exchange factors Vav2 and Vav3 play synergistic roles in breast cancer by sustaining tumor growth, neoangiogenesis, and metastasis. The identification of a Vav-regulated transcriptome and Vav-related genes that control specific steps of metastatic dissemination of breast cancer cells to the lungs highlights the complexities of the signaling networks regulated by Rho/Rac GTPases and may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Barrio-Real
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
22
|
Ying J, Shan L, Li J, Zhong L, Xue L, Zhao H, Li L, Langford C, Guo L, Qiu T, Lu N, Tao Q. Genome-wide screening for genetic alterations in esophageal cancer by aCGH identifies 11q13 amplification oncogenes associated with nodal metastasis. PLoS One 2012; 7:e39797. [PMID: 22761904 PMCID: PMC3382571 DOI: 10.1371/journal.pone.0039797] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 05/30/2012] [Indexed: 01/25/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is highly prevalent in China and other Asian countries, as a major cause of cancer-related mortality. ESCC displays complex chromosomal abnormalities, including multiple structural and numerical aberrations. Chromosomal abnormalities, such as recurrent amplifications and homozygous deletions, directly contribute to tumorigenesis through altering the expression of key oncogenes and tumor suppressor genes. Methodology/Principle Findings To understand the role of genetic alterations in ESCC pathogenesis and identify critical amplification/deletion targets, we performed genome-wide 1-Mb array comparative genomic hybridization (aCGH) analysis for 10 commonly used ESCC cell lines. Recurrent chromosomal gains were frequently detected on 3q26-27, 5p15-14, 8p12, 8p22-24, 11q13, 13q21-31, 18p11 and 20q11-13, with frequent losses also found on 8p23-22, 11q22, 14q32 and 18q11-23. Gain of 11q13.3-13.4 was the most frequent alteration in ESCC. Within this region, CCND1 oncogene was identified with high level of amplification and overexpression in ESCC, while FGF19 and SHANK2 was also remarkably over-expressed. Moreover, a high concordance (91.5%) of gene amplification and protein overexpression of CCND1 was observed in primary ESCC tumors. CCND1 amplification/overexpression was also significantly correlated with the lymph node metastasis of ESCC. Conclusion These findings suggest that genomic gain of 11q13 is the major mechanism contributing to the amplification. Novel oncogenes identified within the 11q13 amplicon including FGF19 and SHANK2 may play important roles in ESCC tumorigenesis.
Collapse
Affiliation(s)
- Jianming Ying
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- * E-mail: (QT); (NL); (JY)
| | - Ling Shan
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jisheng Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, Jinan, China
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Liyan Xue
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhao
- Department of Abdominal Surgical Oncology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Cordelia Langford
- Microarray Facility, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Lei Guo
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Tian Qiu
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Lu
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- * E-mail: (QT); (NL); (JY)
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- * E-mail: (QT); (NL); (JY)
| |
Collapse
|
23
|
Expression and biological role of δ-catenin in human ovarian cancer. J Cancer Res Clin Oncol 2012; 138:1769-76. [DOI: 10.1007/s00432-012-1257-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/23/2012] [Indexed: 11/25/2022]
|
24
|
Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines. PLoS One 2012; 7:e32667. [PMID: 22412903 PMCID: PMC3296745 DOI: 10.1371/journal.pone.0032667] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022] Open
Abstract
Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments.
Collapse
|
25
|
Microarray-based copy number analysis of neurofibromatosis type-1 (NF1)-associated malignant peripheral nerve sheath tumors reveals a role for Rho-GTPase pathway genes in NF1 tumorigenesis. Hum Mutat 2012; 33:763-76. [DOI: 10.1002/humu.22044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/18/2012] [Indexed: 01/22/2023]
|
26
|
Identification of a 7-gene signature that predicts relapse and survival for early stage patients with cervical carcinoma. Med Oncol 2012; 29:2911-8. [DOI: 10.1007/s12032-012-0166-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 11/27/2022]
|
27
|
Ligeti E, Welti S, Scheffzek K. Inhibition and Termination of Physiological Responses by GTPase Activating Proteins. Physiol Rev 2012; 92:237-72. [DOI: 10.1152/physrev.00045.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Physiological processes are strictly organized in space and time. However, in cell physiology research, more attention is given to the question of space rather than to time. To function as a signal, environmental changes must be restricted in time; they need not only be initiated but also terminated. In this review, we concentrate on the role of one specific protein family involved in biological signal termination. GTPase activating proteins (GAPs) accelerate the endogenously low GTP hydrolysis rate of monomeric guanine nucleotide-binding proteins (GNBPs), limiting thereby their prevalence in the active, GTP-bound form. We discuss cases where defective or excessive GAP activity of specific proteins causes significant alteration in the function of the nervous, endocrine, and hemopoietic systems, or contributes to development of infections and tumors. Biochemical and genetic data as well as observations from human pathology support the notion that GAPs represent vital elements in the spatiotemporal fine tuning of physiological processes.
Collapse
Affiliation(s)
- Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Stefan Welti
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Scheffzek
- Department of Physiology, Semmelweis University, Budapest, Hungary; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; and Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
28
|
Wang M, Dong Q, Zhang D, Wang Y. Expression of delta-catenin is associated with progression of human astrocytoma. BMC Cancer 2011; 11:514. [PMID: 22151302 PMCID: PMC3262777 DOI: 10.1186/1471-2407-11-514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 12/12/2011] [Indexed: 11/11/2022] Open
Abstract
Background δ-Catenin (CTNND2), which encodes a scaffold protein in humans, has been found in a few malignancies. However, the expression pattern and contribution of δ-catenin to astrocytoma progression are unclear. Methods We investigated δ-catenin expression in human astrocytoma samples and its function in astrocytoma cell lines using immunohistochemistry, siRNA knockdown, transfection, MTT, transwell migration and Rac1 pulldown techniques. Results δ-Catenin protein expression was detected in cytoplasm of astrocytoma cells by immunohistochemistry. Analysis showed that grade I astrocytoma (0%, 0/11) and glial cells from normal brain tissue exhibited negative staining. δ-Catenin expression was significantly higher in grade III-IV (35%, 29/84) compared to grade II astrocytoma cells (18%, 11/61); p < 0.01). In addition, CTNND2 overexpression promoted proliferation, invasion and Rac1 activity of U251 astrocytoma cells. Treatment of δ-catenin-transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. δ-Catenin knockdown in U87 glioblastoma cell decreased cell proliferation, invasion and Rac1 activity. Conclusion The results suggest that δ-catenin expression is associated with the malignant progression of astrocytoma and promotes astrocytoma cell invasion through upregulation of Rac1 activity. δ-Catenin expression levels may serve as a useful marker of the biological behavior of astrocytoma cells.
Collapse
Affiliation(s)
- MingHao Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.
| | | | | | | |
Collapse
|
29
|
Medeiros M, Zheng X, Novak P, Wnek SM, Chyan V, Escudero-Lourdes C, Gandolfi AJ. Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid. Toxicology 2011; 291:102-12. [PMID: 22108045 DOI: 10.1016/j.tox.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/13/2011] [Accepted: 11/08/2011] [Indexed: 02/06/2023]
Abstract
Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III)] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa) at concentrations 20-fold less than arsenite. MMA(III) was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A microarray analysis was performed to assess the transcriptional changes in UROtsa during the critical window of chronic 50nM MMA(III) exposure that leads to transformation at 3 months of exposure. The analysis revealed only minor changes in gene expression at 1 and 2 months of exposure, contrasting with substantial changes observed at 3 months of exposure. The gene expression changes at 3 months were analyzed showing distinct alterations in biological processes and pathways such as a response to oxidative stress, enhanced cell proliferation, anti-apoptosis, MAPK signaling, as well as inflammation. Twelve genes selected as markers of these particular biological processes were used to validate the microarray and these genes showed a time-dependent changes at 1 and 2 months of exposure, with the most substantial changes occurring at 3 months of exposure. These results indicate that there is a strong association between the acquired phenotypic changes that occur with chronic MMA(III) exposure and the observed gene expression patterns that are indicative of a malignant transformation. Although the substantial changes that occur at 3 months of exposure may be a consequence of transformation, there are common occurrences of altered biological processes between the first 2 months of exposure and the third, which may be pivotal in driving transformation.
Collapse
Affiliation(s)
- Matthew Medeiros
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States.
| | | | | | | | | | | | | |
Collapse
|
30
|
Lam AKY, Gopalan V, Nassiri MR, Kasim K, Dissanayake J, Tang JCO, Smith RA. Altered JS-2 expression in colorectal cancers and its clinical pathological relevance. Mol Oncol 2011; 5:475-81. [PMID: 21802380 DOI: 10.1016/j.molonc.2011.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 01/05/2023] Open
Abstract
JS-2 is a novel gene located at 5p15.2 and originally detected in primary oesophageal cancer. There is no study on the role of JS-2 in colorectal cancer. The aim of this study is to determine the gene copy number and expression of JS-2 in a large cohort of patients with colorectal tumours and correlate these to the clinicopathological features of the cancer patients. We evaluated the DNA copy number and mRNA expression of JS-2 in 176 colorectal tissues (116 adenocarcinomas, 30 adenomas and 30 non-neoplastic tissues) using real-time polymerase chain reaction. JS-2 expression was also evaluated in two colorectal cancer cell lines and a benign colorectal cell line. JS-2 amplification was noted in 35% of the colorectal adenocarcinomas. Significant differences in relative expression levels for JS-2 mRNA between different colorectal tissues were noted (p = 0.05). Distal colorectal adenocarcinoma had significantly higher copy number than proximal adenocarcinoma (p = 0.005). The relative expression level of JS-2 was different between colonic and rectal adenocarcinoma (p = 0.007). Mucinous adenocarcinoma showed higher JS-2 expression than non-mucinous adenocarcinoma (p = 0.02). Early T-stage cancers appear to have higher JS-2 copy number and lower expression of JS-2 mRNA than later stage cancers (p = 0.001 and 0.03 respectively). Colorectal cancer cell lines showed lower expression of JS-2 than the benign colorectal cell line. JS-2 copy number change and expression were shown for the first time to be altered in the carcinogenesis of colorectal cancer. In addition, genetic alteration of JS-2 was found to be related to location, pathological subtypes and staging of colorectal cancer.
Collapse
Affiliation(s)
- Alfred King-Yin Lam
- Department of Pathology, Griffith Medical School, Gold Coast Campus, Gold Coast QLD 4222, Australia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Muralidhar B, Winder D, Murray M, Palmer R, Barbosa-Morais N, Saini H, Roberts I, Pett M, Coleman N. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol 2011; 224:496-507. [PMID: 21590768 DOI: 10.1002/path.2898] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/03/2011] [Accepted: 03/08/2011] [Indexed: 12/27/2022]
Abstract
Although gain of chromosome 5p is one of the most frequent DNA copy-number imbalances in cervical squamous cell carcinoma (SCC), the genes that drive its selection remain poorly understood. In a previous cross-sectional clinical study, we showed that the microRNA processor Drosha (located on chromosome 5p) demonstrates frequent copy-number gain and overexpression in cervical SCC, associated with altered microRNA profiles. Here, we have conducted gene depletion/overexpression experiments to demonstrate the functional significance of up-regulated Drosha in cervical SCC cells. Drosha depletion by RNA interference (RNAi) produced significant, specific reductions in cell motility/invasiveness in vitro, with a silent RNAi-resistant Drosha mutation providing phenotype rescue. Unsupervised hierarchical clustering following global profiling of 319 microRNAs in 18 cervical SCC cell line specimens generated two groups according to Drosha expression levels. Altering Drosha levels in individual SCC lines changed the group into which the cells clustered, with gene depletion effects being rescued by the RNAi-resistant mutation. Forty-five microRNAs showed significant differential expression between the groups, including four of 14 that were differentially expressed in association with Drosha levels in clinical samples. miR-31 up-regulation in Drosha-overexpressing samples/cell lines was the highest-ranked change (by adjusted p value) in both analyses, an observation validated by northern blotting. These functional data support the role of Drosha as an oncogene in cervical SCC, by affecting expression of cancer-associated microRNAs that have the potential to regulate numerous protein-coding genes.
Collapse
Affiliation(s)
- Balaji Muralidhar
- Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 0XZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Birnbaum DJ, Adélaïde J, Mamessier E, Finetti P, Lagarde A, Monges G, Viret F, Gonçalvès A, Turrini O, Delpero JR, Iovanna J, Giovannini M, Birnbaum D, Chaffanet M. Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 2011; 50:456-65. [PMID: 21412932 DOI: 10.1002/gcc.20870] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/15/2011] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive human cancers. It displays many different chromosomal abnormalities and mutations. By using 244 K high-resolution array-comparative genomic hybridization (aCGH) we studied the genome alterations of 39 fine-needle aspirations from pancreatic adenocarcinoma and eight human adenocarcinoma pancreatic cell lines. Using both visual inspection and GISTIC analysis, recurrent losses were observed on 1p, 3p, 4p, 6, 8p, 9, 10, 11q, 15q, 17, 18, 19p, 20p, 21, and 22 and comprised several known or suspected tumor suppressor genes such as ARHGEF10, ARID1A, CDKN2A/B, FHIT, PTEN, RB1, RUNX1-3, SMAD4, STK11/LKB1, TP53, and TUSC3. Heterozygous deletion of the 1p35-p36 chromosomal region was identified in one-third of the tumors and three of the cell lines. This region, commonly deleted in human cancers, contains several tumor suppressor genes including ARID1A and RUNX3. We identified frequent genetic gains on chromosome arms 1q, 3q, 5p, 6p, 7q, 8q, 12q, 15q, 18q, 19q, and 20q. Amplifications were observed in 16 tumors. AKT2, CCND3, CDK4, FOXA2, GATA6, MDM2, MYC, and SMURF1 genes were gained or amplified. The most obvious amplification was located at 18q11.2 and targeted the GATA6 gene, which plays a predominant role in the initial specification of the pancreas and in pancreatic cell type differentiation. In conclusion, we have identified novel biomarkers and potential therapeutic targets in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- David J Birnbaum
- Centre de Recherche en Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, UMR891 Inserm, Institut Paoli-Calmettes, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
34
|
Zhang JY, Wang Y, Zhang D, Yang ZQ, Dong XJ, Jiang GY, Zhang PX, Dai SD, Dong QZ, Han Y, Zhang S, Cui QZ, Wang EH. delta-Catenin promotes malignant phenotype of non-small cell lung cancer by non-competitive binding to E-cadherin with p120ctn in cytoplasm. J Pathol 2010; 222:76-88. [PMID: 20593408 DOI: 10.1002/path.2742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a member of the catenin family, little is known about the clinical significance and possible mechanism of delta-catenin expression in numerous tumours. We examined the expression of delta-catenin by immunohistochemistry in 115 cases of non-small cell lung cancer (NSCLC) (including 65 cases with follow-up records and 50 cases with paired lymph node metastasis lesions). The mRNA and protein expression of delta-catenin was also detected in 30 cases of paired lung cancer tissues and normal lung tissues by RT-PCR and western blotting, respectively. Co-immunoprecipitation was used to examine whether delta-catenin competitively bound to E-cadherin with p120ctn in lung cancer cells or not. The effects of delta-catenin on the activity of small GTPases and the biological behaviour of lung cancer cells were explored by pull-down assay, flow cytometry, MTT, and Matrigel invasive assay. The results showed that the mRNA and protein expression of delta-catenin was increased in lung cancer tissues; the positive expression rate of delta-catenin was significantly increased in adenocarcinoma, stage III-IV, paired lymph node metastasis lesions, and primary tumours with lymph node metastasis (all p < 0.05); and the postoperative survival period of patients with delta-catenin-positive expression was shorter than that of patients with delta-catenin-negative expression (p < 0.05). No competition between delta-catenin and p120ctn for binding to E-cadherin in cytoplasm was found in two lung cancer cell lines. By regulating the activity of small GTPases and changing the cell cycle, delta-catenin could promote the proliferation and invasion of lung cancer cells. We conclude that delta-catenin is an oncoprotein overexpressed in NSCLC and that increased delta-catenin expression is critical for maintenance of the malignant phenotype of lung cancer.
Collapse
Affiliation(s)
- Jun-Yi Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Chattopadhyay I, Singh A, Phukan R, Purkayastha J, Kataki A, Mahanta J, Saxena S, Kapur S. Genome-wide analysis of chromosomal alterations in patients with esophageal squamous cell carcinoma exposed to tobacco and betel quid from high-risk area in India. Mutat Res 2010; 696:130-8. [PMID: 20083228 DOI: 10.1016/j.mrgentox.2010.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 01/19/2023]
Abstract
Genomic alterations such as chromosomal amplifications, deletions and loss of heterozygosity play an important role in the pathogenesis and progression of cancer. Environmental risk factors contribute to the development and progression of tumors by facilitating the loss of tumor suppressor genes and amplification of oncogenes. In this current study, Affymetrix 10K single nucleotide polymorphism (SNP) arrays were used to evaluate genomic alterations in 20 pairs of matched germ-line and tumor DNA obtained from patients with esophageal squamous cell carcinoma (ESCC) from high-risk area of India where tobacco, betel quid and alcohol use are widespread. Twenty-two amplified regions and 16 deleted regions identified across chromosomal arms were biologically relevant. The candidate genes located at amplified regions of chromosomes or low-level gain regions such as PLA2G5 (1p36-p34), COL11A1 (1p21), KCNK2 (1q41), S100A3 (1q21), ENAH (1q42.12), RGS1 (1q31), KCNH1 (1q32-q41), INSIG2 (2q14.1), FGF12 (3q28), TRIO (5p15.2), RNASEN (5p15.2), FGF10 (5p13-p12), EDN1(6p24.1-p22.3), SULF1 (8q13.2-13.3), TLR4 (9q32-q33), TNC (9q33), NTRK2 (9q22.1), CD44 (11p13), NCAM1 (11q23.1), TRIM29 (11q22-q23), PAK1 (11q13-q14) and RAB27A (15q15-q21.1), are found to be associated with cellular migration and proliferation, tumor cell metastasis and invasion, anchorage independent growth and inhibition of apoptosis. The candidate genes located at deleted regions of chromosomes, such as FBLN2 (3p25.1), WNT7A (3p25), DLC1 (8p22), LZTS1 (8p22), CDKN2A (9p21), COL4A1 (13q34), CDK8 (13q12) and DCC (18q21.3), are found to be associated with the suppression of tumor. The suggested candidate genes were mostly involved in potential signaling pathways such as focal adhesion (COL4A1), tight junction (CLDN10), MAPK signaling pathway (FGF12) and neuroactive ligand receptor interaction pathway (CCKAR). Expression of FGF12 and COL4A1 was validated by tissue microarray. These unique copy number alteration profiles should be taken into consideration when developing biomarkers for the early detection of ESCC in high-risk areas of India in association with tobacco and betel quid use.
Collapse
|
37
|
Zieger K, Marcussen N, Borre M, Ørntoft TF, Dyrskjøt L. Consistent genomic alterations in carcinoma in situ of the urinary bladder confirm the presence of two major pathways in bladder cancer development. Int J Cancer 2009; 125:2095-103. [PMID: 19637316 DOI: 10.1002/ijc.24619] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bladder cancer develops through different pathways, provisionally entitled "papillary" and "invasive." Carcinoma in situ (CIS) is thought to be the precursor of invasive bladder cancer. However, little is known about chromosomal alterations of these clinically important lesions, and the relationship between chromosomal alterations and the different pathways. We laser-microdissected 12 CIS and 4 dysplasia samples concomitant to invasive bladder cancer. We determined genome-wide chromosome copy number changes and loss of heterozygosity (LOH) using Mapping 10K SNP microarrays. We further examined 48 high-risk non-muscle-invasive bladder cancers using SNP microarrays to reveal characteristic changes correlated with the CIS-phenotype. DNA copy-number changes were further validated using QPCR in 77 independent tumor samples. CIS was found to be chromosomal unstable in 8 of 12 cases. Characteristic chromosomal changes were copy number gains of chromosomes 5p, 6p22.3, 10p15.1 and losses/LOH of chromosome 5q and 13q13-q14. Tumor samples with these alterations were significantly associated with CIS. Using FGFR3 mutations as markers of the opposing papillary phenotype, we found 5p gains and FGFR3 mutations mutually exclusive. No FGFR3 mutations were found in 23 CIS and dysplasia samples. Based on this, we classified high-risk non-muscle-invasive bladder tumors according to FGFR3 mutations and chromosomal changes into papillary and CIS-type tumors with high correlation to CIS status (p = 0.001). Furthermore, we found significant correlation to the results of molecular classifiers based on gene-expression. We concluded that chromosomal changes may be used to characterize different pathways in bladder cancer development.
Collapse
Affiliation(s)
- Karsten Zieger
- Department of Molecular Medicine, Arhus University Hospital, Skejby, Denmark.
| | | | | | | | | |
Collapse
|
38
|
delta-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles. Mol Cancer 2009; 8:19. [PMID: 19284555 PMCID: PMC2660279 DOI: 10.1186/1476-4598-8-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 03/10/2009] [Indexed: 12/29/2022] Open
Abstract
Background δ-Catenin is a unique member of β-catenin/armadillo domain superfamily proteins and its primary expression is restricted to the brain. However, δ-catenin is upregulated in human prostatic adenocarcinomas, although the effects of δ-catenin overexpression in prostate cancer are unclear. We hypothesized that δ-catenin plays a direct role in prostate cancer progression by altering gene profiles of cell cycle regulation and cell survival. Results We employed gene transfection and small interfering RNA to demonstrate that increased δ-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability. δ-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences outside the armadillo domains abolished the tumor promoting effects of δ-catenin. Quantitative RT2 Profiler™ PCR Arrays demonstrated gene alterations involved in cell cycle and survival regulation. δ-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated histone-H3, and promoted the entry of mitosis. In addition, δ-catenin overexpression resulted in increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor p21Cip1. Conclusion Taken together, our studies suggest that at least one consequence of an increased expression of δ-catenin in human prostate cancer is the alteration of cell cycle and survival gene profiles, thereby promoting tumor progression.
Collapse
|
39
|
Increased nucleotide polymorphic changes in the 5'-untranslated region of delta-catenin (CTNND2) gene in prostate cancer. Oncogene 2008; 28:555-64. [PMID: 18978817 PMCID: PMC2678952 DOI: 10.1038/onc.2008.399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer pathogenesis involves multiple genetic and epigenetic alterations, which result in oncogenic changes in gene expression. δ-Catenin (CTNND2) is overexpressed in cancer although the mechanisms of its upregulation are highly variable. Here we report that in prostate cancer the methylation of CpG islands in δ-catenin promoter was not a primary regulatory event. There was also no δ-catenin gene amplification. However, using Single-Strand Conformation Polymorphism analysis, we observed the increased nucleotide changes in the 5′-untranslated region of δ-catenin gene in human prostate cancer. At least one such change (-9 G>A) is a true somatic point mutation associated with a high Gleason score, poorly differentiated prostatic adenocarcinoma. Laser capture microdissection coupled with PCR analyses detected the mutation only in cancerous but not in the adjacent benign prostatic tissues. Using chimeric genes encoding the luciferase reporter, we found that this mutation, but not a random mutation or a mutation that disrupts an upstream open reading frame, resulted in a remarkably higher expression and enzyme activity. This mutation did not affect transcriptional efficiency, suggesting that it promotes δ-catenin translation. This is the first report of δ-catenin gene mutation in cancer and supports the notion that multiple mechanisms contribute to its increased expression in carcinogenesis.
Collapse
|
40
|
Kang JU, Koo SH, Kwon KC, Park JW, Kim JM. Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. ACTA ACUST UNITED AC 2008; 182:1-11. [PMID: 18328944 DOI: 10.1016/j.cancergencyto.2007.12.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/24/2007] [Accepted: 12/06/2007] [Indexed: 11/19/2022]
Abstract
Chromosomal imbalances resulting in altered gene dosage play a role in the molecular pathogenesis of non-small cell lung cancer (NSCLC), but the target genes remain to be identified. To identify early-stage genetic events that drive progression of NSCLC, we conducted a high-resolution array comparative genomic hybridization (CGH) study, using an array of 4,046 bacterial artificial chromosome clones to screen for DNA copy number changes associated with individual genes in 36 tumors obtained from patients in early stages of NSCLC. Multiple early genetic events occurring on chromosome 5p were identified, with a minimal detection region at 5p15.33 approximately 12. The most frequent finding involved gain of 5p15.33, observed in 15 of 19 stage I (A+B) cancers (79%) and in 28 of the total 36 NSCLC cases (78%). This locus harbors the genes TERT, SLC6A19, and SLC6A18 and is a telomeric boundary at bacterial artificial chromosome (BAC) clone 91_J20. Other potential candidate genes evidencing high numbers of genomic copy number changes (> or =40% of patients) included the following genes, encountered in >50% of 19 stage I (A+B) cancers: CEP72 and TPPP (14 of 19; 74%); AHRR, EXOC3 (previously SEC6L1), SLC9A3, LOC442126, ZDHHC11, BRD9, and TRIP13 (13/19; 68%); and CLPTM1L (alias CRR9), SLC6A3 (previously DAT1), and LOC401169 (10/19; 53%). Fluorescence in situ hybridization validated the array CGH findings. The gain of 5p15.33 is thus one of the most consistent alterations in the early stages of lung cancer, and a series of genes in the critical 5p15.33 region may be used as novel biomarkers for the early detection and classification of lung cancer.
Collapse
Affiliation(s)
- Ji Un Kang
- Department of Laboratory Medicine, Chungnam National University Hospital, Daesa-dong 640, Taejeon City 301-721, Korea
| | | | | | | | | |
Collapse
|
41
|
Yamamoto Y, Chochi Y, Matsuyama H, Eguchi S, Kawauchi S, Furuya T, Oga A, Kang JJ, Naito K, Sasaki K. Gain of 5p15.33 is associated with progression of bladder cancer. Oncology 2007; 72:132-8. [PMID: 18025801 DOI: 10.1159/000111132] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/04/2007] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To search for a biological marker to distinguish low-risk from high-risk bladder cancer indicating disease progression. METHODS The whole genome-wide copy numbers were screened in 18 patients with bladder cancer using array comparative genomic hybridization (CGH) consisting of 4,030 bacterial artificial chromosome clones. RESULTS Gain of 5p15.33, including TPPP (tubulin polymerization-promoting protein)and ZDHHC11 (zinc finger DHHC domain-containing protein 11) genes, was detected in 5 of 9 (55.6%) high-grade bladder cancers and no (0%; n = 9) low-grade bladder cancer. To confirm the preliminary data, 5p15.33 gain was studied by fluorescence in situhybridization (FISH) in 100 patients, and the results were compared with biological characteristics. In FISH analysis, gain of 5p15.33 was significantly correlated with higher histological grade (p < 0.0001) and advanced pathological stage (p = 0.0284). Tumors with a gain of 5p15.33 had a significantly higher progression-free survival rate than those without (p = 0.0006, log-rank test). Multivariate analysis revealed that gain of 5p15.33 was a predictor for disease progression in bladder cancer (hazard ratio: 1.887, 95% confidence interval: 1.215-2.968, p = 0.0050). CONCLUSION These data suggest that gain of 5p15.33 (TPPP and ZDHHC11) may become a potential biomarker identifying high-risk patients with disease progression in bladder cancer.
Collapse
Affiliation(s)
- Yoshiaki Yamamoto
- Department of Urology, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tissue microarray based analysis of prognostic markers in invasive bladder cancer: much effort to no avail? Urol Oncol 2007; 26:17-24. [PMID: 18190825 DOI: 10.1016/j.urolonc.2006.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/22/2006] [Accepted: 08/25/2006] [Indexed: 11/20/2022]
Abstract
PURPOSE To evaluate altered protein expression with tissue microarray methodology for 15 different markers with potential prognostic significance in invasive bladder cancer. MATERIALS AND METHODS Invasive tumor was sampled with the tissue-arraying instrument in 133 consecutive patients who underwent radical cystectomy, and at least 3, 0.6-mm tissue cores were obtained. With immunohistochemistry, the expressions of TP53, RB1, CDKN1A (p21), MKI67 (Ki67), PTGS2 (Cox-2), CTNNA1 (alpha-catenin), CTNNB1 (beta-catenin), AKT, PTEN, RHOA, RHOC, STAT1, VEGFC, EGFR, and ERBB2 (HER2) were quantified, and correlations were made with tumor grade, pathologic stage, lymph node status, and disease-specific survival. RESULTS Decreased immunohistochemical expression of CTNNA1 and of PTEN correlated with higher pathologic tumor stages (P = 0.01 and P = 0.01, respectively), whereas increased AKT1 and ERBB2 correlated with lower pathologic tumor stages (P = 0.01 and P = 0.03, respectively). Increased RHOA expression was more common in grade 3 than in grade 2 tumors (P = 0.016). There were no other correlations among the 15 factors studied and pathologic stage, lymph node status, or tumor grade. No association was found between bladder cancer death and altered marker status for any of the markers studied. CONCLUSIONS Currently, there are reasons to have a skeptical attitude toward the value of tissue microarray based immunohistochemistry as a method for evaluating prognostic markers in invasive bladder cancer. In this study, 15 antibodies were tested but were found to be of little clinical value. Whether this negative finding is related to the group of patients or factors studied, or the methodology is unclear.
Collapse
|
43
|
Kloth JN, Oosting J, van Wezel T, Szuhai K, Knijnenburg J, Gorter A, Kenter GG, Fleuren GJ, Jordanova ES. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer. BMC Genomics 2007; 8:53. [PMID: 17311676 PMCID: PMC1805756 DOI: 10.1186/1471-2164-8-53] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 02/20/2007] [Indexed: 11/10/2022] Open
Abstract
Background Cervical carcinoma develops as a result of multiple genetic alterations. Different studies investigated genomic alterations in cervical cancer mainly by means of metaphase comparative genomic hybridization (mCGH) and microsatellite marker analysis for the detection of loss of heterozygosity (LOH). Currently, high throughput methods such as array comparative genomic hybridization (array CGH), single nucleotide polymorphism array (SNP array) and gene expression arrays are available to study genome-wide alterations. Integration of these 3 platforms allows detection of genomic alterations at high resolution and investigation of an association between copy number changes and expression. Results Genome-wide copy number and genotype analysis of 10 cervical cancer cell lines by array CGH and SNP array showed highly complex large-scale alterations. A comparison between array CGH and SNP array revealed that the overall concordance in detection of the same areas with copy number alterations (CNA) was above 90%. The use of SNP arrays demonstrated that about 75% of LOH events would not have been found by methods which screen for copy number changes, such as array CGH, since these were LOH events without CNA. Regions frequently targeted by CNA, as determined by array CGH, such as amplification of 5p and 20q, and loss of 8p were confirmed by fluorescent in situ hybridization (FISH). Genome-wide, we did not find a correlation between copy-number and gene expression. At chromosome arm 5p however, 22% of the genes were significantly upregulated in cell lines with amplifications as compared to cell lines without amplifications, as measured by gene expression arrays. For 3 genes, SKP2, ANKH and TRIO, expression differences were confirmed by quantitative real-time PCR (qRT-PCR). Conclusion This study showed that copy number data retrieved from either array CGH or SNP array are comparable and that the integration of genome-wide LOH, copy number and gene expression is useful for the identification of gene specific targets that could be relevant for the development and progression in cervical cancer.
Collapse
Affiliation(s)
- Judith N Kloth
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Knijnenburg
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arko Gorter
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gemma G Kenter
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gert Jan Fleuren
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
44
|
Aguilar-Mahecha A, Hassan S, Ferrario C, Basik M. Microarrays as validation strategies in clinical samples: tissue and protein microarrays. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2006; 10:311-26. [PMID: 17069510 DOI: 10.1089/omi.2006.10.311] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The widespread use of DNA microarrays has led to the discovery of many genes whose expression profile may have significant clinical relevance. The translation of this data to the bedside requires that gene expression be validated as protein expression, and that annotated clinical samples be available for correlative and quantitative studies to assess clinical context and usefulness of putative biomarkers. We review two microarray platforms developed to facilitate the clinical validation of candidate biomarkers: tissue microarrays and reverse-phase protein microarrays. Tissue microarrays are arrays of core biopsies obtained from paraffin-embedded tissues, which can be assayed for histologically-specific protein expression by immunohistochemistry. Reverse-phase protein microarrays consist of arrays of cell lysates or, more recently, plasma or serum samples, which can be assayed for protein quantity and for the presence of post-translational modifications such as phosphorylation. Although these platforms are limited by the availability of validated antibodies, both enable the preservation of precious clinical samples as well as experimental standardization in a high-throughput manner proper to microarray technologies. While tissue microarrays are rapidly becoming a mainstay of translational research, reverse-phase protein microarrays require further technical refinements and validation prior to their widespread adoption by research laboratories.
Collapse
Affiliation(s)
- Adriana Aguilar-Mahecha
- Montreal Center for Experimental Therapeutics in Cancer, Lady Davis Institute for Medical Research, The Sir Mortimer B. Davis-Jewish General Hospital, and Department of Oncology, McGill University and Surgery, Montreal, Canada
| | | | | | | |
Collapse
|
45
|
Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg A, Gradin K, Poellinger L, Påhlman S. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 2006; 10:413-23. [PMID: 17097563 DOI: 10.1016/j.ccr.2006.08.026] [Citation(s) in RCA: 561] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 05/30/2006] [Accepted: 08/29/2006] [Indexed: 01/09/2023]
Abstract
In neuroblastoma specimens, HIF-2alpha but not HIF-1alpha is strongly expressed in well-vascularized areas. In vitro, HIF-2alpha protein was stabilized at 5% O2 (resembling end capillary oxygen conditions) and, in contrast to the low HIF-1alpha activity at this oxygen level, actively transcribed genes like VEGF. Under hypoxia (1% O2), HIF-1alpha was transiently stabilized and primarily mediated acute responses, whereas HIF-2alpha protein gradually accumulated and governed prolonged hypoxic gene activation. Knockdown of HIF-2alpha reduced growth of neuroblastoma tumors in athymic mice. Furthermore, high HIF-2alpha protein levels were correlated with advanced clinical stage and high VEGF expression and predicted poor prognosis in a clinical neuroblastoma material. Our results demonstrate the relevance of HIF-2alpha in neuroblastoma progression and have general tumor biological implications.
Collapse
Affiliation(s)
- Linda Holmquist-Mengelbier
- Division of Molecular Medicine, Department of Laboratory Medicine, Lund University, University Hospital MAS, SE-205 02 Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Adamowicz M, Radlwimmer B, Rieker RJ, Mertens D, Schwarzbach M, Schraml P, Benner A, Lichter P, Mechtersheimer G, Joos S. Frequent amplifications and abundant expression of TRIO, NKD2, and IRX2 in soft tissue sarcomas. Genes Chromosomes Cancer 2006; 45:829-38. [PMID: 16752383 DOI: 10.1002/gcc.20343] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Copy number gains and high-level amplifications of the short arm of chromosome 5 are frequently observed in soft tissue sarcomas. To identify genes from this region possibly involved in tumor progression, we analyzed 34 soft tissue sarcomas (10 pleomorphic and 8 dedifferentiated liposarcomas, 6 malignant fibrous histiocytomas, and 10 malignant peripheral nerve sheath tumors (MPNST)) using a DNA microarray including 418 BAC clones representing 99% of chromosome arm 5p. In seven tumors, distinct high-level amplifications were identified affecting four different subregions. From these regions, genes TERT, TRIO, SKP2, FBXO32, NKD2, SLC6A3, IRX2, POLS, FYB, PTGER4, and FGF10 were selected for detailed quantitative expression analysis (RQ-PCR) based on their potential tumorigenic function. Of these, TRIO, coding for a guanidine nucleotide exchange factor, was consistently overexpressed in all cases, while IRX2 and NKD2, both involved in the regulation of developmental processes via the WNT pathway, showed a characteristic expression only in MPNSTs. Detailed nonparametric multidimensional scaling analysis further showed that the expression of TRIO, IRX2, and NKD2 strongly correlated with the gene copy number. In conclusion, we found TRIO, IRX2, and NKD2 frequently affected by high-level amplifications as well as up-regulated in a gene-dosage dependent manner. Thus, these genes represent candidate targets of 5p amplifications in soft tissue sarcomas and might play a crucial role during the progression of this disease.
Collapse
Affiliation(s)
- Martyna Adamowicz
- Division of Molecular Genetics (B060), German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mhawech-Fauceglia P, Cheney RT, Schwaller J. Genetic alterations in urothelial bladder carcinoma: an updated review. Cancer 2006; 106:1205-16. [PMID: 16470587 DOI: 10.1002/cncr.21743] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
New oncogenes and tumor suppressor genes that play an important role in the pathogenesis of urothelial bladder carcinoma have been discovered. The objectives of this review were to summarize the most important oncogenes and tumor suppressor genes involved in urothelial carcinoma and to address their role in pathogenesis, their prognostic value, and their potential use as therapeutic targets. The collected data led the authors to propose a common pathway in which the fibroblastic growth factor receptor 3 (FGFR3) mutation seems to be the earliest genetic abnormality responsible for the transformation from normal tissue to atypia and dysplasia. Three different progression pathways were proposed: The first operative pathway is from dysplasia to superficial papillary pathologic Ta (pTa) tumors to pT1 tumors and, ultimately, to pT2 tumors with FGFR3 and tuberous sclerosis complex 1 (TSC1) the responsible genes. The second major operative pathway is from dysplasia, to carcinoma in situ, and to solid pT1 and pT2 tumors. The third pathway of progression is from dysplasia to papillary T1 and pT2 tumors. The genes involved in the last 2 pathways are the p53, serine threonine protein kinase 15 (STK15), triple-function domain (TRIO), fragile histidine triad (FHIT), p63 genes; and alterations of 20q and 5p, alterations of adhesions, angiogenesis, and matrix-remodeling gene products also are involved. Finally, murine leukemia viral oncogene homologue 1 (RAF1) and CD9 are involved in the progression from papillary pT1 tumors to pT2 tumors.
Collapse
Affiliation(s)
- Paulette Mhawech-Fauceglia
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
48
|
Baldwin C, Garnis C, Zhang L, Rosin MP, Lam WL. Multiple microalterations detected at high frequency in oral cancer. Cancer Res 2005; 65:7561-7. [PMID: 16140918 DOI: 10.1158/0008-5472.can-05-1513] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of array comparative genomic hybridization (array CGH) at tiling-path resolution has enabled the detection of gene-sized segmental DNA copy number gains and losses. Here, we present the first application of whole genome tiling-path array CGH to archival clinical specimens for the detailed analysis of oral squamous cell carcinomas (OSCC). We describe the genomes of 20 OSCCs as well as a selection of matched normal DNA in unprecedented detail. Examination of their whole genome profiles enabled the identification of alterations ranging in size from whole-arm, segmental, to gene size alterations. Tiling-path resolution enabled the detection of many more alterations within each tumor than previously reported, many of which include narrow alterations found to be frequent events among the 20 OSCCs. We report the presence of several novel frequent submegabase alterations, such as the 0.58 Mb gain at 5p15.2 containing triple functional domain (TRIO), detected in 45% of cases. We also report the first coamplification of two gene clusters, by fine-mapping the precise base pair boundaries of the high-level amplification at 11q22.2-22.3 containing both matrix metalloproteinase and baculoviral IAP repeat-containing protein 2 (BIRC) gene clusters. These results show the large improvement in detection sensitivity and resolution compared with genome interval marker arrays and the utility of tiling resolution array CGH for the detection of both submegabase and single copy gains and losses in cancer gene discovery.
Collapse
Affiliation(s)
- Corisande Baldwin
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
49
|
Garnis C, Davies JJ, Buys TPH, Tsao MS, MacAulay C, Lam S, Lam WL. Chromosome 5p aberrations are early events in lung cancer: implication of glial cell line-derived neurotrophic factor in disease progression. Oncogene 2005; 24:4806-12. [PMID: 15870700 DOI: 10.1038/sj.onc.1208643] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lung cancer is the most widely diagnosed malignancy in the world. Understanding early-stage disease will give insight into its pathogenesis. Despite the fact that pre-invasive lesions are challenging to isolate, and often yield insufficient DNA for the analysis of multiple loci, genomic profiling of such lesions will lead to the discovery of causal genetic alterations, which may be otherwise masked by the gross instability associated with tumors. In this study, we report the identification of multiple early genetic events on chromosome 5p in lung cancer progression. Using a high-resolution 5p-specific genomic array, which contains a tiling path of DNA segments for comparative genomic hybridization, nine novel minimal regions of loss and gain were discovered in bronchial carcinoma in situ (CIS) specimens. Within these regions we identified two candidate genes novel to lung cancer. The 0.27 Mbp region at 5p15.2 contains a single gene, Triple Functional Domain, which we determined to be differentially expressed in tumors. The 0.34 Mbp region at 5p13.2 contains Glial Cell Line-Derived Neurotrophic Factor (GDNF), which is a ligand for the RET oncogene product and is normally expressed during lung development (but absent in adult lung tissue). Our data showed not only that GDNF is overexpressed at the transcript level in squamous non-small-cell lung carcinoma, but also that the GDNF protein is present in early-stage lesions. Reactivation of the fetal lung expressed GDNF in early lesions and its amplification in CIS suggests an early role in tumorigenesis. These results highlight the value of examining the genomes of pre-invasive stages of cancer at tiling resolution.
Collapse
Affiliation(s)
- Cathie Garnis
- British Columbia Cancer Research Centre, 601 West 10th Avenue, Vancouver, BC, Canada V5Z 3L1.
| | | | | | | | | | | | | |
Collapse
|