1
|
Balog M, Anderson AC, Heffer M, Korade Z, Mirnics K. Effects of Psychotropic Medication on Somatic Sterol Biosynthesis of Adult Mice. Biomolecules 2022; 12:biom12101535. [PMID: 36291744 PMCID: PMC9599595 DOI: 10.3390/biom12101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Polypharmacy is commonly used to treat psychiatric disorders. These combinations often include drugs with sterol biosynthesis inhibiting side effects, including the antipsychotic aripiprazole (ARI), and antidepressant trazodone (TRZ). As the effects of psychotropic medications are poorly understood across the various tissue types to date, we investigated the effects of ARI, TRZ, and ARI + TRZ polypharmacy on the post-lanosterol biosynthesis in three cell lines (Neuro2a, HepG2, and human dermal fibroblasts) and seven peripheral tissues of an adult mouse model. We found that both ARI and TRZ strongly interfere with the function of 7-dehydrocholesterol reductase enzyme (DHCR7) and lead to robust elevation in 7-dehydrocholesterol levels (7-DHC) and reduction in desmosterol (DES) across all cell lines and somatic tissues. ARI + TRZ co-administration resulted in summative or synergistic effects across the utilized in vitro and in vivo models. These findings suggest that at least some of the side effects of ARI and TRZ are not receptor mediated but arise from inhibiting DHCR7 enzyme activity. We propose that interference with sterol biosynthesis, particularly in the case of simultaneous utilization of medications with such side effects, can potentially interfere with functioning or development of multiple organ systems, warranting further investigation.
Collapse
Affiliation(s)
- Marta Balog
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Allison C Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (Z.K.); (K.M.)
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Psychiatry, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (Z.K.); (K.M.)
| |
Collapse
|
2
|
De Vusser K, Winckelmans E, Martens D, Lerut E, Kuypers D, Nawrot T, Naesens M. Intrarenal arteriosclerosis and telomere attrition associate with dysregulation of the cholesterol pathway. Aging (Albany NY) 2020; 12:7830-7847. [PMID: 32353828 PMCID: PMC7244056 DOI: 10.18632/aging.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recently, we demonstrated that arteriosclerosis in the smaller intrarenal arteries is associated with shorter telomere length, independently of history of cardiovascular events and calendar age. This suggests that intrarenal arteriosclerosis reflects replicative senescence, although the underlying molecular alterations remain unclear. RESULTS Shorter intrarenal telomere length associated significantly with the presence of renal arteriosclerosis (T/S ratio 0.91±0.15 vs. 1.20±0.23 with vs. without arteriosclerosis, p=0.007, test cohort; T/S ratio 0.98 ±0.26 vs. 1.03 ±0.18 with vs. without arteriosclerosis, p=0.02, validation cohort). The presence versus absence of intrarenal arteriosclerosis was associated with differential expression of 1472 transcripts. Pathway analysis revealed enrichment of molecules involved in the superpathway of cholesterol biosynthesis as the most significant. The differential expression of these genes was confirmed in the independent validation cohort. Furthermore, the specific mRNA expression of the molecules in the superpathway of cholesterol biosynthesis associated significantly with intrarenal telomere length, and with history of cardiovascular events. INTERPRETATION Our study illustrates that the superpathway of cholesterol biosynthesis interacts with the previously published association between shorter telomere length and arteriosclerosis. METHODS This study included a test cohort of 40 consecutive kidney donors (calendar age 48.0 ± 15), with biopsies obtained prior to transplantation. Intrarenal leucocyte telomere length content was assessed using quantitative RT-PCR. Whole genome microarray mRNA expression analysis was performed using Affymetrix Gene 2.0 ST arrays. We investigated the associations between mRNA gene expression, telomere length as marker of replicative senescence, and intrarenal arteriosclerosis (Banff "cv" score = vascular fibrous intimal thickening = intimal hyperplasia) using adjusted multiple regression models. For biological interpretation and pathway overrepresentation analysis, we used Ingenuity Pathway Analysis. The significant pathways and genes were validated in an independent validation cohort of 173 kidney biopsies obtained prior to transplantation.
Collapse
Affiliation(s)
- Katrien De Vusser
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ellen Winckelmans
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Evelyne Lerut
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.,Department of Public Health and Primary Care, KU Leuven - University of Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Matsuda J, Takahashi A, Takabatake Y, Sakai S, Minami S, Yamamoto T, Fujimura R, Namba-Hamano T, Yonishi H, Nakamura J, Kimura T, Kaimori JY, Matsui I, Takahashi M, Nakao M, Izumi Y, Bamba T, Matsusaka T, Niimura F, Yanagita M, Yoshimori T, Isaka Y. Metabolic effects of RUBCN/Rubicon deficiency in kidney proximal tubular epithelial cells. Autophagy 2020; 16:1889-1904. [PMID: 31944172 DOI: 10.1080/15548627.2020.1712107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy/autophagy is a lysosomal degradation system which plays a protective role against kidney injury. RUBCN/Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein) inhibits the fusion of autophagosomes and lysosomes. However, its physiological role in kidney proximal tubular epithelial cells (PTECs) remains uncertain. In the current study, we analyzed the phenotype of newly generated PTEC-specific rubcn-deficient (KO) mice. Additionally, we investigated the role of RUBCN in lipid metabolism using isolated rubcn-deficient PTECs. Although KO mice exhibited sustained high autophagic flux in PTECs, they were not protected from acute ischemic kidney injury. Unexpectedly, KO mice exhibited hallmark features of metabolic syndrome accompanied by expanded lysosomes containing multi-layered phospholipids in PTECs. RUBCN deficiency in cultured PTECs promoted the mobilization of phospholipids from cellular membranes to lysosomes via enhanced autophagy. Treatment of KO PTECs with oleic acid accelerated fatty acids transfer to mitochondria. Furthermore, KO PTECs promoted massive triglyceride accumulation in hepatocytes (BNL-CL2 cells) co-cultured in transwell, suggesting accelerated fatty acids efflux from the PTECs contributes to the metabolic syndrome in KO mice. This study shows that sustained high autophagic flux by RUBCN deficiency in PTECs leads to metabolic syndrome concomitantly with an accelerated mobilization of phospholipids from cellular membranes to lysosomes. Abbreviations: ABC: ATP binding cassette; ACADM: acyl-CoA dehydrogenase medium chain; ACTB: actin, beta; ATG: autophagy related; AUC: area under the curve; Baf: bafilomycin A1; BAT: brown adipose tissue; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; BW: body weight; CAT: chloramphenicol acetyltransferase; CM: complete medium; CPT1A: carnitine palmitoyltransferase 1a, liver; CQ: chloroquine; CTRL: control; EGFP: enhanced green fluorescent protein; CTSD: cathepsin D; EAT: epididymal adipose tissue; EGFR: epidermal growth factor receptor; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FA: fatty acid; FBS: fetal bovine serum; GTT: glucose tolerance test; HE: hematoxylin and eosin; HFD: high-fat diet; I/R: ischemia-reperfusion; ITT: insulin tolerance test; KAP: kidney androgen regulated protein; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor related protein 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MAT: mesenteric adipose tissue; MS: mass spectrometry; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NDRG1: N-myc downstream regulated 1; NDUFB5: NADH:ubiquinone oxidoreductase subunit B5; NEFA: non-esterified fatty acid; OA: oleic acid; OCT: optimal cutting temperature; ORO: Oil Red O; PAS: Periodic-acid Schiff; PFA: paraformaldehyde; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PPARA: peroxisome proliferator activated receptor alpha; PPARGC1A: PPARG coactivator 1 alpha; PTEC: proximal tubular epithelial cell; RAB7A: RAB7A, member RAS oncogene family; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RT: reverse transcription; RUBCN: rubicon autophagy regulator; SAT: subcutaneous adipose tissue; SFC: supercritical fluid chromatography; SQSTM1: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1; SV-40: simian virus-40; TFEB: transcription factor EB; TG: triglyceride; TS: tissue specific; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; UN: urea nitrogen; UQCRB: ubiquinol-cytochrome c reductase binding protein; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting; WAT: white adipose tissue.
Collapse
Affiliation(s)
- Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Ryuta Fujimura
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Tomonori Kimura
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan.,Reverse Translational Project, Center for Rare Disease Research, National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN) , Osaka, Japan
| | - Jun-Ya Kaimori
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Motonao Nakao
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Taiji Matsusaka
- Institute of Medical Science and Department of Basic Sciences, Tokai University School of Medicine , Isehara, Japan
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine , Isehara, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine , Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University , Kyoto, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine , Osaka, Japan
| |
Collapse
|
4
|
Isenberg JS, Roberts DD. The role of CD47 in pathogenesis and treatment of renal ischemia reperfusion injury. Pediatr Nephrol 2019; 34:2479-2494. [PMID: 30392076 PMCID: PMC6677644 DOI: 10.1007/s00467-018-4123-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023]
Abstract
Ischemia reperfusion (IR) injury is a process defined by the temporary loss of blood flow and tissue perfusion followed later by restoration of the same. Brief periods of IR can be tolerated with little permanent deficit, but sensitivity varies for different target cells and tissues. Ischemia reperfusion injuries have multiple causes including peripheral vascular disease and surgical interventions that disrupt soft tissue and organ perfusion as occurs in general and reconstructive surgery. Ischemia reperfusion injury is especially prominent in organ transplantation where substantial effort has been focused on protecting the transplanted organ from the consequences of IR. A number of factors mediate IR injury including the production of reactive oxygen species and inflammatory cell infiltration and activation. In the kidney, IR injury is a major cause of acute injury and secondary loss of renal function. Transplant-initiated renal IR is also a stimulus for innate and adaptive immune-mediated transplant dysfunction. The cell surface molecule CD47 negatively modulates cell and tissue responses to stress through limitation of specific homeostatic pathways and initiation of cell death pathways. Herein, a summary of the maladaptive activities of renal CD47 will be considered as well as the possible therapeutic benefit of interfering with CD47 to limit renal IR.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, Corresponding author: David D. Roberts, , 301-480-4368
| |
Collapse
|
5
|
Genome-wide gene expression changes associated with exposure of rat liver, heart, and kidney cells to endosulfan. Toxicol In Vitro 2018; 48:244-254. [DOI: 10.1016/j.tiv.2018.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 02/06/2023]
|
6
|
López-Guisa JM, Howsmon R, Munro A, Blair KM, Fisher E, Hermes H, Zager R, Stevens AM. Chimeric maternal cells in offspring do not respond to renal injury, inflammatory or repair signals. CHIMERISM 2017; 2:42-9. [PMID: 21912718 DOI: 10.4161/chim.2.2.16446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/10/2011] [Accepted: 06/14/2011] [Indexed: 11/19/2022]
Abstract
Maternal microchimerism (MMc) can persist for years in a child, and has been implicated in the pathogenesis of chronic inflammatory autoimmune diseases. Chimeric cells may either contribute to disease by acting as immune targets or expand in response to signals of injury, inflammation or repair. We investigated the role of maternal cells in tissue injury in the absence of autoimmunity by quantifying MMc by quantitative PCR in acute and chronic models of renal injury: (1) reversible acute renal injury, inflammation and regeneration induced by rhabdomyolysis and (2) chronic injury leading to fibrosis after unilateral ureteral obstruction. We found that MMc is common in the mouse kidney. In mice congenic with their mothers neither acute nor chronic renal injury with fibrosis influenced the levels or prevalence of MMc. Maternal cells expressing MHC antigens not shared by offspring (H2(b/d)) were detected at lower levels in all groups of homozygous H2(b/b) or H2(d/d) offspring, with or without renal injury, suggesting that partial tolerance to low levels of alloantigens may regulate the homeostatic levels of maternal cells within tissues. Maternal cells homozygous for H2(b) were lost in H2(b/d) offspring only after acute renal failure, suggesting that an inflammatory stimulus led to loss of tolerance to homozygous maternal cells. The study suggests that elevated MMc previously found in association with human autoimmune diseases may not be a response to non-specific injury or inflammatory signals, but rather a primary event integral to the pathogenesis of autoimmunity.
Collapse
|
7
|
Du C, Shi Y, Ren Y, Wu H, Yao F, Wei J, Wu M, Hou Y, Duan H. Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRα pathway in HK-2 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5099-113. [PMID: 26379423 PMCID: PMC4567235 DOI: 10.2147/dddt.s90201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dysregulation of cholesterol metabolism and inflammation plays a significant role in the progression of diabetic nephropathy (DN). Anthocyanins are polyphenols widely distributed in food and exert various biological effects including antioxidative, anti-inflammatory, and antihyperlipidemic effects. However, it remains unclear whether anthocyanins are associated with DN, and the mechanisms involved in the reciprocal regulation of inflammation and cholesterol efflux are yet to be elucidated. In this study, we evaluated the regulation of cholesterol metabolism and the anti-inflammatory effects exerted by anthocyanins (cyanidin-3-O-β-glucoside chloride [C3G] or cyanidin chloride [Cy]) and investigated the underlying molecular mechanism of action using high-glucose (HG)-stimulated HK-2 cells. We found that anthocyanins enhanced cholesterol efflux and ABCA1 expression markedly in HK-2 cells. In addition, they increased peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptor alpha (LXRα) expression and decreased the HG-induced expression of the proinflammatory cytokines intercellular adhesion molecule-1 (ICAM1), monocyte chemoattractant protein-1 (MCP1), and transforming growth factor-β1 (TGFβ1), as well as NFκB activation. Incubation with the PPARα-specific inhibitor GW6471 and LXRα shRNA attenuated the anthocyanin-mediated promotion of ABCA1 expression and cholesterol efflux, suggesting that anthocyanins activated PPARα-LXRα-ABCA1-dependent cholesterol efflux in HK-2 cells. Moreover, the knockout of LXRα abrogated the anti-inflammatory effect of anthocyanins, whereas the PPARα antagonist GW6471 does not have this effect. Further investigations revealed that LXRα might interfere with anthocyanin-induced decreased ICAM1, MCP1, and TGFβ1 expression by reducing the nuclear translocation of NFκB. Collectively, these findings suggest that blocking cholesterol deposition and inhibiting the LXRα pathway-induced inflammatory response might be one of the main mechanisms by which anthocyanins exert their protective effects in DN.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, People's Republic of China ; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, People's Republic of China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, People's Republic of China ; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, People's Republic of China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, People's Republic of China ; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, People's Republic of China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, People's Republic of China ; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, People's Republic of China
| | - Fang Yao
- Department of Pathology, Hebei Medical University, Shijiazhuang, People's Republic of China ; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, People's Republic of China
| | - Jinying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, People's Republic of China ; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, People's Republic of China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, People's Republic of China ; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, People's Republic of China
| | - Yanjuan Hou
- Department of Pathology, Hebei Medical University, Shijiazhuang, People's Republic of China ; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, People's Republic of China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, People's Republic of China ; Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, People's Republic of China
| |
Collapse
|
8
|
Tsun JGS, Yung S, Chau MKM, Shiu SWM, Chan TM, Tan KCB. Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One 2014; 9:e105787. [PMID: 25181357 PMCID: PMC4152117 DOI: 10.1371/journal.pone.0105787] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022] Open
Abstract
Background Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy. Methods Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes. Results ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters. Conclusion Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Joseph G. S. Tsun
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Mel K. M. Chau
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Sammy W. M. Shiu
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Kathryn C. B. Tan
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
9
|
Zager RA. 'Biologic memory' in response to acute kidney injury: cytoresistance, toll-like receptor hyper-responsiveness and the onset of progressive renal disease. Nephrol Dial Transplant 2013; 28:1985-93. [PMID: 23761460 PMCID: PMC3765022 DOI: 10.1093/ndt/gft101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/29/2013] [Indexed: 11/14/2022] Open
Abstract
Following the induction of ischemic or toxin-mediated acute kidney injury (AKI), cellular adaptations occur that 're-program' how the kidney responds to future superimposed insults. This re-programming is not simply a short-lived phenomenon; rather it can persist for many weeks, implying that a state of 'biologic memory' has emerged. These changes can be both adaptive and maladaptive in nature and they can co-exist in time. A beneficial adaptation is the emergence of acquired cytoresistance, whereby a number of physiologic responses develop that serve to protect the kidney against further ischemic or nephrotoxic attack. Conversely, some changes are maladaptive, such as a predisposition to Gram-negative or Gram-positive bacteremia due to a renal tubular up-regulation of toll-like receptor responses. This latter change culminates in exaggerated cytokine production, and with efflux into the systemic circulation, extra-renal tissue injury can result (so-called 'organ cross talk'). Another maladaptive response is a persistent up-regulation of pro-inflammatory, pro-fibrotic and vasoconstrictive genes, culminating in progressive renal injury and ultimately end-stage renal failure. The mechanisms by which this biologic re-programming, or biologic memory, is imparted remain subjects for considerable debate. However, injury-induced, and stable, epigenetic remodeling at pro-inflammatory/pro-fibrotic genes seems likely to be involved. The goal of this editorial is to highlight that the so-called 'maintenance phase' of acute renal failure is not a static one, somewhere between injury induction and the onset of repair. Rather, this period is one in which the induction of 'biologic memory' can ultimately impact renal functional recovery, extra-renal injury and the possible transition of AKI into chronic, progressive renal disease.
Collapse
Affiliation(s)
- Richard A. Zager
- The Fred Hutchinson Cancer Research Center, and the University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Park CH, Lee SL, Noh JS, Yokozawa T. Rokumi-jio-gan-containing prescriptions regulate oxidative stress through improving dyslipidemia in a subtotal nephrectomized rat model. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:449-458. [PMID: 23639360 DOI: 10.1016/j.jep.2013.04.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/07/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rokumi-jio-gan-containing prescriptions, traditional medicine, are widely used to treat renal dysfunction in Japan. AIM OF THE STUDY The present study was conducted to examine whether two Rokumi-jio-gan-containing prescriptions (Hachimi-jio-gan and Bakumi-jio-gan) have an ameliorative effect on dyslipidemia in nephrectomized rats. MATERIALS AND METHODS Each prescription was orally administered to nephrectomized rats at 150mg/kg body weight per day for 10 weeks, and its effect was compared with vehicle-treated nephrectomized rats. RESULTS Rats given Hachimi-jio-gan and Bakumi-jio-gan showed an improvement of renal functional parameters such as serum urea nitrogen, creatinine, creatinine clearance, and urinary protein. The increased triglyceride, total cholesterol, non-esterified fatty acid, high-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol/low-density lipoprotein cholesterol levels in serum, and triglyceride and total cholesterol contents in the kidney of nephrectomized rats were significantly decreased by Hachimi-jio-gan and Bakumi-jio-gan administration. Furthermore, Hachimi-jio-gan acts as a regulator of peroxisome proliferator-activated receptor α, sterol regulatory element binding protein (SREBP)-1, and SREBP-2. On the contrary, the increased reactive oxygen species and thiobarbituric acid-reactive substance were decreased, while superoxide dismutase and the reduced glutathione/oxidized glutathione ratio were augmented by Hachimi-jio-gan rather than Bakumi-jio-gan. The improvement of nuclear factor-kappa Bp65, cyclooxygenase-2, inducible nitric oxide synthase, NF-E2-related factor 2, and heme oxygenase-1 was marked in the group administered Bakumi-jio-gan. However, oil red O staining showed that the increased lipid deposition in the kidney of nephrectomized rats improved on Hachimi-jio-gan and Bakumi-jio-gan administration. CONCLUSION This study provides scientific evidence that two Rokumi-jio-gan-containing prescriptions (Hachimi-jio-gan and Bakumi-jio-gan) improve oxidative stress via dyslipidemia in the remnant kidney of nephrectomized rats.
Collapse
Affiliation(s)
- Chan Hum Park
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
11
|
Lhoták S, Sood S, Brimble E, Carlisle RE, Colgan SM, Mazzetti A, Dickhout JG, Ingram AJ, Austin RC. ER stress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death. Am J Physiol Renal Physiol 2012; 303:F266-78. [PMID: 22573382 DOI: 10.1152/ajprenal.00482.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca(2+)-independent phospholipase A(2) (iPLA(2)β), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.
Collapse
Affiliation(s)
- Sárka Lhoták
- Hamilton Centre for Kidney Research, St. Joseph's Healthcare Hamilton, 50 Charlton Ave. East, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Piccoli C, Quarato G, D'Aprile A, Montemurno E, Scrima R, Ripoli M, Gomaraschi M, Cirillo P, Boffoli D, Calabresi L, Gesualdo L, Capitanio N. Native LDL-induced oxidative stress in human proximal tubular cells: multiple players involved. J Cell Mol Med 2012; 15:375-95. [PMID: 19863698 PMCID: PMC3822803 DOI: 10.1111/j.1582-4934.2009.00946.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dyslipidemia is a well-established condition proved to accelerate the progression of chronic kidney disease leading to tubulo-interstitial injury. However, the molecular aspects of the dyslipidemia-induced renal damage have not been fully clarified and in particular the role played by low-density lipoproteins (LDLs). This study aimed to examine the effects of native non-oxidized LDL on cellular oxidative metabolism in cultured human proximal tubular cells. By means of confocal microscopy imaging combined to respirometric and enzymatic assays it is shown that purified native LDL caused a marked increase of cellular reactive oxygen species (ROS) production, which was mediated by activation of NADPH oxidase(s) and by mitochondrial dysfunction by means of a ROS-induced ROS release mechanism. The LDL-dependent mitochondrial alterations comprised inhibition of the respiratory chain activity, enhanced ROS production, uncoupling of the oxidative phosphorylation efficiency, collapse of the mtΔΨ, increased Ca2+ uptake and loss of cytochrome c. All the above LDL-induced effects were completely abrogated by chelating extracellular Ca2+ as well as by inhibition of the Ca2+-activated cytoplas-mic phospholipase A2, NADPH oxidase and mitochondrial permeability transition. We propose a mechanicistic model whereby the LDL-induced intracellular redox unbalance is triggered by a Ca2+ inward flux-dependent commencement of cPLA2 followed by activation of a lipid- and ROS-based cross-talking signalling pathway. This involves first oxidants production via the plasmamembrane NADPH oxidase and then propagates downstream to mitochondria eliciting redox- and Ca2+-dependent dysfunctions leading to cell-harming conditions. These findings may help to clarify the mechanism of dyslipidemia-induced renal damage and suggest new potential targets for specific therapeutic strategies to prevent oxidative stress implicated in kidney diseases.
Collapse
Affiliation(s)
- Claudia Piccoli
- Department of Biomedical Science, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zager RA, Johnson ACM, Becker K. Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and "end-stage" kidney disease. Am J Physiol Renal Physiol 2011; 301:F1334-45. [PMID: 21921025 PMCID: PMC3233867 DOI: 10.1152/ajprenal.00431.2011] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/08/2011] [Indexed: 01/04/2023] Open
Abstract
There is an emerging concept in clinical nephrology that acute kidney injury (AKI) can initiate chronic kidney disease (CKD). However, potential mechanisms by which this may occur remain elusive. Hence, this study tested the hypotheses that 1) AKI triggers progressive activation of selected proinflammatory genes, 2) there is a relative failure of compensatory anti-inflammatory gene expression, 3) proinflammatory lipid accumulation occurs, 4) these changes correspond with "gene-activating" histone acetylation, and 5) in concert, progressive renal disease results. CD-1 mice were subjected to 30 min of unilateral renal ischemia. Assessments were made 1 day, 1 wk, or 3 wk later. Results were contrasted to those observed in uninjured contralateral kidneys or in kidneys from normal mice. Progressive renal injury occurred throughout the 3-wk postischemic period, as denoted by stepwise increases in neutrophil gelatinase-associated lipocalin gene induction and ongoing histologic damage. By 3 wk postischemia, progressive renal disease was observed (massive tubular dropout; 2/3rds reduction in renal weight). These changes corresponded with progressive increases in proinflammatory cytokine/chemokine gene expression (MCP-1, TNF-α, TGF-β1), a relative failure of anti-inflammatory enzyme/cytokine (heme oxygenase-1; IL-10) upregulation, and progressive renal lipid (cholesterol/triglyceride) loading. Stepwise increases in collagen III mRNA and collagen deposition (Sirius red staining) indicated a progressive profibrotic response. Postischemic dexamethasone treatment significantly preserved renal mass, indicating functional significance of the observed proinflammatory state. Progressive gene-activating H3 acetylation was observed by ELISA, rising from 5% at baseline to 75% at 3 wk. This was confirmed by chromatin immunoprecipitation assay of target genes. In sum, these results provide experimental support for the clinical concept that AKI can trigger CKD, this is partially mediated by progressive postischemic inflammation, ongoing lipid accumulation results (potentially evoking "lipotoxicity"), and increasing histone acetylation at proinflammatory/profibrotic genes may contribute to this self-sustaining injury-promoting state.
Collapse
Affiliation(s)
- Richard A Zager
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.
| | | | | |
Collapse
|
14
|
Abstract
Cellular cholesterol homeostasis is a fundamental and highly regulated process. Transcription factors known as sterol regulatory element binding proteins (SREBPs) coordinate the expression of many genes involved in the biosynthesis and uptake of cholesterol. Dysregulation of SREBP activation and cellular lipid accumulation has been associated with endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). This review will provide an overview of ER stress and the UPR as well as cholesterol homeostasis and SREBP regulation, with an emphasis on their interaction and biological relevance.
Collapse
|
15
|
Vaziri ND. Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J Ren Nutr 2011; 20:S35-43. [PMID: 20797569 DOI: 10.1053/j.jrn.2010.05.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with a high risk of death from cardiovascular disease. Inflammation, oxidative stress, and dyslipidemia, which are common consequences of CKD, contribute to the pathogenesis of atherosclerosis and cardiovascular disease in this population. Dyslipidemia of CKD is characterized by diminished plasma high density lipoprotein (HDL) concentration, impaired HDL anti-oxidant and anti-inflammatory activities, and elevated plasma triglyceride, very low density lipoprotein (VLDL), intermediate density lipoprotein, chylomicron remnants, and oxidized lipids and lipoproteins. The constellation of inflammation, HDL deficiency, and oxidative modification of lipoproteins can cause atherosclerosis and progression of renal disease. We have recently found lipid accumulation in the remnant kidney and the wall of aorta in rats with CKD induced by 5/6 nephrectomy. This was mediated by up-regulation of scavenger receptors involved in the influx of oxidized lipids or lipoproteins, tubular reabsorption of lipid binding proteins through megalin-cubilin complexes, upregulation of fatty acid synthesis, and downregulation of fatty acid oxidation pathways. The combination of increased lipid influx, elevated production and reduced catabolism of lipids, and impaired HDL-mediated reverse cholesterol transport can promote atherosclerosis, glomerulosclerosis, and tubulointerstitial damage. Although statins can be effective in slowing CKD progression in patients with mild-to-moderate CKD, they have consistently failed to mitigate oxidative stress, inflammation, HDL deficiency, or cardiovascular mortality in the end-stage renal disease populations. Similarly, high doses of antioxidant vitamins have failed to either ameliorate oxidative stress, inflammation, or improve overall mortality in end-stage renal disease. This article is intended to provide a brief review of the effects of CKD on HDL structure and function and pathways of lipid influx, efflux, synthesis, and catabolism in the artery wall and the diseased kidney.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California, USA.
| |
Collapse
|
16
|
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of atherosclerotic cardiovascular disease and loss of renal parenchyma accelerates atherosclerosis in animal models. Macrophages are central to atherogenesis because they regulate cholesterol traffic and inflammation in the arterial wall. CKD influences macrophage behavior at multiple levels, rendering them proatherogenic. Even at normal creatinine levels, macrophages from uninephrectomized Apoe(-/-) mice are enriched in cholesterol owing to downregulation of cholesterol transporter ATP-binding cassette subfamily A member 1 levels and activation of nuclear factor κB, which leads to impaired cholesterol efflux. Interestingly, treatment with an angiotensin-II-receptor blocker (ARB) improves these effects. Moreover, atherosclerotic aortas from Apoe(-/-) mice transplanted into renal-ablated normocholesterolemic recipients show plaque progression and increased macrophage content instead of the substantial regression seen in recipient mice with intact kidneys. ARBs reduce atherosclerosis development in mice with partial renal ablation. These results, combined with the clinical benefits of angiotensin-converting-enzyme (ACE) inhibitors and ARBs in patients with CKD, suggest an important role for the angiotensin system in the enhanced susceptibility to atherosclerosis seen across the spectrum of CKD. The role of macrophages could explain why these therapies may be effective in end-stage renal disease, one of the few conditions in which statins show no clinical benefit.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, 383 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37332-6300, USA
| | | | | |
Collapse
|
17
|
Abstract
Chronic kidney disease (CKD) is associated with development of atherosclerosis and premature death from cardiovascular disease. The predisposition of patients with CKD to atherosclerosis is driven by inflammation, oxidative stress and dyslipidemia, all of which are common features of this condition. Markers of dyslipidemia in patients with advanced CKD are impaired clearance and heightened oxidation of apolipoprotein-B-containing lipoproteins and their atherogenic remnants, and a reduction of the plasma concentration, antioxidant, and anti-inflammatory properties of high-density lipoprotein (HDL). Studies in animal models of CKD indicate that the disease promotes lipid accumulation in the artery wall and kidney, leading to atherosclerosis, glomerulosclerosis and tubulointerstitial injury. These effects seem to be mediated by an increased cellular influx of lipids, elevated cellular production and reduced cellular catabolism of fatty acids, and impaired antioxidant, anti-inflammatory and reverse lipid transport properties of HDL. Available pharmacological therapies have been largely ineffective in ameliorating oxidative stress, inflammation, HDL deficiency and/or dysfunction, and the associated atherosclerosis and cardiovascular disease in patients with end-stage renal disease. This Review aims to provide an overview of the mechanisms and consequences of CKD-induced HDL deficiency and dysfunction.
Collapse
|
18
|
Kim HJ, Yuan J, Norris K, Vaziri ND. High-calorie diet partially ameliorates dysregulation of intrarenal lipid metabolism in remnant kidney. J Nutr Biochem 2009; 21:999-1007. [PMID: 19954950 DOI: 10.1016/j.jnutbio.2009.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/20/2009] [Indexed: 01/01/2023]
Abstract
Chronic renal failure (CRF) is associated with malnutrition and renal tissue accumulation of lipids, which can contribute to progression of renal disease. This study was designed to explore the effect of a high-calorie diet on pathways involved in lipid metabolism in the remnant kidney of rats with CRF. 5/6 nephrectomized rats were randomized to receive a regular diet (3.0 kcal/g) or a high-calorie diet (4.5 kcal/g) for 12 weeks. Renal lipid contents and abundance of molecules involved in cholesterol and fatty acid metabolism were studied. The CRF group consuming a regular diet exhibited growth retardation; azotemia; proteinuria; glomerulosclerosis; tubulointerstitial injury; heavy lipid accumulation in the remnant kidney; up-regulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), ATP-binding cassette transporter-1 (ABCA1), liver X receptor (LXR) α/β, carbohydrate-responsive element binding protein (ChREBP) and acyl-CoA carboxylase (ACC); and down-regulation of peroxisome proliferator-activated receptor-α (PPAR-α), carnitine palmitoyltransferase-1 (CPT1) and liver-type fatty acid binding protein (L-FABP). The high-calorie diet restored growth; reduced the severity of tubulointerstitial injury, proteinuria and azotemia; partially lowered renal tissue lipid contents; attenuated the up-regulation of mediators of lipid influx (LOX-1), lipid efflux (LXR-α/β and ABCA1) and fatty acid biosynthesis (ChREBP and ACC); and reversed the down-regulation of factors involved in fatty acid oxidation (PPAR-α, CPT1 and L-FABP). In conclusion, a high-calorie diet restores growth, improves renal function and structure, and lowers lipid burden in the remnant kidney. The latter is associated with and most likely due to reduction in lipid influx and enhancement of fatty acid oxidation.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Division of Nephrology and Hypertension, University of California, Irvine, Orange, CA 92868, USA
| | | | | | | |
Collapse
|
19
|
Chen YC, Meier RK, Zheng S, Khundmiri SJ, Tseng MT, Lederer ED, Epstein PN, Clark BJ. Steroidogenic acute regulatory-related lipid transfer domain protein 5 localization and regulation in renal tubules. Am J Physiol Renal Physiol 2009; 297:F380-8. [PMID: 19474188 DOI: 10.1152/ajprenal.90433.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
STARD5 is a cytosolic sterol transport protein that is predominantly expressed in liver and kidney. This study provides the first report on STARD5 protein expression and distribution in mouse kidney. Immunohistochemical analysis of C57BL/6J mouse kidney sections revealed that STARD5 is expressed in tubular cells within the renal cortex and medullar regions with no detectable staining within the glomeruli. Within the epithelial cells of proximal renal tubules, STARD5 is present in the cytoplasm with high staining intensity along the apical brush-border membrane. Transmission electron microscopy of a renal proximal tubule revealed STARD5 is abundant at the basal domain of the microvilli and localizes mainly in the rough endoplasmic reticulum (ER) with undetectable staining in the Golgi apparatus and mitochondria. Confocal microscopy of STARD5 distribution in HK-2 human proximal tubule cells showed a diffuse punctuate pattern that is distinct from the early endosome marker EEA1 but similar to the ER membrane marker GRP78. Treatment of HK-2 cells with inducers of ER stress increased STARD5 mRNA expression and resulted in redistribution of STARD5 protein to the perinuclear and cell periphery regions. Since recent reports show elevated ER stress response gene expression and increased lipid levels in kidneys from diabetic rodent models, we tested STARD5 and cholesterol levels in kidneys from the OVE26 type I diabetic mouse model. Stard5 mRNA and protein levels are increased 2.8- and 1.5-fold, respectively, in OVE26 diabetic kidneys relative to FVB control kidneys. Renal free cholesterol levels are 44% elevated in the OVE26 mice. Together, our data support STARD5 functioning in kidney, specifically within proximal tubule cells, and suggest a role in ER-associated cholesterol transport.
Collapse
Affiliation(s)
- Yu-Chyu Chen
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim HJ, Moradi H, Yuan J, Norris K, Vaziri ND. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol 2009; 296:F1297-306. [PMID: 19357177 DOI: 10.1152/ajprenal.90761.2008] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A significant reduction of renal mass results in proteinuria, glomerulosclerosis, and tubulointerstitial injury, culminating in end-stage chronic renal failure (CRF). The accumulation of lipids in the kidney can cause renal disease. Uptake of oxidized lipoproteins via scavenger receptors, reabsorption of filtered protein-bound lipids via the megalin-cubilin complex, and increased glucose load per nephron can promote lipid accumulation in glomerular, tubular, and interstitial cells in CRF. Cellular lipid homeostasis is regulated by lipid influx, synthesis, catabolism, and efflux. We examined lipid-regulatory factors in the remnant kidney of rats 11 wk after nephrectomy (CRF) or sham operation. CRF resulted in azotemia, proteinuria, lipid accumulation in the kidney, upregulation of megalin, cubilin, mediators of lipid influx (scavenger receptor class A and lectin-like oxidized receptor-1), lipid efflux (liver X receptor alpha/beta and ATP-binding cassette transporter), and fatty acid biosynthesis (carbohydrate-response element binding protein, fatty acid synthase, and acetyl-CoA carboxylase). However, factors involved in cholesterol biosynthesis (sterol regulatory element binding protein, 3-hydroxy-3-methylglutaryl coenzyme A reductase, SCAP, Insig-1, and Insig-2) and fatty acid oxidation (peroxisome proliferator-activated receptor, acyl-CoA oxidase, and liver-type fatty acid binding protein) were reduced in the remnant kidney. Thus CRF results in heavy lipid accumulation in the remnant kidney, which is mediated by upregulation of pathways involved in tubular reabsorption of filtered protein-bound lipids, influx of oxidized lipoproteins and synthesis of fatty acids, and downregulation of pathways involved in fatty acid catabolism.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Division of Nephrology and Hypertension, University of California, 101 The City Dr., Bldg. 53, Rm. 125, Rt. 81, Orange, CA 92868, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Glomerulonephritis is characterized by hematuria, proteinuria, hypertension, and edema, but the mechanisms contributing to volume disorders are controversial. Here we used the rat anti-Thy1 model of mesangioproliferative glomerulonephritis to test the hypothesis that disturbed salt and water homeostasis is based on tubular epithelial changes that cause salt retention. In this model there was an early onset of pronounced proteinuria and lipiduria associated with reduced fractional sodium excretion and a lowering of the renin-angiotensin-aldosterone system. The glomerular filtration rate and creatinine clearance were decreased on day 6. There was a reduced abundance of the major salt and water transport proteins on the proximal tubular brush border membrane and which paralleled cellular protein overload, enhanced membrane cholesterol uptake and cytoskeletal changes. Alterations in thick ascending limb were moderate. Changes in the collecting ducts were characterized by an enhanced abundance and increased subunit cleavage of the epithelial sodium channel, both events consistent with increased sodium reabsorption. We suggest that irrespective of the proximal tubular changes, altered collecting duct sodium reabsorption may be crucial for volume retention in acute glomerulonephritis. We suggest that enhanced proteolytic cleavage of ion transporter subunits might be a novel mechanism of channel activation in glomerular diseases. Whether these proteases are filtered or locally secreted awaits determination.
Collapse
|
22
|
Kastner C, Pohl M, Sendeski M, Stange G, Wagner CA, Jensen B, Patzak A, Bachmann S, Theilig F. Effects of receptor-mediated endocytosis and tubular protein composition on volume retention in experimental glomerulonephritis. Am J Physiol Renal Physiol 2009; 296:F902-11. [PMID: 19193726 DOI: 10.1152/ajprenal.90451.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human glomerulonephritis (GN) is characterized by sustained proteinuria, sodium retention, hypertension, and edema formation. Increasing quantities of filtered protein enter the renal tubule, where they may alter epithelial transport functions. Exaggerated endocytosis and consequent protein overload may affect proximal tubules, but intrinsic malfunction of distal epithelia has also been reported. A straightforward assignment to a particular tubule segment causing salt retention in GN is still controversial. We hypothesized that 1) trafficking and surface expression of major transporters and channels involved in volume regulation were altered in GN, and 2) proximal tubular endocytosis may influence locally as well as downstream expressed tubular transporters and channels. Effects of anti-glomerular basement membrane GN were studied in controls and megalin-deficient mice with blunted proximal endocytosis. Mice displayed salt retention and elevated systolic blood pressure when proteinuria had reached 10-15 mg/24 h. Surface expression of proximal Na(+)-coupled transporters and water channels was in part [Na(+)-P(i) cotransporter IIa (NaPi-IIa) and aquaporin-1 (AQP1)] increased by megalin deficiency alone, but unchanged (Na(+)/H(+) exchanger 3) or reduced (NaPi-IIa and AQP1) in GN irrespective of the endocytosis defect. In distal epithelia, significant increases in proteolytic cleavage products of alpha-epithelial Na(+) channel (ENaC) and gamma-ENaC were observed, suggesting enhanced tubular sodium reabsorption. The effects of glomerular proteinuria dominated over those of blunted proximal endocytosis in contributing to ENaC cleavage. Our data indicate that ENaC-mediated sodium entry may be the rate-limiting step in proteinuric sodium retention. Enhanced proteolytic cleavage of ENaC points to a novel mechanism of channel activation which may involve the action of filtered plasma proteases.
Collapse
Affiliation(s)
- Christian Kastner
- Charité-Universitätsmedizin Berlin, Institut für Vegetative Anatomie, Philippstr. 12, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Iwao Y, Nakajou K, Nagai R, Kitamura K, Anraku M, Maruyama T, Otagiri M. CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am J Physiol Renal Physiol 2008; 295:F1871-80. [DOI: 10.1152/ajprenal.00013.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic accumulation of plasma advanced oxidation protein products (AOPPs) promotes renal fibrosis. However, the mechanism at the cellular level has not been clarified. In the present study, endocytic assay of human proximal tubular cells (HK-2 cells) demonstrated that AOPPs-human serum albumin (HSA) (in vitro preparations of chloramine- modified HSA) were significantly endocytosed in a dose-dependent manner at a higher level than HSA. The expression of CD36, a transmembrane protein of the class B scavenger receptor, in HK-2 cells was confirmed in the immunoblot analysis. In a cellular assay using overexpressing human CD36 in Chinese hamster ovary (CHO) cells, AOPPs-HSA were significantly endocytosed by CD36-CHO cells but not by mock-CHO cells. Furthermore, the endocytic association and degradation of AOPPs-HSA by HK-2 cells was significantly inhibited by anti-CD36 antibody treatment, suggesting that CD36 is partly involved in the uptake of AOPPs-HSA by HK-2 cells. AOPPs-HSA upregulated the expression of CD36 in a dose-dependent manner. In addition, AOPPs-HSA upregulated the generation of intracellular reactive oxygen species and the secretion of transforming growth factor (TGF)-β1 in HK-2 cells, whereas anti-CD36 antibody neutralizes the upregulation of TGF-β1. These results suggest that AOPPs-HSA may cause renal tubular injury via the CD36 pathway.
Collapse
|
24
|
Abstract
Many of the studies of acute renal injury have been conducted in young mice usually during their rapid growth phase; yet, the impact of age or growth stage on the degree of injury is unknown. To address this issue, we studied three forms of injury (endotoxemic-, glycerol-, and maleate-induced) in mice ranging in age from adolescence (3 weeks) to maturity (16 weeks). The severity of injury within each model significantly correlated with weight and age. We also noticed a progressive age-dependent reduction in renal cholesterol content, a potential injury modifier. As the animals grew and aged they also exhibited stepwise decrements in the mRNAs of HMG CoA reductase and the low density lipoprotein receptor, two key cholesterol homeostatic genes. This was paralleled by decreased amounts of RNA polymerase II and the transcription factor SREBP1/2 at the reductase and lipoprotein receptor gene loci as measured by chromatin immunoprecipitation. Our study shows that the early phase of mouse growth can profoundly alter renal susceptibility to diverse forms of experimental acute renal injury.
Collapse
|
25
|
Zager RA, Johnson ACM, Lund S. ‘Endotoxin tolerance’: TNF-α hyper-reactivity and tubular cytoresistance in a renal cholesterol loading state. Kidney Int 2007; 71:496-503. [PMID: 17228359 DOI: 10.1038/sj.ki.5002092] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The term 'endotoxin tolerance' defines a state in which prior endotoxin (lipopolysaccharide (LPS)) exposure induces resistance to subsequent LPS attack. However, its characteristics within kidney have not been well defined. Hence, this study tested the impact of LPS 'preconditioning' (LPS-PC; 18 or 72 h earlier) on: (i) selected renal inflammatory mediators (tumor necrosis factor (TNF)-alpha, interleukin-10 (IL-10), monocyte chemotactic protein-1 (MCP-1), inducible nitric oxide synthase (iNOS), Toll-like receptor 4 (TLR4); protein or mRNA); (ii) cholesterol homeostasis (a stress reactant); and (iii) isolated proximal tubule (PT) vulnerability to hypoxia or membrane cholesterol (cholesterol oxidase/esterase) attack. Two hours post LPS injection, LPS-PC mice manifested reduced plasma TNF-alpha levels, consistent with systemic LPS tolerance. However, in kidney, paradoxical TNF-alpha hyper-reactivity (protein/mRNA) to LPS existed, despite normal TLR4 protein levels. PT TNF-alpha levels paralleled renal cortical results, implying that PTs were involved. LPS-PC also induced: (i) renal cortical iNOS, IL-10 (but not MCP-1) mRNA hyper-reactivity; (ii), PT cholesterol loading, and (iii) cytoresistance to hypoxia and plasma membrane cholesterol attack. A link between cholesterol homeostasis and cell LPS responsiveness was suggested by observations that cholesterol reductions in HK-2 cells (methylcyclodextrin), or reductions in HK-2 membrane fluidity (A2C), blunted LPS-mediated TNF-alpha/MCP-1 mRNA increases. In sum: (i) systemic LPS tolerance can be associated with renal hyper-responsiveness of selected components within the LPS signaling cascade (e.g., TNF-alpha, iNOS, IL-10); (ii) PT cytoresistance against hypoxic/membrane injury coexists; and (iii) LPS-induced renal/PT cholesterol accumulation may mechanistically contribute to each of these results.
Collapse
Affiliation(s)
- R A Zager
- Department of Medicine, University of Washington, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
26
|
Jiang T, Liebman SE, Lucia MS, Li J, Levi M. Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney Int 2006; 68:2608-20. [PMID: 16316337 DOI: 10.1111/j.1523-1755.2005.00733.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND There are well-known changes in age-related renal function and structure, including glomerulosclerosis and decline in glomerular filtration rate (GFR). The purpose of this study was to identify a potential role for lipids in mediating age-related renal disease. METHODS Mice of five different age groups (3, 6, 12, 19, and 23 months old) were studied. RESULTS We have found that in C57BL/6 mice there was a progressive increase in age-related glomerulosclerosis [increase in periodic acid-Schiff (PAS) staining and accumulation of extracellular matrix proteins including type IV collagen and fibronectin], increased glomerular basement thickness and podocyte width and effacement, and increased proteinuria. These changes were associated with age-related increase in lipid accumulation as determined by increased Oil Red O staining in kidney sections. Biochemical analysis indicated that these lipid deposits corresponded to significant increases in renal triglyceride and cholesterol content. We have also found significant age-related increases in the nuclear transcription factors, sterol regulatory element-binding proteins (SREBP-1 and SREBP-2), protein abundance and increased expression or activity of their target enzymes that play an important role in lipid synthesis. CONCLUSION Our results indicated that there was an age-related increase in renal expression of SREBP-1 and SREBP-2 with resultant increases in lipid synthesis and triglyceride and cholesterol accumulation in the kidney. Because we have previously shown that increased expression of SREBPs in the kidney per se results in glomerulosclerosis and proteinuria, our data suggested that increased SREBPs' expression resulting in increased renal lipid accumulation may play an important role in age-related nephropathy.
Collapse
Affiliation(s)
- Tao Jiang
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
27
|
Saito K, Ishizaka N, Hara M, Matsuzaki G, Sata M, Mori I, Ohno M, Nagai R. Lipid accumulation and transforming growth factor-beta upregulation in the kidneys of rats administered angiotensin II. Hypertension 2005; 46:1180-5. [PMID: 16203876 DOI: 10.1161/01.hyp.0000184653.75036.d5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal lipid metabolism may play a role in progressive renal failure. We studied whether lipid accumulation occurs and whether lipid deposits are colocalized with transforming growth factor-beta1 (TGF-beta1) in the kidney of angiotensin II-infused animals. Oil red O staining showed marked lipid deposition in the tubular epithelial and vascular wall cells of angiotensin II-treated but not in norepinephrine-treated rats. Histological analyses showed that increased amounts of superoxide and intense TGF-beta1 mRNA expression were present in lipid-positive tubular epithelial cells in angiotensin II-infused animals. Protein expression of sterol regulatory element-binding protein 1 (SREBP-1) and mRNA expression of fatty acid synthase in the kidney were &3 times and 1.5 times, respectively, higher in angiotensin II-treated rats than in controls. Treatment of angiotensin II-infused animals with an iron chelator, deferoxamine, attenuated the angiotensin II-induced increases in renal expression of SREBP-1 and fatty acid synthase and normalized the lipid content in the renal cortical tissues. Abnormal lipid metabolism may be associated with upregulation of TGF-beta1 expression and aberrant iron homeostasis in the kidneys of angiotensin II-infused animals.
Collapse
Affiliation(s)
- Kan Saito
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. Downregulation of liver X receptor-alpha in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J Lipid Res 2005; 46:2377-87. [PMID: 16106051 DOI: 10.1194/jlr.m500134-jlr200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acute-phase response (APR) suppresses type II nuclear hormone receptors and alters the expression of their target genes involved in lipid metabolism in the liver and heart. Therefore, we examined the expression of liver X receptor/retinoid X receptor (LXR/RXR) and their target genes in kidney from mice treated with lipopolysaccharide (LPS) and in human proximal tubular HK-2 cells treated with interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). We found that LXRalpha and RXRalpha expression was suppressed by LPS in kidney and by IL-1beta or TNF-alpha in HK-2 cells. The decrease in LXRalpha/RXRalpha expression was associated with a decrease in the expression of several LXRalpha target genes [apolipoprotein E (apoE), ABCA1, ABCG1, and sterol-regulatory element binding protein-1c (SREBP-1c)] and a decrease in ligand-induced apoE expression. Moreover, IL-1beta and TNF-alpha significantly reduced liver X receptor response element (LXRE)-driven transcription as measured by LXRE-linked luciferase activity. However, overexpression of LXRalpha/RXRalpha only partially restored the cytokine-mediated reduction in LXRE-linked luciferase activity. Additionally, expression of the LXR coactivators peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC1alpha) and steroid receptor coactivator-2 (SRC-2) was decreased by IL-1beta or TNF-alpha. We conclude that the APR suppresses the expression of both nuclear receptors LXRalpha/RXRalpha and several LXRalpha coactivators in kidney, which could be a mechanism for coordinately regulating the expression of multiple LXR target genes that play important roles in lipid metabolism in kidney during the APR.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Apolipoproteins E/metabolism
- Blotting, Northern
- Cell Line
- Cells, Cultured
- Cytokines/metabolism
- DNA Primers/chemistry
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation
- Fatty Acids/metabolism
- Female
- Heat-Shock Proteins/metabolism
- Histone Acetyltransferases
- Humans
- Inflammation
- Interleukin-1/metabolism
- Kidney/metabolism
- Kidney Tubules/cytology
- Lipopolysaccharides/metabolism
- Liver X Receptors
- Luciferases/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Statistical
- Nuclear Receptor Coactivator 1
- Orphan Nuclear Receptors
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/metabolism
- Retinoid X Receptor alpha/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sterol Regulatory Element Binding Protein 1/metabolism
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Medicine, University of California San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
29
|
Zager RA, Johnson ACM, Hanson SY. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int 2005; 67:111-21. [PMID: 15610234 DOI: 10.1111/j.1523-1755.2005.00061.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cholesterol accumulates in renal cortical proximal tubules in response to diverse forms of injury or physiologic stress. However, the fate of triglycerides after acute renal insults is poorly defined. This study sought new insights into this issue. METHODS CD-1 mice were subjected to three diverse models of renal stress: (1) endotoxemia [Escherichia coli lipopolysaccharide (LPS), injection]; (2) ischemia/reperfusion (I/R); or (3) glycerol-induced rhabdomyolysis. Renal cortical, or isolated proximal tubule, triglyceride levels were measured approximately 18 hours later. To gain mechanistic insights, triglyceride levels were determined in (1) proximal tubules following exogenous phospholipase A(2) (PLA(2)) treatment; (2) cultured HK-2 cells after mitochondrial blockade (antimycin A) +/- serum; or (3) HK-2 cells following "septic" (post-LPS) serum, or exogenous fatty acid (oleate) addition. RESULTS Each form of in vivo injury evoked three-to fourfold triglyceride increases in renal cortex and/or proximal tubules. PLA(2) treatment of proximal tubules evoked acute, dose-dependent, triglyceride formation. HK-2 cell triglyceride levels rose with antimycin A. With serum present, antimycin A induced an exaggerated triglyceride loading state (vs. serum alone or antimycin A alone). "Septic" serum stimulated HK-2 triglyceride formation (compared to control serum). Oleate addition caused striking HK-2 cell triglyceride accumulation. Following oleate washout, HK-2 cells were sensitized to adenosine triphosphate (ATP) depletion or oxidant attack. CONCLUSION Diverse forms of renal injury induce dramatic triglyceride loading in proximal tubules/renal cortex, suggesting that this is a component of a cell stress response. PLA(2) activity, increased triglyceride/triglyceride substrate (e.g., fatty acid) uptake, and possible systemic cytokine (e.g., from LPS) stimulation, may each contribute to this result. Finally, in addition to being a marker of prior cell injury, accumulation of triglyceride (or of its constituent fatty acids) may predispose tubules to superimposed ATP depletion or oxidant attack.
Collapse
Affiliation(s)
- Richard A Zager
- Department of Medicine, University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
30
|
Wolf G, Wenzel U, Jablonski K, Brundert M, Rinninger F. Angiotensin II down-regulates the SR-BI HDL receptor in proximal tubular cells. Nephrol Dial Transplant 2005; 20:1222-7. [PMID: 15894808 DOI: 10.1093/ndt/gfh727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The kidney plays an important role in the metabolism of lipoproteins, but renal cells are also a target of lipids under pathophysiological conditions contributing to organ damage and progression of disease. The majority of studies has focused on the interaction of renal cells with low-density lipoproteins. Relatively little is known of potential metabolism of high-density lipoproteins (HDL) on renal cells However, diverse pathophysiological situations, such as the nephrotic syndrome and acute renal injury, may be associated with an activated renin-angiotensin system as well as altered renal handling of HDL. Therefore, the present study sought to gain insight into the expression of the HDL receptor scavenger receptor class B type I (SR-BI) in cultured renal cells and a potential regulation by angiotensin II (ANG II). METHODS Different renal cells lines and primary cultures (proximal tubular and mesangial cells) were screened by western blot for the expression of SR-BI. MCT cells, a mouse proximal tubular cell line, were selected for further studies. SR-BI protein and mRNA expression were determined after treatment with various doses of ANG II in the presence or absence of AT(1)- or AT(2)-receptor blocker. Uptake of HDL-associated cholesteryl ester into MCT cells was determined. Finally, rats were infused intraperitoneally with ANG II for 3-7 days, proximal tubules were isolated by differential centrifugation and SR-BI protein expression was assessed. Results. SR-BI protein was expressed in various primary cultures and permanent renal cell lines. ANG II (10(-10)-10(-6) M) treatment for 24 h induced a significant down-regulation of SR-BI protein and mRNA expression in MCT cells. This suppression was attenuated by an AT(1)-receptor antagonist whereas an AT(2)-blocker was without effect. MCT cells revealed a high selective uptake of HDL cholesteryl ester that was significantly higher than that in syngeneic mesangial cells. ANG II for 24 h significantly reduced this selective HDL cholesteryl ester uptake into MCT, but not mesangial cells. Finally, ANG II- infusion into rats for 3 and 7 days induced a significant decrease of SR-BI protein expression in isolated tubules. CONCLUSIONS Our data show that ANG II mediates down-regulation of SR-BI expression on proximal tubular cells in vivo and in vitro. However, the effects were small and additional experiments are necessary to confirm these first observations. The attenuated SR-BI expression is functionally relevant and associated with a decrease in cholesteryl ester uptake. ANG II-mediated suppression may contribute to various pathophysiological situations, such as acute tubular injury, the nephrotic syndrome and atherosclerosis.
Collapse
Affiliation(s)
- Gunter Wolf
- Department of Medicine, University of Jena, Germany.
| | | | | | | | | |
Collapse
|
31
|
Zager RA, Johnson ACM, Hanson SY. Proximal tubular cholesterol loading after mitochondrial, but not glycolytic, blockade. Am J Physiol Renal Physiol 2003; 285:F1092-9. [PMID: 12952856 DOI: 10.1152/ajprenal.00187.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diverse forms of injury cause proximal tubular cholesterol accumulation. However, underlying mechanisms in general, and those involved with ATP depletion injury in particular, remain poorly defined. To help elucidate this issue, cholesterol homeostasis and its determinants were assessed after partial ATP depletion states. Serum-exposed HK-2 cells were subjected to mild ATP depletion, induced by mitochondrial inhibition (antimycin A; AA) or glycolytic blockade (2-deoxyglucose; DG). Four or 18 h later, cell cholesterol levels, hydroxymethylglutaryl (HMG)-CoA reductase (HMGCR), the LDL receptor (LDL-R), and ABCA1/SR-B1 cholesterol transporters were assessed. AA and DG each induced mild, largely sublethal ATP depletion injury. Each also caused significant HMGCR increments and SR-B1 decrements and left ABCA1 intact. In contrast, only AA increased the LDL-R, and only AA evoked a cholesterol-loading state (approximately 25% up). One-half of this increase was statin inhibitable, and one-half could be blocked by serum deletion, implying that both synthetic and nonsynthetic (e.g., LDL-R transport) pathways were involved. The AA-induced HMGCR and LDL-R protein changes were paralleled by their mRNAs, suggesting the presence of altered transcriptional events. We conclude that 1) sublethal ATP depletion, whether induced by mitochondrial or glycolytic blockade, can upregulate HMGCR and decrease SR-B1, and these changes represent a previously unrecognized ATP depletion "phenotype"; 2) mitochondrial blockade can also upregulate the LDL-R and evoke a cholesterol-loading state; 3) the latter likely occurs via synthetic and transport pathways; and 4) the mitochondrion may be a critical, and previously unrecognized, determinant of postinjury cell cholesterol homeostasis, potentially by impacting the LDL-R.
Collapse
Affiliation(s)
- Richard A Zager
- Fred Hutchinson Cancer Research Center, University of Washington, Rm. D2-190, 1100 Fairview Avenue N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|