1
|
Lubrano S, Cervantes-Villagrana RD, Faraji F, Ramirez S, Sato K, Adame-Garcia SR, Officer A, Arang N, Rigiracciolo DC, Anguiano Quiroz PY, Martini C, Wang Y, Ferguson FM, Bacchiocchi A, Halaban R, Coma S, Holmen SL, Pachter JA, Aplin AE, Gutkind JS. FAK inhibition combined with the RAF-MEK clamp avutometinib overcomes resistance to targeted and immune therapies in BRAF V600E melanoma. Cancer Cell 2025; 43:428-445.e6. [PMID: 40020669 PMCID: PMC11903146 DOI: 10.1016/j.ccell.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/17/2024] [Accepted: 02/04/2025] [Indexed: 03/03/2025]
Abstract
Widespread BRAF mutations result in persistent RAS-RAF-MEK-ERK (MAPK) signaling in melanoma. BRAF (BRAFi) and MEK (MEKi) inhibitors are approved for BRAF V600E melanomas, including those progressing on immunotherapy; however, rapid resistance to these agents highlights the need for novel strategies. Here, transcriptome analysis of BRAF V600E melanomas from patients resistant to BRAFi and MEKi shows activation of focal adhesion signaling. Consistently, BRAFi, MEKi, and the RAF-MEK clamp avutometinib activate focal adhesion kinase (FAK) in melanoma cells. Mechanistically, inhibition of an MAPK-RhoE (RND3) feedback loop results in the adaptive activation of RhoA-FAK-AKT. In turn, FAK inhibitors (FAKi) exert potent pro-apoptotic activity when combined with MAPK pathway inhibition. FAKi plus avutometinib overcomes resistance in multiple models derived from BRAFi plus MEKi-resistant melanoma patients and immunotherapy-resistant syngeneic mouse models. These findings provide a rationale for the development of avutometinib in combination with FAKi for patients with BRAF V600E melanoma progressing on BRAFi plus MEKi or immunotherapy.
Collapse
Affiliation(s)
- Simone Lubrano
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Rodolfo Daniel Cervantes-Villagrana
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Farhoud Faraji
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Otolaryngology - Head and Neck Surgery, UC San Diego Health, La Jolla, CA 92037, USA
| | - Sydney Ramirez
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kuniaki Sato
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sendi R Adame-Garcia
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Officer
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nadia Arang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Paola Y Anguiano Quiroz
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; John Muir College, University of California, San Diego, La Jolla, CA 92093, USA
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - YiYu Wang
- Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fleur M Ferguson
- Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Sheri L Holmen
- Department of Surgery, University of Utah Health Sciences Center, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, US
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Jordan E, Arriaga MA, Obregon H, Villalobos V, Duarte MA, Garcia K, Levy A, Chew SA. Dual delivery of metformin and Y15 from a PLGA scaffold for the treatment of platinum-resistant ovarian cancer. Future Med Chem 2025; 17:301-312. [PMID: 39887289 PMCID: PMC11792864 DOI: 10.1080/17568919.2025.2458457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
AIMS Drug-loaded poly(lactic-co-glycolic acid) (PLGA) scaffolds were fabricated using a mold-less technique to investigate whether the combined delivery of both Y15 (FAK inhibitor) and metformin would result in enhanced effects on cell viability compared to the release of each drug alone for the treatment of platinum-resistant ovarian cancer (PROC). MATERIALS & METHODS Scaffolds were fabricated using an easy and economical mold-less technique that combined PLGA and the drugs (i.e. metformin and/or Y15) in tetraglycol and injected in PBS, to form a globular morphology. RESULTS The exposure of cells to metformin and Y15 resulted in a significantly enhanced cytotoxic efficacy compared to single-drug treatment with either metformin or Y15. When the drugs were delivered using the PLGA scaffolds, the combination of the two drugs was significantly more cytotoxic compared to scaffolds containing metformin only and Y15 only. CONCLUSIONS The combination of metformin and Y15 can result in an increase in antitumor activity in PROC cells through apoptosis. The delivery of both drugs from the PLGA biomaterial scaffold allowed for a more enhanced combinational effect compared to the utilization of free drugs (without a scaffold) and should be further explored as a promising treatment of PROC.
Collapse
Affiliation(s)
- Emily Jordan
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Hannah Obregon
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Viviana Villalobos
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Manuel A. Duarte
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Kristal Garcia
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
3
|
Li XG, Zhu GS, Cao PJ, Huang H, Chen YH, Chen C, Chen PJ, Wu D, Ding C, Zhang ZH, Zhang RH, Hu ZX, Zhao WH, Liu MH, Li YW, Liu HY, Chen J. Genome-wide CRISPR-Cas9 screening identifies ITGA8 responsible for abivertinib sensitivity in lung adenocarcinoma. Acta Pharmacol Sin 2025:10.1038/s41401-024-01451-0. [PMID: 39809840 DOI: 10.1038/s41401-024-01451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance. In this study we developed a novel approach by using CRISPR-Cas9 whole-genome library screening to identify the genes that enhance the sensitivity of lung adenocarcinoma cells to EGFR-TKIs. Through this screening, we revealed integrin subunit alpha 8 (ITGA8) as the key gene that enhanced sensitivity to abivertinib in lung adenocarcinoma. Notably, ITGA8 expression was significantly downregulated in lung adenocarcinoma tissues compared to adjacent normal tissues. Bioinformatics analyses revealed that ITGA8 was positively correlated with the sensitivity of lung adenocarcinoma to abivertinib. We showed that knockdown of ITGA8 significantly enhanced the proliferation, migration and invasion of H1975 cells. Conversely, overexpression of ITGA8 reduced the proliferation migration and invasion of H1975/ABIR cells. Furthermore, we demonstrated that ITGA8 sensitized lung adenocarcinoma cells to EGFR-TKIs by attenuating the downstream FAK/SRC/AKT/MAPK signaling pathway. In H1975 cell xenograft mouse models, knockdown of ITGA8 significantly increased tumor growth and reduced the sensitivity to abivertinib, whereas overexpression of ITGA8 markedly suppressed tumor proliferation and enhanced sensitivity to the drug. This study demonstrates that ITGA8 inhibits the proliferation, invasion and migration of lung adenocarcinoma cells, enhances the sensitivity to EGFR-TKIs, improves treatment efficacy, and delays the progression of acquired resistance. Thus, ITGA8 presents a potential therapeutic candidate for addressing acquired resistance to EGFR-TKIs from a novel perspective.
Collapse
Affiliation(s)
- Xuan-Guang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guang-Sheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Pei-Jun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yu-Hao Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Pei-Jie Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Di Wu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chen Ding
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zi-He Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rui-Hao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zi-Xuan Hu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen-Hao Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ming-Hui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yong-Wen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Hong-Yu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
4
|
Feng Z, Wei W, Wang S, Li X, Zhao L, Wan G, Hu R, Yu L. A novel selective FAK inhibitor E2 inhibits ovarian cancer metastasis and growth by inducing cytotoxic autophagy. Biochem Pharmacol 2024; 229:116461. [PMID: 39102992 DOI: 10.1016/j.bcp.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Ovarian cancer (OC) is the deadliest form of the gynecologic malignancies and effective therapeutic drugs are urgently needed. Focal adhesion kinase (FAK) is overexpressed in various solid tumors, and could serve as a potential biomarker of ovarian cancer. However, there are no launched drugs targeting FAK. Hence, the development of the novel FAK inhibitors is an emerging approach for the treatment of ovarian cancer. In this work, we characterized a selective FAK inhibitor E2, with a high inhibitory potency toward FAK. Moreover, E2 had cytotoxic, anti-invasion and anti-migration activity on ovarian cancer cells. Mechanistically, after treatment with E2, FAK downstream signaling cascades (e.g., Src and AKT) were suppressed, thus resulting in the ovarian cancer cell arrest at G0/G1 phase and the induction of cytotoxic autophagy. In addition, E2 attenuated the tumor growth of PA-1 and ES-2 ovarian cancer subcutaneous xenografts, as well as suppressed peritoneal metastasis of OVCAR3-luc. Furthermore, E2 exhibited favorable pharmacokinetic properties. Altogether, these findings demonstrate that E2 is a selective FAK inhibitor with potent anti-ovarian cancer activities both in vivo and in vitro, offering new possibilities for OC treatment strategies.
Collapse
Affiliation(s)
- Zhanzhan Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shirui Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Guoquan Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
6
|
Akompong SK, Li Y, Gong W, Ye L, Liu J. Recently reported cell migration inhibitors: Opportunities and challenges for antimetastatic agents. Drug Discov Today 2024; 29:103906. [PMID: 38309689 DOI: 10.1016/j.drudis.2024.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Antimetastatic agents are highly desirable for cancer treatment because of the severe medical challenges and high mortality resulting from tumor metastasis. Having demonstrated antimetastatic effects in numerous in vitro and in vivo studies, migration inhibitors present significant opportunities for developing a new class of anticancer drugs. To provide a useful overview on the latest research in migration inhibitors, this article first discusses their therapeutic significance, targetable proteins, and developmental avenues. Subsequently it reviews over 20 representative migration inhibitors reported in recent journals in terms of their inhibitory mechanism, potency, and potential clinical utility. The relevance of the target proteins to cellular migratory function is focused on as it is crucial for assessing the overall efficacy of the inhibitors.
Collapse
Affiliation(s)
- Samuel K Akompong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Li
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenxue Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Long Ye
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jinping Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
7
|
Sun Y, Gao Z, Wang R, Zhang G, Wu T, Yin W, Sun Y, Qin Q, Zhao D, Cheng M. Design, synthesis, and biological evaluation of diaminopyrimidine derivatives as novel focal adhesion kinase inhibitors. RSC Med Chem 2023; 14:2301-2314. [PMID: 37974962 PMCID: PMC10650953 DOI: 10.1039/d3md00324h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 11/19/2023] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that belongs to the family of focal adhesion complexes and is responsible for the development of various tumors. Herein, 24 diaminopyrimidine derivatives were designed and synthesized based on TAE-226. Several compounds with good activity were further evaluated regarding their antiproliferative activities against two cancer cells with high FAK expression. Compound A12 showed potent anticancer activity against A549 and MDA-MB-231 cell lines with IC50 values of 130 nM and 94 nM, respectively. In vitro metabolic stability and cytochrome P450 (CYP) inhibition assays showed that A12 exhibited favorable stability and weak inhibitory activity on CYP isoforms. Preliminary evaluation of kinase selectivity showed that A12 was a multi-kinase inhibitor. The acute toxicity in vivo indicated that A12 possessed acceptable safety. Compound A12 was also selected for molecular docking studies and the prediction of molecular properties and drug-like properties. These results indicated that compound A12 could be used as a potential lead compound targeting FAK for further development.
Collapse
Affiliation(s)
- Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Zixuan Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Ruifeng Wang
- Department of Pharmacy, Shanxi Medical University 56 Xinjiannan Road, Yingze District Taiyuan 030001 China
| | - Guoqi Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District 110016 Shenyang China
| |
Collapse
|
8
|
Patel D, Thankachan S, Sreeram S, Kavitha KP, Suresh PS. The role of tumor-educated platelets in ovarian cancer: A comprehensive review and update. Pathol Res Pract 2023; 241:154267. [PMID: 36509009 DOI: 10.1016/j.prp.2022.154267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Platelets have recently surfaced as critical players in cancer metastasis and the local and systemic responses to tumor growth. The emerging concept of "Tumor-educated platelets (TEPs)" comprises the exchange of biomolecules between tumor cells and platelets, thereby leading to the "education" of platelets. Increased platelet numbers have long been associated with cancer patients' tumor metastasis and poor clinical prognosis. However, it is very recently that researchers have delved deeper into the tumor-microenvironment and probed the mechanism of interactions between tumor cells and platelets. Designing strategies to target the TEPs and the communications between platelets and tumor cells can prove to be a promising breakthrough in cancer therapy. Through this review, we aim to analyze the recent developments in this field and discuss the characteristics of TEPs, focusing on ovarian cancer-associated TEPs and their characteristics, the interplay between ovarian cancer-associated TEPs and cancer cells, and the purview of TEP-targeted cancer diagnosis and therapy, including platelet biomarkers and inhibitors.
Collapse
Affiliation(s)
- Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India
| | - Sanu Thankachan
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India
| | - Saraswathy Sreeram
- Department of Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - K P Kavitha
- Department of Pathology, Aster MIMS Calicut, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut 673601, Kerala, India.
| |
Collapse
|
9
|
Qin Q, Wang R, Fu Q, Zhang G, Wu T, Liu N, Lv R, Yin W, Sun Y, Sun Y, Zhao D, Cheng M. Design, synthesis, and biological evaluation of potent FAK-degrading PROTACs. J Enzyme Inhib Med Chem 2022; 37:2241-2255. [PMID: 35978496 PMCID: PMC9455338 DOI: 10.1080/14756366.2022.2100886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
FAK mediated tumour cell migration, invasion, survival, proliferation and regulation of tumour stem cells through its kinase-dependent enzymatic functions and kinase-independent scaffolding functions. At present, the development of FAK PROTACs has become one of the hotspots in current pharmaceutical research to solve above problems. Herein, we designed and synthesised a series of FAK-targeting PROTACs consisted of PF-562271 derivative 1 and Pomalidomide. All compounds showed significant in vitro FAK kinase inhibitory activity, the IC50 value of the optimised PROTAC A13 was 26.4 nM. Further, A13 exhibited optimal protein degradation (85% degradation at 10 nM). Meantime, compared with PF-562271, PROTAC A13 exhibited better antiproliferative activity and anti-invasion ability in A549 cells. More, A13 had excellent plasma stability with T1/2 >194.8 min. There are various signs that PROTAC A13 could be useful as expand tool for studying functions of FAK in biological system and as potential therapeutic agents.
Collapse
Affiliation(s)
- Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China.,Department of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Qinglin Fu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Guoqi Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Nian Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
10
|
Choi J, Park S. A nanomechanical strategy involving focal adhesion kinase for overcoming drug resistance in breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102559. [PMID: 35390528 DOI: 10.1016/j.nano.2022.102559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Despite implementation of nanomechanical studies in cancer research, studies on the nanomechanical aspects of drug resistance in cancer are lacking. Here, we established the mechanical signatures of drug-resistant breast cancer cells using atomic force microscopy-based indentation techniques and functionalized nanopatterned substrates (NPS). Additionally, we examined the expression of proteins pertinent to focal adhesions in order to elucidate the molecular signatures responsible for the acquisition of drug resistance in breast cancer cells. Drug-resistant breast cancer cells exhibited mechanical reinforcement, increased actin stress fibers, dysfunctional mechano-reciprocal interaction with the NPS, vinculin overexpression, and improved focal adhesion kinase (FAK) activity. Owing to differences in FAK activation upon co-treatment with a FAK inhibitor, the drug-resistant breast cancer cells were eradicated more efficiently than invasive breast cancer cells having pro-survival activity. These findings demonstrated the potential of a novel co-treatment regimen using FAK inhibitors for overcoming drug resistance in breast cancer cells.
Collapse
Affiliation(s)
- Jinsol Choi
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Soyeun Park
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Spallarossa A, Tasso B, Russo E, Villa C, Brullo C. The Development of FAK Inhibitors: A Five-Year Update. Int J Mol Sci 2022; 23:ijms23126381. [PMID: 35742823 PMCID: PMC9223874 DOI: 10.3390/ijms23126381] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed in different solid cancers. In recent years, FAK has been recognized as a new target for the development of antitumor agents, useful to contrast tumor development and metastasis formation. To date, studies on the role of FAK and FAK inhibitors are of great interest for both pharmaceutical companies and academia. This review is focused on compounds able to block FAK with different potencies and with different mechanisms of action, that have appeared in the literature since 2017. Furthermore, new emerging PROTAC molecules have appeared in the literature. This summary could improve knowledge of new FAK inhibitors and provide information for future investigations, in particular, from a medicinal chemistry point of view.
Collapse
|
12
|
Li Y, Qi Y, Fang Y, Gao H, Zhang H. Design, Synthesis, and Biological Evaluation of 4-Arylamino Pyrimidine Derivatives as FAK Inhibitors and Tumor Radiotracers. Mol Pharm 2022; 19:2471-2482. [PMID: 35481371 DOI: 10.1021/acs.molpharmaceut.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Focal adhesion kinase (FAK) is considered a promising target for the diagnosis and treatment of cancer. In this work, a series of N,N'-(4-((5-bromo-2-(phenylamino)pyrimidin-4-yl)amino)-1,3-phenylene)diacetamide derivatives were synthesized and evaluated as FAK inhibitors and radiotracers. The studied compounds, possessing the same phenylene-diacetamide chain, exhibited high to moderate enzyme inhibition values (IC50) ranging from 3.7 to 108.0 nM. Compound 13a, which exhibits high FAK enzyme inhibition with an IC50 value of 3.7, could effectively suppress the tumor growth. Furthermore, three compounds were radiolabeled with F-18. Among them, a higher tumor uptake value was observed for [18F]17 (3.73 ± 0.10% ID/g) and [18F]13a (3.66 ± 0.02% ID/g). Compound [18F]18 displayed the highest tumor/blood (35.75) value at 120 min postinjection. In addition, the results from docking studies revealed the binding mechanism of the studied compounds. The findings of this study may provide useful guidance to improve the development of radiotracers and enzyme inhibitors.
Collapse
Affiliation(s)
- Ye Li
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Yueheng Qi
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Yu Fang
- College of Chemistry and Chemical Engineering, Anyang Normal University, No. 436 Xian'ge Road, Anyang 455000, Henan Province, China
| | - Hang Gao
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Huabei Zhang
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
13
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Network Pharmacology Study to Uncover the Mechanism of FDY003 for Ovarian Cancer Treatment. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological tumors responsible for 0.21 million deaths per year worldwide. Despite the increasing interest in the use of herbal drugs for cancer treatment, their pharmacological effects in OC treatment are not understood from a systems perspective. Using network pharmacology, we determined the anti-OC potential of FDY003 from a comprehensive systems view. We observed that FDY003 suppressed the viability of human OC cells and further chemosensitized them to cytotoxic chemotherapy. Through network pharmacological and pharmacokinetic approaches, we identified 16 active ingredients in FDY003 and their 108 targets associated with OC mechanisms. Functional enrichment investigation revealed that the targets may coordinate diverse cellular behaviors of OC cells, including their growth, proliferation, survival, death, and cell cycle regulation. Furthermore, the FDY003 targets are important constituents of diverse signaling pathways implicated in OC mechanisms (eg, phosphoinositide 3-kinase [PI3K]-Akt, mitogen-activated protein kinase [MAPK], focal adhesion, hypoxia-inducible factor [HIF]-1, estrogen, tumor necrosis factor [TNF], erythroblastic leukemia viral oncogene homolog [ErbB], Janus kinase [JAK]-signal transducer and activator of transcription [STAT], and p53 signaling). In summary, our data present a comprehensive understanding of the anti-OC effects and mechanisms of action of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospitalo, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
14
|
Boscaro C, Baggio C, Carotti M, Sandonà D, Trevisi L, Cignarella A, Bolego C. Targeting of PFKFB3 with miR-206 but not mir-26b inhibits ovarian cancer cell proliferation and migration involving FAK downregulation. FASEB J 2022; 36:e22140. [PMID: 35107852 DOI: 10.1096/fj.202101222r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
Few studies explored the role of microRNAs (miRNAs) in the post-transcriptional regulation of glycolytic proteins and downstream effectors in ovarian cancer cells. We recently showed that the functional activation of the cytoskeletal regulator FAK in endothelial cells is fostered by the glycolytic enhancer 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We tested the hypothesis that miR-206 and mir-26b, emerging onco-suppressors targeting PFKFB3 in estrogen-dependent tumors, would regulate proliferation and migration of serous epithelial ovarian cancer (EOC) cells via common glycolytic proteins, i.e., GLUT1 and PFKFB3, and downstream FAK. PFKFB3 was overexpressed in SKOV3, and its pharmacological inhibition with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) significantly reduced cell proliferation and motility. Both miR-206 and miR-26b directly targeted PFKFB3 as evaluated by a luciferase reporter assay. However, endogenous levels of miR-26b were higher than those of miR-206, which was barely detectable in SKOV3 as well as OVCAR5 and CAOV3 cells. Accordingly, only the anti-miR-26b inhibitor concentration-dependently increased PFKFB3 levels. While miR-206 overexpression impaired proliferation and migration by downregulating PFKFB3 levels, the decreased PFKFB3 protein levels related to miR-26 overexpression had no functional consequences in all EOC cell lines. Finally, consistent with the migration outcome, exogenous miR-206 and miR-26b induced opposite effects on the levels of total FAK and of its phosphorylated form at Tyr576/577. 3PO did not prevent miR-26b-induced SKOV3 migration. Overall, these results support the inverse relation between endogenous miRNA levels and their tumor-suppressive effects and suggest that restoring miR-206 expression represents a potential dual anti-PFKFB3/FAK strategy to control ovarian cancer progression.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Design, synthesis and biological evaluation of 7-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy)-2,3-dihydro-1H-inden-1-one derivatives as potent FAK inhibitors for the treatment of ovarian cancer. Eur J Med Chem 2022; 228:113978. [PMID: 34810020 DOI: 10.1016/j.ejmech.2021.113978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023]
Abstract
Focal adhesion kinase (FAK) promotes tumor progression by intracellular signal transduction and regulation of gene expression and protein turnover, which is a compelling therapeutic target for various cancer types, including ovarian cancer. However, the clinical responses of FAK inhibitors remain unsatisfactory. Here, we describe the discovery of FAK inhibitors using a scaffold hopping strategy. Structure-activity relationship (SAR) exploration identified 36 as a potent FAK inhibitor, which exhibited inhibitory activities against FAK signaling in vitro. Treatment with 36 not only decreased migration and invasion of PA-1 cells, but also reduced expression of MMP-2 and MMP-9. Moreover, 36 inhibited tumor growth and metastasis, and no obvious adverse effects were observed during the in vivo study. These results revealed the potential of FAK inhibitor 36 for treatment of ovarian cancer.
Collapse
|
16
|
Zheng J, Guo Z, Wen Z, Chen H. ZNF561 antisense RNA 1 contributes to angiogenesis in hepatocellular carcinoma through upregulation of platelet-derived growth Factor-D. CHINESE J PHYSIOL 2022; 65:258-265. [DOI: 10.4103/0304-4920.359795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Chen T, Liu Y, Shi M, Tang M, Si W, Yuan X, Wen Y, Chen L. Design, synthesis, and biological evaluation of novel covalent inhibitors targeting focal adhesion kinase. Bioorg Med Chem Lett 2021; 54:128433. [PMID: 34757216 DOI: 10.1016/j.bmcl.2021.128433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Forty-one new focal adhesion kinase (FAK) covalent inhibitors were designed and synthesized based on FAK inhibitor TAE226. Compound 11w displayed the highest inhibition of FAK with an IC50 value of 35 nM and exhibited potent anticancer activity against Hela, HCT116 and MDA-MB-231 cell lines with IC50 values of 0.41, 0.01 and 0.11 μM respectively, compared to TAE226 (2.68, 0.64 and 4.19 μM respectively). 11w also inhibited the clone formation and migration of HCT-116 cells and stimulated cell cycle arrest in the G2/M phase, inducing tumor cell apoptosis. Compound 11w formed a covalent bond with the Cys427 residue of FAK in a docking model, inhibiting the autophosphorylation of FAK and downstream proteins in a dose-dependent manner. Moreover, 11w showed adequate oral bioavailability of 21.02%. A 74.20% inhibition of tumor growth in the HCT116 xenograft model was also observed. These data indicate that 11w is a promising covalent inhibitor of FAK.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Yan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Wenting Si
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xue Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Yi Wen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China.
| |
Collapse
|
18
|
Anderson EM, Thomassian S, Gong J, Hendifar A, Osipov A. Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers (Basel) 2021; 13:5510. [PMID: 34771675 PMCID: PMC8583016 DOI: 10.3390/cancers13215510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest malignancies among all cancers. Despite curative intent, surgery and the use of standard cytotoxic chemotherapy and radiation therapy, PDAC remains treatment-resistant. In recent years, more contemporary treatment modalities such as immunotherapy via checkpoint inhibition have shown some promise in many other malignancies, yet PDAC still eludes an effective curative treatment. In investigating these phenomena, research has suggested that the significant desmoplastic and adaptive tumor microenvironment (TME) of PDAC promote the proliferation of immunosuppressive cells and act as major obstacles to treatment efficacy. In this review, we explore challenges associated with the treatment of PDAC, including its unique immunosuppressive TME. This review examines the role of surgery in PDAC, recent advances in surgical approaches and surgical optimization. We further focus on advances in immunotherapeutic approaches, including checkpoint inhibition, CD40 agonists, and discuss promising immune-based future strategies, such as therapeutic neoantigen cancer vaccines as means of overcoming the resistance mechanisms which underly the dense stroma and immune milieu of PDAC. We also explore unique signaling, TME and stromal targeting via novel small molecule inhibitors, which target KRAS, FAK, CCR2/CCR5, CXCR4, PARP and cancer-associated fibroblasts. This review also explores the most promising strategy for advancement in treatment of pancreatic cancer by reviewing contemporary combinatorial approaches in efforts to overcome the treatment refractory nature of PDAC.
Collapse
Affiliation(s)
- Eric M. Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Shant Thomassian
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Jun Gong
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Andrew Hendifar
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Arsen Osipov
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| |
Collapse
|
19
|
Abstract
FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.
Collapse
|
20
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
21
|
Han C, Shen K, Wang S, Wang Z, Su F, Wu X, Hu X, Li M, Han J, Wu L. Discovery of Novel 2,4-Dianilinopyrimidine Derivatives Containing 4-(Morpholinomethyl)phenyl and N-Substituted Benzamides as Potential FAK Inhibitors and Anticancer Agents. Molecules 2021; 26:molecules26144187. [PMID: 34299462 PMCID: PMC8304610 DOI: 10.3390/molecules26144187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Focal adhesion kinase (FAK) is responsible for the development and progression of various malignancies. With the aim to explore novel FAK inhibitors as anticancer agents, a series of 2,4-dianilinopyrimidine derivatives 8a–8i and 9a–9g containing 4-(morpholinomethyl)phenyl and N-substituted benzamides have been designed and synthesized. Among them, compound 8a displayed potent anti-FAK activity (IC50 = 0.047 ± 0.006 μM) and selective antiproliferative effects against H1975 (IC50 = 0.044 ± 0.011 μM) and A431 cells (IC50 = 0.119 ± 0.036 μM). Furthermore, compound 8a also induced apoptosis in a dose-dependent manner, arresting the cells in S/G2 phase and inhibiting the migration of H1975 cells, all of which were superior to those of TAE226. The docking analysis of compound 8a was performed to elucidate its possible binding modes with FAK. These results established 8a as our lead compound to be further investigated as a potential FAK inhibitor and anticancer agent.
Collapse
Affiliation(s)
- Chun Han
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Kemin Shen
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi 046011, China;
| | - Shijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Feng Su
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Xi Wu
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Xiaoqin Hu
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Mengyao Li
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
| | - Jing Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- Correspondence: (J.H.); (L.W.); Tel.: +86-516-8340-3166 (J.H.); +86-355-217-8113 (L.W.)
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Changzhi 046011, China; (C.H.); (S.W.); (Z.W.); (F.S.); (X.W.); (X.H.); (M.L.)
- Correspondence: (J.H.); (L.W.); Tel.: +86-516-8340-3166 (J.H.); +86-355-217-8113 (L.W.)
| |
Collapse
|
22
|
Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, Zhao H, Xu Z. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:199. [PMID: 34154618 PMCID: PMC8215834 DOI: 10.1186/s13046-021-01999-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Zinc transporters have been found to be associated with the pathogenesis of numerous human diseases including cancer. As the most lethal gynecologic malignancy, ovarian cancer is characterized by rapid progression and widespread metastases. However, the function and underlying mechanism of zinc transporters in ovarian cancer metastasis remain unclear. METHODS The relationship between zinc transporter gene expressions and clinical outcomes of ovarian cancer was assessed with the online database Kaplan-Meier plotter ( http://kmplot.com/analysis/ ). Immunohistochemistry was performed to investigate the prognostic importance of ZIP13. The expression of ZIP13 in ovarian cancer cell lines was depleted to explore its effect on proliferation, adhesion, migration, and invasion both in vitro and in vivo assays. RNA-Seq, quantitative RT-PCR, and western blot analysis were performed to explore ZIP13-regulated downstream target genes. RESULTS The expressions of several zinc transporters were highly associated the clinical outcomes of ovarian cancer patients. Among them, high ZIP13 expression was an independent prognostic factor for poor survival in patients with ovarian cancer. ZIP13 knockout suppressed the malignant phenotypes of ovarian cancer cells both in vitro and in vivo. Further investigation revealed that ZIP13 regulated intracellular zinc distribution and then affected the expressions of genes involved in extracellular matrix organization and cytokine-mediated signaling pathway. This led to the activation of Src/FAK pathway with increased expressions of pro-metastatic genes but decreased expressions of tumor suppressor genes. CONCLUSIONS ZIP13 is shown to be a novel driver of metastatic progression by modulating the Src/FAK signaling pathway, which may serve as a promising biomarker for prognostic evaluation and targeted therapy in ovarian cancer.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Chunling Liu
- Department of Pathology, North China University of Science and Technology Affiliated Tangshan People's Hospital, 063000, Tangshan, China
| | - Tianduo Jiang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Ningzhi Yang
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Dan Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
23
|
Wang F, Yang W, Li R, Sui Z, Cheng G, Zhou B. Molecular description of pyrimidine-based inhibitors with activity against FAK combining 3D-QSAR analysis, molecular docking and molecular dynamics. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Paradis JS, Acosta M, Saddawi-Konefka R, Kishore A, Gomes F, Arang N, Tiago M, Coma S, Lubrano S, Wu X, Ford K, Day CP, Merlino G, Mali P, Pachter JA, Sato T, Aplin AE, Gutkind JS. Synthetic Lethal Screens Reveal Cotargeting FAK and MEK as a Multimodal Precision Therapy for GNAQ-Driven Uveal Melanoma. Clin Cancer Res 2021; 27:3190-3200. [PMID: 33568347 PMCID: PMC8895627 DOI: 10.1158/1078-0432.ccr-20-3363] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/17/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Uveal melanoma is the most common eye cancer in adults. Approximately 50% of patients with uveal melanoma develop metastatic uveal melanoma (mUM) in the liver, even after successful treatment of the primary lesions. mUM is refractory to current chemo- and immune-therapies, and most mUM patients die within a year. Uveal melanoma is characterized by gain-of-function mutations in GNAQ/GNA11, encoding Gαq proteins. We have recently shown that the Gαq-oncogenic signaling circuitry involves a noncanonical pathway distinct from the classical activation of PLCβ and MEK-ERK. GNAQ promotes the activation of YAP1, a key oncogenic driver, through focal adhesion kinase (FAK), thereby identifying FAK as a druggable signaling hub downstream from GNAQ. However, targeted therapies often activate compensatory resistance mechanisms leading to cancer relapse and treatment failure. EXPERIMENTAL DESIGN We performed a kinome-wide CRISPR-Cas9 sgRNA screen to identify synthetic lethal gene interactions that can be exploited therapeutically. Candidate adaptive resistance mechanisms were investigated by cotargeting strategies in uveal melanoma and mUM in vitro and in vivo experimental systems. RESULTS sgRNAs targeting the PKC and MEK-ERK signaling pathways were significantly depleted after FAK inhibition, with ERK activation representing a predominant resistance mechanism. Pharmacologic inhibition of MEK and FAK showed remarkable synergistic growth-inhibitory effects in uveal melanoma cells and exerted cytotoxic effects, leading to tumor collapse in uveal melanoma xenograft and liver mUM models in vivo. CONCLUSIONS Coupling the unique genetic landscape of uveal melanoma with the power of unbiased genetic screens, our studies reveal that FAK and MEK-ERK cotargeting may provide a new network-based precision therapeutic strategy for mUM treatment.See related commentary by Harbour, p. 2967.
Collapse
Affiliation(s)
- Justine S Paradis
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Monica Acosta
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Robert Saddawi-Konefka
- Moores Cancer Center, University of California San Diego, La Jolla, California
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California
| | - Ayush Kishore
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Frederico Gomes
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Nadia Arang
- Moores Cancer Center, University of California San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Simone Lubrano
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kyle Ford
- Department of Bioengineering, University of California San Diego, San Diego, California
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Maryland
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, San Diego, California
| | | | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California.
- Department of Pharmacology, University of California San Diego, La Jolla, California
| |
Collapse
|
25
|
Han N, Zhang YY, Zhang ZM, Zhang F, Zeng TY, Zhang YB, Zhao WC. High expression of PDGFA predicts poor prognosis of esophageal squamous cell carcinoma. Medicine (Baltimore) 2021; 100:e25932. [PMID: 34011067 PMCID: PMC8137088 DOI: 10.1097/md.0000000000025932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/17/2021] [Indexed: 01/05/2023] Open
Abstract
Platelet-derived growth factor A (PDGFA), the most known member of PDGF family, plays a crucial role in occurrence and progression of different tumors. However, PDGFA expression and its clinical significance in esophageal squamous cell carcinoma (ESCC) are not clear. The present study aimed to assess the expression and prognostic value of PDGFA in ESCC.The Gene Expression Omnibus databases (GSE53625, GSE23400, and GSE67269) and fresh clinical samples were employed for detecting PDGFA messenger RNA expression in ESCC. The associations of PDGFA expression with clinicopathological characteristics were evaluated by chi-square test. Kaplan-Meier analysis and Cox proportional hazard regression model were performed to determine the prognostic value of PDGFA in ESCC patients. PDGFA-related signaling pathways were defined by gene set enrichment analysis based on Gene Expression Omnibus databases.The PDGFA messenger RNA expression was upregulated in ESCC tissues compared with paired adjacent noncancerous tissues (P < .05) and was positively correlated with T stage (P < .05). Kaplan-Meier survival analysis suggested that ESCC patients with high PDGFA expression were associated with poorer overall survival compared to those with low PDGFA expression (P < .05), especially in advanced T stage (P < .05). Cox analyses showed that high expression of PDGFA was an independent predictor for poor prognosis in ESCC patients. Gene set enrichment analysis identified 3 signaling pathways (extracellular matrix receptor interaction, focal adhesion, and glycosaminoglycan biosynthesis chondroitin sulfate) that were enriched in PDGFA high expression phenotype (all P < .01).PDGFA may serve as an oncogene in ESCC and represent an independent molecular biomarker for prognosis of ESCC patients.
Collapse
Affiliation(s)
- Na Han
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University
| | - Yan-Yan Zhang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University
| | - Zhong-Mian Zhang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University
| | - Fang Zhang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University
| | | | | | - Wen-Chao Zhao
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
26
|
Mousson A, Legrand M, Steffan T, Vauchelles R, Carl P, Gies JP, Lehmann M, Zuber G, De Mey J, Dujardin D, Sick E, Rondé P. Inhibiting FAK-Paxillin Interaction Reduces Migration and Invadopodia-Mediated Matrix Degradation in Metastatic Melanoma Cells. Cancers (Basel) 2021; 13:cancers13081871. [PMID: 33919725 PMCID: PMC8070677 DOI: 10.3390/cancers13081871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The focal adhesion kinase (FAK) is over-expressed in a variety of human tumors and is involved in many aspects of the metastatic process. This has led to the development of small inhibitors of FAK kinase function which are currently evaluated in clinical trials. We demonstrate here that this class of inhibitors, while decreasing melanoma cell migration, increases invadopodia activity in metastatic melanoma cells. Searching for an alternative strategy to inhibit the oncogenic activity of FAK, we show that inhibiting FAK scaffolding function using a small peptide altering FAK–paxillin interactions reduces both migration and invadopodia-mediated matrix degradation in metastatic melanoma cells. Abstract The nonreceptor tyrosine kinase FAK is a promising target for solid tumor treatment because it promotes invasion, tumor progression, and drug resistance when overexpressed. Investigating the role of FAK in human melanoma cells, we found that both in situ and metastatic melanoma cells strongly express FAK, where it controls tumor cells’ invasiveness by regulating focal adhesion-mediated cell motility. Inhibiting FAK in human metastatic melanoma cells with either siRNA or a small inhibitor targeting the kinase domain impaired migration but led to increased invadopodia formation and extracellular matrix degradation. Using FAK mutated at Y397, we found that this unexpected increase in invadopodia activity is due to the lack of phosphorylation at this residue. To preserve FAK–Src interaction while inhibiting pro-migratory functions of FAK, we found that altering FAK–paxillin interaction, with either FAK mutation in the focal adhesion targeting (FAT) domain or a competitive inhibitor peptide mimicking paxillin LD domains drastically reduces cell migration and matrix degradation by preserving FAK activity in the cytoplasm. In conclusion, our data show that targeting FAK–paxillin interactions could be a potential therapeutic strategy to prevent metastasis formation, and molecules targeting this interface could be alternative to inhibitors of FAK kinase activity which display unexpected effects.
Collapse
Affiliation(s)
- Antoine Mousson
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Marlène Legrand
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Tania Steffan
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Romain Vauchelles
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Plateforme PIQ, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Philippe Carl
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Jean-Pierre Gies
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Maxime Lehmann
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Guy Zuber
- Université de Strasbourg, CNRS UMR7242, Intervention Chémobiologique, ESBS, 67412 Illkirch, France;
| | - Jan De Mey
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Denis Dujardin
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Emilie Sick
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Philippe Rondé
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
- Correspondence: ; Tel.: +33-3-6885-4184
| |
Collapse
|
27
|
Liu C, Yu M, Li Y, Wang H, Xu C, Zhang X, Li M, Guo H, Ma D, Guo X. Lidocaine inhibits the metastatic potential of ovarian cancer by blocking Na V 1.5-mediated EMT and FAK/Paxillin signaling pathway. Cancer Med 2021; 10:337-349. [PMID: 33280262 PMCID: PMC7826465 DOI: 10.1002/cam4.3621] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Lidocaine, one of the most commonly used local anesthetics during surgery, has been reported to suppress cancer cell growth via blocking voltage-gated sodium channels (VGSCs). VGSC 1.5 (NaV 1.5) is highly expressed in invasive cancers including ovarian cancer. This study aims to investigate whether lidocaine inhibits the malignancy of ovarian cancer through NaV 1.5 blockage. Human ovarian cancer, its metastatic cancer and normal ovarian tissues were probed with anti-NaV 1.5 antibody in situ. Human ovarian cancer A2780 and SKOV3 cells were cultured and their growth, epithelial-mesenchymal transition (EMT), migration, and invasion in the presence or absence of lidocaine together with underlying molecular mechanisms were assessed. Murine syngeneic ovarian cancer (ID8) model was also used to determine the chemotherapeutic efficiency of cisplatin in combination with lidocaine. The high level of NaV 1.5 expression was found in human ovarian cancer and even higher in its metastatic cancer but not in normal ovarian tissues. Lidocaine decreased the growth, EMT, migration, and invasion of human ovarian cancer A2780 and SKOV3 cells. Lidocaine enhanced the chemotherapeutic efficiency of cisplatin in both ovarian cancer cell cultures and a murine ovarian metastatic model. Furthermore, a downregulation of NaV 1.5 by siRNA transfection, or FAK inhibitor application, inhibited the malignant properties of SKOV3 cells through inactivating FAK/Paxillin signaling pathway. Our data may indicate that lidocaine suppresses the metastasis of ovarian cancer and sensitizes cisplatin through blocking NaV 1.5-mediated EMT and FAK/paxillin signaling pathway. The translational value of lidocaine local application as an ovarian cancer adjuvant treatment warrants further study.
Collapse
Affiliation(s)
- Chang Liu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Ming Yu
- Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina
| | - Yi Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Hao Wang
- Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina
| | - Chuanya Xu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Xiaoqing Zhang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Min Li
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Hongyan Guo
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive CareDepartment of Surgery and CancerFaculty of MedicineImperial College LondonChelsea and Westminster HospitalLondonUnited Kingdom
| | - Xiangyang Guo
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| |
Collapse
|
28
|
Boscaro C, Trenti A, Baggio C, Scapin C, Trevisi L, Cignarella A, Bolego C. Sex Differences in the Pro-Angiogenic Response of Human Endothelial Cells: Focus on PFKFB3 and FAK Activation. Front Pharmacol 2020; 11:587221. [PMID: 33390959 PMCID: PMC7773665 DOI: 10.3389/fphar.2020.587221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
Female hormones and sex-specific factors are established determinants of endothelial function, yet their relative contribution to human endothelium phenotypes has not been defined. Using human umbilical vein endothelial cells (HUVECs) genotyped by donor's sex, we investigated the influence of sex and estrogenic agents on the main steps of the angiogenic process and on key proteins governing HUVEC metabolism and migratory properties. HUVECs from female donors (fHUVECs) showed increased viability (p < 0.01) and growth rate (p < 0.01) compared with those from males (mHUVECs). Despite higher levels of G-protein coupled estrogen receptor (GPER) in fHUVECs (p < 0.001), treatment with 17β-estradiol (E2) and the selective GPER agonist G1 (both 1-100 nM) did not affect HUVEC viability. Migration and tubularization in vitro under physiological conditions were higher in fHUVECs than in mHUVECs (p < 0.05). E2 treatment (1-100 nM) upregulated the glycolytic activator PFKFB3 with higher potency in fHUVECs than in mHUVECs, despite comparable baseline levels. Moreover, Y576/577 phosphorylation of focal adhesion kinase (FAK) was markedly enhanced in fHUVECs (p < 0.001), despite comparable Src activation levels. While the PI3K inhibitor LY294002 (25 µM) inhibited HUVEC migration (p < 0.05), Akt phosphorylation levels in fHUVECs and mHUVECs were comparable. Finally, digitoxin treatment, which inhibits Y576/577 FAK phosphorylation, abolished sexual dimorphism in HUVEC migration. These findings unravel complementary modulation of HUVEC functional phenotypes and signaling molecules involved in angiogenesis by hormone microenvironment and sex-specific factors, and highlight the need for sex-oriented pharmacological targeting of endothelial function.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Scapin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
29
|
Chauhan A, Khan T. Focal adhesion kinase—An emerging viable target in cancer and development of focal adhesion kinase inhibitors. Chem Biol Drug Des 2020; 97:774-794. [DOI: 10.1111/cbdd.13808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Akshita Chauhan
- Department of Quality Assurance Bhanuben Nanavati College of Pharmacy Mumbai India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance Bhanuben Nanavati College of Pharmacy Mumbai India
| |
Collapse
|
30
|
Lu Y, Sun H. Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). J Med Chem 2020; 63:14382-14403. [PMID: 33058670 DOI: 10.1021/acs.jmedchem.0c01248] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor intracellular tyrosine kinase that plays an essential role in cancer cell adhesion, survival, proliferation, and migration through both its enzymatic activities and scaffolding functions. Overexpression of FAK has been found in many human cancer cells from different origins, which promotes tumor progression and influences clinical outcomes in different classes of human tumors. Therefore, FAK has been considered as a promising target for small molecule anticancer drug development. Many FAK inhibitors targeting different domains of FAK with various mechanisms of functions have been reported, including kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors. In addition, FAK-targeting PROTACs, which can induce the degradation of FAK, have also been developed. In this Perspective, we summarized the progress in the development of small molecular FAK inhibitors and proposed the perspectives for the future development of agents targeting FAK.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
31
|
Huang YL, Liang CY, Ritz D, Coelho R, Septiadi D, Estermann M, Cumin C, Rimmer N, Schötzau A, Núñez López M, Fedier A, Konantz M, Vlajnic T, Calabrese D, Lengerke C, David L, Rothen-Rutishauser B, Jacob F, Heinzelmann-Schwarz V. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. eLife 2020; 9:59442. [PMID: 33026975 PMCID: PMC7541088 DOI: 10.7554/elife.59442] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays critical roles in tumor progression and metastasis. However, the contribution of ECM proteins to early metastatic onset in the peritoneal cavity remains unexplored. Here, we suggest a new route of metastasis through the interaction of integrin alpha 2 (ITGA2) with collagens enriched in the tumor coinciding with poor outcome in patients with ovarian cancer. Using multiple gene-edited cell lines and patient-derived samples, we demonstrate that ITGA2 triggers cancer cell adhesion to collagen, promotes cell migration, anoikis resistance, mesothelial clearance, and peritoneal metastasis in vitro and in vivo. Mechanistically, phosphoproteomics identify an ITGA2-dependent phosphorylation of focal adhesion kinase and mitogen-activated protein kinase pathway leading to enhanced oncogenic properties. Consequently, specific inhibition of ITGA2-mediated cancer cell-collagen interaction or targeting focal adhesion signaling may present an opportunity for therapeutic intervention of metastatic spread in ovarian cancer.
Collapse
Affiliation(s)
- Yen-Lin Huang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ching-Yeu Liang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Danilo Ritz
- Proteomics core facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Ricardo Coelho
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Manuela Estermann
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Cécile Cumin
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Natalie Rimmer
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas Schötzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mónica Núñez López
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Konantz
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Diego Calabrese
- Histology Core Facility, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Claudia Lengerke
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Internal Medicine, Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Leonor David
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Gynecological Cancer Center, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
32
|
Nguyen VHL, Yue C, Du KY, Salem M, O’Brien J, Peng C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21197093. [PMID: 32993038 PMCID: PMC7583982 DOI: 10.3390/ijms21197093] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and the major cause of death is mainly attributed to metastasis. MicroRNAs (miRNAs) are a group of small non-coding RNAs that exert important regulatory functions in many biological processes through their effects on regulating gene expression. In most cases, miRNAs interact with the 3′ UTRs of target mRNAs to induce their degradation and suppress their translation. Aberrant expression of miRNAs has been detected in EOC tumors and/or the biological fluids of EOC patients. Such dysregulation occurs as the result of alterations in DNA copy numbers, epigenetic regulation, and miRNA biogenesis. Many studies have demonstrated that miRNAs can promote or suppress events related to EOC metastasis, such as cell migration, invasion, epithelial-to-mesenchymal transition, and interaction with the tumor microenvironment. In this review, we provide a brief overview of miRNA biogenesis and highlight some key events and regulations related to EOC metastasis. We summarize current knowledge on how miRNAs are dysregulated, focusing on those that have been reported to regulate metastasis. Furthermore, we discuss the role of miRNAs in promoting and inhibiting EOC metastasis. Finally, we point out some limitations of current findings and suggest future research directions in the field.
Collapse
Affiliation(s)
- Vu Hong Loan Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chenyang Yue
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Kevin Y. Du
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Jacob O’Brien
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
33
|
Yeganeh PN, Mostafavi MT. Causal Disturbance Analysis: A Novel Graph Centrality Based Method for Pathway Enrichment Analysis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1613-1624. [PMID: 30908237 DOI: 10.1109/tcbb.2019.2907246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pathway enrichment analysis models (PEM) are the premier methods for interpreting gene expression profiles from high-throughput experiments. PEM often use a priori background knowledge to infer the underlying biological functions and mechanisms. A shortcoming of standard PEM is their disregarding of interactions for simplicity, which potentially results in partial and inaccurate inference. In this study, we introduce a graph-based PEM, namely Causal Disturbance Analysis (CADIA), that leverages gene interactions to quantify the topological importance of genes' expression profiles in pathways organizations. In particular, CADIA uses a novel graph centrality model, namely Source/Sink, to measure the topological importance. Source/Sink Centrality quantifies a gene's importance as a receiver and a sender of biological information, which allows for prioritizing the genes that are more likely to disturb a pathways functionality. CADIA infers an enrichment score for a pathway by deriving statistical evidence from Source/Sink centrality of the differentially expressed genes and combines it with classical over-representation analysis. Through real-world experimental and synthetic data evaluations, we show that CADIA can uniquely infer critical pathway enrichments that are not observable through other PEM. Our results indicate that CADIA is sensitive towards topologically central gene-level changes that and provides an informative framework for interpreting high-throughput data.
Collapse
|
34
|
Ke FY, Chen WY, Lin MC, Hwang YC, Kuo KT, Wu HC. Novel monoclonal antibody against integrin α3 shows therapeutic potential for ovarian cancer. Cancer Sci 2020; 111:3478-3492. [PMID: 32648337 PMCID: PMC7541015 DOI: 10.1111/cas.14566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer has a high recurrence rate after platinum‐based chemotherapy. To improve the treatment of ovarian cancer and identify ovarian cancer‐specific antibodies, we immunized mice with the human ovarian carcinoma cell line, SKOV‐3, and generated hybridoma clones. Several rounds of screening yielded 30 monoclonal antibodies (mAbs) with no cross‐reactivity to normal cells. Among these mAbs, OV‐Ab 30‐7 was found to target integrin α3 and upregulate p53 and p21, while stimulating the apoptosis of cancer cells. We further found that binding of integrin α3 by OV‐Ab 30‐7 impaired laminin‐induced focal adhesion kinase phosphorylation. The mAb alone or in combination with carboplatin and paclitaxel inhibited tumor progression and prolonged survival of tumor‐bearing mice. Moreover, immunohistochemical staining of ovarian patient specimens revealed higher levels of integrin α3 in cancer cells compared with normal cells. By querying online clinical databases, we found that elevated ITGA3 expression in ovarian cancer is associated with poor prognosis. Taken together, our data suggest that the novel mAb, OV‐Ab 30‐7, may be considered as a potential therapeutic for ovarian cancer.
Collapse
Affiliation(s)
- Feng-Yi Ke
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Chieh Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ting Kuo
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Biomedical Park Branch, Hsinchu County, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
35
|
Qi Y, Li Y, Fang Y, Qiang B, Gao H, Wang S, Zhang H. Design, synthesis, and biological evaluation of F-18-labelled 2, 4-diaminopyrimidine-type FAK-targeted inhibitors as potential tumour imaging agents. Bioorg Med Chem Lett 2020; 30:127452. [PMID: 32736076 DOI: 10.1016/j.bmcl.2020.127452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/25/2022]
Abstract
As a type of intracellular nonreceptor tyrosine kinase, focal adhesion kinase (FAK) can be highly expressed in most types of tumours and is thus regarded as a promising antitumour target. In this study, a series of novel 2,4-diaminopyrimidine FAK-targeted inhibitors were designed, synthesized and characterized by 1H NMR, 13C HNMR, and HRMS spectra. These compounds, with an IC50 range of 5.0-205.1 nM, showed superior inhibitory activity against FAK. Two compounds, [18F]Q-2 and [18F]Q-4, with respective IC50 values of 5.0 nM and 21.6 nM, were labelled by 18F, accompanied by evaluation of their biodistributions. For [18F]Q-2, at 30 min post-injection, promising target-to-nontarget ratios were observed, associated with tumour/blood, tumour/muscle, and tumour/bone ratios of 1.17, 2.99 and 2.19, respectively. The results indicated that [18F]Q-2 is a potential PET tracer for tumour diagnosis.
Collapse
Affiliation(s)
- Yueheng Qi
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Ye Li
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Yu Fang
- College of Chemistry and Chemical Engineering, Anyang Normal University, No. 436 Xian'ge Road, Anyang 455000, Henan Province, China
| | - Bingchao Qiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Hang Gao
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Shuxia Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Huabei Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|
36
|
Levy A, Alhazzani K, Dondapati P, Alaseem A, Cheema K, Thallapureddy K, Kaur P, Alobid S, Rathinavelu A. Focal Adhesion Kinase in Ovarian Cancer: A Potential Therapeutic Target for Platinum and Taxane-Resistant Tumors. Curr Cancer Drug Targets 2020; 19:179-188. [PMID: 29984656 DOI: 10.2174/1568009618666180706165222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, which is an essential player in regulating cell migration, invasion, adhesion, proliferation, and survival. Its overexpression and activation have been identified in sixty-eight percent of epithelial ovarian cancer patients and this is significantly associated with higher tumor stage, metastasis, and shorter overall survival of these patients. Most recently, a new role has emerged for FAK in promoting resistance to taxane and platinum-based therapy in ovarian and other cancers. The development of resistance is a complex network of molecular processes that make the identification of a targetable biomarker in platinum and taxane-resistant ovarian cancer a major challenge. FAK overexpression upregulates ALDH and XIAP activity in platinum-resistant and increases CD44, YB1, and MDR-1 activity in taxaneresistant tumors. FAK is therefore now emerging as a prognostically significant candidate in this regard, with mounting evidence from recent successes in preclinical and clinical trials using small molecule FAK inhibitors. This review will summarize the significance and function of FAK in ovarian cancer, and its emerging role in chemotherapeutic resistance. We will discuss the current status of FAK inhibitors in ovarian cancers, their therapeutic competencies and limitations, and further propose that the combination of FAK inhibitors with platinum and taxane-based therapies could be an efficacious approach in chemotherapeutic resistant disease.
Collapse
Affiliation(s)
- Arkene Levy
- College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khalid Alhazzani
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Priya Dondapati
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Ali Alaseem
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khadijah Cheema
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Keerthi Thallapureddy
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Paramjot Kaur
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Saad Alobid
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Appu Rathinavelu
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
37
|
Farzaneh Behelgardi M, Zahri S, Gholami Shahvir Z, Mashayekhi F, Mirzanejad L, Asghari SM. Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer. Mol Biol Rep 2020; 47:2061-2071. [PMID: 32072404 DOI: 10.1007/s11033-020-05306-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/05/2020] [Indexed: 12/28/2022]
Abstract
Tumor angiogenesis allows tumor cells to grow and migrate toward the bloodstream and initiate metastasis. The interactions of vascular endothelial growth factors (VEGF) A and B, as the important regulating factors for blood vessel growth, with VEGFR1 and VEGFR2 trigger angiogenesis process. Thus, preventing these interactions led to the effective blockade of VEGF/VEGFRs signaling pathways. In this study, the inhibitory effect of a 23-mer linear peptide (VGB4), which binds to both VEGFR1 and VEGFR2, on VEGF-stimulated Human Umbilical Vein Endothelial Cells (HUVECs) and highly metastatic human breast cancer cell MDA-MB-231 proliferation was examined using MTT assay. To assess the anti-migratory potential of VGB4, HUVECs and also MDA-MB-231 cells wound healing assay was carried out at 48 and 72 h. In addition, downstream signaling pathways of VEGF associated with cell migration and invasion were investigated by quantification of mRNA and protein expression using real-time quantitative PCR and western blot in 4T1 tumor tissues and MDA-MB-231 cells. The results revealed that VGB4 significantly impeded proliferation of HUVECs and MDA-MB-231 cells, in a dose- and time-dependent manner, and migration of HUVECs and MDA-MB-231 cells for a prolonged time. We also observed statistically significant reduction of the transcripts and protein levels of focal adhesion kinase (FAK), Paxillin, matrix metalloproteinase-2 (MMP-2), RAS-related C3 botulinum substrate 1 (Rac1), P21-activated kinase-2 (PAK-2) and Cofilin-1 in VGB4-treated 4T1 tumor tissues compared to controls. The protein levels of phospho-VEGFR1, phospho-VEGFR2, Vimentin, β-catenin and Snail were markedly decreased in both VGB4-treated MDA-MB-231 cells and VGB4-treated 4T1 tumor tissues compared to controls as evidenced by western blotting. These results, in addition to our previous studies, confirm that dual blockage of VEGFR1 and VEGFR2, due to the inactivation of diverse signaling mediators, effectively suppresses tumor growth and metastasis.
Collapse
Affiliation(s)
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Farhad Mashayekhi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Laleh Mirzanejad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - S Mohsen Asghari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran. .,Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
38
|
Phase I Study of the Focal Adhesion Kinase Inhibitor BI 853520 in Japanese and Taiwanese Patients with Advanced or Metastatic Solid Tumors. Target Oncol 2020; 14:57-65. [PMID: 30725402 PMCID: PMC6407737 DOI: 10.1007/s11523-019-00620-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Focal adhesion kinase (FAK) inhibitors have demonstrated anti-tumor activity preclinically and are currently being evaluated in humans. A first-in-human study evaluating the novel FAK inhibitor BI 853520 in a predominantly Caucasian population with advanced or metastatic non-hematologic malignancies demonstrated acceptable tolerability and favorable pharmacokinetics. OBJECTIVE This study was undertaken to investigate the safety, tolerability, and maximum tolerated dose (MTD) of BI 853520 in Japanese and Taiwanese patients with advanced solid tumors. PATIENTS AND METHODS In this open-label, phase I, dose-finding study, BI 853520 was administered once daily (QD) in a continuous daily dosing regimen with 28-day cycles and escalating doses to sequential cohorts of patients. Twenty-one patients (62% male; median age 65 years) were treated at two sites in Japan and Taiwan. RESULTS The median duration of treatment was 1.2 months (range 0.2-7.7). As no dose-limiting toxicities were observed during cycle 1 in the 50, 100, or 200 mg cohorts, the MTD of BI 853520 was determined to be 200 mg QD. Drug-related adverse events were reported in 19 patients (90%), and all except one were of grade 1 or 2. Pharmacokinetic parameters were supportive of a once-daily dosing schedule. A confirmed objective response rate of 5% and disease control rate of 29% were achieved; median duration of disease control was 3.7 months. CONCLUSIONS This trial demonstrated a manageable and acceptable safety profile, favorable pharmacokinetics, and potential anti-tumor activity of BI 853520 in pretreated Japanese and Taiwanese patients with advanced or metastatic solid tumors. CLINICAL TRIALS REGISTRATION NCT01905111.
Collapse
|
39
|
Shen T, Guo Q. EGFR signaling pathway occupies an important position in cancer-related downstream signaling pathways of Pyk2. Cell Biol Int 2020; 44:2-13. [PMID: 31368612 PMCID: PMC6973235 DOI: 10.1002/cbin.11209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/27/2019] [Indexed: 01/24/2023]
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of focal adhesion kinase (FAK) non-receptor tyrosine kinase family and has been found to promote cancer cell survival, proliferation, migration, invasion, and metastasis. Pyk2 takes part in different carcinogenic signaling pathways to promote cancer progression, including epidermal growth factor receptor (EGFR) signaling pathway. EGFR signaling pathway is a traditional carcinogenic signaling pathway, which plays a critical role in tumorigenesis and tumor progression. FAK inhibitors have been reported to fail to get the ideal anti-cancer outcomes because of activation of EGFR signaling pathway. Better understanding of Pyk2 downstream targets and interconnectivity between Pyk2 and carcinogenic EGFR signaling pathway will help finding more effective targets for clinical anti-cancer combination therapies. Thus, the interconnectivity between Pyk2 and EGFR signaling pathway, which regulates tumor development and metastasis, needs to be elucidated. In this review, we summarized the downstream targets of Pyk2 in cancers, focused on the connection between Pyk2 and EGFR signaling pathway in different cancer types, and provided a new overview of the roles of Pyk2 in EGFR signaling pathway and cancer development.
Collapse
Affiliation(s)
- Ting Shen
- Medical SchoolKunming University of Science and TechnologyKunming650500YunnanChina,Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and TechnologyThe First People's Hospital of Yunnan ProvinceKunming650032YunnanChina
| | - Qiang Guo
- Medical SchoolKunming University of Science and TechnologyKunming650500YunnanChina,Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and TechnologyThe First People's Hospital of Yunnan ProvinceKunming650032YunnanChina
| |
Collapse
|
40
|
Xue J, Gao HX, Sang W, Cui WL, Liu M, Zhao Y, Wang MB, Wang Q, Zhang W. Identification of core differentially methylated genes in glioma. Oncol Lett 2019; 18:6033-6045. [PMID: 31788078 PMCID: PMC6864971 DOI: 10.3892/ol.2019.10955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Differentially methylated genes (DMGs) serve a crucial role in the pathogenesis of glioma via the regulation of the cell cycle, proliferation, apoptosis, migration, infiltration, DNA repair and signaling pathways. This study aimed to identify aberrant DMGs and pathways by comprehensive bioinformatics analysis. The gene expression profile of GSE28094 was downloaded from the Gene Expression Omnibus (GEO) database, and the GEO2R online tool was used to find DMGs. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DMGs were performed by using the Database for Annotation Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed with Search Tool for the Retrieval of Interacting Genes. Analysis of modules in the PPI networks was performed by Molecular Complex Detection in Cytoscape software, and four modules were performed. The hub genes with a high degree of connectivity were verified by The Cancer Genome Atlas database. A total of 349 DMGs, including 167 hypermethylation genes, were enriched in biological processes of negative and positive regulation of cell proliferation and positive regulation of transcription from RNA polymerase II promoter. Pathway analysis enrichment revealed that cancer regulated the pluripotency of stem cells and the PI3K-AKT signaling pathway, whereas 182 hypomethylated genes were enriched in biological processes of immune response, cellular response to lipopolysaccharide and peptidyl-tyrosine phosphorylation. Pathway enrichment analysis revealed cytokine-cytokine receptor interaction, type I diabetes mellitus and TNF signaling pathway. A total of 20 hub genes were identified, of which eight genes were associated with survival, including notch receptor 1 (NOTCH1), SRC proto-oncogene (also known as non-receptor tyrosine kinase, SRC), interleukin 6 (IL6), matrix metallopeptidase 9 (MMP9), interleukin 10 (IL10), caspase 3 (CASP3), erb-b2 receptor tyrosine kinase 2 (ERBB2) and epidermal growth factor (EGF). Therefore, bioinformatics analysis identified a series of core DMGs and pathways in glioma. The results of the present study may facilitate the assessment of the tumorigenicity and progression of glioma. Furthermore, the significant DMGs may provide potential methylation-based biomarkers for the precise diagnosis and targeted treatment of glioma.
Collapse
Affiliation(s)
- Jing Xue
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China.,Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Pathology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Hai-Xia Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China.,Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wen-Li Cui
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ming Liu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yan Zhao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Meng-Bo Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China.,Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Qian Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
41
|
Levy A, Leynes C, Baig M, Chew SA. The Application of Biomaterials in the Treatment of Platinum‐Resistant Ovarian Cancer. ChemMedChem 2019; 14:1810-1827. [DOI: 10.1002/cmdc.201900450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Arkene Levy
- Department of Pharmacology, College of Medical Sciences Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Carolina Leynes
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| | - Mirza Baig
- Dr. Kiran C. Patel College of Osteopathic Medicine Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Sue Anne Chew
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| |
Collapse
|
42
|
Osipov A, Saung MT, Zheng L, Murphy AG. Small molecule immunomodulation: the tumor microenvironment and overcoming immune escape. J Immunother Cancer 2019; 7:224. [PMID: 31439034 PMCID: PMC6704558 DOI: 10.1186/s40425-019-0667-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has led to a paradigm shift in the treatment of many advanced malignancies. Despite the success in treatment of tumors like non-small cell lung cancer (NSCLC) and melanoma, checkpoint inhibition-based immunotherapy has limitations. Many tumors, such as pancreatic cancer, are less responsive to checkpoint inhibitors, where patients tend to have a limited duration of benefit and where clinical responses are more robust in patients who are positive for predictive biomarkers. One of the critical factors that influence the efficacy of immunotherapy is the tumor microenvironment (TME), which contains a heterogeneous composition of immunosuppressive cells. Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) alter the immune landscape of the TME and serve as facilitators of tumor proliferation, metastatic growth and immunotherapy resistance. Small molecule inhibitors that target these components of the TME have been developed. This special issue review focuses on two promising classes of immunomodulatory small molecule inhibitors: colony stimulating factor-1 receptor (CSF-1R) and focal adhesion kinase (FAK). Small molecule inhibitors of CSF-1R reprogram the TME and TAMs, and lead to enhanced T-cell-mediated tumor eradication. FAK small molecule inhibitors decrease the infiltration MDSCs, TAMs and regulatory T-cells. Additionally, FAK inhibitors are implicated as modulators of stromal density and cancer stem cells, leading to a TME more conducive to an anti-tumor immune response. Immunomodulatory small molecule inhibitors present a unique opportunity to attenuate immune escape of tumors and potentiate the effectiveness of immunotherapy and traditional cytotoxic therapy.
Collapse
Affiliation(s)
- Arsen Osipov
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - May Tun Saung
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian G Murphy
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- GI Oncology, Sidney Kimmel Comprehensive Cancer Center, Harry and Jeanette Weinberg Building, CRB1 1, Room 487, 1650 Orleans Street, Baltimore, MD, 21231, USA.
| |
Collapse
|
43
|
Peng J, Yang X, Li X, Gao H, Liu N, Guo X. 1-calcium phosphate-uracil inhibits intraperitoneal metastasis by suppressing FAK in epithelial ovarian cancer. Cell Cycle 2019; 18:1925-1937. [PMID: 31290719 PMCID: PMC6681791 DOI: 10.1080/15384101.2019.1634946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The high mortality of epithelial ovarian cancer (EOC) is primarily due to vast intraperitoneal dissemination. 1-calcium phosphate-uracil (1-CP-U) has previously shown the function of inhibiting migration and invasion in multiple tumor cell lines. In this study, we further assessed the possible role of 1-CP-U in suppressing the peritoneal metastasis of EOC cells. First, we demonstrated that 1-CP-U had an inhibitory effect on EOC cells in cell-matrix adhesion, migration and invasion assay in vitro. Within the in vivo model, animals were intraperitoneally inoculated with SKOV3-Luc cells and then 1-CP-U intraperitoneal (i.p.) injection was performed every 5 d for a total of 3 wk. At the 7th d, omenta from each group were analyzed with luciferase activity and bioluminescence imaging assay, which showed a significant reduction of luciferase activity in the omenta from 1-CP-U group. In addition, the rest mice continued treatment and consistent detection of bioluminescence imaging. The data indicated that intraperitoneal metastatic nodules were less-developed in 1-CP-U group. Peritoneal metastatic tumor nodules were detected for immunofluorescent staining, which showed a reduction in FAK and p-FAK staining with 1-CP-U treatment group. Meanwhile, expressions of FAK and its downstream signaling were detected by western blot in tumor tissues and EOC cell lines, which showed significant decreases in the 1-CP-U treatment group. In conclusion, 1-CP-U had a profound inhibitory effect on adhesion, invasion and metastasis of EOC in vitro and suppressed intraperitoneal dissemination and cancer growth in vivo assay, which was associated with inhibition on the FAK pathway.
Collapse
Affiliation(s)
- Jing Peng
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaoqian Yang
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaofeng Li
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Hao Gao
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Na Liu
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xiaoqing Guo
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
44
|
Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109928. [PMID: 31500065 DOI: 10.1016/j.msec.2019.109928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
The recent trend of gene therapy is using short hairpin RNA conjugated with different types of nanoparticles. shRNAs have a significant role in gene silencing and have a promising role in treating several genetic and infectious diseases. There are several drawbacks of delivering bare shRNA in the blood as they are fragile in nature and readily degradable. To overcome this problem shRNAs can be conjugated with nanoparticles for a safe deliver. In this article several nanoparticles are mentioned which play significant role in delivery of this payload. On one hand they protect the shRNA from degradation on the other they help to penetrate this large molecule in to the cell. Some of these nanoconjugates are in clinical trials and have a promising role in treatment of diseases.
Collapse
Affiliation(s)
- Rituparna Acharya
- School of Bio-science and Engineering, Jadavpur University, 188, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
45
|
Al-Ghabkari A, Qasrawi DO, Alshehri M, Narendran A. Focal adhesion kinase (FAK) phosphorylation is a key regulator of embryonal rhabdomyosarcoma (ERMS) cell viability and migration. J Cancer Res Clin Oncol 2019; 145:1461-1469. [PMID: 31006845 DOI: 10.1007/s00432-019-02913-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children. Pathogenesis of RMS is associated with aggressive growth pattern and increased risk of morbidity and mortality. There are two main subtypes or RMS: embryonal and alveolar. The embryonal type is characterized by distinct molecular aberrations, including alterations in the activity of certain protein kinases. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays a vital role in focal adhesion (FA) assembly to promote cytoskeleton dynamics and regulation of cell motility. It is regulated by multiple phosphorylation sites: tyrosine 397, Tyr 576/577, and Tyr 925. Tyrosine 397 is the autophosphorylation site that regulates FAK localization at the cell periphery to facilitate the assembly and formation of the FA complex. The kinase activity of FAK is mediated by the phosphorylation of Tyr 576/577 within the kinase domain activation loop. Aberrations of FAK phosphorylation have been linked to the pathogenesis of different types of cancers. In this regard, pY397 upregulation is linked to increase ERMS cell motility, invasion, and tumorigenesis. METHODS In this study, we have used an established human embryonal muscle rhabdomyosarcoma cell line RD as a model to examine FAK phosphorylation profiles to characterize its role in the pathogenies of RMS. RESULTS Our findings revealed a significant increase of FAK phosphorylation at pY397 in RD cells compared to control cells (hTERT). On the other hand, Tyr 576/577 phosphorylation levels in RD cells displayed a pronounced reduction. Our data showed that Y925 residue exhibited no detectable change. The in vitro analysis showed that the FAK inhibitor, PF-562271 led to G1 cell-cycle arrest induced cell death (IC50, ~ 12 µM) compared to controls. Importantly, immunostaining analyses displayed a noticeable reduction of Y397 phosphorylation following PF-562271 treatment. Our data also showed that PF-562271 suppressed RD cell migration in a dose-dependent manner associated with a reduction in Y397 phosphorylation. CONCLUSIONS The data presented herein indicate that targeting FAK phosphorylation at distinct sites is a promising strategy in future treatment approaches for defined subgroups of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Deema O Qasrawi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mana Alshehri
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Aru Narendran
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
46
|
Zhong F, Zhu T, Pan X, Zhang Y, Yang H, Wang X, Hu J, Han H, Mei L, Chen D, Wang K, Zhou X, Li X, Dong X. Comprehensive genomic profiling of high-grade serous ovarian carcinoma from Chinese patients identifies co-occurring mutations in the Ras/Raf pathway with TP53. Cancer Med 2019; 8:3928-3935. [PMID: 31124283 PMCID: PMC6639185 DOI: 10.1002/cam4.2243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/12/2019] [Accepted: 04/28/2019] [Indexed: 01/02/2023] Open
Abstract
High‐grade serous ovarian carcinoma (HGSOC) is a major form of ovarian epithelial tumor that is often diagnosed only at an advanced stage when it is already highly aggressive. We performed comprehensive genomic profiling using an analytically validated clinical next‐generation sequencing assay to identify genomic alterations in 450 cancer‐related genes in a cohort of 88 Chinese HGSOC patients. Overall, we detected 547 genomic alterations with an average of 6.2 alterations per tumor. Most of these HGSOC tumors had low tumor mutation burden and were microsatellite stable. Consistent with earlier studies, TP53 mutations were present in the majority (96.6%) of the tumors studied, and mutations in BRCA1/2 that affect DNA repair were also detected frequently in 20.5% of the tumors. However, we observed a 10.2% of mutated genes in the Ras/Raf pathway, all co‐occurring with TP53 mutations in the same tumor, which was unrecognized previously. Our results show that in HGSOC patients, there may be an unrecognized co‐occurrence of TP53 mutations with mutations in Ras/Raf pathway.
Collapse
Affiliation(s)
- Fangfang Zhong
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Tao Zhu
- Zhejiang Cancer Hospital, Hangzhou, China
| | | | - Yanling Zhang
- The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Haikun Yang
- Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | | | | | | | | | | | | | - Xianrong Zhou
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiuqin Li
- Shengjing Hospital of China Medical University, Shenyang, China
| | | |
Collapse
|
47
|
Mak G, Soria JC, Blagden SP, Plummer R, Fleming RA, Nebot N, Zhang J, Mazumdar J, Rogan D, Gazzah A, Rizzuto I, Greystoke A, Yan L, Tolson J, Auger KR, Arkenau HT. A phase Ib dose-finding, pharmacokinetic study of the focal adhesion kinase inhibitor GSK2256098 and trametinib in patients with advanced solid tumours. Br J Cancer 2019; 120:975-981. [PMID: 30992546 PMCID: PMC6735221 DOI: 10.1038/s41416-019-0452-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Combined focal adhesion kinase (FAK) and MEK inhibition may provide greater anticancer effect than FAK monotherapy. Methods This dose-finding phase Ib study (adaptive 3 + 3 design) determined the maximum tolerated dose (MTD) of trametinib and the FAK inhibitor GSK2256098 in combination. Eligible patients had mesothelioma or other solid tumours with probable mitogen activated protein kinase pathway activation. Adverse events (AEs), dose-limiting toxicities, disease progression and pharmacokinetics/pharmacodynamics were analysed. Results Thirty-four subjects were enrolled. The GSK2256098/trametinib MTDs were 500 mg twice daily (BID)/0.375 mg once daily (QD) (high/low) and 250 mg BID/0.5 mg QD (low/high). The most common AEs were nausea, diarrhoea, decreased appetite, pruritus, fatigue and rash; none were grade 4. Systemic exposure to trametinib increased when co-administered with GSK2256098, versus trametinib monotherapy; GSK2256098 pharmacokinetics were unaffected by concomitant trametinib. Median progression-free survival (PFS) was 11.8 weeks (95% CI: 6.1–24.1) in subjects with mesothelioma and was longer with Merlin-negative versus Merlin-positive tumours (15.0 vs 7.3 weeks). Conclusions Trametinib exposure increased when co-administered with GSK2256098, but not vice versa. Mesothelioma patients with loss of Merlin had longer PFS than subjects with wild-type, although support for efficacy with this combination was limited. Safety profiles were acceptable up to the MTD.
Collapse
Affiliation(s)
- Gabriel Mak
- Sarah Cannon Research Institute, London, UK.,Cancer Centre, University College London, London, UK
| | - Jean-Charles Soria
- Drug Development Department at Gustave Roussy Cancer Campus, University Paris-Sud, Paris, France
| | - Sarah P Blagden
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | - Ruth Plummer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Ronald A Fleming
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, PA, USA
| | - Noelia Nebot
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, PA, USA.,Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Jolly Mazumdar
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, PA, USA.,Chimeron Bio, New York, NY, 10016, USA
| | - Debra Rogan
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, PA, USA
| | - Anas Gazzah
- Drug Development Department at Gustave Roussy Cancer Campus, University Paris-Sud, Paris, France
| | - Ivana Rizzuto
- Department of Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - Alastair Greystoke
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Li Yan
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, PA, USA
| | - Jerry Tolson
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, PA, USA
| | - Kurt R Auger
- GlaxoSmithKline, Research Triangle Park, NC and Upper Providence, Collegeville, PA, USA
| | - Hendrik-Tobias Arkenau
- Sarah Cannon Research Institute, London, UK. .,Cancer Centre, University College London, London, UK.
| |
Collapse
|
48
|
Mutant p53 regulates LPA signaling through lysophosphatidic acid phosphatase type 6. Sci Rep 2019; 9:5195. [PMID: 30914657 PMCID: PMC6435808 DOI: 10.1038/s41598-019-41352-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has indicated that high-grade serous ovarian cancer (HGSOC) originates in the fallopian tube, where the earliest known genetic lesion is the mutation of TP53. In addition to such genetic changes, HGSOC is characterized by altered metabolism, including the production of oncogenic lipids such as lysophosphatidic acid (LPA). To understand the crosstalk between TP53 mutations and LPA signaling, we utilized primary fallopian tube epithelial cells (FTEC) engineered to overexpress mutant p53. We found that gain-of-function (GOF) p53 mutations downregulated the LPA-degrading enzyme lysophosphatidic acid phosphatase type 6 (ACP6), leading to upregulation of focal adhesion signaling in an LPA-dependent manner. Although highly expressed in normal fallopian tube epithelium, ACP6 expression was significantly reduced in ovarian cancer tumors and early in situ lesions. Downregulation of ACP6 in ovarian cancer cells was necessary and sufficient to support HGSOC proliferation, adhesion, migration, and invasion. Using mouse models of metastasis, we established that attenuation of ACP6 expression was associated with increased tumor burden. Conversely, overexpression of ACP6 suppressed invasive behavior. These data identify an involvement of oncogenic p53 mutations in LPA signaling and HGSOC progression through regulation of ACP6 expression.
Collapse
|
49
|
Increased expression of FAK isoforms as potential cancer biomarkers in ovarian cancer. Oncol Lett 2019; 17:4779-4786. [PMID: 31186683 PMCID: PMC6507456 DOI: 10.3892/ol.2019.10147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is expressed in most human cell types (example: Epithelial cells, fibroblasts and endothelial), it serves a key role in the control of cell survival, proliferation and motility. The abnormal expression of FAK has been associated with poor prognosis in cancer, including ovarian cancer. However, although FAK isoforms with specific molecular and functional properties have been characterized, there are a limited number of published studies that examine FAK isoforms in ovarian cancer. The aim of the present study was to analyze the expression level of FAK and its isoforms in ovarian cancer. The expression of FAK kinase and focal adhesion targeting (FAT) domains was determined with immunohistochemistry in healthy ovary, and serous and mucinous cystadenoma, borderline tumor and carcinoma samples. Additionally, the expression of FAK and its isoforms were investigated in three ovarian cancer-derived cell lines with western blotting and reverse transcription-semi-quantitative polymerase chain reaction. An increased expression of FAK kinase domain was determined in serous tumor samples and was associated with advancement of the lesion. FAK kinase domain expression was moderate-to-low in mucinous tumor samples. The expression of the FAK FAT domain in tumor samples was reduced, compared with healthy ovary samples; however, the FAT domain was localized to the cellular nucleus. Expression of alternative transcripts FAK°, FAK28,6 and FAK28 was determined in all three cell lines investigated. In conclusion, FAK kinase and FAT domains are differentially expressed among ovarian tumor types. These results indicated the presence of at least two isoforms of FAK (FAK and the putative FAK-related non-kinase) in tumor tissue, which is supported by the cells producing at least three FAK alternative transcripts. These results may support the use of FAK and its isoforms as biomarkers for ovarian cancer.
Collapse
|
50
|
Song G, Chen L, Zhang B, Song Q, Yu Y, Moore C, Wang TL, Shih IM, Zhang H, Chan DW, Zhang Z, Zhu H. Proteome-wide Tyrosine Phosphorylation Analysis Reveals Dysregulated Signaling Pathways in Ovarian Tumors. Mol Cell Proteomics 2019; 18:448-460. [PMID: 30523211 PMCID: PMC6398206 DOI: 10.1074/mcp.ra118.000851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/20/2018] [Indexed: 11/06/2022] Open
Abstract
The recent accomplishment of comprehensive proteogenomic analysis of high-grade serous ovarian carcinoma (HGSOC) tissues reveals cancer associated molecular alterations were not limited to variations among DNA, and mRNA/protein expression, but are a result of complex reprogramming of signaling pathways/networks mediated by the protein and post-translational modification (PTM) interactomes. A systematic, multiplexed approach interrogating enzyme-substrate relationships in the context of PTMs is fundamental in understanding the dynamics of these pathways, regulation of cellular processes, and their roles in disease processes. Here, as part of Clinical Proteomic Tumor Analysis Consortium (CPTAC) project, we established a multiplexed PTM assay (tyrosine phosphorylation, and lysine acetylation, ubiquitylation and SUMOylation) method to identify protein probes' PTMs on the human proteome array. Further, we focused on the tyrosine phosphorylation and identified 19 kinases are potentially responsible for the dysregulated signaling pathways observed in HGSOC. Additionally, elevated kinase activity was observed when 14 ovarian cancer cell lines or tumor tissues were subjected to test the autophosphorylation status of PTK2 (pY397) and PTK2B (pY402) as a proxy for kinase activity. Taken together, this report demonstrates that PTM signatures based on lysate reactions on human proteome array is a powerful, unbiased approach to identify dysregulated PTM pathways in tumors.
Collapse
Affiliation(s)
- Guang Song
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Li Chen
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Bai Zhang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Qifeng Song
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Yu Yu
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Cedric Moore
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Tian-Li Wang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
- ¶Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Ie-Ming Shih
- ¶Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Hui Zhang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Daniel W Chan
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| | - Zhen Zhang
- §Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231;
| | - Heng Zhu
- From the ‡Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|