1
|
Byers MR, Calkins DF. Trigeminal sensory nerve patterns in dentine and their responses to attrition in rat molars. Arch Oral Biol 2021; 129:105197. [PMID: 34146928 DOI: 10.1016/j.archoralbio.2021.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Our goal was to define trigeminal nerve ending quantities and patterns in rat molar dentine, their responses to attrition (tooth wear), and their associated odontoblasts and connections with pulpal plexuses. DESIGN Trigeminal ganglia were labeled for axonal transport of 3H-proteins to dentinal nerve endings in male rats (3-13 months old). Autoradiography detected radio-labeled dentinal tubules as indicators of nerve ending locations. Quantitative morphometry was done (ANOVA, t-tests), and littermates were compared for attrition and innervation. RESULTS There were six dentinal patterns, only two of which had an associated neural plexus of Raschkow and cell-free zone (Den-1, Den-2). Other nerves entered dentin from bush-like endings near elongated odontoblasts (Den-B), as single fibers (Den-X), as networks in predentine (PdN), or as single fibers in tertiary dentine at cusp tips (Den-S). There were at least 186,600 innervated dentinal tubules within the set of three right maxillary molars of the best-labeled rat, and similar densities were found in other rats. Attrition levels differed among cusps and in littermates (t-test p < 0.02-0.0001), but the matched right/left cusps per rat were similar. Innervations of tertiary and enamel-free dentine (Den-S, Den-X) were preserved in all rats. Den-B and Den-2 coronal patterns were unchanged unless displaced by dentinogenesis. Den-1 losses occurred in older cusps, while Den-2 patterns increased near cervical and intercuspal odontoblasts. CONCLUSIONS The extensive molar dentinal innervation had unique distributions per rat per cusp that depended on region (buccal, middle, palatal) and attrition, but only two of six patterns connected to a plexus of Raschkow.
Collapse
Affiliation(s)
- Margaret R Byers
- Department of Anesthesiology and Pain Medicine, Univ. Washington, Seattle, WA, 98195-6540, USA.
| | - Dianne F Calkins
- Department of Anesthesiology and Pain Medicine, Univ. Washington, Seattle, WA, 98195-6540, USA
| |
Collapse
|
2
|
Byers MR. Chewing causes rapid changes in immunoreactive nerve patterns in rat molar teeth: Implications for dental proprioception and pain. Arch Oral Biol 2019; 107:104511. [PMID: 31445382 DOI: 10.1016/j.archoralbio.2019.104511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study tests the hypothesis that normal use of teeth (chewing) causes changes in immunoreactive-(IR) patterns for endings of large Aβ and CGRP axons in rat molar cusps. DESIGN First, a new paradigm to test chewing in adult male rats was developed. Then IR patterns for large dental axons were analysed for a calcium-binding protein, parvalbumin (PV), heavy neurofilament protein-200 (NFP), and vesicle-release molecule synaptophysin (SYN) that all typify large dental axons and proprioceptors for comparison with endings of CGRP-IR neuropeptide axons. The behavior groups were: (1) daytime sleeping/fasting (Group:SF); (2) brief feeding after 8-11 h of daytime sleeping/fasting (Group:SF-C); (3) normal nocturnal feeding (Group:N); (4) nocturnal fasting (Group:NF); (5) brief feeding/chewing after nocturnal fasting (Group:NF-C). RESULTS Nerve endings with NFP-, PV-, or SYN-IR were lost or altered in pulp and dentin in all chewing groups. Other endings with CGRP-IR were near those with PV-, NFP- and SYN-IR at the pulp-dentin border and in dentin, and they also lost immunoreactivity in all chewing groups. The special beaded regions along the crown pulp/dentin borders lost neural labeling in all chewing groups. Nerves of molar roots and periodontal ligament were not changed. CONCLUSIONS Rapid neural reactions to chewing show extensive, reversible, non-nociceptive depletions of crown innervation. Those changes were rapid enough to occur during normal feeding followed by recovery during rest. The new dental paradigm related to chewing and fasting allows dissection of intradental proprioceptive-like mechanisms during normal tooth functions for comparison with nociceptive and mechanosensitive reactions after injury or inflammation.
Collapse
Affiliation(s)
- Margaret R Byers
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195-6540 USA.
| |
Collapse
|
3
|
Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int J Mol Sci 2019; 20:ijms20030526. [PMID: 30691193 PMCID: PMC6387147 DOI: 10.3390/ijms20030526] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Farhana Yahya
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
4
|
Byers MR, Cornel LM. Multiple complex somatosensory systems in mature rat molars defined by immunohistochemistry. Arch Oral Biol 2017; 85:84-97. [PMID: 29035722 DOI: 10.1016/j.archoralbio.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Intradental sensory receptors trigger painful sensations and unperceived mechanosensitivity, but the receptor bases for those functions are only partly defined. We present new evidence here concerning complex endings of myelinated axons in rat molars. DESIGN We sectioned mature rat jaws in sagittal and transverse planes to analyze neural immunoreactivity (IR) for parvalbumin, peripherin, neurofilament protein, neurotrophin receptors, synaptophysin, calcitonin gene-related peptide (CGRP), or mas-related g-protein-receptor-d (Mrgprd). RESULTS We found two complex sensory systems in mature rat molar dentin that labeled with neurofilament protein-IR, plus either parvalbumin-IR or peripherin-IR. The parvalbumin-IR system made extensively branched, beaded endings focused into dentin throughout each pulp horn. The peripherin-IR system primarily made unbeaded, fork-shaped dentinal endings scattered throughout crown including cervical regions. Both of these systems differed from neuropeptide CGRP-IR. In molar pulp we found peripherin- and parvalbumin-IR layered endings, either near special horizontal plexus arrays or in small coiled endings near tangled plexus, each with specific foci for specific pulp horns. Parvalbumin-IR nerve fibers had Aβ axons (5-7μm diameter), while peripherin-IR axons were thinner Aδ size (2-5μm). Mechano-nociceptive Mrgprd-IR was only found in peripherin-IR axons. CONCLUSIONS Complex somatosensory receptors in rat molars include two types of dentinal endings that both differ from CGRP-IR endings, and at least two newly defined types of pulpal endings. The PV-IR neurons with their widely branched, synaptophysin-rich, intradentinal beaded endings are good candidates for endodontic non-nociceptive, low threshold, unperceived mechanoreceptors. The complex molar dentinal and pulpal sensory systems were not found in rat incisors.
Collapse
Affiliation(s)
- Margaret R Byers
- Department of Anesthesiology & Pain Medicine, Box 356540, University of Washington, Seattle, WA 98195-6540, USA.
| | - Leanne M Cornel
- Department of Anesthesiology & Pain Medicine, Box 356540, University of Washington, Seattle, WA 98195-6540, USA
| |
Collapse
|
5
|
Li M, Chen H, Tang J, Chen J. Neonatal bee venom exposure induces sensory modality-specific enhancement of nociceptive response in adult rats. PAIN MEDICINE 2013; 15:986-97. [PMID: 24308777 DOI: 10.1111/pme.12296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Previous studies have shown that inflammatory pain at the neonatal stage can produce long-term structural and functional changes in nociceptive pathways, resulting in altered pain perception in adulthood. However, the exact pattern of altered nociceptive response and associated neurochemical changes in the spinal cord in this process is unclear. METHOD In this study, we used an experimental paradigm in which each rat first received intraplantar bee venom (BV) or saline injection on postnatal day 1, 4, 7, 14, 21, or 28. This was followed 2 months later by a second intraplantar bee venom injection in the same rats to examine the difference in nociceptive responses. RESULTS We found that neonatal inflammatory pain induced by the first BV injection significantly reduced baseline paw withdrawal mechanical threshold, but not baseline paw withdrawal thermal latency, when rats were examined 2 months from the first BV injection. Neonatal inflammatory pain also exacerbated mechanical, but not thermal, hyperalgesia in response to the second BV injection in these same rats. Rats exposed to neonatal inflammation also showed up-regulation of spinal NGF, TrkA receptor, BDNF, TrkB receptor, IL-1β, and COX-2 expression following the second BV injection, especially with prior BV exposure on postnatal day 21 or 28. CONCLUSION These results indicate that neonatal inflammation produces sensory modality-specific changes in nociceptive behavior and alters neurochemistry in the spinal cord of adult rats. These results also suggest that a prior history of inflammatory pain during the developmental period might have an impact on clinical pain in highly susceptible adult patients.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Anesthesiology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
6
|
Kovačič U, Tesovnik B, Molnar N, Cör A, Skalerič U, Gašperšič R. Dental pulp and gingivomucosa in rats are innervated by two morphologically and neurochemically different populations of nociceptors. Arch Oral Biol 2013; 58:788-95. [PMID: 23411402 DOI: 10.1016/j.archoralbio.2013.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Difference in phenotypes of sensory neurons innervating dental pulp or gingivomucosa may be responsible for intense pain sensations in pulpitis in contrast to relatively painless chronic periodontitis. Therefore, we classified these neurons according to their size and two neurochemical characteristics of nociceptors, their TrkA expression and isolectin IB4 binding. DESIGN In rats (n=6) fluorescent tracers Fluorogold and TrueBlue were simultaneously applied into the standard-sized tooth cavity and nearby gingival sulcus, respectively. After the fluorescence on paraffin trigeminal ganglia (TG) sections was identified and photographed, immunohistochemistry for TrkA expression and IB4 binding was performed on the same sections. RESULTS The average sizes of TG neurons projecting to the gingivomucosa and dental pulp were 894±441μm(2) and 1012±381μm(2), respectively. The proportions of small-sized gingival and pulpal neurons were 14% and 5%, respectively (p<0.05). The proportions of TrkA-positive neurons among all gingival or pulpal neurons were 76% and 86%, respectively (p<0.05). Among all gingival or pulpal neurons the proportions of IB4-positive neurons were 46% and 3% (p<0.001), respectively, and the majority of them were small-medium sized. CONCLUSIONS Dental pulp and gingivomucosa are richly innervated by nociceptive TrkA-expressing neurons. However, while great majority of pulpal neurons are larger NGF-dependent A-fibre nociceptors without affinity to bind IB4, almost half of the gingival neurons are smaller IB4 binding C-fibre nociceptors. The difference in phenotype of sensory neurons might partially explain the different sensitivity of both tissues during normal and pathological conditions.
Collapse
Affiliation(s)
- Uroš Kovačič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
7
|
Tarsa L, Bałkowiec-Iskra E, Kratochvil FJ, Jenkins VK, McLean A, Brown AL, Smith JA, Baumgartner JC, Balkowiec A. Tooth pulp inflammation increases brain-derived neurotrophic factor expression in rodent trigeminal ganglion neurons. Neuroscience 2010; 167:1205-15. [PMID: 20223282 DOI: 10.1016/j.neuroscience.2010.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/06/2010] [Accepted: 03/02/2010] [Indexed: 12/23/2022]
Abstract
Nociceptive pathways with first-order neurons located in the trigeminal ganglion (TG) provide sensory innervation to the head, and are responsible for a number of common chronic pain conditions, including migraines, temporomandibular disorders and trigeminal neuralgias. Many of those conditions are associated with inflammation. Yet, the mechanisms of chronic inflammatory pain remain poorly understood. Our previous studies show that the neurotrophin brain-derived neurotrophic factor (BDNF) is expressed by adult rat TG neurons, and released from cultured newborn rat TG neurons by electrical stimulation and calcitonin gene-related peptide (CGRP), a well-established mediator of trigeminal inflammatory pain. These data suggest that BDNF plays a role in activity-dependent plasticity at first-order trigeminal synapses, including functional changes that take place in trigeminal nociceptive pathways during chronic inflammation. The present study was designed to determine the effects of peripheral inflammation, using tooth pulp inflammation as a model, on regulation of BDNF expression in TG neurons of juvenile rats and mice. Cavities were prepared in right-side maxillary first and second molars of 4-week-old animals, and left open to oral microflora. BDNF expression in right TG was compared with contralateral TG of the same animal, and with right TG of sham-operated controls, 7 and 28 days after cavity preparation. Our ELISA data indicate that exposing the tooth pulp for 28 days, with confirmed inflammation, leads to a significant upregulation of BDNF in the TG ipsilateral to the affected teeth. Double-immunohistochemistry with antibodies against BDNF combined with one of nociceptor markers, CGRP or transient receptor potential vanilloid type 1 (TRPV1), revealed that BDNF is significantly upregulated in TRPV1-immunoreactive (IR) neurons in both rats and mice, and CGRP-IR neurons in mice, but not rats. Overall, the inflammation-induced upregulation of BDNF is stronger in mice compared to rats. Thus, mouse TG provides a suitable model to study molecular mechanisms of inflammation-dependent regulation of BDNF expression in vivo.
Collapse
Affiliation(s)
- L Tarsa
- Department of Integrative Biosciences, Oregon Health & Science University School of Dentistry, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Exuberant neuronal convergence onto reduced taste bud targets with preservation of neural specificity in mice overexpressing neurotrophin in the tongue epithelium. J Neurosci 2008; 27:13875-81. [PMID: 18077699 DOI: 10.1523/jneurosci.2517-07.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A mouse fungiform taste bud is innervated by only four to five geniculate ganglion neurons; their peripheral fibers do not branch to other buds. We examined whether the degree or specificity of this exclusive innervation pattern is influenced by brain-derived neurotrophic factor (BDNF), a prominent lingual neurotrophin implicated in taste receptoneural development. Labeled ganglion cells were counted after injecting single buds with different color markers in BDNF-lingual-overexpressing (OE) mice. To evaluate the end-organs, taste buds and a class of putative taste receptor cells were counted from progeny of BDNF-OE mice crossbred with green fluorescent protein (GFP) (gustducin) transgenic mice. Fungiform bud numbers in BDNF-OE mice are 35%, yet geniculate neuron numbers are 195%, of wild-type mice. Neurons labeled by single-bud injections in BDNF-OE animals were increased fourfold versus controls. Injecting three buds, each with different color markers, resulted in predominantly single-labeled ganglion cells, a discrete innervation pattern similar to controls. Thus, hyper-innervation of BDNF-OE buds involves many neurons innervating single buds, not increased fiber branching. Therefore, both wild-type and BDNF-OE mice exhibit, in fungiform buds, the same, "discrete" receptoneural pattern, this despite dramatic neurotrophin overexpression-related decreases in bud numbers and increases in innervation density. Hyperinnervation did not affect GFP positive cell numbers; proportions of GFP cells in BDNF-OE buds were the same as in wild-type mice. Total numbers of ganglion cells innervating buds in transgenic mice are similar to controls; the density of taste input to the brain appears maintained despite dramatically reduced receptor organs and increased ganglion cells.
Collapse
|
9
|
FRISTAD INGE, BLETSA ATHANASIA, BYERS MARGARET. Inflammatory nerve responses in the dental pulp. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1601-1546.2010.00247.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Buldyrev I, Tanner NM, Hsieh HY, Dodd EG, Nguyen LT, Balkowiec A. Calcitonin gene-related peptide enhances release of native brain-derived neurotrophic factor from trigeminal ganglion neurons. J Neurochem 2006; 99:1338-50. [PMID: 17064360 PMCID: PMC2440676 DOI: 10.1111/j.1471-4159.2006.04161.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activity-dependent plasticity in nociceptive pathways has been implicated in pathomechanisms of chronic pain syndromes. Calcitonin gene-related peptide (CGRP), which is expressed by trigeminal nociceptors, has recently been identified as a key player in the mechanism of migraine headaches. Here we show that CGRP is coexpressed with brain-derived neurotrophic factor (BDNF) in a large subset of adult rat trigeminal ganglion neurons in vivo. Using ELISA in situ, we show that CGRP (1-1000 nM) potently enhances BDNF release from cultured trigeminal neurons. The effect of CGRP is dose-dependent and abolished by pretreatment with CGRP receptor antagonist, CGRP(8-37). Intriguingly, CGRP-mediated BDNF release, unlike BDNF release evoked by physiological patterns of electrical stimulation, is independent of extracellular calcium. Depletion of intracellular calcium stores with thapsigargin blocks the CGRP-mediated BDNF release. Using transmission electron microscopy, our study also shows that BDNF-immunoreactivity is present in dense core vesicles of unmyelinated axons and axon terminals in the subnucleus caudalis of the spinal trigeminal nucleus, the primary central target of trigeminal nociceptors. Together, these results reveal a previously unknown role for CGRP in regulating BDNF availability, and point to BDNF as a candidate mediator of trigeminal nociceptive plasticity.
Collapse
Affiliation(s)
- Ilya Buldyrev
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR
- Neurological Sciences Institute, Oregon Health and Science University, Portland, OR
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR
| | - Nathan M. Tanner
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR
| | - Hui-ya Hsieh
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR
| | - Emily G. Dodd
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR
| | - Loi T. Nguyen
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR
| | - Agnieszka Balkowiec
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, OR
| |
Collapse
|
11
|
Yang H, Bernanke JM, Naftel JP. Immunocytochemical evidence that most sensory neurons of the rat molar pulp express receptors for both glial cell line-derived neurotrophic factor and nerve growth factor. Arch Oral Biol 2006; 51:69-78. [PMID: 16444814 DOI: 10.1016/j.archoralbio.2005.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most pulpal afferent neurons have cytochemical features in common with the class of nociceptors that express neuropeptides and respond to NGF, while very few bind the plant lectin IB4, a widely used marker for the class of nociceptors that respond to the GDNF family of neurotrophic factors. The present study was undertaken to determine whether the GDNF receptor, GFRalpha-1, is expressed by pulpal afferents, and, further, to determine whether tooth injury evokes changes in expression of the GDNF and NGF receptors among pulpal afferents. The tracer, fluoro-gold (FG), was applied to shallow cavities in dentin of first and second maxillary molars. After 4 weeks, the molars of one side received a test injury consisting of a deeper cavity that exposed pulp horns. Animals were perfusion fixed 2 days later, and sections of the trigeminal ganglia were double immunostained with combinations of antibodies against GFRalpha-1, and TrkA. Under control conditions, GFRalpha-1 immunostaining was observed in 72% of neurons that projected to the molar pulp, TrkA in 78%, and immunostaining for both receptors was observed in 65% of pulpal afferents. Tooth injury evoked up-regulation of GFRalpha-1 expression (to 93%) and a slight down-regulation of TrkA expression (67%) among tooth afferents, while there was no discernable change in the proportion of pulpal afferents that expressed both TrkA and GFRalpha-1 (to 61%).
Collapse
Affiliation(s)
- Hong Yang
- Department of Anatomy, University of Mississippi Medical Center, Jackson, 39216, USA
| | | | | |
Collapse
|
12
|
Pan Y, Wheeler EF, Bernanke JM, Yang H, Naftel JP. A model experimental system for monitoring changes in sensory neuron phenotype evoked by tooth injury. J Neurosci Methods 2003; 126:99-109. [PMID: 12788506 DOI: 10.1016/s0165-0270(03)00071-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The dental pulp is a favorable model for studies of interactions between nociceptive sensory neurons and their peripheral target tissues. In the present study, we retrogradely labeled pulpal afferent neurons with an improved method that permits monitoring of changes in neuronal phenotype in response to controlled tooth injuries. The capacity of retrograde neuronal tracers to diffuse through dentinal tubules was exploited, thereby avoiding the severe injury to the pulp associated with previous tracer application methods. The strategy was to apply the durable fluorescent tracer, Fluoro-gold (FG), to exposed dentin in the floor of shallow cavities in molars, in order to pre-label pulpal neurons in trigeminal ganglia of young adult Sprague-Dawley rats. A high percentage of pupal afferent neurons were retrogradely labeled by application of FG to exposed dentin and the FG fluorescent signal persisted in most labeled neurons for at least 8 weeks. Following tracer application to dentin, the pulp tissue appeared normal histologically, with the exception that a layer of reactive dentin was deposited at the pulp-dentin border beneath the shallow cavities. Assessment of expression of calcitonin gene-related peptide (CGRP) and brain derived neurotrophic factor (BDNF) indicated that pulpal neurons remained in a quiescent, baseline condition cytochemically following application of tracer to cavities in dentin and upregulation of these markers could be detected in neurons that projected to teeth that received a test injury subsequent to tracer application. Thus, labeling of trigeminal neurons via dentinal tubules provides the basis for a useful model for precisely assessing properties of pulpal afferents in both quiescent and activated states.
Collapse
Affiliation(s)
- Yan Pan
- Department of Anatomy, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 29216, USA
| | | | | | | | | |
Collapse
|
13
|
Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster. J Comp Neurol 2003; 455:11-24. [PMID: 12454993 DOI: 10.1002/cne.2162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), as well as their respective tyrosine kinase (Trk) receptors, TrkB and TrkC, influence peripheral target cell innervation, survival, and proliferation. In the mature taste system the role of neurotrophins and their receptors is not known. The mature hamster is an intriguing model because anterior lingual fungiform, unlike posterior lingual foliate and circumvallate, taste buds survive denervation. In light of this difference, we examined whether the degree of neurotrophin- or neurotrophin receptor-like immunoreactivity (IR) normally differs among lingual gemmal fields. In single- and double-labeled immunofluorescent experiments, 3,209 taste bud sections (profiles) from 13 hamsters were examined for immunopositive gemmal cells or nerve fibers using antibodies to BDNF and NT-3, their respective receptors TrkB and TrkC, and the neural marker ubiquitin c-terminal hydrolase L-1 [protein gene product (PGP) 9.5]. In each gemmal field, more than 75% of taste bud profiles showed immunopositivity to BDNF, NT-3, and TrkB. Across bud fields, BDNF-, TrkB-, and BDNF/TrkB-like IR, as well as PGP 9.5 and PGP 9.5/BDNF-like IR in centrally located, fungiform bud cells was greater (P < 0.0001 to P < 0.002) than in circumvallate or foliate buds. Within bud fields, the number of BDNF-like, labeled bud cells/bud profile was greater than that for NT-3-like IR in fungiform (P < 0.0002) and foliate (P < 0.0001) buds. TrkC was immunonegative in gemmal cells. The average density of TrkB- and TrkC-like fiber IR was more pronounced in fungiform than posterior gemmal-bearing papillae. Thus, fungiform papillae, whose taste buds are least affected by denervation, exhibit specific neurotrophin and receptor enrichment.
Collapse
Affiliation(s)
- Donald Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
14
|
Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation. J Comp Neurol 2003; 455:25-39. [PMID: 12454994 DOI: 10.1002/cne.2164] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Unlike lingual taste buds in most mammals, fungiform buds on the anterior tongue of mature hamster survive sensory denervation. The role of the neurotrophin ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), and their respective tyrosine kinase (Trk) receptors, TrkB and TrkC, in denervated taste buds is not known. The present report investigates changes in the degree of gemmal cell immunoreactivity (IR) (i.e., number of immunoreactive cells/bud profile) and density of nerve fiber-IR of these markers in unilaterally denervated mature hamsters. The fungiform bud field after chorda tympani/lingual nerve resection is compared with the nerve-dependent, posterior tongue foliate and circumvallate bud fields after glossopharyngeal nerve resection. Four weeks post lesion, the number of denervated fungiform buds matched that on the unoperated side, whereas denervated foliate and circumvallate bud counts decreased by 72% and 38%, respectively. In taste buds that survived on the posterior tongue, the degree of foliate bud cell BDNF-, NT-3-, and TrkB-like IR, and circumvallate bud cell BDNF- and NT-3-like IR, significantly decreased compared with the unoperated side. In contrast, for anterior tongue fungiform bud cells, the degree of neurotrophin- and receptor-like IR was relatively less affected: NT-3- and TrkB-like IR were unchanged; BDNF-like IR, although significantly decreased, was also maintained. Moreover, TrkB-like fiber IR was essentially eliminated within and surrounding fungiform buds. Hence, NT-3-, BDNF-, and TrkB-like IR in fungiform gemmal cells may reflect an autocrine capacity promoting survival. Because TrkC-like IR in bud cells is absent (i.e., immunonegative), and sparse in fibers intragemmally and perigemmally, NT-3 may also bind to bud cell TrkB so as to sustain fungiform gemmal cell viability post denervation.
Collapse
Affiliation(s)
- Donald Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Tel-Aviv, Israel
| | | | | | | |
Collapse
|