1
|
Götz L, Rueckschloss U, Najjar SM, Ergün S, Kleefeldt F. Carcinoembryonic antigen-related cell adhesion molecule 1 in cancer: Blessing or curse? Eur J Clin Invest 2024:e14337. [PMID: 39451132 DOI: 10.1111/eci.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, also CD66a), a transmembrane glycoprotein of the immunoglobulin superfamily, is a pivotal mediator of various physiological and pathological processes, including oncologic disorders. However, its precise role in tumorigenicity is contradictory discussed by several clinical studies. This review aims to elucidate the clinical significance of CEACAM1 in different cancer entities focusing on tumour formation, progression and metastasis as well as on CEACAM1-mediated treatment resistance. Furthermore, we discuss the contribution of CEACAM1 to cancer immunity and modulation of the inflammatory microenvironment and finally provide a comprehensive review of treatment regimens targeting this molecule.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Irvine Hall, Ohio University, Athens, Ohio, USA
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
2
|
Konieva A, Deineka V, Diedkova K, Aguilar-Ferrer D, Lyndin M, Wennemuth G, Korniienko V, Kyrylenko S, Lihachev A, Zahorodna V, Baginskiy I, Coy E, Gogotsi O, Blacha-Grzechnik A, Simka W, Kube-Golovin I, Iatsunskyi I, Pogorielov M. MXene-Polydopamine-antiCEACAM1 Antibody Complex as a Strategy for Targeted Ablation of Melanoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43302-43316. [PMID: 39111771 PMCID: PMC11345726 DOI: 10.1021/acsami.4c08129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Photothermal therapy (PTT) is a method for eradicating tumor tissues through the use of photothermal materials and photosensitizing agents that absorb light energy from laser sources and convert it into heat, which selectively targets and destroys cancer cells while sparing healthy tissue. MXenes have been intensively investigated as photosensitizing agents for PTT. However, achieving the selectivity of MXenes to the tumor cells remains a challenge. Specific antibodies (Ab) against tumor antigens can achieve homing of the photosensitizing agents toward tumor cells, but their immobilization on MXene received little attention. Here, we offer a strategy for the selective ablation of melanoma cells using MXene-polydopamine-antiCEACAM1 Ab complexes. We coated Ti3C2Tx MXene with polydopamine (PDA), a natural compound that attaches Ab to the MXene surface, followed by conjugation with an anti-CEACAM1 Ab. Our experiments confirm the biocompatibility of the Ti3C2Tx-PDA and Ti3C2Tx-PDA-antiCEACAM1 Ab complexes across various cell types. We also established a protocol for the selective ablation of CEACAM1-positive melanoma cells using near-infrared irradiation. The obtained complexes exhibit high selectivity and efficiency in targeting and eliminating CEACAM1-positive melanoma cells while sparing CEACAM1-negative cells. These results demonstrate the potential of MXene-PDA-Ab complexes for cancer therapy. They underline the critical role of targeted therapies in oncology, offering a promising avenue for the precise and safe treatment of melanoma and possibly other cancers characterized by specific biomarkers. Future research will aim to refine these complexes for clinical use, paving the way for new strategies for cancer treatment.
Collapse
Affiliation(s)
- Anastasia Konieva
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
| | - Volodymyr Deineka
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Kateryna Diedkova
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Daniel Aguilar-Ferrer
- NanoBioMedical
Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland
- Institut
Europeen des Membranes, IEM, UMR 5635, Université de Montpellier,
ENSCM, CNRS, 34730 Montpellier, France
| | - Mykola Lyndin
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
| | - Gunther Wennemuth
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Viktoriia Korniienko
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | - Sergiy Kyrylenko
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
| | - Alexey Lihachev
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| | | | - Ivan Baginskiy
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Materials
Research Centre, 3 Krzhizhanovskogo
Str., 03142 Kyiv, Ukraine
| | - Emerson Coy
- NanoBioMedical
Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland
| | - Oleksiy Gogotsi
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Materials
Research Centre, 3 Krzhizhanovskogo
Str., 03142 Kyiv, Ukraine
| | - Agata Blacha-Grzechnik
- Faculty of
Chemistry, Silesian University of Technology, 9 Strzody Str., 44-100 Gliwice, Poland
| | - Wojciech Simka
- Faculty of
Chemistry, Silesian University of Technology, 9 Strzody Str., 44-100 Gliwice, Poland
| | - Irina Kube-Golovin
- Department
of Anatomy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Igor Iatsunskyi
- NanoBioMedical
Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., 61-614 Poznan, Poland
| | - Maksym Pogorielov
- Biomedical
Research Center, Medical Institute, Sumy
State University, 31 Sanatornaya Str., 40018 Sumy, Ukraine
- Insitute
of Atomic Physics and Spectroscopy, University
of Latvia, 3 Jelgavas Str., LV-1004 Riga, Latvia
| |
Collapse
|
3
|
Götz L, Rueckschloss U, Balk G, Pfeiffer V, Ergün S, Kleefeldt F. The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer. Front Immunol 2023; 14:1295232. [PMID: 38077351 PMCID: PMC10704240 DOI: 10.3389/fimmu.2023.1295232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Gözde Balk
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Verena Pfeiffer
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Kube-Golovin I, Lyndin M, Wiesehöfer M, Wennemuth G. CEACAM expression in an in-vitro prostatitis model. Front Immunol 2023; 14:1236343. [PMID: 37691945 PMCID: PMC10485834 DOI: 10.3389/fimmu.2023.1236343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Prostatitis is an inflammatory disease of the prostate gland, which affects 2-16% of men worldwide and thought to be a cause for prostate cancer (PCa) development. Carcinoembryogenic antigen-related cell adhesion molecules (CEACAMs) are deregulated in inflammation and in PCa. The role of CEACAMs in prostate inflammation and their possible contribution to the malignant transformation of prostate epithelial cells is still elusive. In this study, we investigated the expression of CEACAMs in an in-vitro prostatitis model and their potential role in malignant transformation of prostate epithelial cells. Methods Normal prostate epithelial RWPE-1 cells were treated with pro-inflammatory cytokines to achieve an inflammatory state of the cells. The expression of CEACAMs and their related isoforms were analyzed. Additionally, the expression levels of selected CEACAMs were correlated with the expression of malignancy markers and the migratory properties of the cells. Results This study demonstrates that the pro-inflammatory cytokines, tumor necrosis factor alpha (TNFα) and interferon-gamma (IFNγ), induce synergistically an up-regulation of CEACAM1 expression in RWPE-1 cells, specifically favoring the CEACAM1-L isoform. Furthermore, overexpressed CEACAM1-L is associated with the deregulated expression of JAK/STAT, NFκB, and epithelial-mesenchymal transition (EMT) genes, as well as an increased cell migration. Conclusion We postulate that CEACAM1 isoform CEACAM1-4L may synergistically contribute to inflammation-induced oncogenesis in the prostate.
Collapse
Affiliation(s)
| | - Mykola Lyndin
- University Hospital Essen, Department of Anatomy, Essen, Germany
- Academic and Research Medical Institute, Department of Pathology, Sumy State University, Sumy, Ukraine
| | - Marc Wiesehöfer
- University Hospital Essen, Department of Anatomy, Essen, Germany
| | | |
Collapse
|
5
|
Kowalewski J, Paris T, Gonzalez C, Lelièvre E, Castaño Valencia L, Boutrois M, Augier C, Lutfalla G, Yatime L. Characterization of a member of the CEACAM protein family as a novel marker of proton pump-rich ionocytes on the zebrafish epidermis. PLoS One 2021; 16:e0254533. [PMID: 34252160 PMCID: PMC8274849 DOI: 10.1371/journal.pone.0254533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
In humans, several members of the CEACAM receptor family have been shown to interact with intestinal pathogens in an inflammatory context. While CEACAMs have long been thought to be only present in mammals, recent studies have identified ceacam genes in other vertebrates, including teleosts. The function of these related genes remains however largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook the study of a putative member of the family, CEACAMz1, identified in Danio rerio. Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular protein containing eleven immunoglobulin domains but revealed no evident orthology with human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the developing gills. This distribution remains constant until juvenile stage is reached, at which point CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial filaments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstructions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin epidermis. These cells are embedded within the keratinocytes pavement and we unambiguously identified them as proton-pump rich ionocytes (HR cells). As the expression of ceacamz1 is turned on concomitantly to that of other known markers of HR cells, we propose that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish epidermis.
Collapse
Affiliation(s)
- Julien Kowalewski
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Théo Paris
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Catherine Gonzalez
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Lelièvre
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Lina Castaño Valencia
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Morgan Boutrois
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Augier
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Georges Lutfalla
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laure Yatime
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
6
|
Gandhi AK, Sun ZYJ, Kim WM, Huang YH, Kondo Y, Bonsor DA, Sundberg EJ, Wagner G, Kuchroo VK, Petsko GA, Blumberg RS. Structural basis of the dynamic human CEACAM1 monomer-dimer equilibrium. Commun Biol 2021; 4:360. [PMID: 33742094 PMCID: PMC7979749 DOI: 10.1038/s42003-021-01871-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Human (h) carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) function depends upon IgV-mediated homodimerization or heterodimerization with host ligands, including hCEACAM5, hTIM-3, PD-1, and a variety of microbial pathogens. However, there is little structural information available on how hCEACAM1 transitions between monomeric and dimeric states which in the latter case is critical for initiating hCEACAM1 activities. We therefore mutated residues within the hCEACAM1 IgV GFCC' face including V39, I91, N97, and E99 and examined hCEACAM1 IgV monomer-homodimer exchange using differential scanning fluorimetry, multi-angle light scattering, X-ray crystallography and/or nuclear magnetic resonance. From these studies, we describe hCEACAM1 homodimeric, monomeric and transition states at atomic resolution and its conformational behavior in solution through NMR assignment of the wildtype (WT) hCEACAM1 IgV dimer and N97A mutant monomer. These studies reveal the flexibility of the GFCC' face and its important role in governing the formation of hCEACAM1 dimers and selective heterodimers.
Collapse
Affiliation(s)
- Amit K Gandhi
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhen-Yu J Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Walter M Kim
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-Hwa Huang
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Kondo
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Smart JA, Oleksak JE, Hartsough EJ. Cell Adhesion Molecules in Plasticity and Metastasis. Mol Cancer Res 2021; 19:25-37. [PMID: 33004622 PMCID: PMC7785660 DOI: 10.1158/1541-7786.mcr-20-0595] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Prior to metastasis, modern therapeutics and surgical intervention can provide a favorable long-term survival for patients diagnosed with many types of cancers. However, prognosis is poor for patients with metastasized disease. Melanoma is the deadliest form of skin cancer, yet in situ and localized, thin melanomas can be biopsied with little to no postsurgical follow-up. However, patients with metastatic melanoma require significant clinical involvement and have a 5-year survival of only 34% to 52%, largely dependent on the site of colonization. Melanoma metastasis is a multi-step process requiring dynamic changes in cell surface proteins regulating adhesiveness to the extracellular matrix (ECM), stroma, and other cancer cells in varied tumor microenvironments. Here we will highlight recent literature to underscore how cell adhesion molecules (CAM) contribute to melanoma disease progression and metastasis.
Collapse
Affiliation(s)
- Jessica A Smart
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julia E Oleksak
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Edward J Hartsough
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Hayashi S, Osada Y, Miura K, Simizu S. Cell-dependent regulation of vasculogenic mimicry by carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1). Biochem Biophys Rep 2020; 21:100734. [PMID: 32025578 PMCID: PMC6997815 DOI: 10.1016/j.bbrep.2020.100734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Vasculogenic mimicry (VM) promotes tumor migration, metastasis, and invasion in various types of cancer, but the relationship between VM and these phenotypes remains undefined. In this study, we examined carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) as a novel target of VM. We found that ectopic expression of CEACAM1 in HT1080 human fibrosarcoma cells suppressed the formation of a VM-like network. Further, cell migration and proliferation were abated by the introduction of CEACAM1 into HT1080 cells. Conversely, knockout (KO) of the CEACAM1 gene in SK-MEL-28 melanoma cells, which normally express high levels of CEACAM1, inhibited formation of a VM-like network, which was covered on reintroduction of CEACAM1. These results suggest that CEACAM1 differentially regulates formation of the VM-like network between cancer cell types and implicate CEACAM1 as a novel therapeutic target in malignant cancer. CEACAM1 is not expressed in HT1080 cells, and overexpression of CEACAM1 in HT1080 cells suppresses vasculogenic mimicry. CEACAM1 is highly expressed in SK-MEL-28 cells, and deletion of CEACAM1 in SK-MEL-28 cells abolishes vasculogenic mimicry. CEACAM1 regulates vasculogenic mimicry in a cell-dependent manner.
Collapse
Affiliation(s)
- Soichiro Hayashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yoshiyuki Osada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kazuki Miura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
9
|
Kim WM, Huang YH, Gandhi A, Blumberg RS. CEACAM1 structure and function in immunity and its therapeutic implications. Semin Immunol 2019; 42:101296. [PMID: 31604530 PMCID: PMC6814268 DOI: 10.1016/j.smim.2019.101296] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
The type I membrane protein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) distinctively exhibits significant alternative splicing that allows for tunable functions upon homophilic binding. CEACAM1 is highly expressed in the tumor environment and is strictly regulated on lymphocytes such that its expression is restricted to activated cells where it is now recognized to function in tolerance pathways. CEACAM1 is also an important target for microbes which have co-opted these attributes of CEACAM1 for the purposes of invading the host and evading the immune system. These properties, among others, have focused attention on CEACAM1 as a unique target for immunotherapy in autoimmunity and cancer. This review examines recent structural information derived from the characterization of CEACAM1:CEACAM1 interactions and heterophilic modes of binding especially to microbes and how this relates to CEACAM1 function. Through this, we aim to provide insights into targeting CEACAM1 for therapeutic intervention.
Collapse
Affiliation(s)
- Walter M Kim
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Amit Gandhi
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Size Matters: The Functional Role of the CEACAM1 Isoform Signature and Its Impact for NK Cell-Mediated Killing in Melanoma. Cancers (Basel) 2019; 11:cancers11030356. [PMID: 30871206 PMCID: PMC6468645 DOI: 10.3390/cancers11030356] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is the most aggressive and treatment resistant type of skin cancer. It is characterized by continuously rising incidence and high mortality rate due to its high metastatic potential. Various types of cell adhesion molecules have been implicated in tumor progression in melanoma. One of these, the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), is a multi-functional receptor protein potentially expressed in epithelia, endothelia, and leukocytes. CEACAM1 often appears in four isoforms differing in the length of their extracellular and intracellular domains. Both the CEACAM1 expression in general, and the ratio of the expressed CEACAM1 splice variants appear very dynamic. They depend on both the cell activation stage and the cell growth phase. Interestingly, normal melanocytes are negative for CEACAM1, while melanomas often show high expression. As a cell–cell communication molecule, CEACAM1 mediates the direct interaction between tumor and immune cells. In the tumor cell this interaction leads to functional inhibitions, and indirectly to decreased cancer cell immunogenicity by down-regulation of ligands of the NKG2D receptor. On natural killer (NK) cells it inhibits NKG2D-mediated cytolysis and signaling. This review focuses on novel mechanistic insights into CEACAM1 isoforms for NK cell-mediated immune escape mechanisms in melanoma, and their clinical relevance in patients suffering from malignant melanoma.
Collapse
|
11
|
Nichita L, Zurac S, Bastian A, Stinga P, Nedelcu R, Brinzea A, Turcu G, Ion D, Jilaveanu L, Sticlaru L, Popp C, Cioplea M. Comparative analysis of CEACAM1 expression in thin melanomas with and without regression. Oncol Lett 2019; 17:4149-4154. [PMID: 30944609 PMCID: PMC6444332 DOI: 10.3892/ol.2019.10067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/18/2018] [Indexed: 11/29/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a key molecule in several intracellular and intercellular signaling pathways, with multiple functional and structural roles. CEACAM1 expression in melanoma is often described in the invading part of the tumor and has been associated with increased melanoma cells invasion and migration. We studied CEACAM1 expression in regressing versus non-regressing thin melanomas, knowing that phenomenon of regression represents a valuable model for understanding tumor immunity. In melanoma, through homophilic interactions, CEACAM1 inhibits natural killer cell activity, inhibits effector functions of tumor infiltrating lymphocytes, such as cytotoxicity and interferon-γ release. We present a retrospective study including 53 consecutive cases of thin melanoma, 21 with regression and 32 without regression. Comparative analysis of CEACAM1 expression in regressed and non-regressed areas from melanomas with regression and in non-regressed melanomas was performed. We used three different clones of CEACAM1: AA 1-428, extracellular domain, rabbit; AA 1-428, mouse, clone 8B6E2F4; and AA 1-468, full length, mouse, clone 2F6. All three clones had similar reactivity. We identified membrane positivity of tumor cells in non-regressed melanomas and in non-regressed areas in melanomas with regression. Remaining tumor cells in regressed areas were mostly negative for CEACAM1. In non-regressed lesions, there was a stronger positivity of CEACAM1 in the deep invasive front. In thin melanomas, CEACAM1 overexpression is related with invasiveness, suggesting that CEACAM1-positive melanomas are more aggressive. Also, in areas of regression tumor cells lose CEACAM1 expression, probably correlated with the presence of natural killer cells.
Collapse
Affiliation(s)
- Luciana Nichita
- Department of Pathology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 010221 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 010221 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Alexandra Bastian
- Department of Pathology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 010221 Bucharest, Romania.,Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Patricia Stinga
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Roxana Nedelcu
- Department of Physiopathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alice Brinzea
- Department of Physiopathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Gabriela Turcu
- Department of Physiopathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Dermatology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Daniela Ion
- Department of Physiopathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Lucia Jilaveanu
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT 208028, USA
| | - Liana Sticlaru
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Cristiana Popp
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Mirela Cioplea
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| |
Collapse
|
12
|
Wang N, Wang Q, Chi J, Xiang F, Lin M, Wang W, Wei F, Feng Y. Carcinoembryonic antigen cell adhesion molecule 1 inhibits the antitumor effect of neutrophils in tongue squamous cell carcinoma. Cancer Sci 2019; 110:519-529. [PMID: 30565803 PMCID: PMC6361565 DOI: 10.1111/cas.13909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
Carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1), a transmembrane glycoprotein, has multiple functions. In tongue squamous cell carcinoma (TSCC), CEACAM1 overexpression is correlated with neutrophil infiltration, and both are associated with poor clinical outcomes. However, the mechanism underlying CEACAM1's effect on neutrophil function in TSCC remains unclear. We cocultured tongue carcinoma cells overexpressing CEACAM1‐4L, CEACAM1‐4S and differentiated HL‐60 cells. This significantly upregulated the expression of MMP‐9, interleukin 8, and VEGF‐A in the differentiated HL‐60 cells and downregulated the expression of TNF‐α, relative to vector and blank control groups (P < 0.05). Additionally, CEACAM1 overexpression in tongue carcinoma cells weakened the cytotoxicity of differentiated HL‐60 cells in the coculture system (P < 0.05). Thus, CEACAM1 expression in TSCC may induce an antitumor to protumor transformation of neutrophils. We performed qRT‐PCR and ELISA to evaluate the underlying mechanism, and found that CEACAM1 expression in tongue carcinoma cells upregulated transforming growth factor β1 (TGF‐β1) expression, while blocking of TGF‐β1 inhibited the neutrophils’ changes in the coculture system. Immunohistochemical analysis of clinical specimens revealed strong expression of TGF‐β1 protein in TSCC. TGF‐β1 expression was positively correlated with CEACAM1 expression, lymph node metastasis, and tumor recurrence. Double immunofluorescence results revealed colocalization of CEACAM1 and TGF‐β1 protein in TSCC. A xenograft nude mouse model revealed that CEACAM1 overexpression in TSCC promoted tumor formation and growth, and was associated with more neutrophils infiltration. Our results indicate that CEACAM1 overexpression in TSCC may induce transformation of neutrophils from antitumor to protumor type via TGF‐β1, which may further promote tumor progression.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
| | - Jinghua Chi
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Fenggang Xiang
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Mei Lin
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Wenhong Wang
- Department of Pathology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Fengcai Wei
- Department of Stomatology, Qilu Hospital, Institute of Stomatology, Shandong University, Jinan, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, School of Stomatology and Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Obiedat A, Seidel E, Mahameed M, Berhani O, Tsukerman P, Voutetakis K, Chatziioannou A, McMahon M, Avril T, Chevet E, Mandelboim O, Tirosh B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1. FASEB J 2018; 33:3481-3495. [PMID: 30452881 DOI: 10.1096/fj.201801350rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The unfolded protein response (UPR) is an adaptive signaling pathway activated in response to endoplasmic reticulum (ER) stress. The effectors of the UPR are potent transcription activators; however, some genes are suppressed by ER stress at the mRNA level. The mechanisms underlying UPR-mediated gene suppression are less known. Exploration of the effect of UPR on NK cells ligand expression found that the transcription of NK group 2 member D (NKG2D) ligand major histocompatibility complex class I polypeptide-related sequence A/B (MICA/B) is suppressed by the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) pathway of the UPR. Deletion of IRE1 or XBP1 was sufficient to promote mRNA and surface levels of MICA. Accordingly, NKG2D played a greater role in the killing of IRE1/XBP1 knockout target cells. Analysis of effectors downstream to XBP1s identified E2F transcription factor 1 (E2F1) as linking UPR and MICA transcription. The inverse correlation between XBP1 and E2F1 or MICA expression was corroborated in RNA-Seq analysis of 470 primary melanoma tumors. While mechanisms that connect XBP1 to E2F1 are not fully understood, we implicate a few microRNA molecules that are modulated by ER stress and possess dual suppression of E2F1 and MICA. Because of the importance of E2F1 and MICA in cancer progression and recognition, these observations could be exploited for cancer therapy by manipulating the UPR in tumor cells.-Obiedat, A., Seidel, E., Mahameed, M., Berhani, O., Tsukerman, P., Voutetakis, K., Chatziioannou, A., McMahon, M., Avril, T., Chevet, E., Mandelboim, O., Tirosh, B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1.
Collapse
Affiliation(s)
- Akram Obiedat
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Seidel
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Mohamed Mahameed
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Berhani
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Konstantinos Voutetakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,e-Noesis Inspired Operational Systems Applications Private Company PC, Kallithea-Athens, Greece
| | - Mari McMahon
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and.,Apoptosis Research Centre (ARC), National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Tony Avril
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
On the Dual Role of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1) in Human Malignancies. J Immunol Res 2018; 2018:7169081. [PMID: 30406153 PMCID: PMC6204181 DOI: 10.1155/2018/7169081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a glycoprotein belonging to the carcinoembryonic antigen (CEA) family that is expressed on a wide variety of cells and holds a complex role in inflammation through its alternate splicing and generation of various isoforms, mediating intricate mechanisms of modulation and dysregulation. Initially regarded as a tumor suppressor as its expression shows considerable downregulation within the epithelia in the early phases of many solid cancers, CEACAM1 has been linked lately to the progression of malignancy and metastatic spread as various papers point to its role in tumor progression, angiogenesis, and invasion. We reviewed the literature and discussed the various expression patterns of CEACAM1 in different types of tumors, describing its structure and general biologic functions and emphasizing the most significant findings that link this molecule to poor prognosis. The importance of understanding the role of CEACAM1 in cell transformation stands not only in this adhesion molecule's value as a prognostic factor but also in its promising premise as a potential new molecular target that could be exploited as a specific cancer therapy.
Collapse
|
15
|
Horst AK, Najjar SM, Wagener C, Tiegs G. CEACAM1 in Liver Injury, Metabolic and Immune Regulation. Int J Mol Sci 2018; 19:ijms19103110. [PMID: 30314283 PMCID: PMC6213298 DOI: 10.3390/ijms19103110] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein that is expressed on epithelial, endothelial and immune cells. CEACAM1 is a differentiation antigen involved in the maintenance of epithelial polarity that is induced during hepatocyte differentiation and liver regeneration. CEACAM1 regulates insulin sensitivity by promoting hepatic insulin clearance, and controls liver tolerance and mucosal immunity. Obese insulin-resistant humans with non-alcoholic fatty liver disease manifest loss of hepatic CEACAM1. In mice, deletion or functional inactivation of CEACAM1 impairs insulin clearance and compromises metabolic homeostasis which initiates the development of obesity and hepatic steatosis and fibrosis with other features of non-alcoholic steatohepatitis, and adipogenesis in white adipose depot. This is followed by inflammation and endothelial and cardiovascular dysfunctions. In obstructive and inflammatory liver diseases, soluble CEACAM1 is shed into human bile where it can serve as an indicator of liver disease. On immune cells, CEACAM1 acts as an immune checkpoint regulator, and deletion of Ceacam1 gene in mice causes exacerbation of inflammation and hyperactivation of myeloid cells and lymphocytes. Hence, hepatic CEACAM1 resides at the central hub of immune and metabolic homeostasis in both humans and mice. This review focuses on the regulatory role of CEACAM1 in liver and biliary tract architecture in health and disease, and on its metabolic role and function as an immune checkpoint regulator of hepatic inflammation.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
- The Diabetes Institute, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
| | - Christoph Wagener
- University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
16
|
McLeod RL, Angagaw MH, Baral TN, Liu L, Moniz RJ, Laskey J, Hsieh S, Lee M, Han JH, Issafras H, Javaid S, Loboda A, Sadekova S, O'Connor JA, Tse A, Punnonen J. Characterization of murine CEACAM1 in vivo reveals low expression on CD8 + T cells and no tumor growth modulating activity by anti-CEACAM1 mAb CC1. Oncotarget 2018; 9:34459-34470. [PMID: 30349641 PMCID: PMC6195382 DOI: 10.18632/oncotarget.26108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been reported to mediate both tumorigenic and anti-tumor effects in vivo. Blockade of the CEACAM1 signaling pathway has recently been implicated as a novel mechanism for cancer immunotherapy. CC1, a mouse anti-CEACAM1 monoclonal antibody (mAb), has been widely used as a pharmacological tool in preclinical studies to inform on CEACAM1 pathway biology although limited data are available on its CEACAM1 blocking characteristics or pharmacodynamic-pharmacokinetic profiles. We sought to investigate CEACAM1 expression on mouse tumor and immune cells, characterize CC1 mAb binding, and evaluate CC1 in syngeneic mouse oncology models as a monotherapy and in combination with an anti-PD-1 mAb. CEACAM1 expression was observed at high levels on neutrophils, NK cells and myeloid-derived suppressor cells (MDSCs), while the expression on tumor-infiltrating CD8+ T cells was low. Unexpectedly, rather than blocking, CC1 facilitated binding of soluble CEACAM1 to CEACAM1 expressing cells. No anti-tumor effects were observed in CT26, MBT2 or A20 models when tested up to 30 mg/kg dose, a dose that was estimated to achieve >90% target engagement in vivo. Taken together, tumor infiltrating CD8+ T cells express low levels of CEACAM1 and CC1 Ab mediates no or minimal anti-tumor effects in vivo, as a monotherapy or in combination with anti-PD-1 treatment.
Collapse
Affiliation(s)
- Robbie L McLeod
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Minilik H Angagaw
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Toya Nath Baral
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Liming Liu
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Raymond Joseph Moniz
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Jason Laskey
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - SuChun Hsieh
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Mike Lee
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Jin-Hwan Han
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Hassan Issafras
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Sarah Javaid
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Andrey Loboda
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Svetlana Sadekova
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Joann A O'Connor
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Archie Tse
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| | - Juha Punnonen
- Merck & Co., Inc., Boston, MA, USA.,Merck & Co., Inc., Kenilworth, NJ, USA.,Merck & Co., Inc., Palo Alto, CA, USA
| |
Collapse
|
17
|
Wicklein D, Otto B, Suling A, Elies E, Lüers G, Lange T, Feldhaus S, Maar H, Schröder-Schwarz J, Brunner G, Wagener C, Schumacher U. CEACAM1 promotes melanoma metastasis and is involved in the regulation of the EMT associated gene network in melanoma cells. Sci Rep 2018; 8:11893. [PMID: 30089785 PMCID: PMC6082866 DOI: 10.1038/s41598-018-30338-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/16/2018] [Indexed: 12/24/2022] Open
Abstract
We investigated the functional role of CEACAM1 in a spontaneous metastasis xenograft model of human melanoma in scid mice using BRAF wildtype MeWo cells with and without RNAi mediated knockdown of CEACAM1. Tumors from the xenograft model were subjected to whole genome expression analysis and metastasis was quantified histologically. Results and identified markers were verified using tissue samples of over 100 melanoma patients. Knockdown of CEACAM1 prolonged the animals' survival by significantly reducing subcutaneous growth of MeWo tumors and spontaneous lung metastasis. Microarray analysis revealed a strong influence of CEACAM1 knockdown on the network of EMT associated genes in the xenograft tumors (e.g. downregulation of BRAF, FOSL1, NRAS and TWIST). IGFBP7 and Latexin (highest up- and downregulated expression in microarray analysis) were found to be associated with longer and shorter survival, respectively, of melanoma patients. High FOSL1 and altered TWIST1 expression were found to be correlated with shortened survival in the cohort of melanoma patients. After a stepwise selection procedure combining above markers, multivariate analysis revealed IGFBP7, Latexin and altered TWIST to be prognostic markers for death. CEACAM1 could be a target for melanoma therapy as an alternative to (or in combination with) immune checkpoint and BRAF inhibitors.
Collapse
Affiliation(s)
- Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Benjamin Otto
- Eppendorf AG, Hamburg, Germany
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Suling
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Elies
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Lüers
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Feldhaus
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Brunner
- Department of Cancer Research, Fachklinik Hornheide, Münster, Germany
- NeraCare GmbH, Bönen, Germany
| | - Christoph Wagener
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Prognostic Impact of CEACAM1 in Node-Negative Ovarian Cancer Patients. DISEASE MARKERS 2018; 2018:6714287. [PMID: 30050594 PMCID: PMC6046165 DOI: 10.1155/2018/6714287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023]
Abstract
The underlying mechanisms of ovarian cancer (OvCa) dissemination are still poorly understood, and novel molecular markers for this cancer type are urgently needed. In search of adhesion molecules with prognostic relevance in OvCa, we compared tumors with good outcome (alive > 3 years) and those with poor outcome (dead < 2 years) within data from The Cancer Genome Atlas (TCGA). The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) turned out as the only gene with differential expression in these groups. In order to further investigation on its role in OvCa, we analyzed CEACAM1 mRNA levels extracted from TCGA microarray data (n = 517) as well as CEACAM1 protein expression by Western blot analysis in a cohort of 242 tumor samples. Further, CEACAM1 localization in tumour tissue was evaluated by immunohistochemistry and CEACAM1 splice variants by RT-PCR in representative tumours. In Kaplan–Meier analysis, high CEACAM1 mRNA levels significantly correlated with longer survival (p = 0.008). By Western blot analysis in the second cohort, similar associations of high CEACAM1 protein levels with longer recurrence-free survival (RFS, p = 0.035) and overall survival (OAS, p = 0.004) were observed. In multivariate Cox regression analysis including clinical prognostic parameters, CEACAM1 mRNA or protein expression turned out as independent prognostic markers. Stratified survival analysis showed that high CEACAM1 protein expression was prognostic in node-negative tumors (p = 0.045 and p = 0.0002 for DFS and OAS) but lost prognostic significance in node-positive carcinomas. Similarly, high CEACAM1 mRNA expression did not show prognostic relevance in tumors with lymphatic invasion (L1) but was associated with longer survival in cases without lymphovascular involvement. Further analysis showed a predominance of 4S and 4L isoforms and mostly membraneous CEACAM1 localization in ovarian tumours. Our results suggest that CEACAM1 might be an independent favorable prognostic marker in OvCa, especially in the subgroup of patients with solely intraperitoneal metastasis.
Collapse
|
19
|
Raja R, Sahasrabuddhe NA, Radhakrishnan A, Syed N, Solanki HS, Puttamallesh VN, Balaji SA, Nanjappa V, Datta KK, Babu N, Renuse S, Patil AH, Izumchenko E, Prasad TSK, Chang X, Rangarajan A, Sidransky D, Pandey A, Gowda H, Chatterjee A. Chronic exposure to cigarette smoke leads to activation of p21 (RAC1)-activated kinase 6 (PAK6) in non-small cell lung cancer cells. Oncotarget 2018; 7:61229-61245. [PMID: 27542207 PMCID: PMC5308647 DOI: 10.18632/oncotarget.11310] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
Epidemiological data clearly establishes cigarette smoking as one of the major cause for lung cancer worldwide. Recently, targeted therapy has become one of the most preferred modes of treatment for cancer. Though certain targeted therapies such as anti-EGFR are in clinical practice, they have shown limited success in lung cancer patients who are smokers. This demands discovery of alternative drug targets through systematic investigation of cigarette smoke-induced signaling mechanisms. To study the signaling events activated in response to cigarette smoke, we carried out SILAC-based phosphoproteomic analysis of H358 lung cancer cells chronically exposed to cigarette smoke. We identified 1,812 phosphosites, of which 278 phosphosites were hyperphosphorylated (≥ 3-fold) in H358 cells chronically exposed to cigarette smoke. Our data revealed hyperphosphorylation of S560 within the conserved kinase domain of PAK6. Activation of PAK6 is associated with various processes in cancer including metastasis. Mechanistic studies revealed that inhibition of PAK6 led to reduction in cell proliferation, migration and invasion of the cigarette smoke treated cells. Further, siRNA mediated silencing of PAK6 resulted in decreased invasive abilities in a panel of non-small cell lung cancer (NSCLC) cells. Consistently, mice bearing tumor xenograft showed reduced tumor growth upon treatment with PF-3758309 (group II PAK inhibitor). Immunohistochemical analysis revealed overexpression of PAK6 in 66.6% (52/78) of NSCLC cases in tissue microarrays. Taken together, our study indicates that PAK6 is a promising novel therapeutic target for NSCLC, especially in smokers.
Collapse
Affiliation(s)
- Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | | | - Aneesha Radhakrishnan
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Nazia Syed
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Hitendra S Solanki
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India
| | - Sai A Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India
| | - Keshava K Datta
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India
| | - Arun H Patil
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Amrita School of Biotechnology, Amrita University, Kollam, 690 525, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India
| |
Collapse
|
20
|
Yang C, Cao M, Liu Y, He Y, Yang C, Du Y, Wang W, Zhang G, Wu M, Zhou M, Gao F. Inhibition of cell invasion and migration by CEACAM1-4S in breast cancer. Oncol Lett 2017; 14:4758-4766. [PMID: 29085477 PMCID: PMC5649695 DOI: 10.3892/ol.2017.6791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/05/2017] [Indexed: 11/05/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a cell-cell adhesion molecule, has been revealed to perform an important role in tumor progression. Although there are a number of studies on CEACAM1 in patients with breast cancer, there is limited information on the roles of CEACAM1 in breast cancer metastasis. The present study aimed to identify whether CEACAM1 is involved in breast cancer development and to investigate the underlying mechanisms. First, the expression of CEACAM1 was observed in patients with breast cancer, and the association between CEACAM1 expression levels and migration and invasion of breast cancer cells was analyzed. As there are 12 isoforms of CEACAM1, of which CEACAM1-4S dominates in the human breast epithelium, subsequent study focused on CEACAM1-4S as a representative of all the isoforms. Results of the present study demonstrated that CEACAM1-4S suppresses breast cancer cell invasion and migration in a manner that is dependent on the balance between matrix metalloproteinase 2/tissue inhibitor of metalloproteinase 2 and E-/N-cadherin expression. In addition, CEACAM1-4S was likely to cause reversal of epithelial-mesenchymal transition of breast cancer cells through repressing Smad2 and signal transducer and phosphorylation of activator of transcription 3. In conclusion, the present study demonstrated that CEACAM1-4S performs an inhibitory role in breast cancer metastasis, and restoring CEACAM1-4S expression may provide a novel strategy for therapy of patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Changcheng Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Manlin Cao
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wenjuan Wang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Man Wu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Muqing Zhou
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Feng Gao
- Department of Molecular Biology and Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
21
|
Ward CE, MacIsaac JL, Heughan CE, Weatherhead L. Metastatic Melanoma in Sentinel Node-Negative Patients: The Ottawa Experience. J Cutan Med Surg 2017; 22:14-21. [PMID: 28689448 DOI: 10.1177/1203475417720201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lymph node involvement is a major independent prognostic factor for survival in patients with malignant melanoma. Sentinel lymph node biopsy (SLNB) detection of microscopic nodal melanoma has been shown to improve both 5-year survival and 5-year disease-free survival. OBJECTIVE To determine the rate of metastatic melanoma in SLNB-negative patients at long-term follow-up. METHODS Study subjects include all 152 patients who had a negative SLNB and were followed at the Ottawa Regional Cancer Centre (ORCC) between 1999 and 2004. Patients with a follow-up period less than 6 months, more than 1 primary melanoma, and metastatic melanoma at diagnosis were excluded. Age at diagnosis, sex, Breslow thickness, ulceration, mitoses, regression, Clark level, anatomical location, development of metastatic melanoma, time to detection of metastatic disease, and time to death from melanoma were studied. RESULTS In this retrospective study at the ORCC, 40 of 140 (28.6%) patients with a single primary melanoma developed metastatic melanoma following negative SLNB at a mean follow-up of 63 months. CONCLUSION The rate of metastatic melanoma following negative SLNB at long-term follow-up at the ORCC is higher than the upper limit of rates reported in the literature (6%-24%). The reason for this is multifactorial, and the long follow-up period of 5 years allowed for detection of metastatic disease at a mean of 3.9 years. Long-term prognosis may be guarded in node-negative patients with a primary cutaneous melanoma, and surveillance by a multidisciplinary team is crucial.
Collapse
Affiliation(s)
- Chloe E Ward
- 1 Division of Dermatology, University of Ottawa, Ottawa, ON, Canada
| | | | - Caroline E Heughan
- 2 Division of Clinical Dermatology and Cutaneous Science, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
22
|
Schötterl S, Hübner M, Armento A, Veninga V, Wirsik NM, Bernatz S, Lentzen H, Mittelbronn M, Naumann U. Viscumins functionally modulate cell motility-associated gene expression. Int J Oncol 2017; 50:684-696. [DOI: 10.3892/ijo.2017.3838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
|
23
|
Rueckschloss U, Kuerten S, Ergün S. The role of CEA-related cell adhesion molecule-1 (CEACAM1) in vascular homeostasis. Histochem Cell Biol 2016; 146:657-671. [PMID: 27695943 DOI: 10.1007/s00418-016-1505-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
Abstract
Carcinoembryonic antigen (CEA)-related cell adhesion molecules belong to the immunoglobulin superfamily, are expressed in a broad spectrum of tissues and cell types and exert context-dependent activating as well as inhibitory effects. Among these molecules, the CEA-related cell adhesion molecule-1 (CEACAM1) is a transmembrane molecule with an extracellular, a transmembrane and a cytoplasmic domain. The latter contains immunoreceptor tyrosine-based inhibitory motifs and functions as a signaling molecule. CEACAM1 can form homo- and heterodimers which is relevant for its signaling activities. CEACAM1 acts as co-receptor that modulates the activity of different receptor types including VEGFR-2, and B and T cell receptors. CEACAM1 is expressed in endothelial cells, in pericytes of developing and newly formed immature blood vessels and in angiogenically activated adult vessels, e.g., tumor blood vessels. However, it is either undetectable or only weakly expressed in quiescent blood vessels. Recent studies indicated that CEACAM1 is involved in the regulation of the endothelial barrier function. In CEACAM1 -/- mice, increased vascular permeability and development of small atherosclerotic lesions was observed in the aortae. CEACAM1 is also detectable in activated lymphatic endothelial cells and plays a role in tumor lymphangiogenesis. This review summarizes the vascular effects of CEACAM1 and focuses on its role in vascular morphogenesis and endothelial barrier regulation.
Collapse
Affiliation(s)
- Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Würzburg, Köllikerstrasse 6, 97070, Würzburg, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, University of Würzburg, Köllikerstrasse 6, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Köllikerstrasse 6, 97070, Würzburg, Germany.
| |
Collapse
|
24
|
CEACAM1: Expression and Role in Melanocyte Transformation. DISEASE MARKERS 2016; 2016:9406319. [PMID: 27642217 PMCID: PMC5013198 DOI: 10.1155/2016/9406319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/07/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022]
Abstract
Metastases represent the main cause of death in melanoma patients. Despite the current optimized targeted therapy or immune checkpoint inhibitors the treatment of metastatic melanoma is unsatisfactory. Because of the poor prognosis of advanced melanoma there is an urgent need to identify new biomarkers to differentiate melanoma cells from normal melanocytes, to stratify patients according to their risk, and to identify subgroups of patients that require close follow-up or more aggressive therapy. Furthermore, melanoma progression has been associated with the dysregulation of cell adhesion molecules. We have reviewed the literature and have discussed the important role of the expression of the carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) in the development of melanoma. Thus, novel insights into CEACAM1 may lead to promising strategies in melanoma treatment, in monitoring melanoma patients, in assessing the response to immunotherapy, and in completing the standard immunohistochemical panel used in melanoma examination.
Collapse
|
25
|
The human antibody fragment DIATHIS1 specific for CEACAM1 enhances natural killer cell cytotoxicity against melanoma cell lines in vitro. J Immunother 2016; 38:357-70. [PMID: 26448580 PMCID: PMC4605278 DOI: 10.1097/cji.0000000000000100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supplemental Digital Content is available in the text. Several lines of evidence show that de novo expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is strongly associated with reduced disease-free survival of patients affected by metastatic melanoma. Previously published investigations report that homophilic interactions between CEACAM1 expressed on natural killer (NK) cells and tumors inhibit the NK cell-mediated killing independently of major histocompatibility complex class I recognition. This biological property can be physiologically relevant in metastatic melanoma because of the increased CEACAM1 expression observed on NK cells from some patients. Moreover, this inhibitory mechanism in many cases might hinder the efficacy of immunotherapeutic treatments of CEACAM1+ malignancies because of tumor evasion by activated effector cells. In the present study, we designed an in vitro experimental model showing that the human single-chain variable fragment (scFv) DIATHIS1 specific for CEACAM1 is able to enhance the lytic machinery of NK cells against CEACAM1+ melanoma cells. The coincubation of the scFv DIATHIS1 with CEACAM1+ melanoma cells and NK-92 cell line significantly increases the cell-mediated cytotoxicity. Moreover, pretreatment of melanoma cells with scFv DIATHIS1 promotes the activation and the degranulation capacity of in vitro–expanded NK cells from healthy donors. It is interesting to note that the melanoma cell line MelC and the primary melanoma cells STA that respond better to DIATHIS1 treatment, express higher relative levels of CEACAM1-3L and CEACAM1-3S splice variants isoforms compared with Mel501 cells that are less responsive to DIATHIS1-induced NK cell–mediated cytotoxicity. Taken together, our results suggest that the fully human antibody fragment DIATHIS1 originated by biopanning approach from a phage antibody library may represent a relevant biotechnological platform to design and develop completely human antimelanoma therapeutics of biological origin.
Collapse
|
26
|
Pan L, Hou L. MITF and cell migration: opposing signals, similar outcome. Pigment Cell Melanoma Res 2016; 29:229-30. [DOI: 10.1111/pcmr.12439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Pan
- The Laboratory of Developmental Cell Biology and Disease; School of Ophthalmology and Optometry and Eye Hospital; Wenzhou Medical University; Wenzhou China
| | - Ling Hou
- The Laboratory of Developmental Cell Biology and Disease; School of Ophthalmology and Optometry and Eye Hospital; Wenzhou Medical University; Wenzhou China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology; Wenzhou Medical University; Wenzhou China
| |
Collapse
|
27
|
Subbannayya Y, Syed N, Barbhuiya MA, Raja R, Marimuthu A, Sahasrabuddhe N, Pinto SM, Manda SS, Renuse S, Manju HC, Zameer MAL, Sharma J, Brait M, Srikumar K, Roa JC, Vijaya Kumar M, Kumar KVV, Prasad TSK, Ramaswamy G, Kumar RV, Pandey A, Gowda H, Chatterjee A. Calcium calmodulin dependent kinase kinase 2 - a novel therapeutic target for gastric adenocarcinoma. Cancer Biol Ther 2015; 16:336-45. [PMID: 25756516 DOI: 10.4161/15384047.2014.972264] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is one of the most common gastrointestinal malignancies and is associated with poor prognosis. Exploring alterations in the proteomic landscape of gastric cancer is likely to provide potential biomarkers for early detection and molecules for targeted therapeutic intervention. Using iTRAQ-based quantitative proteomic analysis, we identified 22 proteins that were overexpressed and 17 proteins that were downregulated in gastric tumor tissues as compared to the adjacent normal tissue. Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) was found to be 7-fold overexpressed in gastric tumor tissues. Immunohistochemical labeling of tumor tissue microarrays for validation of CAMKK2 overexpression revealed that it was indeed overexpressed in 94% (92 of 98) of gastric cancer cases. Silencing of CAMKK2 using siRNA significantly reduced cell proliferation, colony formation and invasion of gastric cancer cells. Our results demonstrate that CAMKK2 signals in gastric cancer through AMPK activation and suggest that CAMKK2 could be a novel therapeutic target in gastric cancer.
Collapse
|
28
|
Ullrich N, Löffek S, Horn S, Ennen M, Sánchez-Del-Campo L, Zhao F, Breitenbuecher F, Davidson I, Singer BB, Schadendorf D, Goding CR, Helfrich I. MITF is a critical regulator of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in malignant melanoma. Pigment Cell Melanoma Res 2015; 28:736-40. [PMID: 26301891 DOI: 10.1111/pcmr.12414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/20/2015] [Indexed: 02/03/2023]
Abstract
The multifunctional Ig-like carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is neo-expressed in the majority of malignant melanoma lesions. CEACAM1 acts as a driver of tumor cell invasion, and its expression correlates with poor patient prognosis. Despite its importance in melanoma progression, how CEACAM1 expression is regulated is largely unknown. Here, we show that CEACAM1 expression in melanoma cell lines and melanoma tissue strongly correlates with that of the microphthalmia-associated transcription factor (MITF), a key regulator of melanoma proliferation and invasiveness. MITF is revealed as a direct and positive regulator for CEACAM1 expression via binding to an M-box motif located in the CEACAM1 promoter. Taken together, our study provides novel insights into the regulation of CEACAM1 expression and suggests an MITF-CEACAM1 axis as a potential determinant of melanoma progression.
Collapse
Affiliation(s)
- Nico Ullrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| | - Stefanie Löffek
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| | - Susanne Horn
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| | - Marie Ennen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Luis Sánchez-Del-Campo
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, UK
| | - Fang Zhao
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| | - Frank Breitenbuecher
- German Cancer Consortium (DKTK), Essen, Germany
- Department of Medical Oncology, West German Cancer Center, Essen, Germany
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Bernhard B Singer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| | - Colin R Goding
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, UK
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
29
|
Yip J, Alshahrani M, Beauchemin N, Jackson DE. CEACAM1 regulates integrinαIIbβ3-mediated functions in platelets. Platelets 2015. [DOI: 10.3109/09537104.2015.1064102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Ling Y, Wang J, Wang L, Hou J, Qian P, Xiang-dong W. Roles of CEACAM1 in cell communication and signaling of lung cancer and other diseases. Cancer Metastasis Rev 2015; 34:347-57. [DOI: 10.1007/s10555-015-9569-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Ullrich N, Heinemann A, Nilewski E, Scheffrahn I, Klode J, Scherag A, Schadendorf D, Singer BB, Helfrich I. CEACAM1-3S Drives Melanoma Cells into NK Cell-Mediated Cytolysis and Enhances Patient Survival. Cancer Res 2015; 75:1897-907. [PMID: 25744717 DOI: 10.1158/0008-5472.can-14-1752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
CEACAM1 is a widely expressed multifunctional cell-cell adhesion protein reported to serve as a poor prognosis marker in melanoma patients. In this study, we examine the functional and clinical contributions of the four splice isoforms of CEACAM1. Specifically, we present in vitro and in vivo evidence that they affect melanoma progression and immune surveillance in a negative or positive manner that is isoform specific in action. In contrast with isoforms CEACAM1-4S and CEACAM1-4L, expression of isoforms CEACAM1-3S and CEACAM1-3L is induced during disease progression shown to correlate with clinical stage. Unexpectedly, overall survival was prolonged in patients with advanced melanomas expressing CEACAM1-3S. The favorable effects of CEACAM1-3S related to enhanced immunogenicity, which was mediated by cell surface upregulation of NKG2D receptor ligands, thereby sensitizing melanoma cells to lysis by natural killer cells. Conversely, CEACAM1-4L downregulated cell surface levels of the NKG2D ligands MICA and ULBP2 by enhanced shedding, thereby promoting malignant character. Overall, our results define the splice isoform-specific immunomodulatory and cell biologic functions of CEACAM1 in melanoma pathogenesis.
Collapse
Affiliation(s)
- Nico Ullrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anja Heinemann
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Elena Nilewski
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Inka Scheffrahn
- Institute for Gastroenterology and Hepatology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Joachim Klode
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - André Scherag
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Bernhard B Singer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany.
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
32
|
Karagiannis P, Fittall M, Karagiannis SN. Evaluating biomarkers in melanoma. Front Oncol 2015; 4:383. [PMID: 25667918 PMCID: PMC4304353 DOI: 10.3389/fonc.2014.00383] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/22/2014] [Indexed: 12/24/2022] Open
Abstract
The incidence of cutaneous melanoma has more than doubled over the last decades making it one of the fastest rising cancers worldwide. Improved awareness and early detection of malignant moles now permit earlier diagnosis aiming to decrease the likelihood of recurrence. However, it is difficult to identify those patients initially diagnosed with localized melanoma who subsequently develop metastatic disease. For this group, prognosis remains poor and clinical outcomes are variable and challenging to predict. Considerable efforts have focused on the search for novel prognostic tools, with numerous markers evaluated in the circulation and in tumor lesions. The most reliable predictors of patient outcome are the clinical and histological features of the primary tumor such as Breslow thickness, ulceration status, and mitotic rate. Elevated serum levels of the enzyme lactate dehydrogenase, likely to indicate active metastatic disease, are also routinely used to monitor patients. The emergence of novel immune and checkpoint antibody treatments for melanoma and increasing appreciation of key roles of the immune system in promoting or halting cancer progression have focused attention to immunological biomarkers. Validation of the most promising of these may have clinical applications in assisting prognosis, assessing endpoints in therapy, and monitoring responses during treatment.
Collapse
Affiliation(s)
- Panagiotis Karagiannis
- St. John’s Institute of Dermatology, Division of Genetics and Molecular Medicine, King’s College London, London, UK
- NIHR Biomedical Research Centre, Guy’s and St. Thomas’ Hospital, King’s College London, Guy’s Hospital, London, UK
| | - Matthew Fittall
- St. John’s Institute of Dermatology, Division of Genetics and Molecular Medicine, King’s College London, London, UK
- Clinical Oncology, Guy’s and St. Thomas’s NHS Foundation Trust, London, UK
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, Division of Genetics and Molecular Medicine, King’s College London, London, UK
- NIHR Biomedical Research Centre, Guy’s and St. Thomas’ Hospital, King’s College London, Guy’s Hospital, London, UK
| |
Collapse
|
33
|
ZIPPEL DOUGLAS, BARLEV HANI, ORTENBERG RONA, BARSHACK IRIS, SCHACHTER JACOB, MARKEL GAL. A longitudinal study of CEACAM1 expression in melanoma disease progression. Oncol Rep 2014; 33:1314-8. [DOI: 10.3892/or.2014.3703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/24/2014] [Indexed: 11/06/2022] Open
|
34
|
Liu JN, Wang HB, Zhou CC, Hu SY. CEACAM5 has different expression patterns in gastric non-neoplastic and neoplastic lesions and cytoplasmic staining is a marker for evaluation of tumor progression in gastric adenocarcinoma. Pathol Res Pract 2014; 210:686-93. [PMID: 25042385 DOI: 10.1016/j.prp.2014.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 05/01/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the expression patterns of CEACAM5 in non-neoplastic and neoplastic gastric lesions, as well as its application in the differential diagnosis and its relationship with tumor progression. METHODS CEACAM5 expression was detected by immunohistochemical staining in the serial sections of the gastric neoplastic and non-neoplastic lesions. The impacts of CEACAM5 expression patterns on tumor progression were evaluated by statistics, the clinical and pathological data included sex, age, tumor extension, lymph node involvement and tumor staging. RESULTS There was no CEACAM5 expression in normal gastric epithelial cells. In hyperplastic polyps, CEACAM5 was expressed with apical membranous staining in the hyperplastic and prolonged gastric pit adjacent to the surface. Intestinal metaplasia (IM) expressed CEACAM5 mainly with membranous pattern, and some cases showed membranous staining mixed with cytoplasmic staining. GIN expressed CEACAM5 mainly with membranous staining, but the mixed staining of cytoplasmic and membranous patterns increased, and especially in the high grade GIN, cytoplasmic staining of CEACAM5 began to occur. Compared with IM and GIN, CEACAM5 expression patterns of hyperplastic polyp showed a significant difference (P=0.000). IM, low grade GIN and the whole GIN showed no significant difference in CEACAM5 expression patterns (P=0.355), but IM and high grade GIN showed a significant difference (P=0.027). There was a significant difference between low and high grade GIN (P=0.002). GIN and well-differentiated carcinomas showed no significant difference (P=0.070), but low grade GIN and well differentiated carcinomas showed a significant difference (P=0.006). In gastric adenocarcinomas, CEACAM5 expression patterns showed a significant difference in tumor grading (P=0.010) and Laurén classification (P=0.001). In histological grading, well differentiated carcinomas showed more membranous staining than moderately and poorly differentiated, and more cytoplasmic CEACAM5 staining was detected in moderately and poorly differentiated carcinomas. Similar to that, in Laurén classification, intestinal carcinomas showed more membranous staining, and diffuse carcinomas showed more cytoplasmic staining. Moreover, CEACAM5 expression patterns showed a significant difference in tumor extension (P=0.012), lymph node involvement (P=0.015) and tumor staging (P=0.002), suggesting that CEACAM5 should be involved in tumor progression. In advanced carcinomas, CEACAM5 was expressed with more cytoplasmic staining regardless of the histological classification. CONCLUSION CEACAM5 had different expression patterns in gastric non-neoplastic and neoplastic lesions. The CEACAM5 expression patterns were associated with tumor progression. Membranous staining of CEACAM5 might be a marker of premalignancy in gastric lesions, and cytoplasmic CEACAM5 might enhance tumor invasion and migration and be an evaluated marker for progressive and advanced gastric cancer. Also, it might be useful for the differential diagnosis of gastric premalignant lesions.
Collapse
Affiliation(s)
- Jia-Ning Liu
- Department of General Surgery, The Second Hospital, Shandong University, 247#, BeiYuan Street, Jinan, Shandong 250033, PR China
| | - Hong-Bo Wang
- Department of Digestive Disease, The Second Hospital, Shandong University, 247#, BeiYuan Street, Jinan, Shandong 250033, PR China
| | - Cheng-Cheng Zhou
- Department of Pathology, The Second Hospital, Shandong University, 247#, BeiYuan Street, Jinan, Shandong 250033, PR China
| | - San-Yuan Hu
- Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
35
|
Poggi A, Musso A, Dapino I, Zocchi MR. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells. Immunol Lett 2014; 159:55-72. [PMID: 24657523 DOI: 10.1016/j.imlet.2014.03.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment represents the site where the tumor tries to survive and escape from immune system-mediated recognition. Indeed, to proliferate tumor cells can divert the immune response inducing the generation of myeloid derived suppressor cells and regulatory T cells which can limit the efficiency of effector antitumor lymphocytes in eliminating neoplastic cells. Many components of the tumor microenvironment can serve as a double sword for the tumor and the host. Several types of fibroblast-like cells, which herein we define mesenchymal stromal cells (MSC), secrete extracellular matrix components and surrounding the tumor mass can limit the expansion of the tumor. On the other hand, MSC can interfere with the immune recognition of tumor cells producing immunoregulatory cytokines as transforming growth factor (TGF)ß, releasing soluble ligands of the activating receptors expressed on cytolytic effector cells as decoy molecules, affecting the correct interaction among lymphocytes and tumor cells. MSC can also serve as target for the same anti-tumor effector lymphocytes or simply impede the interaction between these lymphocytes and neoplastic cells. Thus, several evidences point out the role of MSC, both in epithelial solid tumors and hematological malignancies, in regulating tumor cell growth and immune response. Herein, we review these evidences and suggest that MSC can be a suitable target for a more efficient anti-tumor therapy.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy.
| | - Alessandra Musso
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy
| | - Irene Dapino
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, Istituto Scientifico San Raffaele Milan, 20132 Milan, Italy
| |
Collapse
|
36
|
Wang N, Feng Y, Wang Q, Liu S, Xiang L, Sun M, Zhang X, Liu G, Qu X, Wei F. Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells. PLoS One 2014; 9:e89991. [PMID: 24587171 PMCID: PMC3937421 DOI: 10.1371/journal.pone.0089991] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/25/2014] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE The present study aimed to explore the clinical significance of neutrophils infiltration and carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1) expression in the tongue squamous cell carcinoma (TSCC), and to probe the possible relationship between them. MATERIALS AND METHODS Tissue microarray and immunohistochemistry were used to detect neutrophils density and CEACAM1 expression in 74 cases of primary TSCC specimens and 17 cases of corresponding peritumoral tissues. The relationship of CEACAM1 expression and neutrophils density with clinicopathologic parameters and cancer-related survival of TSCC patients were evaluated. The correlation between CEACAM1 expression and neutrophils density was also evaluated. Real-time quantitative transcription polymerase chain reaction (qRT-PCR) was used to explore the possible molecular mechanisms between CEACAM1 expression and neutrophils infiltration. RESULTS Immunohistochemistry evaluation revealed that there was more neutrophils infiltration in TSCC tissues than in peritumoral tissues. High neutrophil density was associated with LN metastasis (P=0.01), higher clinical stage (P=0.037) and tumor recurrence (P=0.024). CEACAM1 overexpression was also associated with lymph node metastasis (P=0.000) and higher clinical stage (P=0.001). Survival analysis revealed that both neutrophils infiltration and CEACAM1 overexpression were associated with poorer cancer-related survival of TSCC patients (P<0.05), and neutrophils infiltration was an independent prognostic factor for TSCC (P<0.05). Furthermore, overexpression of CEACAM1 was correlated with more neutrophils infiltration in TSCC tissues (P<0.01). qRT-PCR results showed that CEACAM1-4L can upregulate the mRNA expression of IL-8 and CXCL-6, which were strong chemotactic factors of neutrophils. CONCLUSION Our results demonstrated that more neutrophils infiltration and overexpression of CEACAM1 were associated with poor clinical outcomes in TSCC tissues. Overexpression of CEACAM1 on tumor cells correlated with more neutrophils infiltration to some extent through upregulating mRNA expression of IL-8 and CXCL-6.
Collapse
Affiliation(s)
- Ning Wang
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
- Department of Pathology, Medical College of Qingdao University, Qingdao, Shandong, China
- Department of Pathology, Medical College of Shandong University, Jinan, Shandong, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohua Liu
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Lei Xiang
- Department of Pathology, Medical College of Shandong University, Jinan, Shandong, China
| | - Mingxia Sun
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xiaoying Zhang
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail: (XQ); (FW)
| | - Fengcai Wei
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
- * E-mail: (XQ); (FW)
| |
Collapse
|
37
|
Abstract
Melanoma is the most life-threatening common form of skin cancer. While most cutaneous melanomas are cured by surgical resection, a minority will relapse locally, regionally, or distantly. Biomarkers have represented a focal point for research aimed at improving diagnostic accuracy as well as providing prognostic information that may help to guide therapeutic decisions. While systemic melanoma therapies were of extremely limited utility for patients with advanced disease in the past, two drugs have been approved the FDA within the past several years, and it is possible that they may provide even greater impact if employed earlier in the disease process. To optimally employ these therapies, prognostic biomarkers may offer significant value. This article reviews methodologies for both discovery and routine testing of melanoma biomarkers. It also focuses on specific commonly used markers, as well as approaches to studying their applications to specific clinical settings. As the armamentarium of melanoma drugs grows, it is hoped that specific biomarkers will aid in guiding the use of these agents for patients in the clinic.
Collapse
Affiliation(s)
- Danielle Levine
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
38
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Zikich D, Schachter J, Besser MJ. Immunotherapy for the management of advanced melanoma: the next steps. Am J Clin Dermatol 2013; 14:261-72. [PMID: 23516145 DOI: 10.1007/s40257-013-0013-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melanoma is an immunogenic tumor that can induce a natural immune response. A number of immunotherapy-based approaches have been developed over the past decades, and certain degrees of effectiveness were achieved by the use of cytokines, adoptive cell transfer and T-cell immune modulators. Currently, interleukin-2 and the immune stimulatory antibody, ipilimumab, are the only two approved immunotherapies for metastatic melanoma, but various new therapies are in promising developmental stages. This comprehensive review will discuss the latest achievements of immunotherapy and emerging directions for the management of advanced melanoma.
Collapse
Affiliation(s)
- Dragoslav Zikich
- Ella Institute for Melanoma, Sheba Medical Center, 52621 Ramat-Gan, Israel
| | | | | |
Collapse
|
40
|
Gellersen B, Wolf A, Kruse M, Schwenke M, Bamberger AM. Human Endometrial Stromal Cell-Trophoblast Interactions: Mutual Stimulation of Chemotactic Migration and Promigratory Roles of Cell Surface Molecules CD82 and CEACAM11. Biol Reprod 2013; 88:80. [DOI: 10.1095/biolreprod.112.106724] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
41
|
Locatelli C, Filippin-Monteiro FB, Creczynski-Pasa TB. Alkyl esters of gallic acid as anticancer agents: A review. Eur J Med Chem 2013; 60:233-9. [DOI: 10.1016/j.ejmech.2012.10.056] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/29/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
|
42
|
Liu J, Di G, Wu CT, Hu X, Duan H. CEACAM1 inhibits cell-matrix adhesion and promotes cell migration through regulating the expression of N-cadherin. Biochem Biophys Res Commun 2013; 430:598-603. [DOI: 10.1016/j.bbrc.2012.11.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/27/2012] [Indexed: 12/26/2022]
|
43
|
Protein and non-protein biomarkers in melanoma: a critical update. Amino Acids 2012; 43:2203-30. [DOI: 10.1007/s00726-012-1409-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022]
|
44
|
|
45
|
Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers NO, Jackson JR, Shahabi V. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 2012; 61:1019-31. [PMID: 22146893 PMCID: PMC11028506 DOI: 10.1007/s00262-011-1172-6] [Citation(s) in RCA: 598] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
PURPOSE Ipilimumab, a fully human monoclonal antibody specific to CTLA-4, has been shown to improve overall survival in metastatic melanoma patients. As a consequence of CTLA-4 blockade, ipilimumab treatment is associated with proliferation and activation of peripheral T cells. To better understand various tumor-associated components that may influence the clinical outcome of ipilimumab treatment, gene expression profiles of tumors from patients treated with ipilimumab were characterized. EXPERIMENTAL DESIGN Gene expression profiling was performed on tumor biopsies collected from 45 melanoma patients before and 3 weeks after the start of treatment in a phase II clinical trial. RESULTS Analysis of pre-treatment tumors indicated that patients with high baseline expression levels of immune-related genes were more likely to respond favorably to ipilimumab. Furthermore, ipilimumab appeared to induce two major changes in tumors from patients who exhibited clinical activity: genes involved in immune response showed increased expression, whereas expression of genes for melanoma-specific antigens and genes involved in cell proliferation decreased. These changes were associated with the total lymphocyte infiltrate in tumors, and there was a suggestion of association with prolonged overall survival in these patients. Many IFN-γ-inducible genes and Th1-associated markers showed increased expression after ipilimumab treatment, suggesting an accumulation of this particular type of T cell at the tumor sites, which might play an important role in mediating the antitumor activity of ipilimumab. CONCLUSIONS These results support the proposed mechanism of action of ipilimumab, suggesting that cell-mediated immune responses play an important role in the antitumor activity of ipilimumab.
Collapse
Affiliation(s)
- Rui-Ru Ji
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Scott D. Chasalow
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Lisu Wang
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, Santa Monica, CA USA
| | | | - John Cogswell
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Suresh Alaparthy
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - David Berman
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Maria Jure-Kunkel
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Nathan O. Siemers
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Jeffrey R. Jackson
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Vafa Shahabi
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| |
Collapse
|
46
|
Novel anti-melanoma immunotherapies: disarming tumor escape mechanisms. Clin Dev Immunol 2012; 2012:818214. [PMID: 22778766 PMCID: PMC3386565 DOI: 10.1155/2012/818214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/08/2012] [Indexed: 12/31/2022]
Abstract
The immune system fights cancer and sometimes temporarily eliminates it or reaches an equilibrium stage of tumor growth. However, continuous immunological pressure also selects poorly immunogenic tumor variants that eventually escape the immune control system. Here, we focus on metastatic melanoma, a highly immunogenic tumor, and on anti-melanoma immunotherapies, which recently, especially following the FDA approval of Ipilimumab, gained interest from drug development companies. We describe new immunomodulatory approaches currently in the development pipeline, focus on the novel CEACAM1 immune checkpoint, and compare its potential to the extensively described targets, CTLA4 and PD1. This paper combines multi-disciplinary approaches and describes anti-melanoma immunotherapies from molecular, medical, and business angles.
Collapse
|
47
|
Arabzadeh A, Chan C, Nouvion AL, Breton V, Benlolo S, DeMarte L, Turbide C, Brodt P, Ferri L, Beauchemin N. Host-related carcinoembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cancer. Oncogene 2012; 32:849-60. [PMID: 22469976 DOI: 10.1038/onc.2012.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver metastasis is the predominant cause of colorectal cancer (CRC)-related mortality in developed countries. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell adhesion molecule with reduced expression in early phases of CRC development and thus functions as a tumor growth inhibitor. However, CEACAM1 is upregulated in metastatic colon cancer, suggesting a bimodal role in CRC progression. To investigate the role of this protein in the host metastatic environment, Ceacam1(-/-) mice were injected intrasplenically with metastatic MC38 mouse CRC cells. A significant reduction in metastatic burden was observed in Ceacam1(-/-) compared with wild-type (WT) livers. Intravital microscopy showed decreased early survival of MC38 cells in Ceacam1(-/-) endothelial environment. Metastatic cell proliferation within the Ceacam1(-/-) livers was also diminished. Bone marrow-derived cell recruitment, attenuation of immune infiltrates and diminished CCL2, CCL3 and CCL5 chemokine production participated in the reduced Ceacam1(-/-) metastatic phenotype. Transplantations of WT bone marrow (BM) into Ceacam1(-/-) mice fully rescued metastatic development, whereas Ceacam1(-/-) BM transfer into WT mice showed reduced metastatic burden. Chimeric immune cell profiling revealed diminished recruitment of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs) to Ceacam1(-/-) metastatic livers and adoptive transfer of MDSCs confirmed the involvement of these immune cells in reduction of liver metastasis. CEACAM1 may represent a novel metastatic CRC target for treatment.
Collapse
Affiliation(s)
- A Arabzadeh
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ortenberg R, Sapir Y, Raz L, Hershkovitz L, Ben Arav A, Sapoznik S, Barshack I, Avivi C, Berkun Y, Besser MJ, Ben-Moshe T, Schachter J, Markel G. Novel immunotherapy for malignant melanoma with a monoclonal antibody that blocks CEACAM1 homophilic interactions. Mol Cancer Ther 2012; 11:1300-10. [PMID: 22466331 DOI: 10.1158/1535-7163.mct-11-0526] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CEACAM1 (biliary glycoprotein-1, CD66a) was reported as a strong clinical predictor of poor prognosis in melanoma. We have previously identified CEACAM1 as a tumor escape mechanism from cytotoxic lymphocytes. Here, we present substantial evidence in vitro and in vivo that blocking of CEACAM1 function with a novel monoclonal antibody (MRG1) is a promising strategy for cancer immunotherapy. MRG1, a murine IgG1 monoclonal antibody, was raised against human CEACAM1. It recognizes the CEACAM1-specific N-domain with high affinity (K(D) ~ 2 nmol/L). Furthermore, MRG1 is a potent inhibitor of CEACAM1 homophilic binding and does not induce any agonistic effect. We show using cytotoxicity assays that MRG1 renders multiple melanoma cell lines more vulnerable to T cells in a dose-dependent manner, only following antigen-restricted recognition. Accordingly, MRG1 significantly enhances the antitumor effect of adoptively transferred, melanoma-reactive human lymphocytes using human melanoma xenograft models in severe combined immunodeficient/nonobese diabetic (SCID/NOD) mice. A significant antibody-dependent cell cytotoxicity response was excluded. It is shown that MRG1 reaches the tumor and is cleared within a week. Importantly, approximately 90% of melanoma specimens are CEACAM1(+), implying that the majority of patients with melanoma could be amenable to MRG1-based therapy. Normal human tissue microarray displays limited binding to luminal epithelial cells on some secretory ducts, which was weaker than the broad normal cell binding of other anticancer antibodies in clinical use. Importantly, MRG1 does not directly affect CEACAM1(+) cells. CEACAM1 blockade is different from other immunomodulatory approaches, as MRG1 targets inhibitory interactions between tumor cells and late effector lymphocytes, which is thus a more specific and compartmentalized immune stimulation with potentially superior safety profile.
Collapse
Affiliation(s)
- Rona Ortenberg
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
LeBlanc S, Arabzadeh A, Benlolo S, Breton V, Turbide C, Beauchemin N, Nouvion AL. CEACAM1 deficiency delays important wound healing processes. Wound Repair Regen 2012; 19:745-52. [PMID: 22092845 DOI: 10.1111/j.1524-475x.2011.00742.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cutaneous wound healing is a complex process that requires the coordination of many cell types to achieve proper tissue repair. Four major overlapping processes have been identified in wound healing: hemostasis, inflammation, reepithelialization and granulation tissue formation, and tissue remodeling. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a glycoprotein expressed in epithelial, endothelial, lymphoid, and myeloid cells. Given its known roles in angiogenesis, cell migration, and immune functions, we hypothesized that CEACAM1 might also be involved in cutaneous wound healing and that a number of relevant CEACAM1-positive cell types might contribute to wound healing. To evaluate the role of CEACAM1 in these processes, 6-mm-diameter skin wounds were inflicted on Ceacam1(-/-) and wild-type mice. Herein, we demonstrate that CEACAM1 deletion indeed affects wound healing in three key ways. Infiltration of F4/80(+) macrophages was decreased in Ceacam1(-/-) wounds, altering inflammatory processes. Reepithelialization in Ceacam1(-/-) wounds was delayed. Furthermore, the vascular density of the granulation tissue in Ceacam1(-/-) wounds was significantly diminished. These results confirm CEACAM1's role as an important regulator of key processes in cutaneous wound healing, although whether this works via a specific cell type or alterations in the functioning of multiple processes remains to be determined.
Collapse
Affiliation(s)
- Sarah LeBlanc
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Lu R, Kujawski M, Pan H, Shively JE. Tumor angiogenesis mediated by myeloid cells is negatively regulated by CEACAM1. Cancer Res 2012; 72:2239-50. [PMID: 22406619 DOI: 10.1158/0008-5472.can-11-3016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bv8 (prokineticin 2) expressed by Gr1(+)CD11b(+) myeloid cells is critical for VEGF-independent tumor angiogenesis. Although granulocyte colony-stimulating factor (G-CSF) has been shown to be a key inducer of Bv8 expression, the basis for Bv8 production in driving tumor angiogenesis is undefined. Because the cell adhesion molecule CEACAM1, which is highly expressed on Gr1(+)CD11b(+) myeloid cells, is known to regulate G-CSF receptor (G-CSFR) signaling, we hypothesized that CEACAM1 would regulate Bv8 production in these cells. In support of this hypothesis, we found that Bv8 expression was elevated in Gr1(+)CD11b(+) cells from Ceacam1-deficient mice implanted with B16 melanoma, increasing the infiltration of Gr1(+)CD11b(+) myeloid cells in melanoma tumors and enhancing their growth and angiogenesis. Furthermore, treatment with anti-Gr1 or anti-Bv8 or anti-G-CSF monoclonal antibody reduced myeloid cell infiltration, tumor growth, and angiogenesis to levels observed in tumor-bearing wild-type (WT) mice. Reconstitution of CEACAM1-deficient mice with WT bone marrow cells restored tumor infiltration of Gr1(+)CD11b(+) cells along with tumor growth and angiogenesis to WT levels. Treatment of tumor-bearing WT mice with anti-CEACAM1 antibody limited tumor outgrowth and angiogenesis, albeit to a lesser extent. Tumor growth in Ceacam1-deficient mice was not affected significantly in Rag(-/-) background, indicating that CEACAM1 expression in T and B lymphocytes had a negligible role in this pathway. Together, our findings show that CEACAM1 negatively regulates Gr1(+)CD11b(+) myeloid cell-dependent tumor angiogenesis by inhibiting the G-CSF-Bv8 signaling pathway.
Collapse
Affiliation(s)
- Rongze Lu
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, California, USA
| | | | | | | |
Collapse
|