1
|
Balyan P, Gupta S, Mavileti SK, Pandey SS, Kato T. NIR-Sensitive Squaraine Dye-Peptide Conjugate for Trypsin Fluorogenic Detection. BIOSENSORS 2024; 14:458. [PMID: 39451672 PMCID: PMC11505658 DOI: 10.3390/bios14100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing the design and synthesis of NIR-sensitive dye-peptide conjugate (SQ-3 PC) for the sensitive and selective monitoring of trypsin activity by fluorescence ON/OFF sensing. The current research deals with the design and synthesis of three unsymmetrical squaraine dyes SQ-1, SQ-2, and SQ-3 along with a dye-peptide conjugate SQ-3-PC as a trypsin-specific probe followed by their photophysical characterizations. The absorption spectral investigation conducted on both the dye alone and its corresponding dye-peptide conjugates in water, utilizing SQ-3 and SQ-3 PC respectively, reveals enhanced dye aggregation and pronounced fluorescence quenching compared to observations in DMSO solution. The absorption spectral investigation conducted on dye only and corresponding dye-peptide conjugates in water utilizing SQ-3 and SQ-3 PC, respectively, reveals not only the enhanced dye aggregation but also pronounced fluorescence quenching compared to that observed in the DMSO solution. The trypsin-specific probe SQ-3 PC demonstrated a fluorescence quenching efficiency of 61.8% in water attributed to the combined effect of aggregation-induced quenching (AIQ) and fluorescence resonance energy transfer (FRET). FRET was found to be dominant over AIQ. The trypsin-mediated hydrolysis of SQ-3 PC led to a rapid and efficient recovery of quenched fluorescence (5-fold increase in 30 min). Concentration-dependent changes in the fluorescence at the emission maximum of the dyes reveal that SQ-3 PC works as a trypsin enzyme-specific fluorescence biosensor with linearity up to 30 nM along with the limit of detection and limit of quantification of 1.07 nM and 3.25 nM, respectively.
Collapse
Affiliation(s)
| | | | | | - Shyam S. Pandey
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-Ku, Kitakyushu-Shi, Fukuoka 808-0196, Japan; (P.B.); (S.G.); (S.K.M.)
| | - Tamaki Kato
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-Ku, Kitakyushu-Shi, Fukuoka 808-0196, Japan; (P.B.); (S.G.); (S.K.M.)
| |
Collapse
|
2
|
Frolova TV, Izvekov EI, Izvekova GI. First insights into the activity of major digestive enzymes in the intestine of the European catfish Silurus glanis and protective anti-enzymatic potential of its gut parasite Silurotaenia siluri. JOURNAL OF FISH BIOLOGY 2023; 103:985-993. [PMID: 37401562 DOI: 10.1111/jfb.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/05/2023]
Abstract
The European catfish Silurus glanis is attracting growing interest as an object of fisheries and aquaculture, which is reinforced by the expansion of its natural range under climate change. Shaping the effective exploitation strategy for this valuable species requires detailed knowledge of its biology, including feeding and digestion processes, especially near the natural limits of the species range. Meanwhile, the digestion physiology of the European catfish remains poorly explored, including the activity of major digestive enzymes and the possible effect of intestinal parasites on this activity. In this regard, the activity of proteinases and α-amylase in the intestinal mucosa of the catfish was studied. Adult catfish were collected in the Rybinsk reservoir (Upper Volga) located close to the northern limit of the species range. It was shown that all subclasses of intestinal digestive proteinases, including serine proteinases, metalloproteases and cysteine (thiol) proteinases, function in the gut mucosa of the catfish. The mucosal levels of total proteolytic activity depended on fish size, in contrast to those of trypsin, chymotrypsin and α-amylase. The level of chymotrypsin activity was significantly higher than that of trypsin activity. It was also found that the incubation medium and extract of the cestodes Silurotaenia siluri parasitizing the catfish gut had a significant inhibitory effect on the activity of serine proteases (trypsin and chymotrypsin) operating in the intestines of the host fish.
Collapse
Affiliation(s)
- Tatyana V Frolova
- Laboratory of Ecological Parasitology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Evgeny I Izvekov
- Laboratory of Ecological Parasitology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Galina I Izvekova
- Laboratory of Ecological Parasitology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| |
Collapse
|
3
|
Kashung S, Bhardwaj P, Saikia M, Mazumdar-Leighton S. Midgut serine proteinases participate in dietary adaptations of the castor (Eri) silkworm Samia ricini Anderson transferred from Ricinus communis to an ancestral host, Ailanthus excelsa Roxb. FRONTIERS IN INSECT SCIENCE 2023; 3:1169596. [PMID: 38469493 PMCID: PMC10926435 DOI: 10.3389/finsc.2023.1169596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/10/2023] [Indexed: 03/13/2024]
Abstract
Dietary change influenced the life-history traits, nutritional utilization, and midgut serine proteinases in the larvae of the domesticated polyphagous S. ricini, transferred from R. communis (common name: castor; family Euphorbiaceae; the host plant implicated in its domestication) to A. excelsa (common name: Indian tree of heaven; family Simaroubaceae; an ancestral host of wild Samia species). Significantly higher values for fecundity and body weight were observed in larvae feeding on R. communis (Scr diet), and they took less time to reach pupation than insects feeding on A. excelsa (Scai diet). Nevertheless, the nutritional index for efficiency of conversion of digested matter (ECD) was similar for larvae feeding on the two plant species, suggesting the physiological adaptation of S. ricini (especially older instars) to an A. excelsa diet. In vitro protease assays and gelatinolytic zymograms using diagnostic substrates and protease inhibitors revealed significantly elevated levels (p ≤ 0.05) of digestive trypsins, which may be associated with the metabolic costs influencing slow growth in larvae feeding on A. excelsa. RT-PCR with semidegenerate serine proteinase gene-specific primers, and cloning and sequencing of 3' cDNA ends identified a large gene family comprising at least two groups of putative chymotrypsins (i.e., Sr I and Sr II) resembling invertebrate brachyurins/collagenases with wide substrate specificities, and five groups of putative trypsins (i.e., Sr III, Sr IV, Sr V, Sr VII, and Sr VIII). Quantitative RT-PCR indicated that transcripts belonging to the Sr I, Sr III, Sr IV, and Sr V groups, especially the Sr IV group (resembling achelase I from Lonomia achelous), were expressed differentially in the midguts of fourth instars reared on the two plant species. Sequence similarity indicated shared lineages with lepidopteran orthologs associated with expression in the gut, protein digestion, and phytophagy. The results obtained are discussed in the context of larval serine proteinases in dietary adaptations, domestication, and exploration of new host plant species for commercial rearing of S. ricini.
Collapse
|
4
|
Chen YL, Zhang MH, Su LL, Sun LC, Qiu XJ, Lin D, Zhang LJ, Jin T, Cao MJ. Relationships of Matrix Metalloproteinase 1 and a Tissue Inhibitor of Metalloproteinase to Collagen Metabolism in Haliotis discus hannai. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14886-14897. [PMID: 36398610 DOI: 10.1021/acs.jafc.2c05931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In response to physical, chemical, and/or biological stimuli, considerable tissue self-degradation occurs in abalone, causing severe post-harvest quality loss. During this process, the extracellular matrix (ECM) is greatly degraded by endogenous proteases. The main component of the ECM is collagen, primarily type I collagen. Although the activity of matrix metalloproteinases (MMPs), which can specifically degrade collagen, is precisely regulated by tissue inhibitors of MPs (TIMPs), indicating that MMPs and TIMPs play crucial roles in the regulation of tissue self-degradation, few studies have reported the interaction between MMPs and TIMPs. In this study, we reveal collagenases to participate in postmortem tissue self-degradation of Haliotis discus hannai by degrading type I collagen. The recombinant MMP-1 catalytic domain (rMMP1c) of abalone with high purity and enzyme activity is expressed using a prokaryotic expression system. The optimum temperature and pH for rMMP1c are 37 °C and 7.0, respectively. The thermal denaturation temperature of rMMP1c is 67.0 ± 0.9 °C. Ethylenediamine tetraacetic acid (EDTA) and 1,10-phenanthroline can completely inhibit rMMP1c activity, while Ba2+, Ca2+, and Mg2+ can significantly elevate it. TIMP is also expressed using HEK 293F cells. Recombinant TIMP (rTIMP) shows good inhibitory activity toward rMMP1c. Inhibition kinetics analyses reveal rTIMP to be a competitive inhibitor of rMMP1c. Biolayer interferometry reveals that rTIMP can effectively bind with rMMP1c, with an equilibrium dissociation constant value of 263 nM. rMMP1c effectively degrades type I collagen γ-β-α chains in turn, and rTIMP can significantly inhibit rMMP1c degradation activity. These results provide a theoretical basis for the study of MMP and TIMP interaction and elucidate the possible mechanism for abalone tissue self-degradation.
Collapse
Affiliation(s)
- Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming-Hui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Le-Le Su
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Jian Qiu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duanquan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Tengchuan Jin
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Kumar P, Akhter T, Bhardwaj P, Kumar R, Bhardwaj U, Mazumdar-Leighton S. Consequences of 'no-choice, fixed time' reciprocal host plant switches on nutrition and gut serine protease gene expression in Pieris brassicae L. (Lepidoptera: Pieridae). PLoS One 2021; 16:e0245649. [PMID: 33471847 PMCID: PMC7817030 DOI: 10.1371/journal.pone.0245649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Rapid adaptive responses were evident from reciprocal host-plant switches on performance, digestive physiology and relative gene expression of gut serine proteases in larvae of crucifer pest P. brassicae transferred from cauliflower (CF, Brassica oleracea var. botrytis, family Brassicaceae) to an alternate host, garden nasturtium, (GN, Tropaeolum majus L., family Tropaeolaceae) and vice-versa under laboratory conditions. Estimation of nutritional indices indicated that larvae of all instars tested consumed the least food and gained less weight on CF-GN diet (significant at p≤0.05) as compared to larvae feeding on CF-CF, GN-GN and GN-CF diets suggesting that the switch to GN was nutritionally less favorable for larval growth. Nevertheless, these larvae, especially fourth instars, were adroit in utilizing and digesting GN as a new host plant type. In vitro protease assays conducted to understand associated physiological responses within twelve hours indicated that levels and properties of gut proteases were significantly influenced by type of natal host-plant consumed, change in diet as well as larval age. Activities of gut trypsins and chymotrypsins in larvae feeding on CF-GN and GN-CF diets were distinct, and represented shifts toward profiles observed in larvae feeding continuously on GN-GN and CF-CF diets respectively. Results with diagnostic protease inhibitors like TLCK, STI and SBBI in these assays and gelatinolytic zymograms indicated complex and contrasting trends in gut serine protease activities in different instars from CF-GN diet versus GN-CF diet, likely due to ingestion of plant protease inhibitors present in the new diet. Cloning and sequencing of serine protease gene fragments expressed in gut tissues of fourth instar P. brassicae revealed diverse transcripts encoding putative trypsins and chymotrypsins belonging to at least ten lineages. Sequences of members of each lineage closely resembled lepidopteran serine protease orthologs including uncharacterized transcripts from Pieris rapae. Differential regulation of serine protease genes (Pbr1-Pbr5) was observed in larval guts of P. brassicae from CF-CF and GN-GN diets while expression of transcripts encoding two putative trypsins (Pbr3 and Pbr5) were significantly different in larvae from CF-GN and GN-CF diets. These results suggested that some gut serine proteases that were differentially expressed in larvae feeding on different species of host plants were also involved in rapid adaptations to dietary switches. A gene encoding nitrile-specifier protein (nsp) likely involved in detoxification of toxic products from interactions of ingested host plant glucosinolates with myrosinases was expressed to similar levels in these larvae. Taken together, these snapshots reflected contrasts in physiological and developmental plasticity of P. brassicae larvae to nutritional challenges from wide dietary switches in the short term and the prominent role of gut serine proteases in rapid dietary adaptations. This study may be useful in designing novel management strategies targeting candidate gut serine proteases of P. brassicae using RNA interference, gene editing or crops with transgenes encoding protease inhibitors from taxonomically-distant host plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Tabasum Akhter
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Parul Bhardwaj
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Rakesh Kumar
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | - Usha Bhardwaj
- Faculty of Science, Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|
6
|
Frolova TV, Izvekov EI, Solovyev MM, Izvekova GI. Activity of proteolytic enzymes in the intestine of bream Abramis brama infected with cestodes Caryophyllaeus laticeps (Cestoda, Caryophyllidea). Comp Biochem Physiol B Biochem Mol Biol 2019; 235:38-45. [PMID: 31129293 DOI: 10.1016/j.cbpb.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 11/30/2022]
Abstract
Adaptive mechanisms underlying the long-term existence of intestinal parasites in their enzymatically hostile environment are still poorly understood, particularly with regard to fish cestodes. The study describes the activity distribution of proteolytic enzymes along the gut of the bream Abramis brama infected with intestinal cestodes Caryophyllaeus laticeps and characterizes the capacity of these worms to inhibit host proteinase activity. Mucosal proteolytic activity was mainly presented by serine proteinases. The research revealed an insignificant increase in total proteolytic activity from anterior and middle to posterior part of the gut accompanied with changes in proportions of various proteinase subclasses along the intestine. The trypsin (but not chymotrypsin) activity in the posterior section was significantly higher than in the mid-section. Both the incubation medium of the worms and their extract had a significant inhibitory effect on mucosal proteolytic activity and commercial trypsin samples. In both instances, the effect was comparable with that of a synthetic serine protease inhibitor, PMSF. SDS-PAGE electrophoregrams of the incubation medium of C. laticeps and its extract revealed three common protein bands, with apparent molecular masses from 19 to 47 kDa, possibly responsible for the worms' inhibitory capacities. According to casein-zymography performed, the target host proteinases for a putative cestode inhibitor (inhibitors) have an approximate molecular weight of 28-53 kDa. A comparative test with the extracts from three other cestodes showed that each of them can suppress the proteolytic activity of the bream mucosa. The level of inhibitory activity was found to increase with protein content in the extracts of these tapeworms.
Collapse
Affiliation(s)
- Tatyana V Frolova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavskaya oblast, Nekouzskii raion, Borok 152742, Russia
| | - Evgeny I Izvekov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavskaya oblast, Nekouzskii raion, Borok 152742, Russia
| | - Mikhail M Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 11 Frunze St., Novosibirsk 630091, Russia; Tomsk State University, prospect Lenina, 36, Tomsk 634050, Russia
| | - Galina I Izvekova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavskaya oblast, Nekouzskii raion, Borok 152742, Russia.
| |
Collapse
|
7
|
Plaxton WC. Avoiding Proteolysis during the Extraction and Purification of Active Plant Enzymes. PLANT & CELL PHYSIOLOGY 2019; 60:715-724. [PMID: 30753712 DOI: 10.1093/pcp/pcz028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this article is to discuss approaches to diagnose and prevent unwanted proteolysis during extraction and isolation of active enzymes from plant tissues. Enzymes are protein catalysts that require great care during sample processing in order to ensure that they remain intact and fully active. Preventing artifactual enzyme modifications ex planta is of utmost importance in order to obtain biologically relevant data. This is particularly problematic following enzyme extraction from plant tissues, which relative to microbes or animals contain relatively low protein amounts coupled with high concentrations of vacuolar proteases. Although cytoplasmic enzymes are not directly accessible to vacuolar proteases owing their physical segregation into different subcellular compartments, this compartmentation is destroyed during cell lysis. Unwanted proteolysis by endogenous proteases is an insidious problem because in many cases the enzyme of interest is only partially degraded and retains catalytic activity. This can not only lead to erroneous conclusions about an enzyme's size, subunit structure and post-translational modifications, but can also result in striking changes to its kinetic and regulatory (i.e. allosteric) properties. Furthermore, the routine addition of class-specific protease inhibitors and/or commercially available (and expensive) protease inhibitor cocktails to extraction and purification buffers does not necessarily preclude partial proteolysis of plant enzymes by endogenous proteases. When antibodies are available, plant scientists are advised to employ immunoblotting to diagnose potential in vitro proteolytic truncation of the enzymes that they wish to characterize, as well as to test the effectiveness of specific protease inhibitors in overcoming this recurrent issue.
Collapse
Affiliation(s)
- William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
8
|
Elpidina EN, Semashko TA, Smirnova YA, Dvoryakova EA, Dunaevsky YE, Belozersky MA, Serebryakova MV, Klyachko EV, Abd El-Latif AO, Oppert B, Filippova IY. Direct detection of cysteine peptidases for MALDI-TOF MS analysis using fluorogenic substrates. Anal Biochem 2018; 567:45-50. [PMID: 30528915 DOI: 10.1016/j.ab.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/19/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
Abstract
A method is described for the direct detection of unstable cysteine peptidase activity in polyacrylamide gels after native electrophoresis using new selective fluorogenic peptide substrates, pyroglutamyl-phenylalanyl-alanyl-4-amino-7-methylcoumaride (Glp-Phe-Ala-AMC) and pyroglutamyl-phenylalanyl-alanyl-4-amino-7-trifluoromethyl-coumaride (Glp-Phe-Ala-AFC). The detection limit of the model enzyme papain was 17 pmol (0.29 μg) for Glp-Phe-Ala-AMC and 43 pmol (0.74 μg) for Glp-Phe-Ala-AFC, with increased sensitivity and selectivity compared to the traditional method of protein determination with Coomassie G-250 staining or detection of activity using chromogenic substrates. Using this method, we easily identified the target digestive peptidases of Tenebrio molitor larvae by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis. The method offers simplicity, high sensitivity, and selectivity compared to traditional methods for improved identification of unstable cysteine peptidases in multi-component biological samples.
Collapse
Affiliation(s)
- Elena N Elpidina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Tatiana A Semashko
- Department of Chemistry, Moscow State University, Moscow, 119991, Russia
| | - Yulia A Smirnova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Elena A Dvoryakova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Yakov E Dunaevsky
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Mikhail A Belozersky
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Marina V Serebryakova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Elena V Klyachko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Ashraf O Abd El-Latif
- Department of Plant Protection, Faculty of Agriculture, Sohag University, Sohag, Egypt
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA.
| | - Irina Y Filippova
- Department of Chemistry, Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
9
|
Botha AM, Kunert KJ, Cullis CA. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association. PLANT, CELL & ENVIRONMENT 2017; 40:1679-1690. [PMID: 28664627 DOI: 10.1111/pce.12998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 05/13/2023]
Abstract
Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions.
Collapse
Affiliation(s)
- Anna-Maria Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa
| | - Karl J Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Christopher A Cullis
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
10
|
Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E. Zymography Methods to Simultaneously Analyze Superoxide Dismutase and Catalase Activities: Novel Application for Yeast Species Identification. Methods Mol Biol 2017; 1626:189-198. [PMID: 28608211 DOI: 10.1007/978-1-4939-7111-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We provide an optimized protocol for a double staining technique to analyze superoxide dismutase enzymatic isoforms Cu-Zn SOD (Sod1) and Mn-SOD (Sod2) and catalase in the same polyacrylamide gel. The use of NaCN, which specifically inhibits yeast Sod1 isoform, allows the analysis of Sod2 isoform while the use of H2O2 allows the analysis of catalase. The identification of a different zymography profiling of SOD and catalase isoforms in different yeast species allowed us to propose this technique as a novel yeast identification and classification strategy.
Collapse
Affiliation(s)
- Esther Gamero-Sandemetrio
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Rocío Gómez-Pastor
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7, Paterna, 46980, Valencia, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Avda Dr Moliner, 50, Burjasot, 46100, Valencia, Spain
| | - Emilia Matallana
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7, Paterna, 46980, Valencia, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat de València, Avda Dr Moliner, 50, Burjasot, 46100, Valencia, Spain.
| |
Collapse
|
11
|
TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4. PLoS One 2015; 10:e0144440. [PMID: 26641247 PMCID: PMC4671599 DOI: 10.1371/journal.pone.0144440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
The interaction amongst papain-like cysteine-proteases (PLCP) and their substrates and inhibitors, such as cystatins, can be perceived as part of the molecular battlefield in plant-pathogen interaction. In cacao, four cystatins were identified and characterized by our group. We identified 448 proteases in cacao genome, whereof 134 were cysteine-proteases. We expressed in Escherichia coli a PLCP from cacao, named TcCYSPR04. Immunoblottings with anti-TcCYSPR04 exhibited protein increases during leaf development. Additional isoforms of TcCYSPR04 appeared in senescent leaves and cacao tissues infected by Moniliophthora perniciosa during the transition from the biotrophic to the saprophytic phase. TcCYSPR04 was induced in the apoplastic fluid of Catongo and TSH1188 cacao genotypes, susceptible and resistant to M. perniciosa, respectively, but greater intensity and additional isoforms were observed in TSH1188. The fungal protein MpNEP induced PLCP isoform expression in tobacco leaves, according to the cross reaction with anti-TcCYSPR04. Several protein isoforms were detected at 72 hours after treatment with MpNEP. We captured an active PLCP from cacao tissues, using a recombinant cacao cystatin immobilized in CNBr-Sepharose. Mass spectrometry showed that this protein corresponds to TcCYSPR04. A homology modeling was obtained for both proteins. In order to become active, TcCYSPR04 needs to lose its inhibitory domain. Molecular docking showed the physical-chemical complementarities of the interaction between the cacao enzyme and its inhibitor. We propose that TcCYSPR04 and its interactions with cacao cystatins are involved in the senescence and necrosis events related to witches' broom symptoms. This molecular interaction may be the target for future interventions to control witches' broom disease.
Collapse
|
12
|
Kumar R, Bhardwaj U, Kumar P, Mazumdar-Leighton S. Midgut serine proteases and alternative host plant utilization in Pieris brassicae L. Front Physiol 2015; 6:95. [PMID: 25873901 PMCID: PMC4379908 DOI: 10.3389/fphys.2015.00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/12/2015] [Indexed: 11/13/2022] Open
Abstract
Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors.
Collapse
Affiliation(s)
- Rakesh Kumar
- Insect-Plant Interactions Group, Department of Botany, Delhi University Delhi, India
| | - Usha Bhardwaj
- Insect-Plant Interactions Group, Department of Botany, Delhi University Delhi, India
| | - Pawan Kumar
- Insect-Plant Interactions Group, Department of Botany, Delhi University Delhi, India
| | | |
Collapse
|
13
|
Damasceno IZ, Melo KRB, Nascimento FD, Souza DSP, Araujo MS, Souza SEG, Sampaio MU, Nader HB, Tersariol ILS, Motta G. Bradykinin release avoids high molecular weight kininogen endocytosis. PLoS One 2015; 10:e0121721. [PMID: 25822177 PMCID: PMC4379145 DOI: 10.1371/journal.pone.0121721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/03/2015] [Indexed: 01/22/2023] Open
Abstract
Human H-kininogen (120 kDa) plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type) and CHO-745 (mutant deficient in proteoglycans biosynthesis) cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular kininogenases. The present data also demonstrates that serine or cysteine proteases in lipid raft domains/caveolae on the CHO cell can hydrolyze H-kininogen, thus releasing kinins.
Collapse
Affiliation(s)
- Igor Z. Damasceno
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Katia R. B. Melo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Fabio D. Nascimento
- Programas de Biomateriais e Biotecnologia, Universidade Anhanguera de São Paulo (UNIAN SP), São Paulo, SP, Brasil
| | - Daianne S. P. Souza
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Mariana S. Araujo
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Sinval E. G. Souza
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Misako U. Sampaio
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Helena B. Nader
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| | - Ivarne L. S. Tersariol
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
- * E-mail: (ILST); (GM)
| | - Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
- * E-mail: (ILST); (GM)
| |
Collapse
|
14
|
Solovyev MM, Kashinskaya EN, Izvekova GI, Gisbert E, Glupov VV. Feeding habits and ontogenic changes in digestive enzyme patterns in five freshwater teleosts. JOURNAL OF FISH BIOLOGY 2014; 85:1395-412. [PMID: 25199648 DOI: 10.1111/jfb.12489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/30/2014] [Indexed: 05/15/2023]
Abstract
Feeding habits and the activity of digestive enzymes (total alkaline proteases, α-amylase and lipase) from dace Leuciscus leuciscus, roach Rutilus rutilus, Prussian carp Carassius auratus gibelio, perch Perca fluviatilis and pikeperch Sander lucioperca fry were studied in the Malye Chany Lake-Kargat Estuary (western Siberia, Russia). The diet of fry from all studied species was mainly composed of chironomid larvae and zooplanktonic organisms (i.e. cladocera and copepoda), whereas carnivorous species such as P. fluviatilis and S. lucioperca also preyed on fry from other fishes while detritus and microalgae were also important in the diet of ommivorous species. When comparing diet similarity (Sørensen-Dice index, Q(S)) among fry at different stages of development, both omnivorous and carnivorous species showed a high level of similarity (0.67 < Q(S) < 0.89 and 0.73 < Q(S)< 0.89, respectively). Diet similarity values were in agreement with the overall digestive activity profile analysed by cluster analysis. Diet similarity suggested potential trophic competition when zooplanktonic and benthic prey began to decline towards autumn. The analysis of pancreatic digestive enzymes revealed a correlation among their activities and fry feeding habits with α-amylase:total proteases (A:P) values higher than 1 in omnivorous species and lower (A:P ≤ 1) in carnivorous species.
Collapse
Affiliation(s)
- M M Solovyev
- Institute of Systematics and Ecology of Animals Siberian Branch of Russian Academy of Sciences, 11 Frunze St., Novosibirsk 630091, Russia
| | | | | | | | | |
Collapse
|
15
|
Karlyshev AV, Thacker G, Jones MA, Clements MO, Wren BW. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation. FEBS Open Bio 2014; 4:468-72. [PMID: 24918062 PMCID: PMC4050187 DOI: 10.1016/j.fob.2014.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/06/2014] [Accepted: 04/28/2014] [Indexed: 12/24/2022] Open
Abstract
A novel peptidase Cj0511 in an important human bacterial pathogen Campylobacter jejuni has been characterized. Proteolytic properties of Cj0511 protein were detected in whole cell lysates using zymography. Enzymatic studies conducted with a purified protein confirmed the prediction of a serine peptidase. The cj0511 mutant was severely attenuated in a chicken colonisation model, suggesting a role in infection.
According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection.
Collapse
Affiliation(s)
- A V Karlyshev
- The London School of Hygiene & Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom ; School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames, Penrhyn Road, KT1 2EE, United Kingdom
| | - G Thacker
- The London School of Hygiene & Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom
| | - M A Jones
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Sutton Bonnington LE12 5RD, United Kingdom
| | - M O Clements
- School of Biosciences, University of Westminster, 115 New Cavendish Street, London W1B 2UW, United Kingdom
| | - B W Wren
- The London School of Hygiene & Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom
| |
Collapse
|
16
|
Seo S, Kim J, Jang G, Kim D, Lee TS. Aggregation-deaggregation-triggered, tunable fluorescence of an assay ensemble composed of anionic conjugated polymer and polypeptides by enzymatic catalysis of trypsin. ACS APPLIED MATERIALS & INTERFACES 2014; 6:918-924. [PMID: 24359429 DOI: 10.1021/am405120y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We prepared a water-soluble conjugated polymer composed of electron-donating units and electron-accepting groups in the backbone. The polymer exhibits a short wavelength (blue) emission in aqueous solution and long wavelength (red) emission in the solid state, because of intermolecular energy transfer. Considering this, we develop a new approach for the sensitive detection of trypsin, which is known to control pancreatic exocrine function, using an ensemble system composed of the anionically charged conjugated polymer and cationically charged polypeptides (such as polylysine and polyarginine). The blue-emitting, water-soluble conjugated polymer becomes aggregated upon exposure to the polypeptides, leading to a red-emitting assay ensemble. The red-emitting assay ensemble becomes dissociated in the conjugated polymer and polypeptide fragments by selective degradation of trypsin, which then exhibits recovery of blue emission. This emission-tuning assay ensemble allows for detection of trypsin at nanomolar concentrations, which enables naked-eye detection. Importantly, this strategy can be employed for label-free, continuous assay for trypsin.
Collapse
Affiliation(s)
- Seongwon Seo
- Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University , Daejeon 305-764, Korea
| | | | | | | | | |
Collapse
|
17
|
Bhardwaj U, Bhardwaj A, Kumar R, Leelavathi S, Reddy VS, Mazumdar-Leighton S. Revisiting rubisco as a protein substrate for insect midgut proteases. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:13-35. [PMID: 24338735 DOI: 10.1002/arch.21140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gene fragments encoding the large subunit (LS) of Rubisco (RBCL) were cloned from various species of host plants of phytophagous Lepidoptera and expressed as recombinant proteins in Escherichia coli. Recombinant RBCLs were compared among each other along with casein and native Rubisco as proteinaceous substrates for measuring total midgut protease activities of fourth instar larvae of Helicoverpa armigera feeding on casein, Pieris brassicae feeding on cauliflower, and Antheraea assamensis feeding on Litsea monopetala and Persea bombycina. Cognate rRBCL (from the pertinent host plant species) substrates performed similar to noncognate rRBCL reflecting the conserved nature of encoding genes and the versatile use of these recombinant proteins. Casein and recombinant RBCL generally outperformed native Rubisco as substrates, except where inclusion of a reducing agent in the enzyme assay likely unfolded the plant proteins. Levels of total midgut protease activities detected in A. assamensis larvae feeding on two primary host species were similar, suggesting that the suite(s) of digestive enzymes in these insects could hydrolyze a plant protein efficiently. Protease activities detected in the presence of protease inhibitors and the reducing agent dithiothreitol (DTT) suggested that recombinant RBCL was a suitable protein substrate for studying insect proteases using in vitro enzyme assays and substrate zymography.
Collapse
Affiliation(s)
- Usha Bhardwaj
- Plant-Insect Interactions Group, Department of Botany, Delhi University, Delhi, India
| | | | | | | | | | | |
Collapse
|
18
|
The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development. AGRONOMY-BASEL 2013. [DOI: 10.3390/agronomy3030550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Roy S, Choudhury D, Aich P, Dattagupta JK, Biswas S. The structure of a thermostable mutant of pro-papain reveals its activation mechanism. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1591-603. [PMID: 23151624 DOI: 10.1107/s0907444912038607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/08/2012] [Indexed: 11/10/2022]
Abstract
Papain is the archetype of a broad class of cysteine proteases (clan C1A) that contain a pro-peptide in the zymogen form which is required for correct folding and spatio-temporal regulation of proteolytic activity in the initial stages after expression. This study reports the X-ray structure of the zymogen of a thermostable mutant of papain at 2.6 Å resolution. The overall structure, in particular that of the mature part of the protease, is similar to those of other members of the family. The structure provides an explanation for the molecular basis of the maintenance of latency of the proteolytic activity of the zymogen by its pro-segment at neutral pH. The structural analysis, together with biochemical and biophysical studies, demonstrated that the pro-segment of the zymogen undergoes a rearrangement in the form of a structural loosening at acidic pH which triggers the proteolytic activation cascade. This study further explains the bimolecular stepwise autocatalytic activation mechanism by limited proteolysis of the zymogen of papain at the molecular level. The possible factors responsible for the higher thermal stability of the papain mutant have also been analyzed.
Collapse
Affiliation(s)
- Sumana Roy
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, India
| | | | | | | | | |
Collapse
|
20
|
Munger A, Coenen K, Cantin L, Goulet C, Vaillancourt LP, Goulet MC, Tweddell R, Sainsbury F, Michaud D. Beneficial 'unintended effects' of a cereal cystatin in transgenic lines of potato, Solanum tuberosum. BMC PLANT BIOLOGY 2012; 12:198. [PMID: 23116303 PMCID: PMC3534561 DOI: 10.1186/1471-2229-12-198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/29/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein. RESULTS The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line. Out of ca. 700 proteins monitored on 2-D gels, 23 were significantly up- or downregulated in CCII-expressing leaves, including 14 proteins detected de novo or up-regulated by more than five-fold compared to the control. Most up-regulated proteins were abiotic or biotic stress-responsive proteins, including different secretory peroxidases, wound inducible protease inhibitors and pathogenesis-related proteins. Accordingly, infection of leaf tissues by the fungal necrotroph Botryris cinerea was prevented in CCII-expressing plants, despite a null impact of CCII on growth of this pathogen and the absence of extracellular Cys protease targets for the inhibitor. CONCLUSIONS These data point to the onset of pleiotropic effects altering the leaf proteome in transgenic plants expressing recombinant protease inhibitors. They also show the potential of these proteins as ectopic modulators of stress responses in planta, useful to engineer biotic or abiotic stress tolerance in crop plants of economic significance.
Collapse
Affiliation(s)
- Aurélie Munger
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Karine Coenen
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Line Cantin
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Charles Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
- Current address: Horticulture Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Louis-Philippe Vaillancourt
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Marie-Claire Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Russell Tweddell
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Frank Sainsbury
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Dominique Michaud
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| |
Collapse
|
21
|
Pillay P, Kibido T, du Plessis M, van der Vyver C, Beyene G, Vorster BJ, Kunert KJ, Schlüter U. Use of transgenic oryzacystatin-I-expressing plants enhances recombinant protein production. Appl Biochem Biotechnol 2012; 168:1608-20. [PMID: 22965305 DOI: 10.1007/s12010-012-9882-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/28/2012] [Indexed: 01/07/2023]
Abstract
Plants are an effective and inexpensive host for the production of commercially interesting heterologous recombinant proteins. The Escherichia coli-derived glutathione reductase was transiently expressed as a recombinant model protein in the cytosol of tobacco plants using the technique of leaf agro-infiltration. Proteolytic cysteine protease activity progressively increased over time when glutathione reductase accumulated in leaves. Application of cysteine protease promoter-GUS fusions in transgenic tobacco identified a cysteine protease NtCP2 expressed in mature leaves and being stress responsive to be expressed as a consequence of agro-infiltration. Transgenic tobacco plants constitutively expressing the rice cysteine protease inhibitor oryzacystatin-I had significantly lower cysteine protease activity when compared to non-transgenic tobacco plants. Lower cysteine protease activity in transgenic plants was directly related to higher glutathione reductase activity and also higher glutathione reductase amounts in transgenic plants. Overall, our work has demonstrated as a novel aspect that transgenic tobacco plants constitutively expressing an exogenous cysteine protease inhibitor have the potential for producing more recombinant protein which is very likely due to the reduced activity of endogenous cysteine protease.
Collapse
Affiliation(s)
- P Pillay
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Li W, Chen J, Jiao H, Zhang Q, Zhou H, Yu C. A label-free real time fluorometric assay for protease and inhibitor screening with a released heme. Chem Commun (Camb) 2012; 48:10123-5. [DOI: 10.1039/c2cc35374a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Hehle VK, Paul MJ, Drake PM, Ma JKC, van Dolleweerd CJ. Antibody degradation in tobacco plants: a predominantly apoplastic process. BMC Biotechnol 2011; 11:128. [PMID: 22208820 PMCID: PMC3260137 DOI: 10.1186/1472-6750-11-128] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 12/30/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Interest in using plants for production of recombinant proteins such as monoclonal antibodies is growing, but proteolytic degradation, leading to a loss of functionality and complications in downstream purification, is still a serious problem. RESULTS In this study, we investigated the dynamics of the assembly and breakdown of a human IgG(1)κ antibody expressed in plants. Initial studies in a human IgG transgenic plant line suggested that IgG fragments were present prior to extraction. Indeed, when the proteolytic activity of non-transgenic Nicotiana tabacum leaf extracts was tested against a human IgG1 substrate, little activity was detectable in extraction buffers with pH > 5. Significant degradation was only observed when the plant extract was buffered below pH 5, but this proteolysis could be abrogated by addition of protease inhibitors. Pulse-chase analysis of IgG MAb transgenic plants also demonstrated that IgG assembly intermediates are present intracellularly and are not secreted, and indicates that the majority of proteolytic degradation occurs following secretion into the apoplastic space. CONCLUSIONS The results provide evidence that proteolytic fragments derived from antibodies of the IgG subtype expressed in tobacco plants do not accumulate within the cell, and are instead likely to occur in the apoplastic space. Furthermore, any proteolytic activity due to the release of proteases from subcellular compartments during tissue disruption and extraction is not a major consideration under most commonly used extraction conditions.
Collapse
Affiliation(s)
- Verena K Hehle
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Matthew J Paul
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Pascal M Drake
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Julian KC Ma
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Craig J van Dolleweerd
- Molecular Immunology Unit, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
24
|
Saikia M, Singh YT, Bhattacharya A, Mazumdar-Leighton S. Expression of diverse midgut serine proteinases in the sericigenous Lepidoptera Antheraea assamensis (Helfer) is influenced by choice of host plant species. INSECT MOLECULAR BIOLOGY 2011; 20:1-13. [PMID: 20854480 DOI: 10.1111/j.1365-2583.2010.01048.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Antheraea assamensis is reared on various species of the Lauraceae family from north-east India for its distinctive cocoon silk. We demonstrate differential expression of digestive trypsin and chymotrypsins in larvae feeding on a primary host, Persea bombycina Kosterm., in comparison to larvae feeding on Litsea monopetala Roxb. using in vitro proteolytic assays, zymogram analyses with proteinase inhibitors, restriction digestion of RNA-PCR amplicons and quantitative real-time PCR (RT-PCR). Eight novel members of the serine proteinase gene family were identified, including an intron-spliced trypsin (AaPb4) and seven putative chymotrypsins (AaPb2, AaPb4, AaPb12, AaLm4, AaLm6, AaLm19 and AaLm29). Midgut transcript levels of the putative trypsin were higher in larvae fed P. bombycina whereas levels of transcripts encoding putative chymotrypsins were higher in larvae reared on L. monopetala. Complex, differential expression of sequence divergent midgut serine proteinases may reflect the ability of lepidopteran larvae to feed on different species of host plants. Possible implications of host plant choice on the digestive physiology of A. assamensis are discussed.
Collapse
Affiliation(s)
- M Saikia
- Insect-Plant Interactions Group, Department of Botany, University of Delhi, Delhi, India.
| | | | | | | |
Collapse
|
25
|
Kiggundu A, Muchwezi J, Van der Vyver C, Viljoen A, Vorster J, Schlüter U, Kunert K, Michaud D. Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:87-105. [PMID: 20035549 DOI: 10.1002/arch.20342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The general potential of plant cystatins for the development of insect-resistant transgenic plants still remains to be established given the natural ability of several insects to compensate for the loss of digestive cysteine protease activities. Here we assessed the potential of cystatins for the development of banana lines resistant to the banana weevil Cosmopolites sordidus, a major pest of banana and plantain in Africa. Protease inhibitory assays were conducted with protein and methylcoumarin (MCA) peptide substrates to measure the inhibitory efficiency of different cystatins in vitro, followed by a diet assay with cystatin-infiltrated banana stem disks to monitor the impact of two plant cystatins, oryzacystatin I (OC-I, or OsCYS1) and papaya cystatin (CpCYS1), on the overall growth rate of weevil larvae. As observed earlier for other Coleoptera, banana weevils produce a variety of proteases for dietary protein digestion, including in particular Z-Phe-Arg-MCA-hydrolyzing (cathepsin L-like) and Z-Arg-Arg-MCA-hydrolyzing (cathepsin B-like) proteases active in mildly acidic conditions. Both enzyme populations were sensitive to the cysteine protease inhibitor E-64 and to different plant cystatins including OsCYS1. In line with the broad inhibitory effects of cystatins, OsCYS1 and CpCYS1 caused an important growth delay in young larvae developing for 10 days in cystatin-infiltrated banana stem disks. These promising results, which illustrate the susceptibility of C. sordidus to plant cystatins, are discussed in the light of recent hypotheses suggesting a key role for cathepsin B-like enzymes as a determinant for resistance or susceptibility to plant cystatins in Coleoptera.
Collapse
|
26
|
A quantitative technique for determining proteases and their substrate specificities and pH optima in crude enzyme extracts. Anal Biochem 2009; 388:56-62. [DOI: 10.1016/j.ab.2009.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/20/2009] [Accepted: 01/29/2009] [Indexed: 12/29/2022]
|
27
|
Sourrouille C, Marshall B, Liénard D, Faye L. From Neanderthal to nanobiotech: from plant potions to pharming with plant factories. Methods Mol Biol 2009; 483:1-23. [PMID: 19183890 DOI: 10.1007/978-1-59745-407-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants were the main source for human drugs until the beginning of the nineteenth century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. During the last decades of the twentieth century, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. After a temporary decrease in interest, plants are rapidly moving back into human pharmacopoeia, with the recent development of plant-based recombinant protein production systems offering a safe and extremely cost-effective alternative to microbial and mammalian cell cultures. In this short review, we will illustrate that current improvements in plant expression systems are making them suitable as alternative factories for the production of either simple or highly complex therapeutic proteins.
Collapse
|
28
|
Benchabane M, Rivard D, Girard C, Michaud D. Companion protease inhibitors to protect recombinant proteins in transgenic plant extracts. Methods Mol Biol 2009; 483:265-73. [PMID: 19183904 DOI: 10.1007/978-1-59745-407-0_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We describe a general approach for the use of recombinant protease inhibitors as stabilizing agents for clinically useful proteins extracted from transgenic plant tissues. A procedure is first described to assess the overall (in)stability of heterologous proteins in transgenic plant crude protein extracts. Step-by-step protocols are then presented for the choice and use of companion protease inhibitors inhibiting the host plant proteases during extraction. This strategy, that reproduces the protein-stabilizing effect of low-molecular-weight protease inhibitors often added to protein extraction media, does not require the exogenous addition of such expensive and often toxic compounds. It also presents the advantage of being intrinsically scalable to the amount of biomass processed.
Collapse
|
29
|
Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D. Preventing unintended proteolysis in plant protein biofactories. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:633-48. [PMID: 18452504 PMCID: PMC7159130 DOI: 10.1111/j.1467-7652.2008.00344.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 03/13/2008] [Accepted: 03/21/2008] [Indexed: 05/18/2023]
Abstract
Numerous reports have been published over the last decade assessing the potential of plants as useful hosts for the heterologous expression of clinically useful proteins. Significant progress has been made, in particular, in optimizing transgene transcription and translation in plants, and in elucidating the complex post-translational modifications of proteins typical of the plant cell machinery. In this article, we address the important issue of recombinant protein degradation in plant expression platforms, which directly impacts on the final yield, homogeneity and overall quality of the resulting protein product. Unlike several more stable and structurally less complex pharmaceuticals, recombinant proteins present a natural tendency to structural heterogeneity, resulting in part from the inherent instability of polypeptide chains expressed in heterologous environments. Proteolytic processing, notably, may dramatically alter the structural integrity and overall accumulation of recombinant proteins in plant expression systems, both in planta during expression and ex planta after extraction. In this article, we describe the current strategies proposed to minimize protein hydrolysis in plant protein factories, including organ-specific transgene expression, organelle-specific protein targeting, the grafting of stabilizing protein domains to labile proteins, protein secretion in natural fluids and the co-expression of companion protease inhibitors.
Collapse
|
30
|
Benchabane M, Goulet MC, Dallaire C, Côté PL, Michaud D. Hybrid protease inhibitors for pest and pathogen control--a functional cost for the fusion partners? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:701-708. [PMID: 18550379 DOI: 10.1016/j.plaphy.2008.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Indexed: 05/26/2023]
Abstract
Fusion proteins integrating dual pesticidal functions have been devised over the last 10 years to improve the effectiveness and potential durability of pest-resistant transgenic crops, but little attention has been paid to the impact of the fusion partners on the actual activity of the resulting hybrids. Here we assessed the ability of the rice cysteine protease inhibitor, oryzacystatin I (OCI), to retain its protease inhibitory potency when used as a template to devise hybrid inhibitors with dual activity against papain-like proteases and carboxypeptidase A (CPA). C-terminal variants of OCI were generated by fusing to its C-terminal end: (i) the primary inhibitory site of the small CPA inhibitor potato carboxypeptidase inhibitor (PCI, amino acids 35-39); or (ii) the complete sequence of PCI (a.a. 1-39). The hybrid inhibitors were expressed in E. coli and tested for their inhibitory activity against papain, CPA and digestive cysteine proteases of herbivorous and predatory arthropods. In contrast with the primary inhibitory site of PCI, the entire PCI attached to OCI was as active against CPA as free, purified PCI. The OCI-PCI hybrids also showed activity against papain, but the presence of extra amino acids at the C terminus of OCI negatively altered its inhibitory potency against cysteine proteases. This negative effect, although not preventing dual binding to papain and CPA, was correlated with an increased binding affinity for papain presumably due to non-specific interactions with the PCI domain. These results confirm the potential of OCI and PCI for the design of fusion inhibitors with dual protease inhibitory activity, but also point out the possible functional costs associated with protein domain grafting to recipient pesticidal proteins.
Collapse
Affiliation(s)
- Meriem Benchabane
- CRH/INAF, Pavillon des Services (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Goulet MC, Dallaire C, Vaillancourt LP, Khalf M, Badri AM, Preradov A, Duceppe MO, Goulet C, Cloutier C, Michaud D. Tailoring the specificity of a plant cystatin toward herbivorous insect digestive cysteine proteases by single mutations at positively selected amino acid sites. PLANT PHYSIOLOGY 2008; 146:1010-9. [PMID: 18192440 PMCID: PMC2259044 DOI: 10.1104/pp.108.115741] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 01/08/2008] [Indexed: 05/23/2023]
Abstract
Plant cystatins, similar to other defense proteins, include hypervariable, positively selected amino acid sites presumably impacting their biological activity. Using 29 single mutants of the eighth domain of tomato (Solanum lycopersicum) multicystatin, SlCYS8, we assessed here the potential of site-directed mutagenesis at positively selected amino acid sites to generate cystatin variants with improved inhibitory potency and specificity toward herbivorous insect digestive cysteine (Cys) proteases. Compared to SlCYS8, several mutants (22 out of 29) exhibited either improved or lowered potency against different model Cys proteases, strongly suggesting the potential of positively selected amino acids as target sites to modulate the inhibitory specificity of the cystatin toward Cys proteases of agronomic significance. Accordingly, mutations at positively selected sites strongly influenced the inhibitory potency of SlCYS8 against digestive Cys proteases of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). In particular, several variants exhibited improved potency against both cystatin-sensitive and cystatin-insensitive digestive Cys proteases of this insect. Of these, some variants also showed weaker activity against leaf Cys proteases of the host plant (potato [Solanum tuberosum]) and against a major digestive Cys protease of the two-spotted stinkbug Perillus bioculatus, an insect predator of Colorado potato beetle showing potential for biological control. Overall, these observations suggest the usefulness of site-directed mutagenesis at positively selected amino acid sites for the engineering of recombinant cystatins with both improved inhibitory potency toward the digestive proteases of target herbivores and weaker potency against nontarget Cys proteases in the host plant or the environment.
Collapse
Affiliation(s)
- Marie-Claire Goulet
- Département de Phytologie, Pavillon des Services, Centre de Recherche en Horticulture, Université Laval, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Etienne P, Desclos M, Le Gou L, Gombert J, Bonnefoy J, Maurel K, Le Dily F, Ourry A, Avice JC. N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:895-906. [PMID: 32689418 DOI: 10.1071/fp07088] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/23/2007] [Indexed: 06/11/2023]
Abstract
Brassica napus L. (oilseed rape) is an important crop plant characterised by low nitrogen (N) use efficiency. This is mainly due to a weak N recycling from leaves that is related to incomplete protein degradation. Assuming that protease inhibitors are involved throughout protein mobilisation, the goal of this study was to determine their role in the control of N mobilisation associated with leaf senescence. Results showed that a 19-kDa polypeptide exhibiting trypsin inhibitor (TI) activity presented an increased gradient from the older to the younger leaves. According to the SAG12/Cab gene expression profile, which is an indicator of leaf senescence, mature leaves of nitrate-deprived plants presented an earlier initiation of senescence and a decrease in protein concentration when compared with nitrate-replete plants. This coincided with disappearance of both TI activity and a reduction in the transcript level of the BnD22 gene (encoding a protein sharing homology with Künitz protease inhibitor). In young leaves of N-deprived plants, initiation of senescence was delayed; soluble protein concentration was maintained while both TI activity and BnD22 transcripts were high. This indicates that in oilseed rape growing under nitrate deprivation, the more efficient N recycling from mature leaves contributes to the maintenance of growth in young leaves. The data suggest a significant role for protease inhibitors in the regulation of proteolytic processes associated with N mobilisation during leaf senescence.
Collapse
Affiliation(s)
- Philippe Etienne
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Marie Desclos
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Lucie Le Gou
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Julie Gombert
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Josette Bonnefoy
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Karine Maurel
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Frédérik Le Dily
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Alain Ourry
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Jean-Christophe Avice
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| |
Collapse
|
34
|
Liénard D, Sourrouille C, Gomord V, Faye L. Pharming and transgenic plants. BIOTECHNOLOGY ANNUAL REVIEW 2007; 13:115-47. [PMID: 17875476 DOI: 10.1016/s1387-2656(07)13006-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.
Collapse
Affiliation(s)
- David Liénard
- Université de Rouen, CNRS UMR 6037, IFRMP 23, GDR 2590, Faculté des Sciences, Bât. Ext. Biologie, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | |
Collapse
|
35
|
de Salles CMC, Guedes HLM, Salles JB, Silva FP, De Simone SG. Optimization of sample preparation from skin mucus of a neotropical fish for two-dimensional substrate gel electrophoresis. Anal Biochem 2006; 357:153-5. [PMID: 16920062 DOI: 10.1016/j.ab.2006.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 07/18/2006] [Accepted: 07/21/2006] [Indexed: 11/24/2022]
Affiliation(s)
- Cristiane M C de Salles
- Laboratório de Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, 21045-900 Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
36
|
Rivard D, Anguenot R, Brunelle F, Le VQ, Vézina LP, Trépanier S, Michaud D. An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:359-68. [PMID: 17147641 DOI: 10.1111/j.1467-7652.2006.00187.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteolytic degradation represents a significant barrier to the efficient production of several recombinant proteins in plants, both in vivo during their expression and in vitro during their recovery from source tissues. Here, we describe a strategy to protect recombinant proteins during the recovery process, based on the coexpression of a heterologous proteinase inhibitor acting as a 'mouse trap' against the host proteases during extraction. After confirming the importance of trypsin- and chymotrypsin-like activities in crude protein extracts of potato (Solanum tuberosum L.) leaves, transgenic lines of potato expressing either tomato cathepsin D inhibitor (CDI) or bovine aprotinin, both active against trypsin and chymotrypsin, were generated by Agrobacterium tumefaciens-mediated genetic transformation. Leaf crude protein extracts from CDI-expressing lines, showing decreased levels of cathepsin D-like and ribulose 1,5-bisphosphate carboxylase/oxygenase hydrolysing activities in vitro, conducted decreased turnover rates of the selection marker protein neomycin phosphotransferase II (NPTII) relative to the turnover rates measured for transgenic lines expressing only the marker protein. A similar stabilizing effect on NPTII was observed in leaf protein extracts from plant lines coexpressing bovine aprotinin, confirming the ability of ectopically expressed broad-spectrum serine proteinase inhibitors to reproduce the protein-stabilizing effect of low-molecular-weight proteinase inhibitors generally added to protein extraction media.
Collapse
Affiliation(s)
- Daniel Rivard
- CRH/INAF, Département de Phytologie, Pavillon des Services (INAF), Université Laval, Sainte-Foy (Québec), Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
37
|
Agrawal MK, Bagchi D, Bagchi SN. Cysteine and serine protease-mediated proteolysis in body homogenate of a zooplankter, Moina macrocopa, is inhibited by the toxic cyanobacterium, Microcystis aeruginosa PCC7806. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:33-41. [PMID: 15820132 DOI: 10.1016/j.cbpc.2005.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 12/17/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
The paper describes the characterization of proteases in the whole body homogenate of Moina macrocopa, which can possibly be inhibited by the extracts of Microcystis aeruginosa PCC7806. With the use of oligopeptide substrates and specific inhibitors, we detected the activities of trypsin, chymotrypsin, elastase and cysteine protease. Cysteine protease, the predominant enzyme behind proteolysis of a natural substrate, casein, was partially purified by gel filtration. The substrate SDS-polyacrylamide gel electrophoresis of body homogenate revealed the presence of nine bands of proteases (17-72 kDa). The apparent molecular mass of an exclusive cysteine protease was 60 kDa, whereas of trypsin, it was 17-24 kDa. An extract of M. aeruginosa PCC7806 significantly inhibited the activities of trypsin, chymotrypsin and cysteine protease in M. macrocopa body homogenate at estimated IC(50) of 6- to 79-microg dry mass mL(-1). Upon fractionation by C-18 solid-phase extraction, 60% methanolic elute contained all the protease inhibitors, and these metabolites could be further separated by reverse-phase liquid chromatography. The metabolites inhibitory to M. macrocopa proteases also inhibited the corresponding class of proteases of mammalian/plant origin. The study suggests that protease inhibition may contribute to chemical interaction of cyanobacteria and crustacean zooplankton.
Collapse
Affiliation(s)
- Manish Kumar Agrawal
- Department of Biological Sciences, Rani Durgavati University, Jabalpur 482001, India
| | | | | |
Collapse
|
38
|
Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D. Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 2005; 23:1770-8. [PMID: 15734039 DOI: 10.1016/j.vaccine.2004.11.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plants have become, over the last ten years, a suitable alternative to microbial and animal cell factories for the production of clinically-useful, therapeutic proteins. Besides the well known advantage of low-cost and large-scale production of safe and biologically active mammalian proteins, plants also are able to perform most post-translational maturations required for biological activity and suitable pharmacokinetics of recombinant therapeutic proteins. In this short review we focus on glycosylation and proteolytic processing of plant-made pharmaceuticals during their transport through the plant cell's secretory pathway. We also address the practical implications of these important processes on the effectiveness of plant molecular pharming systems.
Collapse
Affiliation(s)
- Loïc Faye
- CNRS UMR 6037, IFRMP 23, GDR 2590, Université de Rouen-Bâtiment de biologie (extension), Blvd de Broglie, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | |
Collapse
|
39
|
Hanif A, Bakopoulos V, Dimitriadis GJ. Maternal transfer of humoral specific and non-specific immune parameters to sea bream (Sparus aurata) larvae. FISH & SHELLFISH IMMUNOLOGY 2004; 17:411-435. [PMID: 15313509 DOI: 10.1016/j.fsi.2004.04.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/13/2004] [Accepted: 04/20/2004] [Indexed: 05/24/2023]
Abstract
Immunisation of sea bream (Sparus aurata L.) broodstock with a novel vaccine mixture of Photobacterium damsela subsp. piscicida SK7 (Phdp) was performed during the period of egg development and the changes in specific and non-specific humoral immune parameters were measured. Total immunoglobulin level, specific antibody titre, anti-protease activity and lysozyme activity were significantly higher in immunised parents compared to the control. After spawning significantly higher anti-protease activity, lysozyme activity and total immunoglobulin level were detected in the eggs from immunised parents. Specific antibody titres against Phdp were only detected in the eggs from the immunised parents. The larvae from immunised parents also expressed significantly higher levels of specific and non-specific humoral immune parameters compared to the controls. A small amount of total immunoglobulin was detected in larvae decreasing gradually until day 8 post-hatching and then an increase was measured in larvae from immunised parents, whereas no immunoglobulin was detected at days 4, 6 and 8 in larvae from non-immunised parents. The specific antibody titre against Phdp was detected only in larvae from immunised broodstock until day 14 post-hatching. The higher humoral immune parameters in eggs and larvae from immunised parents in comparison to eggs and larvae from non-immunised parents, suggest transfer of maternal specific and non-specific immune factors.
Collapse
Affiliation(s)
- A Hanif
- Division of Genetics, Department of Biology, University of Patras, Patras 26500, Greece
| | | | | |
Collapse
|
40
|
van der Hoorn RAL, Leeuwenburgh MA, Bogyo M, Joosten MHAJ, Peck SC. Activity profiling of papain-like cysteine proteases in plants. PLANT PHYSIOLOGY 2004; 135:1170-8. [PMID: 15266051 PMCID: PMC519038 DOI: 10.1104/pp.104.041467] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 04/13/2004] [Accepted: 05/12/2004] [Indexed: 05/18/2023]
Abstract
Transcriptomic and proteomic technologies are generating a wealth of data that are frequently used by scientists to predict the function of proteins based on their expression or presence. However, activity of many proteins, such as transcription factors, kinases, and proteases, depends on posttranslational modifications that frequently are not detected by these technologies. Therefore, to monitor activity of proteases rather than their abundance, we introduce protease activity profiling in plants. This technology is based on the use of biotinylated, irreversible protease inhibitors that react with active proteases in a mechanism-based manner. Using a biotinylated derivative of the Cys protease inhibitor E-64, we display simultaneous activities of many papain-like Cys proteases in extracts from various tissues and from different plant species. Labeling is pH dependent, stimulated with reducing agents, and inhibited specifically by Cys protease inhibitors but not by inhibitors of other protease classes. Using one-step affinity capture of biotinylated proteases followed by sequencing mass spectrometry, we identified proteases that include xylem-specific XCP2, desiccation-induced RD21, and cathepsin B- and aleurain-like proteases. Together, these results demonstrate that this technology can identify differentially activated proteases and/or characterize the activity of a particular protease within complex mixtures.
Collapse
|
41
|
Martínez M, López-Solanilla E, Rodríguez-Palenzuela P, Carbonero P, Díaz I. Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:876-83. [PMID: 14558689 DOI: 10.1094/mpmi.2003.16.10.876] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The recombinant barley cystatin Hv-CPI inhibited the growth of three phytopathogenic fungi (Botrytis cinerea, Colletotrichum graminicola, and Plectosphaerella cucumerina) and the saprotrophic fungus Trichoderma viride. Several mutants of barley cystatin were generated by polymerase chain reaction approaches and both their antifungal and their cysteine-proteinase inhibitory properties investigated. Point mutants R38-->G, Q63-->L, and Q63-->P diminished their capacity for inhibiting papain and cathepsin B, retaining their antifungal properties. However, mutant C68-->G was more active for papain and cathepsin B than the wild type. These results indicate that in addition to the consensus cystatin-reactive site, Q63-V64-V65-A66-G67, the A37-R38-F39-A40-V41 region, common to all cereal cystatins, and the C68 residue are important for barley cystatin activity. On the other hand, the K92-->P mutant is inactive as a fungicide, but still retains measurable inhibitory activity for papain and cathepsin B. Against B. cinerea, the antifungal effect of Hv-CPI and of its derived mutants does not always correlate with their activities as proteinase inhibitors, because the Q63-->P mutant is inactive as a cystatin, while still inhibiting fungal growth, and the K92-->P mutant shows the reciprocal effects. These data indicate that inhibition of plant-pathogenic fungi by barley cystatin is not associated with its cysteine-proteinase inhibitory activity. Moreover, these results are corroborated by the absence of inhibition of intra- and extramycelia-proteinase activities by barley cystatin and by other well-known inhibitors of cysteine-proteinase activity in the fungal zymograms of B. cinerea.
Collapse
Affiliation(s)
- M Martínez
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biotecnología-UPM, ETSI Agrónomos, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Girard C, Michaud D. Direct monitoring of extracellular protease activities in microbial cultures. Anal Biochem 2002; 308:388-91. [PMID: 12419354 DOI: 10.1016/s0003-2697(02)00264-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Cécile Girard
- Département de Phytologie, Centre de Recherche en Horticulture, Université Laval, Québec, Canada
| | | |
Collapse
|
43
|
De Leo F, Gallerani R. The mustard trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:489-96. [PMID: 11891125 DOI: 10.1016/s0965-1748(01)00126-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of mustard trypsin inhibitor MTI-2 expressed at different levels in transgenic tobacco lines have been evaluated by feeding the lepidopteran Spodoptera littoralis throughout its larval life. Specific conditions were selected to study the long-term effects of feeding larvae on transgenic plants expressing the inhibitor at various levels. The data obtained led to the establishment of three relevant parameters to be considered during the experimentation: (i) the PI content of the plant lines to be used; (ii) the developmental stage of larvae sensitive to that PI content; (iii) the ratio of MTI-2/proteases sufficient to inhibit gut proteases. The experimental data obtained from feeding S. littoralis larvae using these conditions led to two main results. First, when L2 S. littoralis larvae were fed on high MTI-2 expressing tobacco plants, no effects on larval development were detected but there was a significantly reduced fertility. When the same larvae were fed on low expressing MTI-2 tobacco plants, only a less marked lowering of fertility was observed. Second, after the first generation, no differences in protease activity were observed in insects derived from larvae fed on high or low MTI-2 expressing tobacco lines, suggesting that genetic traits observed in previous studies were not inherited.
Collapse
Affiliation(s)
- F De Leo
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari-Via Orabona, 4, 70126 Bari, Italy.
| | | |
Collapse
|
44
|
Elpidina EN, Vinokurov KS, Gromenko VA, Rudenskaya YA, Dunaevsky YE, Zhuzhikov DP. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 48:206-216. [PMID: 11746565 DOI: 10.1002/arch.10000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Compartmentalization of proteinases, amylases, and pH in the midgut of Nauphoeta cinerea Oliv. (Blattoptera:Blaberidae) was studied in order to understand the organization of protein and starch digestion. Total proteolytic activity measured with azocasein was maximal at pH 11.5 both in anterior (AM) and posterior (PM) halves of the midgut, but the bulk of activity (67%) was found in PM. Total AM and PM preparations were fractionated on a Sephadex G-50 column and further analysed by means of activity electrophoresis and specific inhibitors and activators. The major activity in PM was classified as an unusual SH-dependent proteinase with M(r) 24,000 and pH optimum with synthetic substrate BApNA at 10.0. The enzyme was 43-fold activated in the presence of 1 mM DTT, insensitive to synthetic inhibitors of serine (PMSF, TLCK, TPCK) and cysteine (IAA, E-64) proteinases, strongly inhibited by STI, and displayed four active bands on zymograms. In PM, activities of trypsin-like, chymotrypsin-like, subtilisin-like, and cysteine proteinases were observed. Aspartic and metalloproteinases were not detected. In AM, activity of unusual SH-dependent proteinase also dominated and activity of chymotrypsin-like proteinase was observed, but their levels were much lower than in PM. Distribution of amylase activity, exhibiting an optimum at pH 6.0, was quite the opposite. The major part of it (67%) was located in AM. Treatment of amylase preparation with proteinases from AM and PM reduced amylase activity twofold. pH of the midgut contents was 6.0-7.2 in AM, 6.4-7.6 in the first and 8.8-9.3 in the second halves of PM. Thus, pH in AM is in good agreement with the optimal pH of amylase, located in this compartment, but the activity of proteinases, including the ability to degrade amylase, in such an environment is low. Active proteolysis takes place in the second half of PM, where pH of the gut is close to the optimal pH of proteinases.
Collapse
Affiliation(s)
- E N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
45
|
Visal-Shah S, Vrain TC, Yelle TC, Nguyen-Quoc B, Michaud D. An electroblotting, two-step procedure for the detection of proteinases and the study of proteinase/inhibitor complexes in gelatin-containing polyacrylamide gels. Electrophoresis 2001; 22:2646-52. [PMID: 11545387 DOI: 10.1002/1522-2683(200108)22:13<2646::aid-elps2646>3.0.co;2-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A two-step gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE) procedure was devised for the detection of proteinases and the study of proteinase/inhibitor interactions in complex biological extracts. The proteins are first resolved by sodium dodecyl sulfate (SDS)-PAGE under reducing or nonreducing conditions, and electrotransferred into a 0.75 mm-thick accompanying polyacrylamide slab gel containing 0.1% w/v porcine gelatin. The active proteinase bands are developed by a gelatin proteolysis step in the accompanying gel in the presence or absence of diagnostic proteinase inhibitors, allowing the assessment of proteinase classes and the visual discrimination of inhibitor-'sensitive' and -'insensitive' proteinases in complex extracts. Alternatively, protein extracts are preincubated with specific reversible inhibitors before electrophoresis, allowing a rapid discrimination of strong and weak interactions implicating proteinases and reversible inhibitors. In comparison with the standard gelatin/PAGE procedure, that involves copolymerization of gelatin with acrylamide in the resolving gel, this new procedure simplifies proteinase patterns, avoids overestimation of proteinase numbers in complex extracts, and allows in certain conditions the estimation of proteinase molecular weights. Stem bromelain (EC 3.4.22.32), bovine trypsin (EC 3.4.21.4), papain (EC 3.4.22.2), and the extracellular (digestive) cysteine proteinases of five herbivorous pests are used as model enzymes to illustrate the usefulness of this approach in detecting proteinases and in studying their interactions with specific proteinaceous inhibitors potentially useful in biotechnology.
Collapse
Affiliation(s)
- S Visal-Shah
- Département de Phytologie, Centre de Recherche en Horticulture, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
46
|
De Leo F, Bonadé-Bottino M, Ceci LR, Gallerani R, Jouanin L. Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:593-602. [PMID: 11267898 DOI: 10.1016/s0965-1748(00)00164-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The effects of mustard trypsin inhibitor MTI-2 expressed at different levels in transgenic tobacco, arabidopsis and oilseed rape lines have been evaluated against three different lepidopteran insect pests. 1. Plutella xylostella (L.) larvae were the most sensitive to the ingestion of MTI-2. The inhibitor expressed at high levels in arabidopsis plants caused rapid and complete mortality. High mortality and significantly delayed larval development were also detectable in oilseed rape expressing MTI-2 at lower levels. 2. Mamestra brassicae (L.) larvae were sensitive only at high MTI-2 expression level, as obtained in transgenic tobacco and arabidopsis, whereas no effects were observed for larvae fed on plants showing relatively low expression levels such as those of oilseed rape lines. 3. Feeding bioassays with Spodoptera littoralis (Boisduval) larvae were carried out using the same oilseed rape lines, showing that at these low expression levels no mortality was observed although a delay in larval development did occur. The levels of insect gut proteolytic activities of the larvae still alive at the end of a 7 day feeding bioassay were usually higher than in the controls, but no new proteinases were expressed in any case. The combined results described in this paper demonstrate altogether the relevance of a case-by-case analysis [target insects and proteinase inhibitor (PI) level of expression in planta] in a PI-based strategy for plant protection.
Collapse
Affiliation(s)
- F De Leo
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, Route de Saint Cyr, F-78026 Versailles Cedex, France.
| | | | | | | | | |
Collapse
|
47
|
Girard C, Jouanin L. Molecular cloning of cDNAs encoding a range of digestive enzymes from a phytophagous beetle, Phaedon cochleariae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:1129-1142. [PMID: 10612046 DOI: 10.1016/s0965-1748(99)00104-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To gain better knowledge of the variety of digestive enzymes in phytophagous coleopteran pests, a sequencing screen of 76 random cDNAs from a gut library from Phaedon cochleariae larvae was performed. The screen yielded 21 cDNAs encoding amino-acid sequences homologous to known digestive enzymes, most of them were cell wall-hydrolysing enzymes. The deduced protein sequences of 7 cDNAs encoding putative alpha-amylase, cysteine proteinase, trypsin, chymotrypsin, cellulase, pectinase and xylanase display all the structural features that characterize these enzymes in other eukaryotic organisms. Except the alpha-amylase and chymotrypsin cDNAs, the other cDNAs probably derive from multigene families. The distribution of the corresponding enzymatic activities at various developmental stages of P. cochleariae was examined. alpha-amylase activity is present in guts of larvae and adults, proteinases are abundant in guts of larvae and adults, but scarce in eggs and larval carcasses, xylanases are present in the guts of larvae and adults, as well as in carcasses of larvae, whereas cellulase and pectinase activities are distributed in larval and adult guts, larval carcasses, and eggs. Only a minor fraction of the cellulases is secreted by microorganisms, suggesting that P. cochleariae synthesizes most of its own cell-wall hydrolysing enzymes. The physiological role of the enzymes is discussed, as well as the significance of these results for pest management strategies involving transgenic plants expressing enzyme inhibitors.
Collapse
Affiliation(s)
- C Girard
- Laboratoire de Biologie Cellulaire, INRA de Versailles, Versailles, France
| | | |
Collapse
|
48
|
Abstract
The electrophoresis of Bence Jones proteinuria (BJP) by urinary protein electrophoresis (UPE), immunoelectrophoresis (IE), immunofixation electrophoresis (IFE), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing (IEF), two-dimensional electrophoresis (2-DE) and capillary electrophoresis (CE) is described. UPE, IE and IFE are briefly discussed as clinical laboratory methods for the detection and typing of free light chain (LC) whilst the high resolution electrophoretic methods (SDS-PAGE, IEF, 2-DE and CE) are considered in greater detail as research tools for molecular characterisation of free LC and its association with nephrotoxicity. Refinements of sample processing designed to improve the standardisation of analysis of BJP by high resolution electrophoretic methods are reported.
Collapse
Affiliation(s)
- T Marshall
- Analytical Biochemistry Research Group, School of Health Sciences, The University of Sunderland, UK.
| | | |
Collapse
|