1
|
McNamee SM, Chan NP, Akula M, Avola MO, Whalen M, Nystuen K, Singh P, Upadhyay AK, DeAngelis MM, Haider NB. Preclinical dose response study shows NR2E3 can attenuate retinal degeneration in the retinitis pigmentosa mouse model Rho P23H+/. Gene Ther 2024; 31:255-262. [PMID: 38273095 PMCID: PMC11090815 DOI: 10.1038/s41434-024-00440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous disease and the main cause of vision loss within the group of inherited retinal diseases (IRDs). IRDs are a group of rare disorders caused by mutations in one or more of over 280 genes which ultimately result in blindness. Modifier genes play a key role in modulating disease phenotypes, and mutations in them can affect disease outcomes, rate of progression, and severity. Our previous studies have demonstrated that the nuclear hormone receptor 2 family e, member 3 (Nr2e3) gene reduced disease progression and loss of photoreceptor cell layers in RhoP23H-/- mice. This follow up, pharmacology study evaluates a longitudinal NR2E3 dose response in the clinically relevant heterozygous RhoP23H mouse. Reduced retinal degeneration and improved retinal morphology was observed 6 months following treatment evaluating three different NR2E3 doses. Histological and immunohistochemical analysis revealed regions of photoreceptor rescue in the treated retinas of RhoP23H+/- mice. Functional assessment by electroretinogram (ERG) showed attenuated photoreceptor degeneration with all doses. This study demonstrates the effectiveness of different doses of NR2E3 at reducing retinal degeneration and informs dose selection for clinical trials of RhoP23H-associated RP.
Collapse
Affiliation(s)
- Shannon M McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Natalie P Chan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Marielle O Avola
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Maiya Whalen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kaden Nystuen
- University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Neena B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Li S, Datta S, Brabbit E, Love Z, Woytowicz V, Flattery K, Capri J, Yao K, Wu S, Imboden M, Upadhyay A, Arumugham R, Thoreson WB, DeAngelis MM, Haider NB. Nr2e3 is a genetic modifier that rescues retinal degeneration and promotes homeostasis in multiple models of retinitis pigmentosa. Gene Ther 2021; 28:223-241. [PMID: 32123325 PMCID: PMC7483267 DOI: 10.1038/s41434-020-0134-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP.
Collapse
Affiliation(s)
- Sujun Li
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shyamtanu Datta
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Emily Brabbit
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Zoe Love
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Victoria Woytowicz
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kyle Flattery
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jessica Capri
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katie Yao
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Siqi Wu
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Lottonen-Raikaslehto L, Rissanen R, Gurzeler E, Merentie M, Huusko J, Schneider JE, Liimatainen T, Ylä-Herttuala S. Left ventricular remodeling leads to heart failure in mice with cardiac-specific overexpression of VEGF-B 167: echocardiography and magnetic resonance imaging study. Physiol Rep 2017; 5:5/6/e13096. [PMID: 28351964 PMCID: PMC5371547 DOI: 10.14814/phy2.13096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/07/2016] [Accepted: 11/20/2016] [Indexed: 01/24/2023] Open
Abstract
Cardiac-specific overexpression of vascular endothelial growth factor (VEGF)-B167 is known to induce left ventricular hypertrophy due to altered lipid metabolism, in which ceramides accumulate to the heart and cause mitochondrial damage. The aim of this study was to evaluate and compare different imaging methods to find the most sensitive way to diagnose at early stage the progressive left ventricular remodeling leading to heart failure. Echocardiography and cardiovascular magnetic resonance imaging were compared for imaging the hearts of transgenic mice with cardiac-specific overexpression of VEGF-B167 and wild-type mice from 5 to 14 months of age at several time points. Disease progression was verified by molecular biology methods and histology. We showed that left ventricular remodeling is already ongoing at the age of 5 months in transgenic mice leading to heart failure by the age of 14 months. Measurements from echocardiography and cardiovascular magnetic resonance imaging revealed similar changes in cardiac structure and function in the transgenic mice. Changes in histology, gene expressions, and electrocardiography supported the progression of left ventricular hypertrophy. Longitudinal relaxation time in rotating frame (T1ρ ) in cardiovascular magnetic resonance imaging could be suitable for detecting severe fibrosis in the heart. We conclude that cardiac-specific overexpression of VEGF-B167 leads to left ventricular remodeling at early age and is a suitable model to study heart failure development with different imaging methods.
Collapse
Affiliation(s)
- Line Lottonen-Raikaslehto
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riina Rissanen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Gurzeler
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mari Merentie
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jurgen E Schneider
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, United kingdom
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Clinical Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland .,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
4
|
Lavender N, Yang J, Chen SC, Sai J, Johnson CA, Owens P, Ayers GD, Richmond A. The Yin/Yan of CCL2: a minor role in neutrophil anti-tumor activity in vitro but a major role on the outgrowth of metastatic breast cancer lesions in the lung in vivo. BMC Cancer 2017; 17:88. [PMID: 28143493 PMCID: PMC5286656 DOI: 10.1186/s12885-017-3074-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/18/2017] [Indexed: 01/15/2023] Open
Abstract
Background The role of the chemokine CCL2 in breast cancer is controversial. While CCL2 recruits and activates pro-tumor macrophages, it is also reported to enhance neutrophil-mediated anti-tumor activity. Moreover, loss of CCL2 in early development enhances breast cancer progression. Methods To clarify these conflicting findings, we examined the ability of CCL2 to alter naïve and tumor entrained neutrophil production of ROS, release of granzyme-B, and killing of tumor cells in multiple mouse models of breast cancer. CCL2 was delivered intranasally in mice to elevate CCL2 levels in the lung and effects on seeding and growth of breast tumor cells were evaluated. The TCGA data base was queried for relationship between CCL2 expression and relapse free survival of breast cancer patients and compared to subsets of breast cancer patients. Results Even though each of the tumor cell lines studied produced approximately equal amounts of CCL2, exogenous delivery of CCL2 to co-cultures of breast tumor cells and neutrophils enhanced the ability of tumor-entrained neutrophils (TEN) to kill the less aggressive 67NR variant of 4T1 breast cancer cells. However, exogenous CCL2 did not enhance naïve or TEN neutrophil killing of more aggressive 4T1 or PyMT breast tumor cells. Moreover, this anti-tumor activity was not observed in vivo. Intranasal delivery of CCL2 to BALB/c mice markedly enhanced seeding and outgrowth of 67NR cells in the lung and increased the recruitment of CD4+ T cells and CD8+ central memory T cells into lungs of tumor bearing mice. There was no significant increase in the recruitment of CD19+ B cells, or F4/80+, Ly6G+ and CD11c + myeloid cells. CCL2 had an equal effect on CD206+ and MHCII+ populations of macrophages, thus balancing the pro- and anti-tumor macrophage cell population. Analysis of the relationship between CCL2 levels and relapse free survival in humans revealed that overall survival is not significantly different between high CCL2 expressing and low CCL2 expressing breast cancer patients grouped together. However, examination of the relationship between high CCL2 expressing basal-like, HER2+ and luminal B breast cancer patients revealed that higher CCL2 expressing tumors in these subgroups have a significantly higher probability of surviving longer than those expressing low CCL2. Conclusions While our in vitro data support a potential anti-tumor role for CCL2 in TEN neutrophil- mediated tumor killing in poorly aggressive tumors, intranasal delivery of CCL2 increased CD4+ T cell recruitment to the pre-metastatic niche of the lung and this correlated with enhanced seeding and growth of tumor cells. These data indicate that effects of CCL2/CCR2 antagonists on the intratumoral leukocyte content should be monitored in ongoing clinical trials using these agents. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3074-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Lavender
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Jinming Yang
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Sheau-Chiann Chen
- Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.,Division of Cancer Biostatistics, Department of Biostatistics, Center for Quantitative Sciences, Nashville, TN, USA
| | - Jiqing Sai
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - C Andrew Johnson
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Philip Owens
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA.,Division of Cancer Biostatistics, Department of Biostatistics, Center for Quantitative Sciences, Nashville, TN, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA. .,Department of Cancer Biology, Vanderbilt University Medical Center, 432 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Yetman MJ, Lillehaug S, Bjaalie JG, Leergaard TB, Jankowsky JL. Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex. Brain Struct Funct 2015; 221:2231-49. [PMID: 25869275 DOI: 10.1007/s00429-015-1040-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/02/2015] [Indexed: 01/07/2023]
Abstract
The entorhinal cortex (EC) plays a central role in episodic memory and is among the earliest sites of neurodegeneration and neurofibrillary tangle formation in Alzheimer's disease. Given its importance in memory and dementia, the ability to selectively modulate gene expression or neuronal function in the EC is of widespread interest. To this end, several recent studies have taken advantage of a transgenic line in which the tetracycline transactivator (tTA) was placed under control of the neuropsin (Nop) promoter to limit transgene expression within the medial EC and pre-/parasubiculum. Although the utility of this driver is contingent on its spatial specificity, no detailed neuroanatomical analysis of its expression has yet been conducted. We therefore undertook a systematic analysis of Nop-tTA expression using a lacZ reporter and have made the complete set of histological sections available through the Rodent Brain Workbench tTA atlas, www.rbwb.org . Our findings confirm that the highest density of tTA expression is found in the EC and pre-/parasubiculum, but also reveal considerable expression in several other cortical areas. Promiscuous transgene expression may account for the appearance of pathological protein aggregates outside of the EC in mouse models of Alzheimer's disease using this driver, as we find considerable overlap between sites of delayed amyloid deposition and regions with sparse β-galactosidase reporter labeling. While different tet-responsive lines can display individual expression characteristics, our results suggest caution when designing experiments that depend on precise localization of gene products controlled by the Nop-tTA or other spatially restrictive transgenic drivers.
Collapse
Affiliation(s)
- Michael J Yetman
- Departments of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, BCM295, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sveinung Lillehaug
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joanna L Jankowsky
- Departments of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, BCM295, One Baylor Plaza, Houston, TX, 77030, USA. .,Departments of Neurology and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Weber Lozada K, Keri RA. Bisphenol A increases mammary cancer risk in two distinct mouse models of breast cancer. Biol Reprod 2011; 85:490-7. [PMID: 21636739 DOI: 10.1095/biolreprod.110.090431] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Bisphenol A (BPA) is an industrial plasticizer that leaches from food containers during normal usage, leading to human exposure. Early and chronic exposure to endocrine-disrupting environmental contaminants such as BPA elevates the potential for long-term health consequences. We examined the impact of BPA exposure on fetal programming of mammary tumor susceptibility as well as its growth promoting effects on transformed breast cancer cells in vivo. Fetal mice were exposed to 0, 25, or 250 μg/kg BPA by oral gavage of pregnant dams. Offspring were subsequently treated with the known mammary carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA). While no significant differences in postnatal mammary development were observed, both low- and high-dose BPA cohorts had a statistically significant increase in susceptibility to DMBA-induced tumors compared to vehicle-treated controls. To determine if BPA also promotes established tumor growth, MCF-7 human breast cancer cells were subcutaneously injected into flanks of ovariectomized NCR nu/nu female mice treated with BPA, 17beta-estradiol, or placebo alone or combined with tamoxifen. Both estradiol- and BPA-treated cohorts formed tumors by 7 wk post-transplantation, while no tumors were detected in the placebo cohort. Tamoxifen reversed the effects of estradiol and BPA. We conclude that BPA may increase mammary tumorigenesis through at least two mechanisms: molecular alteration of fetal glands without associated morphological changes and direct promotion of estrogen-dependent tumor cell growth. Both results indicate that exposure to BPA during various biological states increases the risk of developing mammary cancer in mice.
Collapse
Affiliation(s)
- Kristen Weber Lozada
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | |
Collapse
|
7
|
Cohn E, Ossowski L, Bertran S, Marzan C, Farias EF. RARα1 control of mammary gland ductal morphogenesis and wnt1-tumorigenesis. Breast Cancer Res 2010; 12:R79. [PMID: 20923554 PMCID: PMC3096972 DOI: 10.1186/bcr2724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 10/05/2010] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Retinoic acid signaling pathways are disabled in human breast cancer suggesting a controlling role in normal mammary growth that might be lost in tumorigenesis. We tested a single receptor isotype, RARα1, for its role in mouse mammary gland morphogenesis and MMTV-wnt1-induced oncogenesis. METHODS The role of RARα1 in mammary morphogenesis was tested in RARα1-knockout (KO) mice and in mammary tumorigenesis in bi-genic (RARα1/KO crossed with MMTV-wnt1) mice. We used whole mounts analysis, stem cells/progenitor quantification, mammary gland repopulation, Q-PCR, test of tumor-free survival, tumor fragments and cell transplantation. RESULTS In 2 genetic backgrounds (129/Bl-6 and FVB) the neo-natal RARα1/KO-mammary epithelial tree was 2-fold larger and the pubertal tree had 2-fold more branch points and 5-fold more mature end buds, a phenotype that was predominantly epithelial cell autonomous. The stem/progenitor compartment of the RARα1/KO mammary, defined as CD24(low)/ALDH(high activity) was increased by a median 1.7 fold, but the mammary stem cell (MaSC)-containing compartment, (CD24(low)/CD29(high)), was larger (~1.5 fold) in the wt-glands, and the mammary repopulating ability of the wt-gland epithelium was ~2-fold greater. In MMTV-wnt1 transgenic glands the progenitor (CD24(low)/ALDH(high activity)) content was 2.6-fold greater than in the wt and was further increased in the RARα1/KO-wnt1 glands. The tumor-free survival of RARα1/KO-wnt1 mice was significantly (p=0.0002, Kaplan Meier) longer, the in vivo growth of RARα1/KO-wnt1 transplanted tumor fragments was significantly (p=0.01) slower and RARα1/KO-wnt1 tumors cell suspension produced tumors after much longer latency. CONCLUSIONS In vitamin A-replete mice, RARα1 is required to maintain normal mammary morphogenesis, but paradoxically, also efficient tumorigenesis. While its loss increases the density of the mammary epithelial tree and the content of luminal mammary progenitors, it appears to reduce the size of the MaSC-containing compartment, the mammary repopulating activity, and to delay significantly the MMTV-wnt1-mammary tumorigenesis. Whether the delay in tumorigenesis is solely due to a reduction in wnt1 target cells or due to additional mechanisms remains to be determined. These results reveal the intricate nature of the retinoid signaling pathways in mammary development and carcinogenesis and suggest that a better understanding will be needed before retinoids can join the armament of effective anti- breast cancer therapies.
Collapse
Affiliation(s)
- Ellen Cohn
- Division of Hematology/Oncology, Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
8
|
Kumar R, Zhang H, Holm C, Vadlamudi RK, Landberg G, Rayala SK. Extranuclear coactivator signaling confers insensitivity to tamoxifen. Clin Cancer Res 2009; 15:4123-30. [PMID: 19470742 DOI: 10.1158/1078-0432.ccr-08-2347] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tamoxifen is one of many standard therapeutic options currently available for estrogen receptor-alpha-positive breast cancer patients. Emerging data have suggested that levels of estrogen receptor coregulatory proteins play a significant role in acquiring resistance to antiestrogen action. It has been suggested that high levels of estrogen receptor coactivators and its mislocalization may enhance the estrogen agonist activity of tamoxifen and contribute to tamoxifen resistance. EXPERIMENTAL DESIGN In an effort to understand the impact of nongenomic signaling and its contribution to hormone resistance in a whole-animal setting, we generated a transgenic mouse expressing a cytoplasmic version of proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) mutant defective in its nuclear translocation (PELP1-cyto) and implanted these mice with tamoxifen pellets to assess its responsiveness. RESULTS We show that mammary glands from these mice developed widespread hyperplasia with increased cell proliferation and enhanced activation of mitogen-activated protein kinase and AKT as early as 12 weeks of age. Treatment with tamoxifen did not inhibit this hyperplasia; instead, such treatment exaggerated hyperplasia with an enhanced degree of alteration, indicative of hypersensitivity to tamoxifen. Analysis of molecular markers in the transgenic mammary glands from the tamoxifen-treated transgenic mice showed higher levels of proliferation markers proliferating cell nuclear antigen and activated mitogen-activated protein kinase than in untreated PELP1-cyto cell-derived mice. We also found that nude mice with MCF-7/PELP1-cyto cell-derived tumor xenografts did not respond to tamoxifen. Using immunohistochemical analysis, we found that 43% of human breast tumor samples had high levels of cytoplasmic PELP1, which shows a positive correlation between tumor grade and proliferation. Patients whose tumors had high levels of cytoplasmic PELP1 exhibited a tendency to respond poorly to tamoxifen compared with patients whose tumors had low levels of cytoplasmic PELP1. CONCLUSIONS These findings suggest that PELP1 localization could be used as a determinant of hormone sensitivity or vulnerability. The establishment of the PELP1-cyto transgenic mouse model is expected to facilitate the development of preclinical approaches for effective intervention of breast tumors using cytoplasmic coregulators and active nongenomic signaling.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Biology, Institute of Coregulator Biology, The George Washington University Medical Center, Washington, District of Columbia 20037, USA
| | | | | | | | | | | |
Collapse
|
9
|
Rose-Hellekant TA, Skildum AJ, Zhdankin O, Greene AL, Regal RR, Kundel KD, Kundel DW. Short-term prophylactic tamoxifen reduces the incidence of antiestrogen-resistant/estrogen receptor-positive/progesterone receptor-negative mammary tumors. Cancer Prev Res (Phila) 2009; 2:496-502. [PMID: 19401525 DOI: 10.1158/1940-6207.capr-09-0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although many estrogen receptor-positive (ER+) breast cancers are effectively treated with selective estrogen receptor modulators and down-regulators (SERM/SERD), some are highly resistant. Resistance is more likely if primary cancers are devoid of progesterone receptors (PR-) or have high levels of growth factor activity. In this study, a transgenic mouse line that expresses transforming growth factor-alpha (NRL-TGFalpha mice) and that develops ER+/PR- mammary tumors was used to assess the possible effects of (a) therapeutic delivery of the SERM, tamoxifen, or SERD, ICI I82,780 (ICI), on the growth of established tumors and (b) short-term prophylactic tamoxifen administration on the initial development of new mammary tumors. To determine the therapeutic effects of tamoxifen and ICI on the growth of established tumors, mice were exposed to 3 weeks of drug treatment. Neither drug influenced tumor growth or glandular pathology. To determine if early prophylactic tamoxifen could alter tumorigenesis, a 60-day tamoxifen treatment was initiated in 8-week-old mice. Compared with placebo-treated mice, tamoxifen reduced tumor incidence by 50% and significantly decreased the degree of mammary hyperplasia. Prophylactic tamoxifen also significantly extended the life span of tumor-free mice. These data show that in this mouse model, established ER+/PR- mammary tumors are resistant to SERM/SERD treatment but the development of new mammary tumors can be prevented by an early course of tamoxifen. This study validates the utility of NRL-TGFalpha mice for (a) identifying candidate biomarkers of efficacious tamoxifen chemoprevention and (b) modeling the evolution of tamoxifen resistance.
Collapse
Affiliation(s)
- Teresa A Rose-Hellekant
- Department of Physiology and Pharmacology, University of Minnesota Medical School-Duluth Campus, 1035 University Drive, Duluth, MN 55812, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Arendt LM, Schuler LA. Transgenic models to study actions of prolactin in mammary neoplasia. J Mammary Gland Biol Neoplasia 2008; 13:29-40. [PMID: 18219562 DOI: 10.1007/s10911-008-9073-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022] Open
Abstract
Transgenic models to explore the role of prolactin and its interactions with other factors in mammary oncogenesis have begun to reveal the dynamic contributions of prolactin to the development and progression of this disease. Targeting prolactin to mammary epithelial cells mimics the local production of this hormone that is prominent in women, and permits studies in the absence of effects on the ovarian steroid milieu. These models have demonstrated that local production of prolactin is sufficient to induce mammary tumors after a long latency. Prolactin also can potentiate actions of other oncogenic stimuli, decreasing tumor latency and increasing incidence in several models. Augmented proliferation, without alteration of apoptosis, is a consistent feature. Pathways in addition to the well-characterized Jak2-Stat5 pathway, including ERK1/2 and Akt1/2, are implicated in these actions. These studies have also revealed a complex relationship with estrogen; while prolactin increases ERalpha expression, it does not require estrogenic ligand for lesion development, and indeed, in combination with the EGFR ligand, TGFalpha, prolactin can contribute to estrogen insensitivity. These studies highlight the utility of these models to decipher the interplay between prolactin and other oncogenic factors in breast cancer, with implications for preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Lisa M Arendt
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | | |
Collapse
|
11
|
Ito S, Chen C, Satoh J, Yim S, Gonzalez FJ. Dietary phytochemicals regulate whole-body CYP1A1 expression through an arylhydrocarbon receptor nuclear translocator-dependent system in gut. J Clin Invest 2007; 117:1940-50. [PMID: 17607366 PMCID: PMC1890999 DOI: 10.1172/jci31647] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 04/24/2007] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450 1A1 (CYP1A1) is one of the most important detoxification enzymes due to its broad substrate specificity and wide distribution throughout the body. On the other hand, CYP1A1 can also produce highly carcinogenic intermediate metabolites through oxidation of polycyclic aromatic hydrocarbons. We describe what we believe to be a novel regulatory system for whole-body CYP1A1 expression by a factor originating in the gut. A mutant mouse was generated in which the arylhydrocarbon receptor nuclear translocator (Arnt) gene is disrupted predominantly in the gut epithelium. Surprisingly, CYP1A1 mRNA expression and enzymatic activities were markedly elevated in almost all non-gut tissues in this mouse line. The induction was even observed in early-stage embryos in pregnant mutant females. Interestingly, the upregulation was CYP1A1 selective and lost upon administration of a synthetic purified diet. Moreover, the increase was recovered by addition of the natural phytochemical indole-3-carbinol to the purified diet. These results suggest that an Arnt-dependent pathway in gut has an important role in regulation of the metabolism of dietary CYP1A1 inducers and whole-body CYP1A1 expression. This machinery might be involved in naturally occurring carcinogenic processes and/or other numerous biological responses mediated by CYP1A1 activity.
Collapse
Affiliation(s)
- Shinji Ito
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
12
|
Blackburn AC, Hill LZ, Roberts AL, Wang J, Aud D, Jung J, Nikolcheva T, Allard J, Peltz G, Otis CN, Cao QJ, Ricketts RSJ, Naber SP, Mollenhauer J, Poustka A, Malamud D, Jerry DJ. Genetic mapping in mice identifies DMBT1 as a candidate modifier of mammary tumors and breast cancer risk. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:2030-41. [PMID: 17525270 PMCID: PMC1899446 DOI: 10.2353/ajpath.2007.060512] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Low-penetrance breast cancer susceptibility alleles seem to play a significant role in breast cancer risk but are difficult to identify in human cohorts. A genetic screen of 176 N2 backcross progeny of two Trp53(+/-) strains, BALB/c and C57BL/6, which differ in their susceptibility to mammary tumors, identified a modifier of mammary tumor susceptibility in an approximately 25-Mb interval on mouse chromosome 7 (designated SuprMam1). Relative to heterozygotes, homozygosity for BALB/c alleles of SuprMam1 significantly decreased mammary tumor latency from 70.7 to 61.1 weeks and increased risk twofold (P = 0.002). Dmbt1 (deleted in malignant brain tumors 1) was identified as a candidate modifier gene within the SuprMam1 interval because it was differentially expressed in mammary tissues from BALB/c-Trp53(+/-) and C57BL/6-Trp53(+/-) mice. Dmbt1 mRNA and protein was reduced in mammary glands of the susceptible BALB/c mice. Immunohistochemical staining demonstrated that DMBT1 protein expression was also significantly reduced in normal breast tissue from women with breast cancer (staining score, 1.8; n = 46) compared with cancer-free controls (staining score, 3.9; n = 53; P < 0.0001). These experiments demonstrate the use of Trp53(+/-) mice as a sensitized background to screen for low-penetrance modifiers of cancer. The results identify a novel mammary tumor susceptibility locus in mice and support a role for DMBT1 in suppression of mammary tumors in both mice and women.
Collapse
Affiliation(s)
- Anneke C Blackburn
- Department of Veterinary and Animal Sciences, Molecular and Cellular Biology Program, Paige Laboratory, University of Massachusetts, 161 Holdsworth Way, Amherst, MA 01003-6410, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rose-Hellekant TA, Schroeder MD, Brockman JL, Zhdankin O, Bolstad R, Chen KS, Gould MN, Schuler LA, Sandgren EP. Estrogen receptor-positive mammary tumorigenesis in TGFalpha transgenic mice progresses with progesterone receptor loss. Oncogene 2007; 26:5238-46. [PMID: 17334393 PMCID: PMC2587149 DOI: 10.1038/sj.onc.1210340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We characterized the novel NRL-transforming growth factor alpha (NRL-TGFalpha) transgenic mouse model in which growth factor - steroid receptor interactions were explored. The NRL promoter directs transgene expression to mammary ductal and alveolar cells and is nonresponsive to estrogen manipulations in vitro and in vivo. NRL-TGFalpha mice acquire proliferative hyperplasias as well as cystic and solid tumors. Quantitative transcript analysis revealed a progressive decrease in estrogen receptor alpha (ER) and progesterone receptor (PR) mRNA levels with tumorigenesis. However, ER protein was evident in all lesion types and in surrounding stromal cells using immunohistochemistry. PR protein was identified in normal epithelial cells and in very few cells of small epithelial hyperplasias, but never in stromal or tumor cells. Prophylactic ovariectomy significantly delayed tumor development and decreased incidence. Finally, while heterozygous (+/-) p53 mice did not acquire mammary lesions, p53+/- mice carrying the NRL-TGFalpha transgene developed ER negative/PR negative undifferentiated carcinomas. These data demonstrate that unregulated TGFalpha expression in the mammary gland leads to oncogenesis that is dependent on ovarian steroids early in tumorigenesis. Resulting tumors resemble a clinical phenotype of ER+/PR-, and when combined with a heterozygous p53 genotype, ER-/PR-.
Collapse
Affiliation(s)
- T A Rose-Hellekant
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Arendt LM, Rose-Hellekant TA, Sandgren EP, Schuler LA. Prolactin potentiates transforming growth factor alpha induction of mammary neoplasia in transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1365-74. [PMID: 16565509 PMCID: PMC1606572 DOI: 10.2353/ajpath.2006.050861] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prolactin influences mammary development and carcinogenesis through endocrine and autocrine/paracrine mechanisms. In virgin female mice, pro-lactin overexpression under control of a mammary selective nonhormonally responsive promoter, neu-related lipocalin, results in estrogen receptor alpha (ERalpha)-positive and ERalpha-negative adenocarcinomas. However, disease in vivo occurs in the context of dysregulation of multiple pathways. In this study, we investigated the ability of prolactin to modulate carcinogenesis when co-expressed with the potent oncogene transforming growth factor alpha (TGFalpha) in bitransgenic mice. Prolactin and TGFalpha cooperated to reduce dramatically the latency of mammary macrocyst development, the principal lesion type induced by TGFalpha. In combination, prolactin and TGFalpha also increased the incidence and reduced the latency of other preneoplastic lesions and increased cellular turnover in structurally normal alveoli and ducts compared with single transgenic females. Bitransgenic glands contained higher levels of phosphorylated ERK1/2 compared with single TGFalpha transgenic glands, suggesting that this kinase may be a point of signaling crosstalk. Furthermore, transgenic prolactin also reversed the decrease in ERalpha induced by neu-related lipocalin-TGFalpha. Our findings demonstrate that locally produced prolactin can strikingly potentiate the carcinogenic actions of another oncogene and modify ovarian hormone responsiveness, suggesting that prolactin signaling may be a potential therapeutic target.
Collapse
Affiliation(s)
- Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | | | | | | |
Collapse
|
15
|
Narko K, Zweifel B, Trifan O, Ristimäki A, Lane TF, Hla T. COX-2 inhibitors and genetic background reduce mammary tumorigenesis in cyclooxygenase-2 transgenic mice. Prostaglandins Other Lipid Mediat 2005; 76:86-94. [PMID: 15967164 DOI: 10.1016/j.prostaglandins.2005.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 01/08/2005] [Indexed: 11/30/2022]
Abstract
Cyclooxygenase-2 (COX-2) overexpression is a widely recognized feature of human breast cancer and inhibitors of the enzyme have antitumor effects in a subset of tumor settings. Previously, we demonstrated that direct overexpression of COX-2 under control of the mammary-specific MMTV promoter/enhancer, was itself oncogenic and lead to the induction of mammary tumors in multiparous, outbred CD1 mice. In the present study, we provide evidence that COX-2 dependent tumor progression can also be studied in FVB/N, an inbred strain widely used for analysis of breast cancer progression. In these mice, the human COX-2 transgene was strongly induced during pregnancy/lactation and mammary tumors developed after multiple pregnancies. However, crossing the COX-2 FVB/N mice with the C57BL6 strain resulted in loss of the mammary tumorigenic phenotype despite the fact that the human COX-2 gene was induced. Treatment of the COX-2 transgenic mice in the FVB/N strain with celecoxib (1600 ppm), a COX-2 selective inhibitor, resulted significant reduction in tumor size and multiplicity when compared to transgenic mice fed with control chow. SC-560 (20 ppm), a COX-1 selective inhibitor did not have significant effect on tumorigenesis. These studies suggest that FVB/N is a susceptible mouse strain well suited to the study of COX-2 mediated tumor progression and may provide a tool for the identification of interacting genes and therapeutic treatments for this clinically important target.
Collapse
Affiliation(s)
- Kirsi Narko
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, 06030-350, USA
| | | | | | | | | | | |
Collapse
|
16
|
Jamerson MH, Johnson MD, Korsmeyer SJ, Furth PA, Dickson RB. Bax regulates c-Myc-induced mammary tumour apoptosis but not proliferation in MMTV-c-myc transgenic mice. Br J Cancer 2004; 91:1372-9. [PMID: 15354213 PMCID: PMC2409914 DOI: 10.1038/sj.bjc.6602137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The expression of the proto-oncogene c-myc is frequently deregulated, via multiple mechanisms, in human breast cancers. Deregulated expression of c-myc contributes to mammary epithelial cell transformation and is causally involved in mammary tumorigenesis in MMTV-c-myc transgenic mice. c-Myc is known to promote cellular proliferation, apoptosis, genomic instability and tumorigenesis in several distinct tissues, both in vivo and in vitro. Expression of the proapoptotic regulatory gene bax is reduced or absent in human breast cancers, and c-Myc has been shown to regulate the expression of Bax, as well as cooperate with Bax in controlling apoptosis in a fibroblast model. Additionally, loss of bax reduces c-Myc-induced apoptosis in lymphoid cells and increases c-Myc-mediated lymphomagenesis in vivo. In order to assess whether loss of bax could influence c-Myc-induced apoptosis and tumorigenesis in the mammary gland in vivo, we generated MMTV-c-myc transgenic mice in which neither, one, or both wild-type alleles of bax were eliminated. Haploid loss of bax in MMTV-c-myc transgenic mice resulted in significantly reduced mammary tumour apoptosis. As anticipated for an apoptosis-regulatory gene, loss of the wild-type bax alleles did not significantly alter cellular proliferation in either mammary adenocarcinomas or dysplastic mammary tissues. However, in contrast to c-Myc-mediated lymphomagenesis, loss of one or both alleles of bax in MMTV-c-myc transgenic mice did not significantly enhance mammary tumorigenesis, despite evidence that haploid loss of bax might modestly increase mammary tumour multiplicity. Our results demonstrate that Bax contributes significantly to c-Myc-induced apoptosis in mammary tumours. In addition, they suggest that in contrast to c-Myc-induced lymphomagenesis, mammary tumorigenesis induced by deregulated c-myc expression requires some amount of Bax expression.
Collapse
Affiliation(s)
- M H Jamerson
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | - M D Johnson
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | - S J Korsmeyer
- Department of Cancer Immunology and AIDS and Howard Hughes Medical Institute, Dana Farber Cancer Institute, Harvard University, 44 Binney Street, Boston, MA 02115, USA
| | - P A Furth
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | - R B Dickson
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road, NW, Washington, DC 20057, USA. E-mail:
| |
Collapse
|
17
|
Mikaelian I, Blades N, Churchill GA, Fancher K, Knowles BB, Eppig JT, Sundberg JP. Proteotypic classification of spontaneous and transgenic mammary neoplasms. Breast Cancer Res 2004; 6:R668-79. [PMID: 15535849 PMCID: PMC1064077 DOI: 10.1186/bcr930] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 07/16/2004] [Accepted: 08/09/2004] [Indexed: 11/18/2022] Open
Abstract
Introduction Mammary tumors in mice are categorized by using morphologic and architectural criteria. Immunolabeling for terminal differentiation markers was compared among a variety of mouse mammary neoplasms because expression of terminal differentiation markers, and especially of keratins, provides important information on the origin of neoplastic cells and their degree of differentiation. Methods Expression patterns for terminal differentiation markers were used to characterize tumor types and to study tumor progression in transgenic mouse models of mammary neoplasia (mice overexpressing Neu (Erbb2), Hras, Myc, Notch4, SV40-TAg, Tgfa, and Wnt1), in spontaneous mammary carcinomas, and in mammary neoplasms associated with infection by the mouse mammary tumor virus (MMTV). Results On the basis of the expression of terminal differentiation markers, three types of neoplasm were identified: first, simple carcinomas composed exclusively of cells with a luminal phenotype are characteristic of neoplasms arising in mice transgenic for Neu, Hras, Myc, Notch4, and SV40-TAg; second, 'complex carcinomas' displaying luminal and myoepithelial differentiation are characteristic of type P tumors arising in mice transgenic for Wnt1, neoplasms arising in mice infected by the MMTV, and spontaneous adenosquamous carcinomas; and third, 'carcinomas with epithelial to mesenchymal transition (EMT)' are a characteristic feature of tumor progression in Hras-, Myc-, and SV40-TAg-induced mammary neoplasms and PL/J and SJL/J mouse strains, and display de novo expression of myoepithelial and mesenchymal cell markers. In sharp contrast, EMT was not detected in papillary adenocarcinomas arising in BALB/cJ mice, spontaneous adenoacanthomas, neoplasms associated with MMTV-infection, or in neoplasms arising in mice transgenic for Neu and Wnt1. Conclusions Immunohistochemical profiles of complex neoplasms are consistent with a stem cell origin, whereas simple carcinomas might originate from a cell committed to the luminal lineage. In addition, these results suggest that the initiating oncogenic events determine the morphologic features associated with cancer progression because EMT is observed only in certain types of neoplasm.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Carcinoma/classification
- Carcinoma/genetics
- Carcinoma/metabolism
- Carcinoma/pathology
- Cell Differentiation/physiology
- Disease Models, Animal
- Disease Progression
- Epithelial Cells/pathology
- Female
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/genetics
- Keratins/biosynthesis
- Keratins/genetics
- Mammary Neoplasms, Experimental/classification
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Transgenic
- Proteomics/methods
- Proto-Oncogene Proteins c-myc/biosynthesis
- Proto-Oncogene Proteins c-myc/genetics
- Wnt Proteins
- Wnt1 Protein
Collapse
|
18
|
Cukierman E. A visual-quantitative analysis of fibroblastic stromagenesis in breast cancer progression. J Mammary Gland Biol Neoplasia 2004; 9:311-24. [PMID: 15838602 DOI: 10.1007/s10911-004-1403-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
One fundamental difference between normal and transformed cells is the way they interact with their immediate environment. Exploring this difference is crucial for understanding the pathobiology of cancer progression. Benign epithelial tumors are constrained by a surrounding stroma consisting, among other cells, of fibroblasts embedded within fibrillar three-dimensional matrices. However, at a critical point in tumor progression, tumor cells become altered and overcome the barrier, inducing changes in the stroma, which promote, rather than impede, tumor progression. Inherited or acquired genetic aberrations affecting mammary gland epithelia are usually blamed for promoting neoplasia in individuals at "high risk" for breast cancer. However, in addition to these epithelial aberrations certain individuals possess permissive breast stroma. The occurrence of this permissive stroma results in a predisposition for cancer initiation or progression. Here we review stromagenic stages, experimental 3D systems, and discuss digital imaging analyses suitable for uncovering the mechanisms behind fibroblastic breast stromagenesis.
Collapse
Affiliation(s)
- Edna Cukierman
- Division of Basic Science/Tumor Cell Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA.
| |
Collapse
|
19
|
Baldwin BR, Timchenko NA, Zahnow CA. Epidermal growth factor receptor stimulation activates the RNA binding protein CUG-BP1 and increases expression of C/EBPbeta-LIP in mammary epithelial cells. Mol Cell Biol 2004; 24:3682-91. [PMID: 15082764 PMCID: PMC387752 DOI: 10.1128/mcb.24.9.3682-3691.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor CCAAT/enhancer binding protein beta (C/EBP beta) is a key regulator of growth and differentiation in many tissues. C/EBP beta is expressed as several distinct protein isoforms (LAP1, LAP2, and LIP) whose expression is regulated by alternative translational initiation at downstream AUG start sites. The dominant-negative LIP isoform is predominantly expressed during proliferative cellular responses and is associated with aggressive tumors. In this study, we investigated a mechanism by which the LIP isoform is translationally regulated in mammary epithelial cells. We have demonstrated that LIP expression is increased in response to activation of the epidermal growth factor receptor (EGFR) signaling pathway and that the increased expression of LIP is regulated in part by an RNA binding protein referred to as CUG repeat binding protein (CUG-BP1). Our data demonstrate that EGFR signaling results in the phosphorylation of CUG-BP1 and this leads to an increase in the binding of CUG-BP1 to C/EBP beta mRNA and elevated expression of the LIP isoform. Phosphorylation is necessary for the binding activity of CUG-BP1 and the consequent increase in LIP expression, as determined by binding assays and a cell free, transcription-coupled translation system. CUG-BP1 is thus a previously unidentified downstream target of EGFR signaling and represents a new translational regulator of LIP expression in human mammary epithelial cells.
Collapse
Affiliation(s)
- Brenda R Baldwin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
20
|
Tessier CR, Doyle GA, Clark BA, Pitot HC, Ross J. Mammary tumor induction in transgenic mice expressing an RNA-binding protein. Cancer Res 2004; 64:209-14. [PMID: 14729626 DOI: 10.1158/0008-5472.can-03-2927] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have analyzed mammary tumors arising in transgenic mice expressing a novel, multifunctional RNA-binding protein. The protein, which we call the c-myc mRNA coding region instability determinant binding protein (CRD-BP), binds to c-myc, insulin-like growth factor II, and beta-actin mRNAs, and to H19 RNA. Depending on the RNA substrate, the CRD-BP affects RNA localization, translation, or stability. CRD-BP levels are high during fetal development but low or undetectable in normal adult tissues. The CRD-BP is linked to tumorigenesis, because its expression is reactivated in some adult human breast, colon, and lung tumors. These data suggest the CRD-BP is a proto-oncogene. To test this idea, the CRD-BP was expressed from the whey acidic protein (WAP) promoter in mammary epithelial cells of adult transgenic mice. The incidence of mammary tumors was 95% and 60% in two lines of WAP-CRD-BP mice with high and low relative CRD-BP expression, respectively. Some of the tumors metastasized. Nontransgenic mice did not develop mammary tumors. H19 RNA and insulin-like growth factor II mRNA were up-regulated significantly in non-neoplastic WAP-CRD-BP mammary tissue. WAP-CRD-BP mice are a novel model for mammary neoplasia and might provide insights into human breast cancer biology.
Collapse
Affiliation(s)
- Charles R Tessier
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
21
|
Piechocki MP, Ho YS, Pilon S, Wei WZ. Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. THE JOURNAL OF IMMUNOLOGY 2004; 171:5787-94. [PMID: 14634087 DOI: 10.4049/jimmunol.171.11.5787] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Her-2 transgenic (Tg) mice were generated with wild-type human c-ErbB-2 (Her-2) under the whey acidic protein promoter. They are tolerant to Her-2 and appropriate for testing Her-2 vaccines. The expression of transmembrane ErbB-2 from the whey acidic protein-Her-2 cassette and its up-regulation by insulin and hydrocortisone was verified by in vitro transfection. The transgene cassette was microinjected into fertilized eggs from B6C3 (C3H x C57BL/6) females mated with B6C3 males. Transgene-positive mice were backcrossed onto C57BL/6 mice. Human ErbB-2 was expressed in the secretory mammary epithelia during pregnancy and lactation and expressed constitutively in the Bergman glia cells within the molecular layer of the cerebellum. Overt, neoplastic transformation was not detected in any tissue examined. Tolerance to Her-2 was demonstrated by inoculating mice with a syngenic tumor expressing high levels of human ErbB-2. Tumors grew exclusively in Her-2 Tg mice without inducing an Ab response, while the nontransgenic littermates remained tumor free for 10 mo and mounted a robust anti-ErbB-2 Ab response. When immunized five times with plasmid DNA encoding secErbB-2 and GM-CSF, respectively, approximately 33% of the Her-2 Tg mice rejected a lethal challenge of EL-4/E2 tumor cells, whereas all immunized littermates rejected the tumor. Therefore, Her-2 Tg mice express human ErbB-2 in the brain and mammary gland and demonstrated tolerance to ErbB-2 which was partially overcome by DNA vaccination. The breakable tolerance of Her-2 Tg mice resembles that in human and these mice are particularly suited for testing human ErbB-2 based vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/biosynthesis
- Cell Line, Tumor
- Female
- Genetic Vectors
- Humans
- Immune Tolerance/genetics
- Male
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic/immunology
- Milk Proteins/biosynthesis
- Milk Proteins/genetics
- Milk Proteins/immunology
- Models, Animal
- Models, Immunological
- Neoplasm Transplantation
- Organ Specificity/genetics
- Organ Specificity/immunology
- Promoter Regions, Genetic/immunology
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Transfection
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Marie P Piechocki
- Karmanos Cancer Institute, Department of Otolaryngology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
22
|
Rose-Hellekant TA, Arendt LM, Schroeder MD, Gilchrist K, Sandgren EP, Schuler LA. Prolactin induces ERalpha-positive and ERalpha-negative mammary cancer in transgenic mice. Oncogene 2003; 22:4664-74. [PMID: 12879011 PMCID: PMC1630768 DOI: 10.1038/sj.onc.1206619] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The role of prolactin in human breast cancer has been controversial. However, it is now apparent that human mammary epithelial cells can synthesize prolactin endogenously, permitting autocrine/paracrine actions within the mammary gland that are independent of pituitary prolactin. To model this local mammary production of prolactin (PRL), we have generated mice that overexpress prolactin within mammary epithelial cells under the control of a hormonally nonresponsive promoter, neu-related lipocalin (NRL). In each of the two examined NRL-PRL transgenic mouse lineages, female virgin mice display mammary developmental abnormalities, mammary intraepithelial neoplasias, and invasive neoplasms. Prolactin increases proliferation in morphologically normal alveoli and ducts, as well as in lesions. The tumors are of varied histotype, but papillary adenocarcinomas and adenosquamous neoplasms predominate. Neoplasms can be separated into two populations: one is estrogen receptor alpha (ERalpha) positive (greater than 15% of the cells stain for ERalpha), and the other is ERalpha- (<3%). ERalpha expression does not correlate with tumor histotype, or proliferative or apoptotic indices. These studies provide a mouse model of hormonally dependent breast cancer, and, perhaps most strikingly, a model in which some neoplasms retain ERalpha, as occurs in the human disease.
Collapse
Affiliation(s)
- Teresa A Rose-Hellekant
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | - Lisa M Arendt
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | - Matthew D Schroeder
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | - Kennedy Gilchrist
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Eric P Sandgren
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
- *Correspondence: LA Schuler; E-mail:
| |
Collapse
|
23
|
Zhou H, Iida-Klein A, Lu SS, Ducayen-Knowles M, Levine LR, Dempster DW, Lindsay R. Anabolic action of parathyroid hormone on cortical and cancellous bone differs between axial and appendicular skeletal sites in mice. Bone 2003; 32:513-20. [PMID: 12753867 DOI: 10.1016/s8756-3282(03)00057-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mouse is being increasingly used to study the anabolic action of parathyroid hormone (PTH) on the skeleton. The efficacy of intermittent PTH treatment on bone varies widely among tested strains of mice with differences in peak bone mass and structure. We have therefore examined the responses of skeletal sites with high or low cancellous bone mass to PTH treatment in a single strain with genetically low bone mass. Mature C57BL/6 mice were ovariectomized (ovx) or sham operated and, after 4 weeks, treated with PTH(1-34) (40 microg/kg/day, 5 days/week sc) or vehicle for 3 or 7 weeks. Two doses of fluorescent labels were given to the animals 9 and 3 days before euthanasia. Histomorphometry was performed on sections of the proximal tibia, tibial diaphysis, and vertebral body. The results indicate that 4 to 11 weeks of ovx induced a approximately 44% loss of cancellous bone in the proximal tibia and a approximately 25% loss of cancellous bone in the vertebra with impaired trabecular architecture and high bone turnover. In the intact animals, PTH increased cancellous bone volume to a greater extent in the vertebral body than in the proximal tibia, a site with lower cancellous bone volume at the outset. In the ovx mice, PTH increased cancellous bone volume to a greater extent in the vertebral body, a site displaying moderate cancellous bone loss, than in the proximal tibia, a site with severe cancellous bone loss. Conversely, the treatment added a little cortical bone to the tibia, a highly loaded site, but did not significantly increase cortical width of the vertebral body, a less loaded site. We conclude that, for intermittent PTH treatment to be maximally effective, there must be an adequate number of trabeculae present at the beginning of treatment, regardless of estrogen status. Our results also support an interaction between PTH anabolic action and mechanical loading.
Collapse
Affiliation(s)
- H Zhou
- Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY 10993-1195, USA
| | | | | | | | | | | | | |
Collapse
|