1
|
Yang KHS, Isaev D, Oz M. Additive Inhibition of HERG Channels Expressed in Xenopus Oocytes by Antipsychotic Drugs and Citrus Juice Flavonoid Naringenin. Pharmacology 2024:1-5. [PMID: 39326403 DOI: 10.1159/000541005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Citrus juice has been shown to cause QT prolongation in electrocardiograms of healthy volunteers, and naringenin, a major flavonoid found in citrus juice, has been identified as the potent inhibitor of human ether-a-go-go-related gene (HERG) channels as the cause of QT prolongation. Inhibition of HERG channels and prolongation of QT interval by antipsychotic drugs such as haloperidol, chlorpromazine, and clozapine have also been shown. However, naringenin's effect on HERG channel function in conjunction with antipsychotic medications has not been investigated. METHODS In the present study, we evaluated the effect of combining naringenin with antipsychotics on the function of HERG channels expressed in Xenopus oocytes. RESULTS When 30 µm naringenin was added to antipsychotic drugs (1 µm haloperidol, 10 µm chlorpromazine, or 10 µm clozapine), significantly greater HERG inhibition was demonstrated, compared to the inhibition caused by antipsychotic drugs alone. Co-application studies also showed that the magnitudes of inhibitions caused by naringenin + antipsychotics were similar to that predicted by the allotopic interaction model, suggesting that naringenin and antipsychotics bind to the HERG channel at different sites. CONCLUSION The results suggest that there is an additive interaction between antipsychotics and naringenin. Due to the potential for repolarization heterogeneity and a decrease in repolarization reserve, this additive HERG inhibition may increase the risk of arrhythmias.
Collapse
Affiliation(s)
- Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California, USA
| | - Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Murat Oz
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
2
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Isaev D, Yang KHS, Petroianu G, Lorke DE, Oz M. Methylene Blue Inhibits Cromakalim-Activated K + Currents in Follicle-Enclosed Oocytes. MEMBRANES 2023; 13:121. [PMID: 36837624 PMCID: PMC9966726 DOI: 10.3390/membranes13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The effects of methylene blue (MB) on cromakalim-induced K+ currents were investigated in follicle-enclosed Xenopus oocytes. In concentrations ranging from 3-300 μM, MB inhibited K+ currents (IC50: 22.4 μM) activated by cromakalim, which activates KATP channels. MB inhibited cromakalim-activated K+ currents in a noncompetitive and voltage-independent manner. The respective EC50 and slope values for cromakalim-activation of K+ currents were 194 ± 21 µM and 0.91 for controls, and 206 ± 24 µM and 0.87 in the presence of 30 μM MB. The inhibition of cromakalim-induced K+ currents by MB was not altered by pretreatment with the Ca2+ chelator BAPTA, which suggests that MB does not influence Ca2+-activated second messenger pathways. K+ currents mediated through a C-terminally deleted form of Kir6.2 (KirΔC26), which does not contain the sulfonylurea receptor, were still inhibited by MB, indicating direct interaction of MB with the channel-forming Kir6.2 subunit. The binding characteristics of the KATP ligand [3H]glibenclamide are not altered by MB in a concentration range between 1 μM-1 mM, as suggested by radioligand binding assay. The presence of a membrane permeable cGMP analogue (8-Br-cGMP, 100 µM) and a guanylate cyclase activator (BAY 58-2667, 3 µM) did not affect the inhibitory effects of MB, suggesting that MB does not inhibit cromakalim-activated K+ currents through guanylate cyclase. Collectively, these results suggest that MB directly inhibits cromakalim-activated K+ currents in follicular cells of Xenopus oocytes.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
4
|
Oz M, Yang KHS, Mahgoub MO. Effects of cannabinoids on ligand-gated ion channels. Front Physiol 2022; 13:1041833. [PMID: 36338493 PMCID: PMC9627301 DOI: 10.3389/fphys.2022.1041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Phytocannabinoids such as Δ9-tetrahydrocannabinol and cannabidiol, endocannabinoids such as N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, and synthetic cannabinoids such as CP47,497 and JWH-018 constitute major groups of structurally diverse cannabinoids. Along with these cannabinoids, CB1 and CB2 cannabinoid receptors and enzymes involved in synthesis and degradation of endocannabinoids comprise the major components of the cannabinoid system. Although, cannabinoid receptors are known to be involved in anti-convulsant, anti-nociceptive, anti-psychotic, anti-emetic, and anti-oxidant effects of cannabinoids, in recent years, an increasing number of studies suggest that, at pharmacologically relevant concentrations, these compounds interact with several molecular targets including G-protein coupled receptors, ion channels, and enzymes in a cannabinoid-receptor independent manner. In this report, the direct actions of endo-, phyto-, and synthetic cannabinoids on the functional properties of ligand-gated ion channels and the plausible mechanisms mediating these effects were reviewed and discussed.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
- *Correspondence: Murat Oz,
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, United States
| | - Mohamed Omer Mahgoub
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi, UAE
| |
Collapse
|
5
|
Isaev D, Yang KHS, Shabbir W, Howarth FC, Oz M. Capsaicin Inhibits Multiple Voltage-Gated Ion Channels in Rabbit Ventricular Cardiomyocytes in TRPV1-Independent Manner. Pharmaceuticals (Basel) 2022; 15:ph15101187. [PMID: 36297299 PMCID: PMC9611941 DOI: 10.3390/ph15101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper which is responsible for its hot, pungent taste. It exerts multiple pharmacological actions, including pain-relieving, anti-cancer, anti-inflammatory, anti-obesity, and antioxidant effects. Previous studies have shown that capsaicin significantly affects the contractility and automaticity of the heart and alters cardiovascular functions. In this study, the effects of capsaicin were investigated on voltage-gated ion currents in rabbit ventricular myocytes. Capsaicin inhibited rapidly activated (IKr) and slowly activated (IKs) K+ currents and transient outward (Ito) K+ current with IC50 values of 3.4 µM,14.7 µM, and 9.6 µM, respectively. In addition, capsaicin, at higher concentrations, suppressed voltage-gated Na+ and Ca2+ currents and inward rectifier IK1 current with IC50 values of 42.7 µM, 34.9 µM, and 38.8 µM, respectively. Capsaicin inhibitions of INa, IL-Ca, IKr, IKs, Ito, and IK1 were not reversed in the presence of capsazepine (3 µM), a TRPV1 antagonist. The inhibitory effects of capsaicin on these currents developed gradually, reaching steady-state levels within 3 to 6 min, and the recoveries were usually incomplete during washout. In concentration-inhibition curves, apparent Hill coefficients higher than unity suggested multiple interaction sites of capsaicin on these channels. Collectively, these findings indicate that capsaicin affects cardiac electrophysiology by acting on a diverse range of ion channels and suggest that caution should be exercised when capsaicin is administered to carriers of cardiac channelopathies or to individuals with arrhythmia-prone conditions, such as ischemic heart diseases.
Collapse
Affiliation(s)
- Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Waheed Shabbir
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Abu Dhabi 15551, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
- Correspondence: ; Tel.: +965-99758003
| |
Collapse
|
6
|
Nebrisi EE, Prytkova T, Lorke DE, Howarth L, Alzaabi AH, Yang KHS, Howarth FC, Oz M. Capsaicin Is a Negative Allosteric Modulator of the 5-HT 3 Receptor. Front Pharmacol 2020; 11:1274. [PMID: 32982728 PMCID: PMC7490547 DOI: 10.3389/fphar.2020.01274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, effects of capsaicin, an active ingredient of the capsicum plant, were investigated on human 5-hydroxytryptamine type 3 (5-HT3) receptors. Capsaicin reversibly inhibited serotonin (5-HT)-induced currents recorded by two-electrode voltage clamp method in Xenopus oocytes. The inhibition was time- and concentration-dependent with an IC50 = 62 μM. The effect of capsaicin was not altered in the presence of capsazepine, and by intracellular BAPTA injections or trans-membrane potential changes. In radio-ligand binding studies, capsaicin did not change the specific binding of the 5-HT3 antagonist [3H]GR65630, indicating that it is a noncompetitive inhibitor of 5-HT3 receptor. In HEK-293 cells, capsaicin inhibited 5-HT3 receptor induced aequorin luminescence with an IC50 of 54 µM and inhibition was not reversed by increasing concentrations of 5-HT. In conclusion, the results indicate that capsaicin acts as a negative allosteric modulator of human 5-HT3 receptors.
Collapse
Affiliation(s)
- Eslam El Nebrisi
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.,Department of Pharmacology, Dubai Medical College, Dubai Medical University, Dubai, United Arab Emirates
| | | | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Luke Howarth
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Asma Hassan Alzaabi
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
7
|
Nielsen CU, Pedersen M, Müller S, Kæstel T, Bjerg M, Ulaganathan N, Nielsen S, Carlsen KL, Nøhr MK, Holm R. Inhibitory Effects of 17-α-Ethinyl-Estradiol and 17-β-Estradiol on Transport Via the Intestinal Proton-Coupled Amino Acid Transporter (PAT1) Investigated In Vitro and In Vivo. J Pharm Sci 2020; 110:354-364. [PMID: 32835702 DOI: 10.1016/j.xphs.2020.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
The proton-coupled amino acid transporter, PAT1, is known to be responsible for intestinal absorption drug substances such as gaboxadol and vigabatrin. The aim of the present study was to investigate, if 17-α-ethinyl-estradiol (E-E2) and 17-β-estradiol (E) inhibit PAT1-mediated intestinal absorption of proline and taurine in vitro in Caco-2 cells and in vivo using Sprague-Dawley rats to assess the potential for taurine-drug interactions. E and E-E2 inhibited the PAT1-mediated uptake of proline and taurine in Caco-2 cells with IC50 values of 10.0-50.0 μM without major effect on other solute carriers such as the taurine transporter (TauT), di/tri-peptide transporter (PEPT1), and serotonin transporter (SERT1). In PAT1-expressing oocytes E and E-E2 were non-translocated inhibitors. In Caco-2 cells, E and E-E2 lowered the maximal uptake capacity of PAT1 in a non-competitive manner. Likewise, the transepithelial permeability of proline and taurine was reduced in presence of E and E-E2. In male Sprague Dawley rats pre-dosed with E-E2 a decreased maximal plasma concentration (Cmax) of taurine and increased the time (tmax) to reach this was indicated, suggesting the possibility for an in vivo effect on the absorption of PAT1 substrates. In conclusion, 17-α-ethinyl-estradiol and 17-β-estradiol were identified as non-translocated and non-competitive inhibitors of PAT1.
Collapse
Affiliation(s)
- Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Maria Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Stefanie Müller
- Department of Pharmacy, Faculty of Health and Medical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Thea Kæstel
- Department of Pharmacy, Faculty of Health and Medical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Maria Bjerg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Nithiya Ulaganathan
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Salli Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Krestine Lundgaard Carlsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Martha Kampp Nøhr
- Department of Pharmacy, Faculty of Health and Medical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - René Holm
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium; Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| |
Collapse
|
8
|
Liu H, Huang Q, Sun H, Li J, Lin Q, Wu H, Liu C. Effects of separate or combined exposure of nonylphenol and octylphenol on central 5-HT system and related learning and memory in the rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:523-529. [PMID: 30743168 DOI: 10.1016/j.ecoenv.2019.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 05/20/2023]
Abstract
This study evaluated toxic effects of nonylphenol (NP) and octylphenol (OP) on central 5-hydroxytryptamine (5-HT) system and related learning and memory in the rats. Male Sprague-Dawley rats were exposed to NP (30, 90, or 270 mg/kg), OP (40, 120, or 360 mg/kg), or a mixture of NP and OP [(mixed with the corresponding NP, OP alone exposed low, medium and high dose according to the natural environment exists NP:OP = 4:1; NOL (24 mg/kg NP+8 mg/kg OP), NOM (72 mg/kg NP+24 mg/kg OP), NOH (216 mg/kg NP+72 mg/kg OP)] by gavage every other day for 30 d. Learning and memory were assessed using a passive-avoidance test. Levels of estrogen receptor β (ERβ), 5-HT, tryptophan hydroxylase 2 (TPH2), monoamine oxidase (MAOA) enzyme, serotonin transporter (SERT), the vesicular monoamine transporter 2 (VMAT2), 5-hydroxytryptamine 1 A (5-HT1A), 5-hydroxytryptamine 3 A (5-HT3A), 5-hydroxytryptamine 3B (5-HT3B), 5-hydroxytryptamine 4 A (5-HT4A) and 5-hydroxytryptamine 6 A (5-HT6A) were measured using ELISA kits. Levels of ERβ, MAOA, SERT, VMAT2, 5-HT1A, 5-HT3A, 5-HT3B, 5-HT4A and 5-HT6A in rat hippocampal reduced by a high dose of NP and/or OP. Levels of TPH2 in rat midbrain and 5-HT in rat hippocampal increased by a high dose of NP and/or OP. In addition, latency was significantly shorter and errors were significantly greater in the high dose NP and NP+OP (NO) groups. Taken together, these results suggest that NP and/or OP may affect learning and memory in rats by inhibiting levels of ERβ, which could then lead to decreases in levels of 5-HT1A, 5-HT3A, 5-HT3B, 5-HT4A, and 5-HT6A in the rat hippocampus. These findings suggested that separate and combined exposure to NP and OP could produce toxic effects on central 5-HT system and related learning and memory in the rats.
Collapse
Affiliation(s)
- Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qingyi Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hanzhi Sun
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jieming Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qianwen Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Haoming Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Loiseau C, Cayetanot F, Joubert F, Perrin-Terrin AS, Cardot P, Fiamma MN, Frugiere A, Straus C, Bodineau L. Current Perspectives for the use of Gonane Progesteronergic Drugs in the Treatment of Central Hypoventilation Syndromes. Curr Neuropharmacol 2018; 16:1433-1454. [PMID: 28721821 PMCID: PMC6295933 DOI: 10.2174/1570159x15666170719104605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Central alveolar hypoventilation syndromes (CHS) encompass neurorespiratory diseases resulting from congenital or acquired neurological disorders. Hypercapnia, acidosis, and hypoxemia resulting from CHS negatively affect physiological functions and can be lifethreatening. To date, the absence of pharmacological treatment implies that the patients must receive assisted ventilation throughout their lives. OBJECTIVE To highlight the relevance of determining conditions in which using gonane synthetic progestins could be of potential clinical interest for the treatment of CHS. METHODS The mechanisms by which gonanes modulate the respiratory drive were put into the context of those established for natural progesterone and other synthetic progestins. RESULTS The clinical benefits of synthetic progestins to treat respiratory diseases are mixed with either positive outcomes or no improvement. A benefit for CHS patients has only recently been proposed. We incidentally observed restoration of CO2 chemosensitivity, the functional deficit of this disease, in two adult CHS women by desogestrel, a gonane progestin, used for contraception. This effect was not observed by another group, studying a single patient. These contradictory findings are probably due to the complex nature of the action of desogestrel on breathing and led us to carry out mechanistic studies in rodents. Our results show that desogestrel influences the respiratory command by modulating the GABAA and NMDA signaling in the respiratory network, medullary serotoninergic systems, and supramedullary areas. CONCLUSION Gonanes show promise for improving ventilation of CHS patients, although the conditions of their use need to be better understood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Laurence Bodineau
- Address correspondence to this author at the Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France; Tel: 33 1 40 77 97 15; Fax: 33 1 40 77 97 89; E-mail:
| |
Collapse
|
10
|
Ritter KE, Wang Z, Vezina CM, Bjorling DE, Southard-Smith EM. Serotonin Receptor 5-HT3A Affects Development of Bladder Innervation and Urinary Bladder Function. Front Neurosci 2017; 11:690. [PMID: 29311772 PMCID: PMC5732969 DOI: 10.3389/fnins.2017.00690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
The autonomic and sensory nervous systems are required for proper function of all visceral organs, including the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction, effective treatment options remain limited. Pelvic innervation regenerative strategies are promising, but surprisingly little is known about the molecular factors driving the development of bladder innervation. Given prior evidence that serotonin receptor 5-HT3A is expressed early in LUT development and is an important mediator of adult bladder function, we sought to determine if 5-HT3A is required for the development of autonomic innervation of the bladder. We found that 5-HT3A is expressed early in fetal mouse pelvic ganglia and is maintained through adulthood. Htr3a knockout male mice, but not females, exhibit increased urinary voiding frequency compared to wild type littermates. Analysis of LUT function via anesthetized cystometry revealed decreased voiding efficiency in male Htr3a mutants. Htr3a-/- mutant animals exhibit a transient disturbance of autonomic neuronal subtype markers (tyrosine hydroxylase and choline acetyl transferase) within the fetal pelvic ganglia, although the imbalance of neuronal subtype markers assayed is no longer apparent in adulthood. Loss of 5-HT3A activity results in a higher density of autonomic and sensory neuronal fibers supplying bladder smooth muscle in both fetal and adult mice. Collectively, our findings highlight 5-HT3A as a critical component in the autonomic control of micturition and identify a novel role for this serotonin receptor in peripheral nervous system development.
Collapse
Affiliation(s)
- K. Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Zunyi Wang
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Dale E. Bjorling
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Shuyu Capsules Relieve Premenstrual Syndrome Depression by Reducing 5-HT 3AR and 5-HT 3BR Expression in the Rat Brain. Neural Plast 2016; 2016:7950781. [PMID: 27725889 PMCID: PMC5048033 DOI: 10.1155/2016/7950781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022] Open
Abstract
The effects of the Shuyu capsule on 5-HT3AR and 5-HT3BR expression in a rat model of premenstrual syndrome (PMS) depression and on 5-HT3AR and 5-HT3BR expression and hippocampal neuron 5-HT3 channel current were investigated, to elucidate its mechanism of action against PMS depression. PMS depression model rats were divided into depression and Shuyu- and fluoxetine-treated groups, which were compared to control rats for frontal lobe and hippocampal 5-HT3AR and 5-HT3BR expression and behavior. The depressed model rats displayed symptoms of depression, which were reduced in treated and normal control rats. Frontal lobe and hippocampal 5-HT3AR and 5-HT3BR levels were significantly higher in the model versus the control group and were significantly lower in the Shuyu group. As compared to control rats, the 5-HT3R channel current in the model group was significantly higher; the 5-HT3R channel current in hippocampal neurons treated with serum from Shuyu group rats was significantly lower than that in those treated with model group serum. Thus, PMS depression may be related to 5-HT3AR and 5-HT3BR expression and increased 5-HT3 channel current. Shuyu capsules rectified abnormal 5-HT3AR and 5-HT3BR expression and 5-HT3 channel current changes in a rat model; this finding may provide insight into treating PMS depression.
Collapse
|
12
|
Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacol Biochem Behav 2015; 134:85-91. [PMID: 25959831 DOI: 10.1016/j.pbb.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/22/2015] [Accepted: 05/02/2015] [Indexed: 01/17/2023]
Abstract
Previously, we have shown that anabolic androgenic steroid (AAS) exposure throughout adolescence stimulates offensive aggression while also reducing anxious behaviors during the exposure period. Interestingly, AAS exposure through development correlates with alterations to the serotonin system in regions known to contain 5HT3 receptors that influence the control of both aggression and anxiety. Despite these effects, little is known about whether these separate developmental AAS-induced behavioral alterations occur as a function of a common neuroanatomical locus. To begin to address this question, we localized 5HT3 receptors in regions that have been implicated in aggression and anxiety. To examine the impact these receptors may have on AAS alterations to behavior, we microinjected the 5HT3 agonist mCPBG directly into a region know for its influence over aggressive behavior, the lateral division of the anterior hypothalamus, and recorded alterations to anxious behaviors using the elevated plus maze. AAS exposure primarily reduced the presence of 5HT3 receptors in aggression/anxiety regions. Accordingly, mCPBG blocked the anxiolytic effects of adolescent AAS exposure. These data suggest that the 5HT3 receptor plays a critical role in the circuit modulating developmental AAS-induced changes to both aggressive and anxious behaviors, and further implicates the lateral division of the anterior hypothalamus as an important center for the negative behavioral effects of developmental AAS-exposure.
Collapse
|
13
|
Ashoor A, Nordman JC, Veltri D, Yang KHS, Shuba Y, Al Kury L, Sadek B, Howarth FC, Shehu A, Kabbani N, Oz M. Menthol inhibits 5-HT3 receptor-mediated currents. J Pharmacol Exp Ther 2013; 347:398-409. [PMID: 23965380 DOI: 10.1124/jpet.113.203976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.
Collapse
Affiliation(s)
- Abrar Ashoor
- Laboratory of Functional Lipidomics, Departments of Pharmacology (A.A., L.A.K., B.S., M.O.) and Physiology (F.C.H.), College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; Department of Molecular Neuroscience (J.C.N., N.K.), School of Systems Biology (D.V.), and Department of Computer Science (A.S.), George Mason University, Fairfax, Virginia; International Center of Molecular Physiology of the National Academy of Sciences of Ukraine, Kiev, Ukraine (Y.S.); and Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, Orange, California (K.-H.S.Y.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A novel mechanism of modulation of 5-HT₃A receptors by hydrocortisone. Biophys J 2011; 100:42-51. [PMID: 21190655 DOI: 10.1016/j.bpj.2010.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/19/2010] [Accepted: 10/27/2010] [Indexed: 11/24/2022] Open
Abstract
Modulation of Cys-loop receptors by steroids is of physiological and therapeutical relevance. Nonetheless, its molecular mechanism has not been elucidated for serotonin (5-HT) type 3 receptors. We deciphered the mechanism of action of hydrocortisone (HC) at 5-HT type 3A receptors. Single-channel currents from the high-conductance form (∼4.7 pA, -70 mV) appear as a series of long opening events forming bursts, which group into long clusters. Although they are very infrequent, subconductance events (∼2.4 pA) are detected within clusters. HC produces a significant concentration-dependent reduction in open and burst durations, demonstrating open-channel block. In addition, it increases the appearance of subconductance levels in a concentration- and slightly voltage-dependent manner. The amplitude of the subconductance level does not change with HC concentration and its open duration is briefer than that of full amplitude events, indicating lower open-channel stability. Dual effects are distinguished from macroscopic responses: HC reduces amplitude by acting from either open or closed states, and it increases decay rates from the open state. Thus, HC acts as a negative modulator of 5-HT type 3A receptors by different mechanisms: It acts as an open-channel blocker and it favors opening to a preexisting subconductance level. The latter constitutes a novel, to our knowledge, mechanism of channel modulation, which might be applicable to other steroids and channels.
Collapse
|
15
|
Uphouse L, Heckard D, Hiegel C, Guptarak J, Maswood S. Tropisetron increases the inhibitory effect of mild restraint on lordosis behavior of hormonally primed, ovariectomized rats. Behav Brain Res 2011; 219:221-6. [PMID: 21238491 DOI: 10.1016/j.bbr.2011.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/28/2010] [Accepted: 01/10/2011] [Indexed: 01/19/2023]
Abstract
Ovariectomized rats, hormonally primed with 10 μg estradiol benzoate and 500 μg progesterone are resistant to the lordosis-inhibiting effects of a 5 min restraint experience. However, modulation of the serotonergic (5-HT) system alters this resistance to stress. In the following experiment, ovariectomized Fischer inbred rats were hormonally primed with 10 μg estradiol benzoate and 500 μg progesterone. The effect of 5 min restraint on sexual behavior was examined after bilateral hypothalamic infusion or intraperitoneal (ip) treatment with the 5-HT(3) receptor antagonist, 3-tropanylindole-3-carboxylate hydrochloride (tropisetron). Infusion with 50 or 100 ng tropisetron inhibited lordosis behavior. When rats were infused with 10 or 25 ng tropisetron, rats showed normal lordosis behavior. However, when infusion with 10 or 25 ng tropisetron was combined with 5 min restraint, lordosis behavior was inhibited. These findings are consistent with prior work that has implicated hypothalamic serotonin in control of lordosis behavior and in the effect of mild restraint on the behavior. In contrast to the effects of the intracranial infusion, intraperitoneal injection with 1.0 or 2.0 mg/kg tropisetron did not amplify the effects of restraint.
Collapse
Affiliation(s)
- Lynda Uphouse
- Department of Biology, Texas Woman's University, Denton, TX 76204, United States.
| | | | | | | | | |
Collapse
|
16
|
Yang KHS, Isaev D, Morales M, Petroianu G, Galadari S, Oz M. The effect of Δ9-tetrahydrocannabinol on 5-HT3 receptors depends on the current density. Neuroscience 2010; 171:40-9. [PMID: 20800662 DOI: 10.1016/j.neuroscience.2010.08.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/02/2010] [Accepted: 08/20/2010] [Indexed: 11/26/2022]
Abstract
The effects of Δ(9)-tetrahydrocannabinol (THC), the psychoactive component of cannabis, on the function of 5-HT type 3 (5-HT(3)) receptors were investigated using a two-electrode voltage clamp technique in Xenopus oocytes, and a whole-cell patch clamp technique in rat nodose ganglion neurons. In oocytes injected with 3 ng cRNA of 5-HT(3A) receptor, THC reversibly inhibited currents evoked with 5-HT (1 μM) in a concentration-dependent manner (IC(50)=1.2 μM). The extent of THC inhibition was inversely correlated with the amount of cRNA injected and the mean 5-HT(3A) receptor current densities. Pretreatment with actinomycin D, which inhibits transcription, decreased the mean 5-HT(3) receptor current density and increased the extent of THC inhibition on 5-HT(3) receptor-mediated currents. The IC(50) values for THC increased from 285 nM to 1.2 μM in oocytes injected with 1 and 3 ng of 5-HT(3A) cRNA, respectively. In radioligand binding studies on membrane preparations of oocytes expressing 5-HT(3A) receptors, THC did not alter the specific binding of a 5-HT(3A) receptor antagonist, [(3)H]GR65630. In the presence of 1 μM THC, the maximum 5-HT-induced response was also inhibited without a significant change in 5-HT potency, indicating that THC acts as a noncompetitive antagonist on 5-HT(3) receptors. In adult rat nodose ganglion neurons, application of 1 μM THC caused a significant inhibition of 5-HT(3) receptors, extent of which correlated with the density of 5-HT-induced currents, indicating that the observed THC effects occur in mammalian neurons. The inhibition of 5-HT(3) receptors by THC may contribute to its pharmacological actions in nociception and emesis.
Collapse
Affiliation(s)
- K H S Yang
- Department of Biological Sciences, Schmid College of Science, Chapman University, One University Drive, Orange, CA 92866, USA
| | | | | | | | | | | |
Collapse
|
17
|
Walstab J, Rappold G, Niesler B. 5-HT(3) receptors: role in disease and target of drugs. Pharmacol Ther 2010; 128:146-69. [PMID: 20621123 DOI: 10.1016/j.pharmthera.2010.07.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 12/19/2022]
Abstract
Serotonin type 3 (5-HT(3)) receptors are pentameric ion channels belonging to the superfamily of Cys-loop receptors. Receptor activation either leads to fast excitatory responses or modulation of neurotransmitter release depending on their neuronal localisation. 5-HT(3) receptors are known to be expressed in the central nervous system in regions involved in the vomiting reflex, processing of pain, the reward system, cognition and anxiety control. In the periphery they are present on a variety of neurons and immune cells. 5-HT(3) receptors are known to be involved in emesis, pain disorders, drug addiction, psychiatric and GI disorders. Progress in molecular genetics gives direction to personalised medical strategies for treating complex diseases such as psychiatric and functional GI disorders and unravelling individual drug responses in pharmacogenetic approaches. Here we discuss the molecular basis of 5-HT(3) receptor diversity at the DNA and protein level, of which our knowledge has greatly extended in the last decade. We also evaluate their role in health and disease and describe specific case-control studies addressing the involvement of polymorphisms of 5-HT3 subunit genes in complex disorders and responses to drugs. Furthermore, we focus on the actual state of the pharmacological knowledge concerning not only classical 5-HT(3) antagonists--the setrons--but also compounds of various substance classes targeting 5-HT(3) receptors such as anaesthetics, opioids, cannabinoids, steroids, antidepressants and antipsychotics as well as natural compounds derived from plants. This shall point to alternative treatment options modulating the 5-HT(3) receptor system and open new possibilities for drug development in the future.
Collapse
Affiliation(s)
- Jutta Walstab
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
18
|
Yang KH, Galadari S, Isaev D, Petroianu G, Shippenberg TS, Oz M. The nonpsychoactive cannabinoid cannabidiol inhibits 5-hydroxytryptamine3A receptor-mediated currents in Xenopus laevis oocytes. J Pharmacol Exp Ther 2010; 333:547-54. [PMID: 20160007 DOI: 10.1124/jpet.109.162594] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The effect of the plant-derived nonpsychotropic cannabinoid, cannabidiol (CBD), on the function of hydroxytryptamine (5-HT)3A receptors expressed in Xenopus laevis oocytes was investigated using two-electrode voltage-clamp techniques. CBD reversibly inhibited 5-HT (1 microM)-evoked currents in a concentration-dependent manner (IC50 = 0.6 microM). CBD (1 microM) did not alter specific binding of the 5-HT3A antagonist [3H]3-(5-methyl-1H-imidazol-4-yl)-1-(1-methylindol-3-yl)propan-1-one (GR65630), in oocytes expressing 5-HT3A receptors. In the presence of 1 microM CBD, the maximal 5-HT-induced currents were also inhibited. The EC50 values were 1.2 and 1.4 microM, in the absence and presence of CBD, indicating that CBD acts as a noncompetitive antagonist of 5-HT3 receptors. Neither intracellular BAPTA injection nor pertussis toxin pretreatment (5 microg/ml) altered the CBD-evoked inhibition of 5-HT-induced currents. CBD inhibition was inversely correlated with 5-HT3A expression levels and mean 5-HT3 receptor current density. Pretreatment with actinomycin D, which inhibits protein transcription, decreased the mean 5-HT3 receptor current density and increased the magnitude of CBD inhibition. These data demonstrate that CBD is an allosteric inhibitor of 5-HT3 receptors expressed in X. laevis oocytes. They further suggest that allosteric inhibition of 5-HT3 receptors by CBD may contribute to its physiological roles in the modulation of nociception and emesis.
Collapse
Affiliation(s)
- Keun-Hang Yang
- Department of Biological Sciences, Schmid College of Science, Chapman University, Orange, California, USA
| | | | | | | | | | | |
Collapse
|
19
|
Witt ED. Puberty, hormones, and sex differences in alcohol abuse and dependence. Neurotoxicol Teratol 2006; 29:81-95. [PMID: 17174531 DOI: 10.1016/j.ntt.2006.10.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/25/2006] [Accepted: 10/28/2006] [Indexed: 11/26/2022]
Abstract
Sex differences in patterns of drinking and rates of alcohol abuse and dependence begin to emerge during the transition from late puberty to young adulthood. Increases in pubertal hormones, including gonadal and stress hormones, are a prominent developmental feature of adolescence and could contribute to the progression of sex differences in alcohol drinking patterns during puberty. This paper reviews experimental and correlational studies of gonadal and stress-related hormone changes and their effects on alcohol drinking and other associated actions of alcohol. Mechanisms are suggested by which reproductive hormones and stress-related hormones may modulate neural circuits within the brain reward system to produce sex differences in alcohol drinking patterns and vulnerability to alcohol abuse and dependence which become apparent during the late pubertal period.
Collapse
Affiliation(s)
- Ellen D Witt
- Division of Neuroscience and Behavior National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, USA.
| |
Collapse
|
20
|
Kovac AL. Prophylaxis of postoperative nausea and vomiting: controversies in the use of serotonin 5-hydroxytryptamine subtype 3 receptor antagonists. J Clin Anesth 2006; 18:304-18. [PMID: 16797435 DOI: 10.1016/j.jclinane.2005.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 06/22/2005] [Indexed: 12/24/2022]
Abstract
Postoperative nausea and vomiting (PONV) continues to be a "big little problem" despite recent advances in anesthesia. Because of an increased interest in, and the abundant publications on this topic, guidelines for the management of PONV were published in 2003. Several key but controversial issues regarding PONV prophylaxis were left unaddressed, however. These included whether clinical differences exist between the 5-hydroxytryptamine subtype 3 (5-HT3) receptor antagonists, concern over optimal dosage and timing of administration, optimal 5-HT3 receptor antagonist combination therapy, and whether rescue therapy is effective after prior administration of the same or a different 5-HT3 receptor antagonist. The application of these antiemetics in clinical practice has raised questions regarding the role of the 5-HT3 receptor antagonists in the treatment of postdischarge nausea and vomiting and opioid-induced nausea and vomiting. A brief overview of the incidence, risk factors and current management recommendations for PONV and current controversies with special emphasis on the 5-HT3 receptor antagonists, is discussed.
Collapse
Affiliation(s)
- Anthony L Kovac
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
21
|
Oz M. Receptor-independent actions of cannabinoids on cell membranes: Focus on endocannabinoids. Pharmacol Ther 2006; 111:114-44. [PMID: 16584786 DOI: 10.1016/j.pharmthera.2005.09.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 01/08/2023]
Abstract
Cannabinoids are a structurally diverse group of mostly lipophilic molecules that bind to cannabinoid receptors. In fact, endogenous cannabinoids (endocannabinoids) are a class of signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. They are synthesized from lipid precursors in plasma membranes via Ca(2+) or G-protein-dependent processes and exhibit cannabinoid-like actions by binding to cannabinoid receptors. However, endocannabinoids can produce effects that are not mediated by these receptors. In pharmacologically relevant concentrations, endocannabinoids modulate the functional properties of voltage-gated ion channels including Ca(2+) channels, Na(+) channels, various types of K(+) channels, and ligand-gated ion channels such as serotonin type 3, nicotinic acetylcholine, and glycine receptors. In addition, modulatory effects of endocannabinoids on other ion-transporting membrane proteins such as transient potential receptor-class channels, gap junctions and transporters for neurotransmitters have also been demonstrated. Furthermore, functional properties of G-protein-coupled receptors for different types of neurotransmitters and neuropeptides are altered by direct actions of endocannabinoids. Although the mechanisms of these effects are currently not clear, it is likely that these direct actions of endocannabinoids are due to their lipophilic structures. These findings indicate that additional molecular targets for endocannabinoids exist and that these targets may represent novel sites for cannabinoids to alter either the excitability of the neurons or the response of the neuronal systems. This review focuses on the results of recent studies indicating that beyond their receptor-mediated effects, endocannabinoids alter the functions of ion channels and other integral membrane proteins directly.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, USA.
| |
Collapse
|
22
|
Majumdar D, Peterson-Ford A, Uphouse L. 8-OH-DPAT attenuates isoproterenol- but not forskolin-stimulated accumulation of cAMP in mediobasal hypothalamus. Brain Res 2006; 1075:93-9. [PMID: 16480693 DOI: 10.1016/j.brainres.2005.12.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 12/20/2005] [Accepted: 12/27/2005] [Indexed: 01/14/2023]
Abstract
Ovariectomized female rats were used to test the possibility that the 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT), inhibits cyclic AMP (cAMP) accumulation in the mediobasal hypothalamus. Tissue slices were incubated with forskolin or with the beta-adrenergic receptor agonist, isoproterenol, to stimulate accumulation of cAMP. Both compounds increased accumulation of cAMP. The 5-HT(1A) receptor agonist, 8-OH-DPAT, reduced cAMP accumulation after stimulation by isoproterenol, but not after forskolin stimulation. These findings are discussed in terms of putative differences in the mechanisms whereby 5-HT(1A) receptors are able to inhibit stimulation of adenylate cyclase. The potential significance of these findings to 5-HT(1A) receptor-mediated inhibition of female rat lordosis behavior is also discussed.
Collapse
Affiliation(s)
- Devi Majumdar
- Department of Biology, Texas Woman's University, Denton, TX 76204, USA
| | | | | |
Collapse
|
23
|
Ben-Shlomo I. Sharing of unrelated receptors and ligands by cognate partners: possible implications for ovarian and endometrial physiology. Reprod Biomed Online 2005; 11:259-69. [PMID: 16168228 DOI: 10.1016/s1472-6483(10)60967-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of the recognized extracellular signalling molecules are known to participate in paracrine and autocrine functions. The classical model of signalling involves a ligand and its cognate receptor. A unique number of ligands activate two phylogenetically unrelated receptors; some receptors are activated by more than one unrelated polypeptide ligand, and some unrelated receptors share common co-receptors. Such a situation introduces a new dimension of complexity into the processes governed by these signalling mechanisms. These unique 'three-way partnerships' often involve signalling molecules that have key roles in the reproductive system. This review presents the known cases of three-way partnerships and examines their possible significance to the reproductive processes in the ovary and endometrium. Most notably present in the ovary are Wnt, Frizzled, Dickkopf (Dkk), low density lipoprotein receptor-related protein (LRP)5, RYK and Kremen system, and semaphorin, plexin, vascular endothelial growth factor and neuropilin system. In the endometrium one finds potential three-way partnerships in Wnt, Frizzled and RYK system, and ATP, P2X7, P2Y2 system. Three-way partnerships may explain previously enigmatic cases of biphasic effects of a ligand, or may reveal that a ligand thought to be pleiotrophic through the activation of one receptor is actually affecting two unrelated signalling receptors in the same tissue. The potential significance to new pharmacological developments is evident.
Collapse
Affiliation(s)
- Izhar Ben-Shlomo
- Division of Reproduction, Department of Obstetrics and Gynecology, Ma'yanei HaYeshua Medical Centre, Bnei Brak, Israel.
| |
Collapse
|
24
|
Ben-Shlomo I, Hsueh AJW. Three's company: two or more unrelated receptors pair with the same ligand. Mol Endocrinol 2005; 19:1097-109. [PMID: 15695369 DOI: 10.1210/me.2004-0451] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Intercellular communication relies on signal transduction mediated by extracellular ligands and their receptors. Although the ligand-receptor interaction is usually a two-player event, there are selective examples of one polypeptide ligand interacting with more than one phylogenetically unrelated receptor. Likewise, a few receptors interact with more than one polypeptide ligand, and sometimes with more than one coreceptor, likely through an interlocking of unique protein domains. Phylogenetic analyses suggest that for certain triumvirates, the matching events could have taken place at different evolutionary times. In contrast to a few polypeptide ligands interacting with more than one receptor, we found that many small nonpeptide ligands have been paired with two or more plasma membrane receptors, nuclear receptors, or channels. The observation that many small ligands are paired with more than one receptor type highlights the utilitarian use of a limited number of cellular components during metazoan evolution. These conserved ligands are ubiquitous cell metabolites likely favored by natural selection to establish novel regulatory networks. They likely possess structural features useful for designing agonistic and antagonistic drugs to target diverse receptors.
Collapse
Affiliation(s)
- Izhar Ben-Shlomo
- Stanford University School of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Biology, 300 Pasteur Drive, Room A-344, Stanford, CA 94305-5317, USA
| | | |
Collapse
|
25
|
Bhatnagar S, Vining C. Pituitary-adrenal activity in acute and chronically stressed male and female mice lacking the 5-HT-3A receptor. Stress 2004; 7:251-6. [PMID: 16019590 DOI: 10.1080/10253890500044422] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The serotonin (5-HT)-3A receptor has been localized in limbic and brainstem structures that regulate hypothalamic--pituitary--adrenal (HPA) activity. We previously showed that 5-HT-3A receptor knock-out (KO) male mice displayed lower ACTH responses to acute restraint or lipopolysaccharide administration compared to age-matched wild-type (WT) males. In the present study, we found that pituitary-adrenal responses to acute stress were not different in female WT and KO mice. Furthermore, we examined the role of the 5-HT-3A receptor in regulation of chronic stress-induced HPA activity in both male and female WT and KO mice. The results show that ACTH, but not corticosterone, responses to novel restraint are lower in chronically cold stressed females compared to non-stressed control females but no effect of 5-HT-3A receptor deletion was observed. In contrast, male mice showed facilitated responses to novel restraint after chronic cold stress and this facilitation produced sex differences in ACTH responses to novel restraint between male and female chronically stressed KO mice. Together, these results indicate that there are sex differences in HPA responses to novel restraint in chronically stressed mice and these differences are partly related to 5-HT-3A receptor function.
Collapse
Affiliation(s)
- Seema Bhatnagar
- Department of Psychology and the Neuroscience Program, University of Michigan, Ann Arbor 48109-1109, USA.
| | | |
Collapse
|
26
|
Bhatnagar S, Nowak N, Babich L, Bok L. Deletion of the 5-HT3 receptor differentially affects behavior of males and females in the Porsolt forced swim and defensive withdrawal tests. Behav Brain Res 2004; 153:527-35. [PMID: 15265651 DOI: 10.1016/j.bbr.2004.01.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 01/09/2004] [Accepted: 01/09/2004] [Indexed: 01/02/2023]
Abstract
The central serotonin (5-HT) system is important in regulating behaviors associated with anxiety and depression. While a fair amount is known about the role of 5-HT1 and 5-HT2 receptor subtypes in regulating these behaviors, much less is known about the involvement of the 5-HT3 receptor, especially with regards to its role in sex differences in behavior. Our goal in the present studies was to examine whether deletion of the 5-HT3 receptor produces different effects in adult male and female mice on performance in three behavioral tests. We examined behavior of male and female mice lacking the 5-HT3 receptor (knock-out or KO) and their wild-type (WT) littermates in the Porsolt forced swim test because of its importance in reliably detecting anti-depressant efficacy. In addition, we examined behavior in the defensive withdrawal test and repeated exposure to an open field because behavior in these two tests provides measures of anxiety. In the Porsolt swim test, sex differences were eliminated by deletion of the 5-HT3 receptor while deletion had no effect in the habituation of locomotor activity to repeated exposure to an open field. In the defensive withdrawal test, deletion of the 5-HT3 receptor had more complex effects though these effects tended to be in the opposite direction in males and females. Together these results suggest that the 5-HT3 receptor regulates behavior-related to depression and anxiety differently in males and females. Whether these effects are due to the interaction of 5-HT3 receptor with gonadal hormones requires further examination.
Collapse
Affiliation(s)
- Seema Bhatnagar
- Department of Psychology, University of Michigan, 525 East University, Box 1109, Ann Arbor, MI 48109-1109, USA.
| | | | | | | |
Collapse
|
27
|
Li TJ, Yu BP, Dong WG, Luo HS, Xu L, Li MQ. Ovarian hormone modulates 5-hydroxytryptamine 3 receptors mRNA expression in rat colon with restraint stress-induced bowel dysfunction. World J Gastroenterol 2004; 10:2723-6. [PMID: 15309727 PMCID: PMC4572201 DOI: 10.3748/wjg.v10.i18.2723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To examine the effects of ovarian hormone on the expression of 5-hydroxytryptamine 3 receptors (5-HT3R) in rat colon of restraint stress-induced bowel dysfunction.
METHODS: Twenty-four female Sprague-Dawley rats were randomly divided into three groups of 8 each: sham operation, ovariectomy (OVX) and ovariectomy with estrogen (E2) and progesterone (P) replacement therapy (OVX+E2+P). The rats were subjected to 1-h restraint stress 4 wk after operation. The changes of defecation were monitored by collection of fecal pellets. The gonadal steroids were measured in duplicate by radioimmunoassay (RIA). The expression of 5-HT3R mRNA in the colon was studied by RT-PCR.
RESULTS: Compared with sham group and OVX+E2+P group, OVX group showed increase in fecal pellets and decrease in the time of vitreous pellets excretion (P < 0.01). Serum levels of E2 and P were suppressed in OVX group and restored following treatment with ovarian steroids (P < 0.01), and the levels of 5-HT3R mRNA in the colon of ovariectomized rats were significantly increased, the expression of 5-HT3R mRNA was significantly decreased in hormone replacement therapy group (P < 0.01).
CONCLUSION: Ovarian hormone plays a role in the regulation of 5-HT3R expressions in restraint stress-induced bowel dysfunction of rats. The interactions between ovarian steroids and gastrointestinal tract may have major pathophysiological implications in 5-HT-related disorders, such as irritable bowel syndrome (IBS).
Collapse
Affiliation(s)
- Tian-Jin Li
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | | | | | | | | | | |
Collapse
|
28
|
Oz M, Zhang L, Ravindran A, Morales M, Lupica CR. Differential Effects of Endogenous and Synthetic Cannabinoids on α7-Nicotinic Acetylcholine Receptor-Mediated Responses in Xenopus Oocytes. J Pharmacol Exp Ther 2004; 310:1152-60. [PMID: 15102930 DOI: 10.1124/jpet.104.067751] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of endogenous and synthetic cannabinoid receptor agonists, including 2-arachidonoylglycerol (2-AG), R-methanandamide, WIN55,212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenylcarbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], and CP 55,940 [1alpha,2beta-(R)-5alpha]-(-)-5-(1,1-dimethyl)-2-[5-hydroxy-2-(3-hydroxypropyl) cyclohexyl-phenol], and the psychoactive constituent of marijuana, Delta9-tetrahydrocannabinol (Delta9-THC), on the function of homomeric alpha7-nicotinic acetylcholine (nACh) receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp technique. The endogenous cannabinoid receptor ligands 2-AG and the metabolically stable analog of anandamide (arachidonylethanolamide), R-methanandamide, reversibly inhibited currents evoked with ACh (100 microM) in a concentration-dependent manner (IC50 values of 168 and 183 nM, respectively). In contrast, the synthetic cannabinoid receptor agonists CP 55,940, WIN55,212-2, and the phytochemical Delta9-THC did not alter alpha7-nACh receptor function. The inhibition of alpha7-mediated currents by 2-AG was found to be non-competitive and voltage-independent. Additional experiments using endocannabinoid metabolites suggested that arachidonic acid, but not ethanolamine or glycerol, could also inhibit the alpha7-nACh receptor function. Whereas the effects of arachidonic acid were also noncompetitive and voltage-independent, its potency was much lower than 2-AG and anandamide. Results of studies with chimeric alpha7-nACh-5-hydroxytryptamine (5-HT)3 receptors comprised of the amino-terminal domain of the alpha7-nACh receptor and the transmembrane and carboxyl-terminal domains of 5-HT3 receptors indicated that the site of interaction of the endocannabinoids with the alpha7-nAChR was not located on the N-terminal region of the receptor. These data indicate that cannabinoid receptor ligands that are produced in situ potently inhibit alpha7-nACh receptor function, whereas the synthetic cannabinoid ligands, and Delta9-THC, are without effect, or are relatively ineffective at inhibiting these receptors.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse/Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Dr., Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
29
|
Oz M, Ravindran A, Diaz-Ruiz O, Zhang L, Morales M. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. J Pharmacol Exp Ther 2003; 306:1003-10. [PMID: 12766252 DOI: 10.1124/jpet.103.049981] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of 229.7 +/- 20.4 nM. The effect of anandamide was neither dependent on the membrane potential nor meditated by endogenous Ca2+ dependent Cl- channels since it was unaffected by intracellularly injected BAPTA and perfusion with Ca2+-free bathing solution containing 2 mM Ba2+. Anandamide decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on nicotinic acetylcholine (nACh) alpha7 receptors. This effect was not mediated by CB1 or CB2 receptors, as neither the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) nor CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethyl-bicyclo-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR 144528) reduced the inhibition by anandamide. In addition, inhibition of nicotinic responses by anandamide was not sensitive to either pertussis toxin treatment or to the membrane permeable cAMP analog 8-Br-cAMP (0.2 mM). Inhibitors of enzymes involved in anandamide metabolism including phenylmethylsulfonyl fluoride, superoxide dismutase, and indomethacin, or the anandamide transport inhibitor AM404 did not prevent anandamide inhibition of nicotinic responses, suggesting that anandamide itself acted on nicotinic receptors. In conclusion, these results demonstrate that the endogenous cannabinoid anandamide inhibits the function of nACh alpha7 receptors expressed in Xenopus oocytes in a cannabinoid receptor-independent and noncompetitive manner.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse/National Institute of Health, Department of Health and Human Services, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|