1
|
Shen S, Wang P, Wu P, Huang P, Chi T, Xu W, Xi Y. CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury. Mol Ther 2024:S1525-0016(24)00593-8. [PMID: 39245939 DOI: 10.1016/j.ymthe.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Wnt/β-catenin signaling is an attractive target for regenerative medicine. A powerful driver of stem cell activity and hence tissue regeneration, Wnt signaling can promote fibroblast proliferation and activation, leading to fibrosis, while prolonged Wnt signaling is potentially carcinogenic. Thus, to harness its therapeutic potential, the activation of Wnt signaling must be transient, reversible, and tissue specific. In the lung, Wnt signaling is essential for alveolar stem cell activity and alveolar regeneration, which is impaired in lung fibrosis. Activation of Wnt/β-catenin signaling in lung epithelium may have anti-fibrotic effects. Here, we used intratracheal adeno-associated virus 6 injection to selectively deliver CasRx into the lung epithelium, where it reversibly activates Wnt signaling by simultaneously degrading mRNAs encoding Axin1 and Axin2, negative regulators of Wnt/β-catenin signaling. Interestingly, CasRx-mediated Wnt activation specifically in lung epithelium not only promotes alveolar type II cell proliferation and alveolar regeneration but also inhibits lung fibrosis resulted from bleomycin-induced injury, relevant in both preventive and therapeutic settings. Our study offers an attractive strategy for treating pulmonary fibrosis, with general implications for regenerative medicine.
Collapse
Affiliation(s)
- Shengxi Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Ping Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Pei Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Immunobiology, Yale University Medical School, New Haven, CT 06520, USA
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Xi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
2
|
Wu K, Zhang Y, Yin-DeClue H, Sun K, Mao D, Yang K, Austin SR, Crouch EC, Brody SL, Byers DE, Hoffmann CM, Hughes ME, Holtzman MJ. A correctable immune niche for epithelial stem cell reprogramming and post-viral lung diseases. J Clin Invest 2024; 134:e183092. [PMID: 39052353 PMCID: PMC11405052 DOI: 10.1172/jci183092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
Epithelial barriers are programmed for defense and repair but are also the site of long-term structural remodeling and disease. In general, this paradigm features epithelial stem cells (ESCs) that are called on to regenerate damaged tissues but can also be reprogrammed for detrimental remodeling. Here we identified a Wfdc21-dependent monocyte-derived dendritic cell (moDC) population that functioned as an early sentinel niche for basal ESC reprogramming in mouse models of epithelial injury after respiratory viral infection. Niche function depended on moDC delivery of ligand GPNMB to the basal ESC receptor CD44 so that properly timed antibody blockade of ligand or receptor provided long-lasting correction of reprogramming and broad disease phenotypes. These same control points worked directly in mouse and human basal ESC organoids. Together, the findings identify a mechanism to explain and modify what is otherwise a stereotyped but sometimes detrimental response to epithelial injury.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kuangying Yang
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | - Steven L Brody
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Michael E Hughes
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Genetics, and
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Wong IG, Stark J, Ya V, Moye AL, Vazquez AB, Dang SM, Shehaj A, Rouhani MJ, Bronson R, Janes SM, Rowbotham SP, Paschini M, Franklin RA, Kim CF. Airway injury induces alveolar epithelial and mesenchymal responses mediated by macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587596. [PMID: 38617297 PMCID: PMC11014629 DOI: 10.1101/2024.04.02.587596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Acute injury in the airways or the lung activates local progenitors and stimulates changes in cell-cell interactions to restore homeostasis, but it is not appreciated how more distant niches are impacted. We utilized mouse models of airway-specific epithelial injury to examine secondary tissue-wide alveolar, immune, and mesenchymal responses. Single-cell transcriptomics and in vivo validation revealed transient, tissue-wide proliferation of alveolar type 2 (AT2) progenitor cells after club cell-specific ablation. The AT2 cell proliferative response was reliant on alveolar macrophages (AMs) via upregulation of Spp1 which encodes the secreted factor Osteopontin. A previously uncharacterized mesenchymal population we termed Mesenchymal Airway/Adventitial Niche Cell 2 (MANC2) also exhibited dynamic changes in abundance and a pro-fibrotic transcriptional signature after club cell ablation in an AM-dependent manner. Overall, these results demonstrate that acute airway damage can trigger distal lung responses including altered cell-cell interactions that may contribute to potential vulnerabilities for further dysregulation and disease.
Collapse
|
4
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Mills KAM, Westermann F, Espinosa V, Rosiek E, Desai JV, Aufiero MA, Guo Y, Mitchell KA, Tuzlak S, De Feo D, Lionakis MS, Rivera A, Becher B, Hohl TM. GM-CSF-mediated epithelial-immune cell crosstalk orchestrates pulmonary immunity to Aspergillus fumigatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574062. [PMID: 38260364 PMCID: PMC10802277 DOI: 10.1101/2024.01.03.574062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Aspergillus fumigatus causes life-threatening mold pneumonia in immune compromised patients, particularly in those with quantitative or qualitative defects in neutrophils. While innate immune cell crosstalk licenses neutrophil antifungal activity in the lung, the role of epithelial cells in this process is unknown. Here, we find that that surfactant protein C (SPC)-expressing lung epithelial cells integrate infection-induced IL-1 and type III interferon signaling to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) preferentially at local sites of fungal infection and neutrophil influx. Using in vivo models that distinguish the role of GM-CSF during acute infection from its homeostatic function in alveolar macrophage survival and surfactant catabolism, we demonstrate that epithelial-derived GM-CSF increases the accumulation and fungicidal activity of GM-CSF-responsive neutrophils, with the latter being essential for host survival. Our findings establish SPC + epithelial cells as a central player in regulating the quality and strength of neutrophil-dependent immunity against inhaled mold pathogens. HIGHLIGHTS GM-CSF is essential for host defense against A. fumigatus in the lung IL-1 and IFN-λ promote GM-CSF production by lung epithelial cells in parallelEpithelial cell-derived GM-CSF increases neutrophil accumulation and fungal killing capacityEpithelial cells preferentially upregulate GM-CSF in local sites of inflammation. GRAPHICAL ABSTRACT
Collapse
|
6
|
El Agha E, Thannickal VJ. The lung mesenchyme in development, regeneration, and fibrosis. J Clin Invest 2023; 133:e170498. [PMID: 37463440 DOI: 10.1172/jci170498] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
7
|
Bolgova L, Shypko A, Tuganova T, Alekseenko O, Smolanka I, Ponomarenko A, Bilko N. NEW DATA ON HISTOGENESIS AND HISTOLOGICAL STRUCTURE OF LUNG CANCER. Exp Oncol 2023; 45:62-69. [PMID: 37417281 DOI: 10.15407/exp-oncology.2023.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Lung cancer (LC) is one of the most common malignant neoplasms in men around the world, which poses a number of important challenges for scientists. AIM To analyze the histogenesis, features of the histological structure, and growth of LC. MATERIALS AND METHODS The surgical material of 81 patients with LC was studied. Histological preparations were stained with hematoxylin and eosin (H&E) using the Papanicolaou method. Immunohistochemical reactions with monoclonals (Ki67, PCNA) were conducted. RESULTS In histological preparations of all LC types (squamous, adenocarcinoma, and small cell), along with solid growth, tumor growth in the alveoli was determined, which started from the basal membrane and grew toward the alveolus center, as evidenced by the morphological features of growth, tumor spread, and development of necrosis in the center. CONCLUSION In all the studied histological preparations of LC, tumor growth in the alveoli is noted, which is confirmed by structural and cellular signs and the nature of tumor decay in the alveolus center, which corresponds to the general patterns of development of malignant epithelial tumors.
Collapse
Affiliation(s)
- L Bolgova
- National Cancer Institute of the Ministry of Health of Ukraine, Kyiv 03022, Ukraine
| | - A Shypko
- National Cancer Institute of the Ministry of Health of Ukraine, Kyiv 03022, Ukraine
| | - T Tuganova
- National Cancer Institute of the Ministry of Health of Ukraine, Kyiv 03022, Ukraine
| | - O Alekseenko
- National Cancer Institute of the Ministry of Health of Ukraine, Kyiv 03022, Ukraine
| | - I Smolanka
- National Cancer Institute of the Ministry of Health of Ukraine, Kyiv 03022, Ukraine
| | - A Ponomarenko
- National University of "Kyiv-Mohyla Academy", Kyiv 04655, Ukraine
| | - N Bilko
- National University of "Kyiv-Mohyla Academy", Kyiv 04655, Ukraine
| |
Collapse
|
8
|
Martins LR, Glimm H, Scholl C. Single-cell RNA sequencing of mouse lower respiratory tract epithelial cells: A meta-analysis. Cells Dev 2023; 174:203847. [PMID: 37146757 DOI: 10.1016/j.cdev.2023.203847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
The respiratory system is a vital component of our body, essential for both oxygen uptake and immune defense. Knowledge of cellular composition and function in different parts of the respiratory tract provides the basis for a better understanding of the pathological processes involved in various diseases such as chronic respiratory diseases and cancer. Single-cell RNA sequencing (scRNA-seq) is a proficient approach for the identification and transcriptional characterization of cellular phenotypes. Although the mouse is an essential tool for the study of lung development, regeneration, and disease, a scRNA-seq mouse atlas of the lung in which all epithelial cell types are included and annotated systematically is lacking. Here, we established a single-cell transcriptome landscape of the mouse lower respiratory tract by performing a meta-analysis of seven different studies in which mouse lungs and trachea were analyzed by droplet and/or plate-based scRNA-seq technologies. We provide information on the best markers for each epithelial cell type, propose surface markers for the isolation of viable cells, harmonized the annotation of cell types, and compare the mouse single-cell transcriptomes with human scRNA-seq data of the lung.
Collapse
Affiliation(s)
- Leila R Martins
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.
| |
Collapse
|
9
|
Blackburn JB, Li NF, Bartlett NW, Richmond BW. An update in club cell biology and its potential relevance to chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L652-L665. [PMID: 36942863 PMCID: PMC10110710 DOI: 10.1152/ajplung.00192.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Club cells are found in human small airways where they play an important role in immune defense, xenobiotic metabolism, and repair after injury. Over the past few years, data from single-cell RNA sequencing (scRNA-seq) studies has generated new insights into club cell heterogeneity and function. In this review, we integrate findings from scRNA-seq experiments with earlier in vitro, in vivo, and microscopy studies and highlight the many ways club cells contribute to airway homeostasis. We then discuss evidence for loss of club cells or club cell products in the airways of patients with chronic obstructive pulmonary disease (COPD) and discuss potential mechanisms through which this might occur.
Collapse
Affiliation(s)
- Jessica B Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ngan Fung Li
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bradley W Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
10
|
Li H, Weng W, Zhou B. Perfect duet: Dual recombinases improve genetic resolution. Cell Prolif 2023; 56:e13446. [PMID: 37060165 PMCID: PMC10212704 DOI: 10.1111/cpr.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 04/16/2023] Open
Abstract
As a powerful genetic tool, site-specific recombinases (SSRs) have been widely used in genomic manipulation to elucidate cell fate plasticity in vivo, advancing research in stem cell and regeneration medicine. However, the low resolution of conventional single-recombinase-mediated lineage tracing strategies, which rely heavily on the specificity of one marker gene, has led to controversial conclusions in many scientific questions. Therefore, different SSRs systems are combined to improve the accuracy of lineage tracing. Here we review the recent advances in dual-recombinase-mediated genetic approaches, including the development of novel genetic recombination technologies and their applications in cell differentiation, proliferation, and genetic manipulation. In comparison with the single-recombinase system, we also discuss the advantages of dual-genetic strategies in solving scientific issues as well as their technical limitations.
Collapse
Affiliation(s)
- Hongxin Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wendong Weng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- New Cornerstone Science LaboratoryShenzhenChina
| |
Collapse
|
11
|
Meng X, Cui G, Peng G. Lung development and regeneration: newly defined cell types and progenitor status. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:5. [PMID: 37009950 PMCID: PMC10068224 DOI: 10.1186/s13619-022-00149-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/05/2022] [Indexed: 06/19/2023]
Abstract
The lung is the most critical organ of the respiratory system supporting gas exchange. Constant interaction with the external environment makes the lung vulnerable to injury. Thus, a deeper understanding of cellular and molecular processes underlying lung development programs and evaluation of progenitor status within the lung is an essential part of lung regenerative medicine. In this review, we aim to discuss the current understanding of lung development process and regenerative capability. We highlight the advances brought by multi-omics approaches, single-cell transcriptome, in particular, that can help us further dissect the cellular player and molecular signaling underlying those processes.
Collapse
Affiliation(s)
- Xiaogao Meng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
- Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Guizhong Cui
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, 510005, China.
| | - Guangdun Peng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.
| |
Collapse
|
12
|
Brouns I, Adriaensen D, Timmermans JP. The pulmonary neuroepithelial body microenvironment represents an underestimated multimodal component in airway sensory pathways. Anat Rec (Hoboken) 2023. [PMID: 36808710 DOI: 10.1002/ar.25171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
Exciting new imaging and molecular tools, combined with state-of-the-art genetically modified mouse models, have recently boosted interest in pulmonary (vagal) sensory pathway investigations. In addition to the identification of diverse sensory neuronal subtypes, visualization of intrapulmonary projection patterns attracted renewed attention on morphologically identified sensory receptor end-organs, such as the pulmonary neuroepithelial bodies (NEBs) that have been our area of expertise for the past four decades. The current review aims at providing an overview of the cellular and neuronal components of the pulmonary NEB microenvironment (NEB ME) in mice, underpinning the role of these complexly organized structures in the mechano- and chemosensory potential of airways and lungs. Interestingly, the pulmonary NEB ME additionally harbors different types of stem cells, and emerging evidence suggests that the signal transduction pathways that are active in the NEB ME during lung development and repair also determine the origin of small cell lung carcinoma. Although documented for many years that NEBs appear to be affected in several pulmonary diseases, the current intriguing knowledge on the NEB ME seems to encourage researchers that are new to the field to explore the possibility that these versatile sensor-effector units may be involved in lung pathogenesis or pathobiology.
Collapse
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Xu H, Pan G, Wang J. Repairing Mechanisms for Distal Airway Injuries and Related Targeted Therapeutics for Chronic Lung Diseases. Cell Transplant 2023; 32:9636897231196489. [PMID: 37698245 PMCID: PMC10498699 DOI: 10.1177/09636897231196489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), involve progressive and irreversible destruction and pathogenic remodeling of airways and have become the leading health care burden worldwide. Pulmonary tissue has extensive capacities to launch injury-responsive repairing programs (IRRPs) to replace the damaged or dead cells upon acute lung injuries. However, the IRRPs are frequently compromised in chronic lung diseases. In this review, we aim to provide an overview of somatic stem cell subpopulations within distal airway epithelium and the underlying mechanisms mediating their self-renewal and trans-differentiation under both physiological and pathological circumstances. We also compared the differences between humans and mice on distal airway structure and stem cell composition. At last, we reviewed the current status and future directions for the development of targeted therapeutics on defective distal airway regeneration and repairment in chronic lung diseases.
Collapse
Affiliation(s)
- Huahua Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Guihong Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Lyu H, Warren R, Gao S, Klinkhammer K, Yuan T, Zhang JS, Brownfield D, Li X, De Langhe SP. Niche-mediated repair of airways is directed in an occupant-dependent manner. Cell Rep 2022; 41:111863. [PMID: 36543133 DOI: 10.1016/j.celrep.2022.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
In injured airways of the adult lung, epithelial progenitors are called upon to repair by nearby mesenchymal cells via signals transmitted through the niche. Currently, it is unclear whether repair is coordinated by the mesenchymal cells that maintain the niche or by the airway epithelial cells that occupy it. Here, we show that the spatiotemporal expression of Fgf10 by the niche is primarily orchestrated by the niche's epithelial occupants-both those that reside prior to, and following, injury. During homeostasis, differentiated airway epithelial cells secrete Sonic hedgehog (Shh) to inhibit Fgf10 expression by Gli1+ peribronchial mesenchymal cells in the niche. After injury, remaining epithelial cells produce Wnt7b to induce Fgf10 expression in airway smooth muscle cells in the niche. We find that this reliance on a common activator of airway epithelial stem cells also allows for the recruitment of remote stem cell populations when local populations have been exhausted.
Collapse
Affiliation(s)
- Handeng Lyu
- School of Pharmaceutical Sciences, and The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, AL 35294-2182, USA
| | - Rachel Warren
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Shan Gao
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, AL 35294-2182, USA
| | - Tingting Yuan
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, AL 35294-2182, USA
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, and The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Douglas Brownfield
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaokun Li
- School of Pharmaceutical Sciences, and The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Stijn P De Langhe
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, THT 422, 1720 2nd Avenue S., Birmingham, AL 35294-2182, USA.
| |
Collapse
|
15
|
Abstract
Lung epithelium, the lining that covers the inner surface of the respiratory tract, is directly exposed to the environment and thus susceptible to airborne toxins, irritants, and pathogen-induced damages. In adult mammalian lungs, epithelial cells are generally quiescent but can respond rapidly to repair of damaged tissues. Evidence from experimental injury models in rodents and human clinical samples has led to the identification of these regenerative cells, as well as pathological metaplastic states specifically associated with different forms of damages. Here, we provide a compendium of cells and cell states that exist during homeostasis in normal lungs and the lineage relationships between them. Additionally, we discuss various experimental injury models currently being used to probe the cellular sources-both resident and recruited-that contribute to repair, regeneration, and remodeling following acute and chronic injuries. Finally, we discuss certain maladaptive regeneration-associated cell states and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
16
|
Boateng E, Kovacevic D, Oldenburg V, Rådinger M, Krauss-Etschmann S. Role of airway epithelial cell miRNAs in asthma. FRONTIERS IN ALLERGY 2022; 3:962693. [PMID: 36203653 PMCID: PMC9530201 DOI: 10.3389/falgy.2022.962693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 12/07/2022] Open
Abstract
The airway epithelial cells and overlying layer of mucus are the first point of contact for particles entering the lung. The severity of environmental contributions to pulmonary disease initiation, progression, and exacerbation is largely determined by engagement with the airway epithelium. Despite the cellular cross-talk and cargo exchange in the microenvironment, epithelial cells produce miRNAs associated with the regulation of airway features in asthma. In line with this, there is evidence indicating miRNA alterations related to their multifunctional regulation of asthma features in the conducting airways. In this review, we discuss the cellular components and functions of the airway epithelium in asthma, miRNAs derived from epithelial cells in disease pathogenesis, and the cellular exchange of miRNA-bearing cargo in the airways.
Collapse
Affiliation(s)
- Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Correspondence: Eistine Boateng
| | - Draginja Kovacevic
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Vladimira Oldenburg
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
17
|
Promises and Challenges of Cell-Based Therapies to Promote Lung Regeneration in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11162595. [PMID: 36010671 PMCID: PMC9406501 DOI: 10.3390/cells11162595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/17/2022] Open
Abstract
The lung epithelium is constantly exposed to harmful agents present in the air that we breathe making it highly susceptible to damage. However, in instances of injury to the lung, it exhibits a remarkable capacity to regenerate injured tissue thanks to the presence of distinct stem and progenitor cell populations along the airway and alveolar epithelium. Mechanisms of repair are affected in chronic lung diseases such as idiopathic pulmonary fibrosis (IPF), a progressive life-threatening disorder characterized by the loss of alveolar structures, wherein excessive deposition of extracellular matrix components cause the distortion of tissue architecture that limits lung function and impairs tissue repair. Here, we review the most recent findings of a study of epithelial cells with progenitor behavior that contribute to tissue repair as well as the mechanisms involved in mouse and human lung regeneration. In addition, we describe therapeutic strategies to promote or induce lung regeneration and the cell-based strategies tested in clinical trials for the treatment of IPF. Finally, we discuss the challenges, concerns and limitations of applying these therapies of cell transplantation in IPF patients. Further research is still required to develop successful strategies focused on cell-based therapies to promote lung regeneration to restore lung architecture and function.
Collapse
|
18
|
Zamani Rarani F, Zamani Rarani M, Hamblin MR, Rashidi B, Hashemian SMR, Mirzaei H. Comprehensive overview of COVID-19-related respiratory failure: focus on cellular interactions. Cell Mol Biol Lett 2022; 27:63. [PMID: 35907817 PMCID: PMC9338538 DOI: 10.1186/s11658-022-00363-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/06/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic outbreak of coronavirus disease 2019 (COVID-19) has created health challenges in all parts of the world. Understanding the entry mechanism of this virus into host cells is essential for effective treatment of COVID-19 disease. This virus can bind to various cell surface molecules or receptors, such as angiotensin-converting enzyme 2 (ACE2), to gain cell entry. Respiratory failure and pulmonary edema are the most important causes of mortality from COVID-19 infections. Cytokines, especially proinflammatory cytokines, are the main mediators of these complications. For normal respiratory function, a healthy air-blood barrier and sufficient blood flow to the lungs are required. In this review, we first discuss airway epithelial cells, airway stem cells, and the expression of COVID-19 receptors in the airway epithelium. Then, we discuss the suggested molecular mechanisms of endothelial dysfunction and blood vessel damage in COVID-19. Coagulopathy can be caused by platelet activation leading to clots, which restrict blood flow to the lungs and lead to respiratory failure. Finally, we present an overview of the effects of immune and non-immune cells and cytokines in COVID-19-related respiratory failure.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR Iran
| |
Collapse
|
19
|
Single-Cell Transcriptome Analysis of Radiation Pneumonitis Mice. Antioxidants (Basel) 2022; 11:antiox11081457. [PMID: 35892659 PMCID: PMC9331247 DOI: 10.3390/antiox11081457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced lung injury (RILI), especially radiation pneumonitis (RP), is a common clinical complication associated with thoracic radiotherapy for malignant tumors. However, the specific contributions of each cell subtype to this process are unknown. Here, we provide the single-cell pathology landscape of the RP in a mouse model by unbiased single-cell RNA-seq (scRNA-seq). We found a decline of type 2 alveolar cells in the RP lung tissue, with an expansion of macrophages, especially the Fabp4low and Spp1high subgroup, while Fabp4high macrophages were almost depleted. We observed an elevated expression of multiple mitochondrial genes in the RP group, indicating a type 2 alveolar cell (AT2) response to oxidative stress. We also calculated the enrichment of a cGAS-STING signaling pathway, which may be involved in regulating inflammatory responses and cancer progression in AT2 cells of PR mice. We delineate markers and transcriptional states, identify a type 2 alveolar cell, and uncover fundamental determinants of lung fibrosis and inflammatory response in RP lung tissue of mice.
Collapse
|
20
|
Liao CC, Chiu CJ, Yang YH, Chiang BL. Neonatal lung-derived SSEA-1 + cells exhibited distinct stem/progenitor characteristics and organoid developmental potential. iScience 2022; 25:104262. [PMID: 35521516 PMCID: PMC9062680 DOI: 10.1016/j.isci.2022.104262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Stem/progenitor cells, because of their self-renewal and multiple cell type differentiation abilities, have good potential in regenerative medicine. We previously reported a lung epithelial cell population that expressed the stem cell marker SSEA-1 was abundant in neonatal but scarce in adult mice. In the current study, neonatal and adult mouse-derived pulmonary SSEA-1+ cells were isolated for further characterization. The results showed that neonatal-derived pulmonary SSEA-1+ cells highly expressed lung development-associated genes and had enhanced organoid generation ability compared with the adult cells. Neonatal pulmonary SSEA-1+ cells generated airway-like and alveolar-like organoids, suggesting multilineage cell differentiation ability. Organoid generation of neonatal but not adult pulmonary SSEA-1+ cells was enhanced by fibroblast growth factor 7 (FGF 7). Furthermore, neonatal pulmonary SSEA-1+ cells colonized and developed in decellularized and injured lungs. These results suggest the potential of lung-derived neonatal-stage SSEA-1+ cells with enhanced stem/progenitor activity and shed light on future lung engineering applications. Pulmonary SSEA-1+ cells are abundant in neonatal and scarce in adult stages The stem/progenitor activity of pulmonary SSEA-1+ cells is enhanced in neonatal stage Neonatal pulmonary SSEA-1+ cells developed into airway- and alveolar-like organoids FGF7 regulates alveolar epithelium development of neonatal pulmonary SSEA-1+ cells
Collapse
Affiliation(s)
- Chien-Chia Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, Taiwan
| |
Collapse
|
21
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
22
|
Warren R, Dylag AM, Behan M, Domm W, Yee M, Mayer-Pröschel M, Martinez-Sobrido L, O'Reilly MA. Ataxia telangiectasia mutated is required for efficient proximal airway epithelial cell regeneration following influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2022; 322:L581-L592. [PMID: 35196880 PMCID: PMC8993527 DOI: 10.1152/ajplung.00378.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Children and young adults with mutant forms of ataxia telangiectasia mutated (ATM), a kinase involved in DNA damage signaling and mitochondrial homeostasis, suffer from recurrent respiratory infections, immune deficiencies, and obstructive airways disease associated with disorganized airway epithelium. We previously showed in mice how Atm was required to mount a protective immune memory response to influenza A virus [IAV; Hong Kong/X31 (HKx31), H3N2]. Here, Atm wildtype (WT) and knockout (Atm-null) mice were used to investigate how Atm is required to regenerate the injured airway epithelium following IAV infection. When compared with WT mice, naive Atm-null mice had increased airway resistance and reduced lung compliance that worsened during infection before returning to naïve levels by 56 days postinfection (dpi). Although Atm-null lungs appeared pathologically normal before infection by histology, they developed an abnormal proximal airway epithelium after infection that contained E-cadherin+, Sox2+, and Cyp2f2+ cells lacking secretoglobin family 1 A member 1 (Scgb1a1) protein expression. Patchy and low expression of Scgb1a1 were eventually observed by 56 dpi. Genetic lineage tracing in HKx31-infected mice revealed club cells require Atm to rapidly and efficiently restore Scgb1a1 expression in proximal airways. Since Scgb1a1 is an immunomodulatory protein that protects the lung against a multitude of respiratory challenges, failure to efficiently restore its expression may contribute to the respiratory diseases seen in individuals with ataxia telangiectasia.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew M Dylag
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Molly Behan
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
23
|
Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, Kobayashi Y, Macadlo L, Okuda K, Conchola AS, Nakano S, Gregory S, Miller LA, Spence JR, Engelhardt JF, Boucher RC, Rock JR, Randell SH, Tata PR. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 2022; 604:111-119. [PMID: 35355018 PMCID: PMC9169066 DOI: 10.1038/s41586-022-04541-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.
Collapse
Affiliation(s)
| | - Vishwaraj Sontake
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Lauren Macadlo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ansley S Conchola
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Satoko Nakano
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simon Gregory
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Lisa A Miller
- California National Primate Research Center, Davis, CA, USA
- Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John F Engelhardt
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason R Rock
- Department of Immunology Discovery, Genentech, South San Francisco, CA, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA.
- Division of Pulmonary Critical Care, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
24
|
Abstract
This chapter broadly reviews cardiopulmonary sympathetic and vagal sensors and their reflex functions during physiologic and pathophysiologic processes. Mechanosensory operating mechanisms, including their central projections, are described under multiple sensor theory. In addition, ways to interpret evidence surrounding several controversial issues are provided, with detailed reasoning on how conclusions are derived. Cardiopulmonary sensory roles in breathing control and the development of symptoms and signs and pathophysiologic processes in cardiopulmonary diseases (such as cough and neuroimmune interaction) also are discussed.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine (Pulmonary), University of Louisville, and Robley Rex VA Medical Center, Louisville, KY, United States.
| |
Collapse
|
25
|
GLI1+ cells are a source of repair-supportive mesenchymal cells (RSMCs) during airway epithelial regeneration. Cell Mol Life Sci 2022; 79:581. [PMID: 36333491 PMCID: PMC9636301 DOI: 10.1007/s00018-022-04599-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Repair-supportive mesenchymal cells (RSMCs) have been recently reported in the context of naphthalene (NA)-induced airway injury and regeneration. These cells transiently express smooth muscle actin (Acta2) and are enriched with platelet-derived growth factor receptor alpha (Pdgfra) and fibroblast growth factor 10 (Fgf10) expression. Genetic deletion of Ctnnb1 (gene coding for beta catenin) or Fgf10 in these cells using the Acta2-Cre-ERT2 driver line after injury (defined as NA-Tam condition; Tam refers to tamoxifen) led to impaired repair of the airway epithelium. In this study, we demonstrate that RSMCs are mostly captured using the Acta2-Cre-ERT2 driver when labeling occurs after (NA-Tam condition) rather than before injury (Tam-NA condition), and that their expansion occurs mostly
between days 3 and 7 following NA treatment. Previous studies have shown that lineage-traced peribronchial GLI1+ cells are transiently amplified after NA injury. Here, we report that Gli1 expression is enriched in RSMCs. Using lineage tracing with Gli1Cre−ERT2 mice combined with genetic inactivation of Fgf10, we show that GLI1+ cells with Fgf10 deletion fail to amplify around the injured airways, thus resulting in impaired airway epithelial repair. Interestingly, Fgf10 expression is not upregulated in GLI1+ cells following NA treatment, suggesting that epithelial repair is mostly due to the increased number of Fgf10-expressing GLI1+ cells. Co-culture of SCGB1A1+ cells with GLI1+ cells isolated from non-injured or injured lungs showed that GLI1+ cells from these two conditions are similarly capable of supporting bronchiolar organoid (or bronchiolosphere) formation. Single-cell RNA sequencing on sorted lineage-labeled cells showed that the RSMC signature resembles that of alveolar fibroblasts. Altogether, our study provides strong evidence for the involvement of mesenchymal progenitors in airway epithelial regeneration and highlights the critical role played by Fgf10-expressing GLI1+ cells in this context.
Collapse
|
26
|
Wu K, Kamimoto K, Zhang Y, Yang K, Keeler SP, Gerovac BJ, Agapov EV, Austin SP, Yantis J, Gissy KA, Byers DE, Alexander-Brett J, Hoffmann CM, Wallace M, Hughes ME, Crouch EC, Morris SA, Holtzman MJ. Basal epithelial stem cells cross an alarmin checkpoint for postviral lung disease. J Clin Invest 2021; 131:e149336. [PMID: 34343135 PMCID: PMC8483760 DOI: 10.1172/jci149336] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial cells are charged with protection at barrier sites, but whether this normally beneficial response might sometimes become dysfunctional still needs definition. Here, we recognized a pattern of imbalance marked by basal epithelial cell growth and differentiation that replaced normal airspaces in a mouse model of progressive postviral lung disease due to the Sendai virus. Single-cell and lineage-tracing technologies identified a distinct subset of basal epithelial stem cells (basal ESCs) that extended into gas-exchange tissue to form long-term bronchiolar-alveolar remodeling regions. Moreover, this cell subset was selectively expanded by crossing a cell-growth and survival checkpoint linked to the nuclear-localized alarmin IL-33 that was independent of IL-33 receptor signaling and instead connected to autocrine chromatin accessibility. This mechanism creates an activated stem-progenitor cell lineage with potential for physiological or pathological function. Thus, conditional loss of Il33 gene function in basal epithelial cells disrupted the homeostasis of the epithelial barrier at skin and gut sites but also markedly attenuated postviral disease in the lung based on the downregulation of remodeling and inflammation. Thus, we define a basal ESC strategy to deploy innate immune machinery that appears to overshoot the primordial goal of self-defense. Our findings reveal new targets to stratify and correct chronic and often deadly postviral disease.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kenji Kamimoto
- Department of Genetics
- Department of Developmental Biology
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kuangying Yang
- Pulmonary and Critical Care Medicine, Department of Medicine
- Division of Biostatistics
| | | | | | | | | | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Kelly A. Gissy
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Jennifer Alexander-Brett
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Pathology and Immunology
| | | | - Matthew Wallace
- Pulmonary and Critical Care Medicine, Department of Medicine
| | - Michael E. Hughes
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Genetics
| | | | | | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
27
|
Cooney AL, Thurman AL, McCray PB, Pezzulo AA, Sinn PL. Lentiviral vectors transduce lung stem cells without disrupting plasticity. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:293-301. [PMID: 34458011 PMCID: PMC8379527 DOI: 10.1016/j.omtn.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Life-long expression of a gene therapy agent likely requires targeting stem cells. Here we ask the question: does viral vector transduction or ectopic expression of a therapeutic transgene preclude airway stem cell function? We used a lentiviral vector containing a GFP or cystic fibrosis transmembrane conductance regulator (CFTR) transgene to transduce primary airway basal cells from human cystic fibrosis (CF) or non-CF lung donors and monitored expression and function after differentiation. Ussing chamber measurements confirmed CFTR-dependent chloride channel activity in CF donor cells. Immunostaining, quantitative real-time PCR, and single-cell sequencing analysis of cell-type markers indicated that vector transduction or CFTR expression does not alter the formation of pseudostratified, fully differentiated epithelial cell cultures or cell type distribution. These results have important implications for use of gene addition or gene editing strategies as life-long curative approaches for lung genetic diseases.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Andrew L. Thurman
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Alejandro A. Pezzulo
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Ciechanowicz AK, Sielatycka K, Cymer M, Skoda M, Suszyńska M, Bujko K, Ratajczak MZ, Krause DS, Kucia M. Bone Marrow-Derived VSELs Engraft as Lung Epithelial Progenitor Cells after Bleomycin-Induced Lung Injury. Cells 2021; 10:1570. [PMID: 34206516 PMCID: PMC8303224 DOI: 10.3390/cells10071570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Alveolar type 2 (AT2) cells and bronchioalveolar stem cells (BASC) perform critical regenerative functions in response to lung damage. Published data show that nonhematopoietic, bone marrow-derived "very small embryonic-like stem cells" (VSELs) can differentiate in vivo into surfactant protein C (SPC)-producing AT2 cells in the lung. Here, we test directly whether VSEL-derived BASC and AT2 cells function to produce differentiated progeny. METHODS using a reporter mouse in which the H2B-GFP fusion protein is driven from the murine SPC promoter, we tested whether bone marrow-derived VSELs or non-VSEL/nonhematopoietic stem cells (non-VSEL/non-HSCs) can differentiate into AT2 and BASC cells that function as progenitor cells. Immediately following bleomycin administration, WT recipient mice underwent intravenous administration of VSELs or non-VSEL/non-HSCs from SPC H2B-GFP mice. GFP+ AT2 and BASC were isolated and tested for progenitor activity using in vitro organoid assays. RESULTS after 21 days in vivo, we observed differentiation of VSELs but not non-VSEL/non-HSCs into phenotypic AT2 and BASC consistent with previous data in irradiated recipients. Subsequent in vitro organoid assays revealed that VSEL-derived AT2 and BASC maintained physiological potential for differentiation and self-renewal. CONCLUSION these findings prove that VSELs produce functional BASC and AT2 cells, and this may open new avenues using VSELs to develop effective cell therapy approaches for patients with lung injury.
Collapse
Affiliation(s)
- Andrzej K. Ciechanowicz
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
| | - Katarzyna Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, 71-415 Szczecin, Poland;
| | - Monika Cymer
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
| | - Marta Skoda
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
| | - Malwina Suszyńska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (M.S.); (K.B.)
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (M.S.); (K.B.)
| | - Mariusz Z. Ratajczak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (M.S.); (K.B.)
| | - Diane S. Krause
- Departments of Laboratory Medicine, Cell Biology and Pathology and the Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06509, USA;
| | - Magdalena Kucia
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (M.S.); (K.B.)
| |
Collapse
|
29
|
Li X, Zhao F, Wang A, Cheng P, Chen H. Role and mechanisms of autophagy in lung metabolism and repair. Cell Mol Life Sci 2021; 78:5051-5068. [PMID: 33864479 PMCID: PMC11072280 DOI: 10.1007/s00018-021-03841-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Mammalian lungs are metabolically active organs that frequently encounter environmental insults. Stress responses elicit protective autophagy in epithelial barrier cells and the supportive niche. Autophagy promotes the recycling of damaged intracellular organelles, denatured proteins, and other biological macromolecules for reuse as components required for lung cell survival. Autophagy, usually induced by metabolic defects, regulates cellular metabolism. Autophagy is a major adaptive response that protects cells and organisms from injury. Endogenous region-specific stem/progenitor cell populations are found in lung tissue, which are responsible for epithelial repair after lung damage. Additionally, glucose and fatty acid metabolism is altered in lung stem/progenitor cells in response to injury-related lung fibrosis. Autophagy deregulation has been observed to be involved in the development and progression of other respiratory diseases. This review explores the role and mechanisms of autophagy in regulating lung metabolism and epithelial repair.
Collapse
Affiliation(s)
- Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
30
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
31
|
Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Katkar G, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. Adult Stem Cell-derived Complete Lung Organoid Models Emulate Lung Disease in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.10.17.344002. [PMID: 33106807 PMCID: PMC7587781 DOI: 10.1101/2020.10.17.344002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type-II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Infected ALO-monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Findings validate a human lung model of COVID-19 which can be immediately utilized to investigate COVID-19 pathogenesis, and vet new therapies and vaccines.
Collapse
|
32
|
Wang Y, Tang N. The diversity of adult lung epithelial stem cells and their niche in homeostasis and regeneration. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2045-2059. [PMID: 33948870 DOI: 10.1007/s11427-020-1902-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023]
Abstract
The adult lung, a workhorse for gas exchange, is continually subjected to a barrage of assaults from the inhaled particles and pathogens. Hence, homeostatic maintenance is of paramount importance. Epithelial stem cells interact with their particular niche in the adult lung to orchestrate both natural tissue rejuvenation and robust post-injury regeneration. Advances in single-cell sequencing, lineage tracing, and living tissue imaging have deepened our understanding about stem cell heterogeneities, transition states, and specific cell lineage markers. In this review, we provided an overview of the known stem/progenitor cells and their subpopulations in different regions of the adult lung, and explored the regulatory networks in stem cells and their respective niche which collectively coordinated stem cell quiescence and regeneration states. We finally discussed relationships between dysregulated stem cell function and lung disease.
Collapse
Affiliation(s)
- Yanxiao Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
33
|
Dual recombinases-based genetic lineage tracing for stem cell research with enhanced precision. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2060-2072. [PMID: 33847909 DOI: 10.1007/s11427-020-1889-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
Stem cell research has become a hot topic in biology, as the understanding of stem cell biology can provide new insights for both regenerative medicine and clinical treatment of diseases. Accurately deciphering the fate of stem cells is the basis for understanding the mechanism and function of stem cells during tissue repair and regeneration. Cre-loxP-mediated recombination has been widely applied in fate mapping of stem cells for many years. However, nonspecific labeling by conventional cell lineage tracing strategies has led to discrepancies or even controversies in multiple fields. Recently, dual recombinase-mediated lineage tracing strategies have been developed to improve both the resolution and precision of stem cell fate mapping. These new genetic strategies also expand the application of lineage tracing in studying cell origin and fate. Here, we review cell lineage tracing methods, especially dual genetic approaches, and then provide examples to describe how they are used to study stem cell fate plasticity and function in vivo.
Collapse
|
34
|
Pai AC, Parekh KR, Engelhardt JF, Lynch TJ. Ferret respiratory disease models for the study of lung stem cells. LUNG STEM CELLS IN DEVELOPMENT, HEALTH AND DISEASE 2021:273-289. [DOI: 10.1183/2312508x.10010320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
35
|
Piñeiro-Hermida S, Autilio C, Martínez P, Bosch F, Pérez-Gil J, Blasco MA. Telomerase treatment prevents lung profibrotic pathologies associated with physiological aging. J Cell Biol 2021; 219:152010. [PMID: 32777016 PMCID: PMC7659728 DOI: 10.1083/jcb.202002120] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Short/dysfunctional telomeres are at the origin of idiopathic pulmonary fibrosis (IPF) in patients mutant for telomere maintenance genes. However, it remains unknown whether physiological aging leads to short telomeres in the lung, thus leading to IPF with aging. Here, we find that physiological aging in wild-type mice leads to telomere shortening and a reduced proliferative potential of alveolar type II cells and club cells, increased cellular senescence and DNA damage, increased fibroblast activation and collagen deposits, and impaired lung biophysics, suggestive of a fibrosis-like pathology. Treatment of both wild-type and telomerase-deficient mice with telomerase gene therapy prevented the onset of lung profibrotic pathologies. These findings suggest that short telomeres associated with physiological aging are at the origin of IPF and that a potential treatment for IPF based on telomerase activation would be of interest not only for patients with telomerase mutations but also for sporadic cases of IPF associated with physiological aging.
Collapse
Affiliation(s)
- Sergio Piñeiro-Hermida
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Fátima Bosch
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| |
Collapse
|
36
|
Abstract
The mammalian lung epithelium is composed of a wide array of specialized cells that have adapted to survive environmental exposure and perform the tasks necessary for respiration. Although the majority of these cells are remarkably quiescent during adult lung homeostasis, a growing body of literature has demonstrated the capacity of these epithelial lineages to proliferate in response to injury and regenerate lost or damaged cells. In this review, we focus on the regionally distinct lung epithelial cell types that contribute to repair after injury, and we address current controversies regarding whether elite stem cells or frequent facultative progenitors are the predominant participants. We also shed light on the newly emerging approaches for exogenously generating similar lung epithelial lineages from pluripotent stem cells.
Collapse
Affiliation(s)
- Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts 02118, USA;
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts 02118, USA;
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts 02118, USA;
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
37
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Moiseenko A, Vazquez-Armendariz AI, Kheirollahi V, Chu X, Tata A, Rivetti S, Günther S, Lebrigand K, Herold S, Braun T, Mari B, De Langhe S, Kwapiszewska G, Günther A, Chen C, Seeger W, Tata PR, Zhang JS, Bellusci S, El Agha E. Identification of a Repair-Supportive Mesenchymal Cell Population during Airway Epithelial Regeneration. Cell Rep 2020; 33:108549. [PMID: 33357434 PMCID: PMC8363050 DOI: 10.1016/j.celrep.2020.108549] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
Tissue regeneration requires coordinated and dynamic remodeling of stem and progenitor cells and the surrounding niche. Although the plasticity of epithelial cells has been well explored in many tissues, the dynamic changes occurring in niche cells remain elusive. Here, we show that, during lung repair after naphthalene injury, a population of PDGFRα+ cells emerges in the non-cartilaginous conducting airway niche, which is normally populated by airway smooth muscle cells (ASMCs). This cell population, which we term “repair-supportive mesenchymal cells” (RSMCs), is distinct from conventional ASMCs, which have previously been shown to contribute to epithelial repair. Gene expression analysis on sorted lineage-labeled cells shows that RSMCs express low levels of ASMC markers, but high levels of the pro-regenerative marker Fgf10. Organoid co-cultures demonstrate an enhanced ability for RSMCs in supporting club-cell growth. Our study highlights the dynamics of mesenchymal cells in the airway niche and has implications for chronic airway-injury-associated diseases. Moiseenko et al. explore the dynamics of mesenchymal cells in the peribronchial niche in response to airway injury. They identify a population of mesenchymal cells located in close proximity to airway smooth muscle cells (ASMCs). This population, termed “repair-supportive mesenchymal cells” (RSMCs), is recruited to facilitate airway epithelial regeneration.
Collapse
Affiliation(s)
- Alena Moiseenko
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Vahid Kheirollahi
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Xuran Chu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefano Rivetti
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | | | - Susanne Herold
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, 61231 Bad Nauheim, Germany
| | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, 06560 Valbonne, France
| | - Stijn De Langhe
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama, Birmingham, Birmingham, AL 35294, USA
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria; Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria
| | - Andreas Günther
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Werner Seeger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jin-San Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Elie El Agha
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany; Institute for Lung Health (ILH), 35392 Giessen, Germany.
| |
Collapse
|
39
|
Vazquez-Armendariz AI, Heiner M, El Agha E, Salwig I, Hoek A, Hessler MC, Shalashova I, Shrestha A, Carraro G, Mengel JP, Günther A, Morty RE, Vadász I, Schwemmle M, Kummer W, Hain T, Goesmann A, Bellusci S, Seeger W, Braun T, Herold S. Multilineage murine stem cells generate complex organoids to model distal lung development and disease. EMBO J 2020; 39:e103476. [PMID: 32985719 PMCID: PMC7604576 DOI: 10.15252/embj.2019103476] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
Organoids derived from mouse and human stem cells have recently emerged as a powerful tool to study organ development and disease. We here established a three‐dimensional (3D) murine bronchioalveolar lung organoid (BALO) model that allows clonal expansion and self‐organization of FACS‐sorted bronchioalveolar stem cells (BASCs) upon co‐culture with lung‐resident mesenchymal cells. BALOs yield a highly branched 3D structure within 21 days of culture, mimicking the cellular composition of the bronchioalveolar compartment as defined by single‐cell RNA sequencing and fluorescence as well as electron microscopic phenotyping. Additionally, BALOs support engraftment and maintenance of the cellular phenotype of injected tissue‐resident macrophages. We also demonstrate that BALOs recapitulate lung developmental defects after knockdown of a critical regulatory gene, and permit modeling of viral infection. We conclude that the BALO model enables reconstruction of the epithelial–mesenchymal‐myeloid unit of the distal lung, thereby opening numerous new avenues to study lung development, infection, and regenerative processes in vitro.
Collapse
Affiliation(s)
- Ana Ivonne Vazquez-Armendariz
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| | - Monika Heiner
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| | - Elie El Agha
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| | - Isabelle Salwig
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andreas Hoek
- Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany
| | - Marie Christin Hessler
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| | - Irina Shalashova
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| | - Amit Shrestha
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| | - Gianni Carraro
- Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jan Philip Mengel
- Institute for Medical Microbiology, German Center for Infection Research (DZIF), Justus-Liebig-University Giessen, Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Andreas Günther
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| | - Rory Edward Morty
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany.,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University, UGMLC, DZL, Giessen, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, German Center for Infection Research (DZIF), Justus-Liebig-University Giessen, Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany.,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine II and Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL) and The Institute of Lung Health (ILH), Giessen, Germany
| |
Collapse
|
40
|
Kawakita N, Toba H, Miyoshi K, Sakamoto S, Matsumoto D, Takashima M, Aoyama M, Inoue S, Morimoto M, Nishino T, Takizawa H, Tangoku A. Bronchioalveolar stem cells derived from mouse-induced pluripotent stem cells promote airway epithelium regeneration. Stem Cell Res Ther 2020; 11:430. [PMID: 33008488 PMCID: PMC7531137 DOI: 10.1186/s13287-020-01946-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background Bronchioalveolar stem cells (BASCs) located at the bronchioalveolar-duct junction (BADJ) are stem cells residing in alveoli and terminal bronchioles that can self-renew and differentiate into alveolar type (AT)-1 cells, AT-2 cells, club cells, and ciliated cells. Following terminal-bronchiole injury, BASCs increase in number and promote repair. However, whether BASCs can be differentiated from mouse-induced pluripotent stem cells (iPSCs) remains unreported, and the therapeutic potential of such cells is unclear. We therefore sought to differentiate BASCs from iPSCs and examine their potential for use in the treatment of epithelial injury in terminal bronchioles. Methods BASCs were induced using a modified protocol for differentiating mouse iPSCs into AT-2 cells. Differentiated iPSCs were intratracheally transplanted into naphthalene-treated mice. The engraftment of BASCs into the BADJ and their subsequent ability to promote repair of injury to the airway epithelium were evaluated. Results Flow cytometric analysis revealed that BASCs represented ~ 7% of the cells obtained. Additionally, ultrastructural analysis of these iPSC-derived BASCs via transmission electron microscopy showed that the cells containing secretory granules harboured microvilli, as well as small and immature lamellar body-like structures. When the differentiated iPSCs were intratracheally transplanted in naphthalene-induced airway epithelium injury, transplanted BASCs were found to be engrafted in the BADJ epithelium and alveolar spaces for 14 days after transplantation and to maintain the BASC phenotype. Notably, repair of the terminal-bronchiole epithelium was markedly promoted after transplantation of the differentiated iPSCs. Conclusions Mouse iPSCs could be differentiated in vitro into cells that display a similar phenotype to BASCs. Given that the differentiated iPSCs promoted epithelial repair in the mouse model of naphthalene-induced airway epithelium injury, this method may serve as a basis for the development of treatments for terminal-bronchiole/alveolar-region disorders.
Collapse
Affiliation(s)
- Naoya Kawakita
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroaki Toba
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shinichi Sakamoto
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Daisuke Matsumoto
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mika Takashima
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mariko Aoyama
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Seiya Inoue
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masami Morimoto
- Department of Breast Surgery, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Takeshi Nishino
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Akira Tangoku
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
41
|
Parekh KR, Nawroth J, Pai A, Busch SM, Senger CN, Ryan AL. Stem cells and lung regeneration. Am J Physiol Cell Physiol 2020; 319:C675-C693. [PMID: 32783658 PMCID: PMC7654650 DOI: 10.1152/ajpcell.00036.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
The ability to replace defective cells in an airway with cells that can engraft, integrate, and restore a functional epithelium could potentially cure a number of lung diseases. Progress toward the development of strategies to regenerate the adult lung by either in vivo or ex vivo targeting of endogenous stem cells or pluripotent stem cell derivatives is limited by our fundamental lack of understanding of the mechanisms controlling human lung development, the precise identity and function of human lung stem and progenitor cell types, and the genetic and epigenetic control of human lung fate. In this review, we intend to discuss the known stem/progenitor cell populations, their relative differences between rodents and humans, their roles in chronic lung disease, and their therapeutic prospects. Additionally, we highlight the recent breakthroughs that have increased our understanding of these cell types. These advancements include novel lineage-traced animal models and single-cell RNA sequencing of human airway cells, which have provided critical information on the stem cell subtypes, transition states, identifying cell markers, and intricate pathways that commit a stem cell to differentiate or to maintain plasticity. As our capacity to model the human lung evolves, so will our understanding of lung regeneration and our ability to target endogenous stem cells as a therapeutic approach for lung disease.
Collapse
Affiliation(s)
- Kalpaj R Parekh
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Janna Nawroth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Albert Pai
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Shana M Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Christiana N Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
42
|
Abstract
Stem cell-derived organoid models have emerged as a valuable tool for studying organogenesis, cell-to-cell stromal communication and disease. In this issue, Vazquez-Armendariz et al (2020) report a murine lung stem cell-based bronchioalveolar organoid system and provide insights into the effect of co-culturing with immune and mesenchymal cells.
Collapse
Affiliation(s)
- Vishwaraj Sontake
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.,Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.,Regeneration Next, Duke University, Durham, NC, USA
| |
Collapse
|
43
|
Wang ZN, Tang XX. New Perspectives on the Aberrant Alveolar Repair of Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2020; 8:580026. [PMID: 33117807 PMCID: PMC7561442 DOI: 10.3389/fcell.2020.580026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown etiology and high mortality. Current therapeutic strategies have limited efficacy and the prognosis remains poor. Based on the histological observations of IPF lung tissues and experimental studies using lung fibrosis animal models, it is gradually accepted that impaired epithelial regeneration after lung injury is a critical mechanism underlying the pathogenesis of pulmonary fibrosis. The central role of AEC2 in this process has been well-elucidated, while the contribution of other lung progenitor/stem cells is less discussed. Recently, increasing studies have identified several non-AEC2 epithelial progenitor/stem cells with great plasticity to transform into mature AECs and reconstitute alveolar epithelium after lung injury. However, why these cells do not function as alternate stem cells to regenerate alveolar epithelium in IPF is still unknown. In this review, we discuss the contribution of lung epithelial progenitor/stem cells in the aberrant alveolar regeneration, and provide a novel perspective on the mechanism of IPF pathogenesis, in which non-AEC2 progenitors may play an essential role.
Collapse
Affiliation(s)
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Chaudhury D, Sen U, Bhat NN, Sahoo BK, Shenoy P S, Bose B. Lung damage by thoron progenies versus possible damage redemption by lung stem cells: a perspective. Int J Radiat Biol 2020; 96:1362-1373. [PMID: 32910703 DOI: 10.1080/09553002.2020.1820597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Natural radiation is the major source of human exposure to ionizing radiation. About 52% of the total dose received from the high natural background radiations (HNBR) areas are due to inhalation dose from radon (222Rn)/thoron (220Rn) and their progenies. Hence, we reviewed the biological effects of 222Rn/220Rn and their progenies on lung tissue, and the possible role of lung stem cells in salvaging the damage caused by 222Rn/220Rn and their progenies. MATERIALS AND METHOD We have extensively reviewed articles among several hits obtained in PubMed, Scopus, and Elsevier databases with keywords 'Radon/Thoron' OR Thoron progeny/Radon progeny OR 'Thoron/Radon inhalation and lungs', and proceed for further analysis. Also, databases related to oxidative damage to lung stem cells by radiation and the repair mechanisms involved by the lung stem cells were also included. RESULTS Based on the existing epidemiological data on radon in residential buildings, we found that evidence exists on the association of radon induced lung carcinogenesis, but the data regarding the role of thoron induced lung damage is very limited and inconclusive. We also found that limited information has been provided based on ecological designs, leading to poor documentation of health statistics, in particular, organ-specific cancer rates. Finally, we tried to elucidate the possible mechanisms of lung injury induced by thoron inhalation and the probable role of lung stem cell toward the redemption of such oxidative damages. CONCLUSION Existing epidemiological data on thoron inhalation and associated health outcomes are limited and inconclusive. Further, in vivo experiments, with respect to radon/thoron inhalation dose rate ranges corresponding to the HNBR areas will be helpful in understanding the cellular and molecular effects.
Collapse
Affiliation(s)
- Debajit Chaudhury
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Nagesh N Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, India
| | - Bijay Kumar Sahoo
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
45
|
Zhang S, Ye C, Xiao J, Yang J, Zhu C, Xiao Y, Ye M, Chen Q. Single-cell transcriptome profiling reveals the mechanism of abnormal proliferation of epithelial cells in congenital cystic adenomatoid malformation. Exp Cell Res 2020; 396:112299. [PMID: 32979365 DOI: 10.1016/j.yexcr.2020.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Congenital cystic adenomatoid malformation (CCAM) is the most common congenital pulmonary anomaly with unknown etiology. Here, single-cell RNA sequencing (scRNA-seq) was used to map its cellular landscape and identify the underlying cellular and molecular events related to CCAM. METHODS This study involved a 4.25 year old patient with grade Ⅱ-Ⅲ CCAM at the Children's Hospital of Fudan University. Samples of lesioned and non-lesioned areas were collected during surgery for scRNA-seq. RESULTS In total, 19,904 cells were obtained with median UMI counts of 7032 per cell and 1995 median genes per cell. In terms of lesioned and non-lesioned areas, epithelial cells accounted for 27.23% and 17.85%, respectively, while mesenchymal cells accounted for 2.67% and 16.06%, respectively (P < 0.0001). Further clustering of epithelial cells revealed that the fractions of alveolar type 1 cells (AT1, N: 23.65%; L: 49.81%), AT2(N: 2.02%; L: 5.26%), club-1(N: 9.02%; L: 17.57%), club-3(N: 1.18%; L: 4.15%), and basal cells (N: 0.34%; L: 2.93%) were increased in lesioned samples (P < 0.0001). Pseudotime trajectory analysis showed tracks of club-1/basal cells→AT2→club-3→AT1 and club-1,2/basal→AT2. Mast cells (N: 0.63%; L: 2.48%) were also increased in lesioned samples and interactions of CD44 with HBEGF and FGFR2 were detected between mast and epithelial cells. CONCLUSIONS AT1, AT2, club, and basal cells were increased in CCAM patients, and newly defined club-1/3 and basal cells might be the origin of proliferating AT1 and AT2 cells. Increased mast cells might promote epithelial cell proliferation through interactions of CD44 with HBEGF and FGFR2.
Collapse
Affiliation(s)
- Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Jiangxi, China; Department of Pediatrics, The Affiliated Children's Hospital of Nanchang University, Jiangxi, China
| | - Chunjing Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Jiangxi, China
| | - Jiale Yang
- Department of Pediatrics, The Affiliated Children's Hospital of Nanchang University, Jiangxi, China
| | - Chunhui Zhu
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Jiangxi, China; Department of Pediatrics, The Affiliated Children's Hospital of Nanchang University, Jiangxi, China
| | - Yu Xiao
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Jiangxi, China; Department of Pediatrics, The Affiliated Children's Hospital of Nanchang University, Jiangxi, China
| | - Ming Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China.
| | - Qiang Chen
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Jiangxi, China; Department of Pediatrics, The Affiliated Children's Hospital of Nanchang University, Jiangxi, China.
| |
Collapse
|
46
|
Abstract
Optical clearing combined with deep imaging of large biological specimen allows organ-wide visualization of cells in three dimensions (3D) to explore regenerative processes in a spatial context. Here, we investigate the dynamics of airway regeneration following toxin-mediated epithelial injury in cleared whole lung preparations by light sheet microscopy. We use a recently developed knock-in mouse strain labeling bronchiolar Club cells (Scgb1a1-mCherry) to define an optimal clearing procedure that efficiently preserves genetically encoded fluorophores. Dehydration in pH-adjusted tert-butanol followed by clearing in ethyl cinnamate maintained maximum mCherry fluorescence while preventing unfavorable background fluorescence. We apply this technique to depict the course of bronchiolar epithelial renewal from an acute injury phase to early and late recovery stages. 3D reconstructions of whole lungs demonstrate near-complete loss of secretory Club cells throughout the entire respiratory tract 3 days post naphthalene (dpn). Multiple foci of regenerating Club cells emerge at 7 dpn, predominantly at airway bifurcations and in distal terminal bronchioles—anatomical regions assumed to harbor distinct stem/progenitor cells subsets. At 21 dpn, clusters of newly formed Club cells have largely expanded, although the bronchiolar epithelial lining continues to regenerate. This study identifies regional stem cell niches as starting points for epithelial recovery, underscores the enormous regenerative capacity of the respiratory epithelium and demonstrates the power of whole lung 3D imaging for evaluating the extent of pulmonary damage and subsequent repair processes.
Collapse
|
47
|
Wu A, Song H. Regulation of alveolar type 2 stem/progenitor cells in lung injury and regeneration. Acta Biochim Biophys Sin (Shanghai) 2020; 52:716-722. [PMID: 32445469 DOI: 10.1093/abbs/gmaa052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 01/02/2023] Open
Abstract
The renewal of lung epithelial cells is normally slow unless the lung is injured. The resident epithelial stem cells rapidly proliferate and differentiate to maintain lung structure and function when the lung is damaged. The alveolar epithelium is characterized by alveolar type 1 (AT1) and alveolar type 2 (AT2) cells. AT2 cells are the stem cells for alveoli, as they can both self-renew and generate AT1 cells. Abnormal proliferation and regulation of AT2 cells will lead to serious lung diseases including cancers. In this review, we focused on the alveolar stem/progenitor cells, the key physiological function of AT2 cells in lung homeostasis and the complicated regulation of AT2 cells in the repairing processes after lung injury.
Collapse
Affiliation(s)
- Ailing Wu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hai Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
48
|
Hu Y, Ng-Blichfeldt JP, Ota C, Ciminieri C, Ren W, Hiemstra PS, Stolk J, Gosens R, Königshoff M. Wnt/β-catenin signaling is critical for regenerative potential of distal lung epithelial progenitor cells in homeostasis and emphysema. Stem Cells 2020; 38:1467-1478. [PMID: 32526076 PMCID: PMC7116441 DOI: 10.1002/stem.3241] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/17/2020] [Indexed: 12/19/2022]
Abstract
Wnt/β-catenin signaling regulates progenitor cell fate decisions during lung development and in various adult tissues. Ectopic activation of Wnt/β-catenin signaling promotes tissue repair in emphysema, a devastating lung disease with progressive loss of parenchymal lung tissue. The identity of Wnt/β-catenin responsive progenitor cells and the potential impact of Wnt/β-catenin signaling on adult distal lung epithelial progenitor cell function in emphysema are poorly understood. Here, we used TCF/ Lef:H2B/GFP reporter mice to investigate the role of Wnt/β-catenin signaling in lung organoid formation. We identified an organoid-forming adult distal lung epithelial progenitor cell population characterized by a low Wnt/β-catenin activity, which was enriched in club and alveolar epithelial type (AT)II cells. Endogenous Wnt/β-catenin activity was required for the initiation of multiple subtypes of distal lung organoids derived from the Wntlow epithelial progenitors. Further ectopic Wnt/β-catenin activation specifically led to an increase in alveolar organoid number; however, the subsequent proliferation of alveolar epithelial cells in the organoids did not require constitutive Wnt/β-catenin signaling. Distal lung epithelial progenitor cells derived from the mouse model of elastase-induced emphysema exhibited reduced organoid forming capacity. This was rescued by Wnt/β-catenin signal activation, which largely increased the number of alveolar organoids. Together, our study reveals a novel mechanism of lung epithelial progenitor cell activation in homeostasis and emphysema.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - John-Poul Ng-Blichfeldt
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany.,MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Chiharu Ota
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Wenhua Ren
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
49
|
Liu K, Jin H, Zhou B. Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies. J Biol Chem 2020; 295:6413-6424. [PMID: 32213599 DOI: 10.1074/jbc.rev120.011631] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase-mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate-related biological phenomena in the life sciences.
Collapse
Affiliation(s)
- Kuo Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hengwei Jin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China .,School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
50
|
Abstract
The respiratory system plays an essential role for human life. This system (like all others) undergoes physiological regeneration due to many types of stem cells found both in the respiratory tract itself and in the alveoli. The stem cell hierarchy is very extensive due to their variety in the lungs and is still not completely understood.The best described lung stem cells are alveolar type II cells, which as progenitor lung stem cells are precursors of alveolar type I cells, i.e., cells that perform gas exchange in the lungs. These progenitor stem cells, which reside in alveoli corners, express high levels of surfactant protein C (SFTPC). Despite the fact that type II pneumocytes occupy only 7-10% of the lung surface, there are almost twice as many as alveolar type I cells occupying almost 95% of the surface.Other stem cells making up the lung regenerative potential have also been identified in the lungs. Both endothelial, mesodermal, and epithelial stem cells are necessary for the lungs to function properly and perform their physiological functions.The lungs, like all other organs, undergo an aging process. As a result of this process, not only the total number of cells changes, the percentage of particular types of cells, but also their efficiency is reduced. With age, the proliferative potential of lung stem cells also decreases, not just their number. This brings about the need to increase the intensity of research in the field of regenerative medicine.
Collapse
Affiliation(s)
- Andrzej Ciechanowicz
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical Univeristy of Warsaw, Warsaw, Poland.
| |
Collapse
|