1
|
Jo J, Jeon MJ, Park SK, Shin SJ, Kim BI, Park JW. Anti-cariogenic effect of experimental resin cement containing ursolic acid using dental microcosm biofilm. J Dent 2024; 151:105447. [PMID: 39489326 DOI: 10.1016/j.jdent.2024.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE This study aimed to assess the anticariogenic effects of resin cement containing varying ursolic acid (UA) concentrations and to determine the optimal UA concentrations in the microcosm biofilm model. MATERIALS AND METHODS Experimental resin cements with UA concentrations of 0, 0.1, 0.5, 1.0, and 2.0 wt% were prepared. Class I cavities were prepared on 50 extracted human molars and restored with composite inlays and experimental resin cements. Tooth samples were subjected to artificial caries induction for 10 days in a microcosm biofilm model using human saliva as an inoculum, and then mineral changes were evaluated using quantitative light-induced fluorescence (ΔF and ΔQ) and micro-computed tomography (CT). The bacterial composition of the human saliva was analyzed by 16 s RNA microbiome profiling. One-way analysis of variance with Tukey and Duncan post-hoc tests was employed for statistical analysis (p < 0.05). RESULTS As the UA concentration increased, resin cement decreased ΔF and ΔQ before and after caries induction but showed a significant difference only in ΔQ at UA concentration ≥ 1.0 % (p < 0.05). The gray value analysis result of micro CT also showed a significant difference at UA concentration ≥ 1.0 % (p < 0.05). In the human saliva analysis, bacterial composition remained within normal oral microbiota ranges. CONCLUSION Resin cements containing at least 1.0 % of UA exhibited an anticariogenic effect on dental microcosm biofilms. CLINICAL RELEVANCE To reduce the failure of restorations, it is essential to prevent the occurrence of secondary caries. The application of UA in resin cement can be utilized to prevent the formation of secondary caries due to the anticariogenic effect of UA.
Collapse
Affiliation(s)
- Jonghyun Jo
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Mi-Jeong Jeon
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Sun Kyu Park
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Su-Jung Shin
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Baek-Il Kim
- Department of Preventive Dentistry & Public Oral Health, BK21 PLUS project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Won Park
- Department of Conservative Dentistry, Gangnam Severance hospital, College of Dentistry, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Bednarek A, Kabut A, Rapala-Kozik M, Satala D. Exploring the effects of culture conditions on Yapsin ( YPS) gene expression in Nakaseomyces glabratus. Open Life Sci 2024; 19:20220995. [PMID: 39655190 PMCID: PMC11627043 DOI: 10.1515/biol-2022-0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Nakaseomyces glabratus, previously known as Candida glabrata, has the great potential to cause systemic fungal infections despite its similarity to baker's yeast. Its pathogenicity is attributed to the production of numerous virulence factors, among which the YPS genes (YPS1-YPS11) encoding aspartyl proteases have yet to be sufficiently characterized, and limited studies suggest their involvement in cellular homeostasis. The study's novelty is an investigation of the role of YPS in N. glabratus's ability to adapt to different host environments. For this purpose, we isolated RNA from N. glabratus cells grown in both host niche-mimicking culture media, such as artificial saliva (AS) and vagina-simulating media (VS), as well as standard yeast media (RPMI 1640 and YPDA). We then performed quantitative real-time PCR to evaluate YPS gene expression at different growth phases. At the early logarithmic phase, we observed a general increase in the expression levels of YPS genes; however, at the stationary phase, high expression levels were maintained for YPS7 in RPMI 1640 and YPDA media and YPS6 in RPMI 1640 and AS media. In addition, although the VS medium does not promote the proliferation of N. glabratus, the yeast can survive in an acidic environment, and the significantly overexpressed gene is YPS7. These findings underscore the significant modulation of N. glabratus YPS gene expression in response to external environmental conditions. This research provides insights into the molecular basis of N. glabratus pathogenicity and highlights new potential targets for antifungal therapy.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Kabut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Hall J, Mekapothula S, Coxhill R, Craske D, Varney AM, Cave GWV, McLean S. Surface-Functionalised Copper Oxide Nanoparticles: A Pathway to Multidrug-Resistant Pathogen Control in Medical Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1899. [PMID: 39683288 DOI: 10.3390/nano14231899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Copper oxide nanoparticles (CuONPs) offer promising antimicrobial properties against a range of pathogens, addressing the urgent issue of antibiotic resistance. This study details the synthesis of glutamic acid-coated CuONPs (GA-CuONPs) and their functionalisation on medical-grade silicone tubing, using an oxysilane bonding agent. The resulting coating shows significant antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains, while remaining non-toxic to human cells and exhibiting stable adherence, without leaching. This versatile coating method can be applied during manufacturing, or for ad hoc modifications, enhancing the antimicrobial properties of medical devices.
Collapse
Affiliation(s)
- James Hall
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Subbareddy Mekapothula
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Rebecca Coxhill
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Dominic Craske
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Adam M Varney
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Gareth W V Cave
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| |
Collapse
|
4
|
Guha S, Cristy SA, Buda De Cesare G, Cruz MR, Lorenz MC, Garsin DA. Optimization of the antifungal properties of the bacterial peptide EntV by variant analysis. mBio 2024; 15:e0057024. [PMID: 38587425 PMCID: PMC11077972 DOI: 10.1128/mbio.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Fungal resistance to commonly used medicines is a growing public health threat, and there is a dire need to develop new classes of antifungals. We previously described a peptide produced by Enterococcus faecalis, EntV, that restricts Candida albicans to a benign form rather than having direct fungicidal activity. Moreover, we showed that one 12-amino acid (aa) alpha helix of this peptide retained full activity, with partial activity down to the 10aa alpha helix. Using these peptides as a starting point, the current investigation sought to identify the critical features necessary for antifungal activity and to screen for new variants with enhanced activity using both biofilm and C. elegans infection assays. First, the short peptides were screened for residues with critical activity by generating alanine substitutions. Based on this information, we used synthetic molecular evolution (SME) to rationally vary the specific residues of the 10aa variant in combination to generate a library that was screened to identify variants with more potent antifungal activity than the parent template. Five gain-of-function peptides were identified. Additionally, chemical modifications to the peptides to increase stability, including substitutions of D-amino acids and hydrocarbon stapling, were investigated. The most promising peptides were additionally tested in mouse models of oropharyngeal and systemic candidiasis where their efficacy in preventing infection was demonstrated. The expectation is that these discoveries will contribute to the development of new therapeutics in the fight against antimicrobial resistant fungi. IMPORTANCE Since the early 1980s, the incidence of disseminated life-threatening fungal infections has been on the rise. Worldwide, Candida and Cryptococcus species are among the most common agents causing these infections. Simultaneously, with this rise of clinical incidence, there has also been an increased prevalence of antifungal resistance, making treatment of these infections very difficult. For example, there are now strains of Candida auris that are resistant to all three classes of currently used antifungal drugs. In this study, we report on a strategy that allows for the development of novel antifungal agents by using synthetic molecular evolution. These discoveries demonstrate that the enhancement of antifungal activity from naturally occurring peptides is possible and can result in clinically relevant agents that have efficacy in multiple in vivo models as well as the potential for broad-spectrum activity.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shane A. Cristy
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giuseppe Buda De Cesare
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Melissa R. Cruz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Li S, Zhang Y, Zong J, Liu Y, Tang Y, Lu J, Chen Y. Production improvement of an antioxidant in cariogenic Streptococcus mutans UA140. J Appl Microbiol 2024; 135:lxae017. [PMID: 38268415 DOI: 10.1093/jambio/lxae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
AIMS This study aimed to improve the production of mutantioxidin, an antioxidant encoded by a biosynthetic gene cluster (mao) in Streptococcus mutans UA140, through a series of optimization methods. METHOD AND RESULTS Through the construction of mao knockout strain S. mutans UA140∆mao, we identified mutantioxidin as the antioxidant encoded by mao and verified its antioxidant activity through a reactive oxygen species (ROS) tolerance assay. By optimizing the culture medium and fermentation time, 72 h of fermentation in chemically defined medium (CDM) medium was determined as the optimal fermentation conditions. Based on two promoters commonly used in Streptococcus (ldhp and xylS1p), eight promoter refactoring strains were constructed, nevertheless all showed impaired antioxidant production. In-frame deletion and complementation experiments demonstrated the positive regulatory role of mao1 and mao2, on mao. Afterward, the mao1 and mao2, overexpression strain S. mutans UA140/pDL278:: mao1mao2, were constructed, in which the production of mutantioxidin was improved significantly. CONCLUSIONS In this study, through a combination of varied strategies such as optimization of fermentation conditions and overexpression of regulatory genes, production of mutantioxidin was increased by 10.5 times ultimately.
Collapse
Affiliation(s)
- Shuyu Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianfa Zong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yufeng Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Rafiq IH, Dame-Teixeira N, Do T. The antimicrobial activity of theobromine against cariogenic microbes: an in vitro pilot study. BDJ Open 2024; 10:8. [PMID: 38302447 PMCID: PMC10834536 DOI: 10.1038/s41405-024-00190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE This pilot study aimed to compare the antimicrobial effect of theobromine, sodium fluoride, and a theobromine-sodium fluoride combination against the following caries-associated bacteria: Streptococcus mutans and Actinomyces naeslundii. METHODOLOGY Antimicrobial susceptibility was tested via the broth microdilution method, with suspensions cultured on each microbe's respective selective media. Shapiro-Wilk's was completed and all the data showed normality (p > 0.05), and One-way ANOVA was applied to infer the significant differences in the viable counts between the groups. RESULTS All experimental conditions for both S. mutans and A. naeslundii groups resulted in a significantly lower bacterial abundance in comparison to the control medium, without any active antimicrobial agent (p < 0.001). There was no significant difference in viable count between the theobromine, fluoride, or combination groups against either microbe (p > 0.05). CONCLUSION Theobromine's antimicrobial activity against S. mutans and A. naeslundii was found similar to that of fluoride, whether used independently or in combination. Further testing of theobromine is necessary to assess its role as an alternative anticaries agent.
Collapse
Affiliation(s)
| | | | - Thuy Do
- University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Cho MY, Lee ES, Jung HI, Kim BI. Anti-biofilm activity of a novel nanoemulsion containing Curcuma xanthorrhiza oil. J Dent 2023; 137:104647. [PMID: 37536430 DOI: 10.1016/j.jdent.2023.104647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVES We aimed to solubilize Curcuma xanthorrhiza oil (CXO) using nanoemulsification and evaluate its inhibitory effects against biofilm formation. METHODS The components of CXO were evaluated through high-performance liquid chromatography (HPLC) analysis. Healthy human saliva was inoculated onto hydroxyapatite discs to form microcosm biofilms for four days and treated six times with each antimicrobial agent: distilled water (DW), CXO emulsion (EM), CXO nanoemulsion (NE), and positive controls (Listerine and chlorhexidine). Biofilm fluorescence imaging was performed using quantitative light-induced fluorescence, and cell viability and dry-weight measurements were obtained. We compared the bacterial cell and extracellular polysaccharide (EPS) biovolume and thickness using confocal laser scanning microscopy (CLSM). RESULTS HPLC analysis revealed that CXO was composed of approximately 47% xanthorrhizol. Compared with DW, NE exhibited significantly lower red fluorescence intensity and area (42% and 37%, p < 0.001 and p < 0.001, respectively), and reduced total and aciduric bacterial cell viability (7.3% and 3.9%, p < 0.001, p = 0.01, respectively). Furthermore, the bacterial cell and EPS biovolume and thickness in NE decreased by 40-80% compared to DW, similar to chlorhexidine. Conversely, EM showed a significant difference only in cell viability against total bacteria when compared with DW (p = 0.003), with EPS biovolume and thickness exhibiting higher values than DW. CONCLUSIONS Nanoemulsification successfully solubilized CXO and demonstrated superior anti-biofilm effects compared to the emulsion form. CLINICAL SIGNIFICANCE These findings suggest the potential use of NE as a novel antimicrobial agent for preventing oral diseases.
Collapse
Affiliation(s)
- Mu-Yeol Cho
- Department of Preventive Dentistry & Public Oral Health, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eun-Song Lee
- Department of Preventive Dentistry & Public Oral Health, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Hoi-In Jung
- Department of Preventive Dentistry & Public Oral Health, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Baek-Il Kim
- Department of Preventive Dentistry & Public Oral Health, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
8
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human Saliva Modifies Growth, Biofilm Architecture and Competitive Behaviors of Oral Streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554151. [PMID: 37662325 PMCID: PMC10473590 DOI: 10.1101/2023.08.21.554151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example are the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium that was absent of human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight streptococci species individually, and found saliva to positively benefit growth rates while negatively influencing biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese to give it an advantage over its opponent. Our report highlights observable changes in microbial behaviors via leveraging environmental- and host-supplied resources over their competitors.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Daniel I Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
9
|
Inhibitory Activity of Essential Oils of Mentha spicata and Eucalyptus globulus on Biofilms of Streptococcus mutans in an In Vitro Model. Antibiotics (Basel) 2023; 12:antibiotics12020369. [PMID: 36830281 PMCID: PMC9952483 DOI: 10.3390/antibiotics12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The aim of this study was to evaluate the inhibitory activity of the commercially available essential oils of Mentha spicata (spearmint) and Eucalyptus globulus (eucalyptus) on Streptococcus mutans ATCC 25175 biofilms in vitro, emulating dental plaque conditions. The composition of the essential oils (EOs) was determined using gas chromatography coupled with mass spectrometry (GC-MS), with the main metabolites being Carvone (57.93%) and Limonene (12.91%) for Mentha spicata and 1,8-Cineole (Eucalyptol) (65.83%) for Eucalyptus globulus. The inhibitory activity was evaluated using the methods of agar-well diffusion and colorimetric microdilution. The inhibition halos were 18.3 ± 0.47 mm and 27.0 ± 0.82 mm, and the MICs were 1.8484 mg/mL and 1.9168 mg/mL for the EOs of Mentha spicata and Eucalyptus globulus, respectively. The activity against the biofilms was evaluated on a substrate of bovine enamel pieces using a basal mucin medium (BMM) in anaerobic conditions with daily sucrose exposition cycles in order to emulate oral cavity conditions. The EOs were applied in a concentration of 0.5% in a sterile saline vehicle with 1% polysorbate 20. After 72 h of cultivation, a significant reduction was observed (p < 0.001%) on the biofilm biomass, which was evaluated by its turbidity in suspension and using a count of the recoverable organisms with regards to the control. The effects of the Eos were not significantly distinct from each other. The EOs showed antimicrobial activity against both the Streptococcus mutans planktonic and biofilm cultures. Thus, EOs may have great potential for the development of pharmaceutical and sanitary products for oral health.
Collapse
|
10
|
Zeng L, Walker AR, Burne RA, Taylor ZA. Glucose Phosphotransferase System Modulates Pyruvate Metabolism, Bacterial Fitness, and Microbial Ecology in Oral Streptococci. J Bacteriol 2023; 205:e0035222. [PMID: 36468868 PMCID: PMC9879115 DOI: 10.1128/jb.00352-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Spontaneous mutants with defects in the primary glucose phosphotransferase permease (manLMNO) of Streptococcus sanguinis SK36 showed enhanced fitness at low pH. Transcriptomics and metabolomics with a manL deletion mutant (SK36/manL) revealed redirection of pyruvate to production of acetate and formate, rather than lactate. These observations were consistent with measurements of decreased lactic acid accumulation and increased excretion of acetate, formate, pyruvate, and H2O2. Genes showing increased expression in SK36/manL included those encoding carbohydrate transporters, extracellular glycosidases, intracellular polysaccharide metabolism, and arginine deiminase and pathways for metabolism of acetoin, ethanolamine, ascorbate, and formate, along with genes required for membrane biosynthesis and adhesion. Streptococcus mutans UA159 persisted much better in biofilm cocultures with SK36/manL than with SK36, an effect that was further enhanced by culturing the biofilms anaerobically but dampened by adding arginine to the medium. We posited that the enhanced persistence of S. mutans with SK36/manL was in part due to excess excretion of pyruvate by the latter, as addition of pyruvate to S. mutans-S. sanguinis cocultures increased the proportions of UA159 in the biofilms. Reducing the buffer capacity or increasing the concentration of glucose benefited UA159 when cocultured with SK36, but not with SK36/manL, likely due to the altered metabolism and enhanced acid tolerance of the mutant. When manL was deleted in S. mutans or Streptococcus gordonii, the mutants presented altered fitness characteristics. Our study demonstrated that phosphotransferase system (PTS)-dependent modulation of central metabolism can profoundly affect streptococcal fitness and metabolic interactions, revealing another dimension in commensal-pathogen relationships influencing dental caries development. IMPORTANCE Dental caries is underpinned by a dysbiotic microbiome and increased acid production. As beneficial bacteria that can antagonize oral pathobionts, oral streptococci such as S. sanguinis and S. gordonii can ferment many carbohydrates, despite their relative sensitivity to low pH. We characterized the molecular basis for why mutants of glucose transporter ManLMNO of S. sanguinis showed enhanced production of hydrogen peroxide and ammonia and improved persistence under acidic conditions. A metabolic shift involving more than 300 genes required for carbohydrate transport, energy production, and envelope biogenesis was observed. Significantly, manL mutants engineered in three different oral streptococci displayed altered capacities for acid production and interspecies antagonism, highlighting the potential for targeting the glucose-PTS to modulate the pathogenicity of oral biofilms.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Robert A. Burne
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Zachary A. Taylor
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Wang X, Li J, Zhang S, Zhou W, Zhang L, Huang X. pH-activated antibiofilm strategies for controlling dental caries. Front Cell Infect Microbiol 2023; 13:1130506. [PMID: 36949812 PMCID: PMC10025512 DOI: 10.3389/fcimb.2023.1130506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Dental biofilms are highly assembled microbial communities surrounded by an extracellular matrix, which protects the resident microbes. The microbes, including commensal bacteria and opportunistic pathogens, coexist with each other to maintain relative balance under healthy conditions. However, under hostile conditions such as sugar intake and poor oral care, biofilms can generate excessive acids. Prolonged low pH in biofilm increases proportions of acidogenic and aciduric microbes, which breaks the ecological equilibrium and finally causes dental caries. Given the complexity of oral microenvironment, controlling the acidic biofilms using antimicrobials that are activated at low pH could be a desirable approach to control dental caries. Therefore, recent researches have focused on designing novel kinds of pH-activated strategies, including pH-responsive antimicrobial agents and pH-sensitive drug delivery systems. These agents exert antibacterial properties only under low pH conditions, so they are able to disrupt acidic biofilms without breaking the neutral microenvironment and biodiversity in the mouth. The mechanisms of low pH activation are mainly based on protonation and deprotonation reactions, acids labile linkages, and H+-triggered reactive oxygen species production. This review summarized pH-activated antibiofilm strategies to control dental caries, concentrating on their effect, mechanisms of action, and biocompatibility, as well as the limitation of current research and the prospects for future study.
Collapse
Affiliation(s)
- Xiuqing Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shujun Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Xiaojing Huang,
| |
Collapse
|
12
|
Sousa V, Spratt D, Davrandi M, Mardas N, Beltrán V, Donos N. Oral Microcosm Biofilms Grown under Conditions Progressing from Peri-Implant Health, Peri-Implant Mucositis, and Peri-Implantitis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14088. [PMID: 36360970 PMCID: PMC9654334 DOI: 10.3390/ijerph192114088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Peri-implantitis is a disease influenced by dysbiotic microbial communities that play a role in the short- and long-term outcomes of its clinical treatment. The ecological triggers that establish the progression from peri-implant mucositis to peri-implantitis remain unknown. This investigation describes the development of a novel in vitro microcosm biofilm model. Biofilms were grown over 30 days over machined titanium discs in a constant depth film fermentor (CDFF), which was inoculated (I) with pooled human saliva. Following longitudinal biofilm sampling across peri-implant health (PH), peri-implant mucositis (PM), and peri-implantitis (PI) conditions, the characterisation of the biofilms was performed. The biofilm analyses included imaging by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), selective and non-selective culture media of viable biofilms, and 16S rRNA gene amplification and sequencing. Bacterial qualitative shifts were observed by CLSM and SEM across conditions, which were defined by characteristic phenotypes. A total of 9 phyla, 83 genera, and 156 species were identified throughout the experiment. The phyla Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Actinobacteria showed the highest prevalence in PI conditions. This novel in vitro microcosm model provides a high-throughput alternative for growing microcosm biofilms resembling an in vitro progression from PH-PM-PI conditions.
Collapse
Affiliation(s)
- Vanessa Sousa
- Periodontology and Periodontal Medicine, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, Kings College London, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Dave Spratt
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1E 6BT, UK
| | - Mehmet Davrandi
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1E 6BT, UK
| | - Nikos Mardas
- Centre for Oral Clinical Research, Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London E1 2AD, UK
| | - Víctor Beltrán
- Clinical Investigation and Dental Innovation Center (CIDIC), Dental School and Center for Translational Medicine (CEMT-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile
| | - Nikolaos Donos
- Centre for Oral Clinical Research, Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London E1 2AD, UK
| |
Collapse
|
13
|
Cruz MR, Cristy S, Guha S, De Cesare GB, Evdokimova E, Sanchez H, Borek D, Miramón P, Yano J, Fidel PL, Savchenko A, Andes DR, Stogios PJ, Lorenz MC, Garsin DA. Structural and functional analysis of EntV reveals a 12 amino acid fragment protective against fungal infections. Nat Commun 2022; 13:6047. [PMID: 36229448 PMCID: PMC9562342 DOI: 10.1038/s41467-022-33613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023] Open
Abstract
Fungal pathogens are a continuing challenge due to few effective antifungals and a rise in resistance. In previous work, we described the inhibition of Candida albicans virulence following exposure to the 68 amino acid bacteriocin, EntV, secreted by Enterococcus faecalis. Here, to optimize EntV as a potential therapeutic and better understand its antifungal features, an X-ray structure is obtained. The structure consists of six alpha helices enclosing a seventh 16 amino acid helix (α7). The individual helices are tested for antifungal activity using in vitro and nematode infection assays. Interestingly, α7 retains antifungal, but not antibacterial activity and is also effective against Candida auris and Cryptococcus neoformans. Further reduction of α7 to 12 amino acids retains full antifungal activity, and excellent efficacy is observed in rodent models of C. albicans oropharyngeal, systemic, and venous catheter infections. Together, these results showcase EntV-derived peptides as promising candidates for antifungal therapeutic development.
Collapse
Affiliation(s)
- Melissa R. Cruz
- grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Shane Cristy
- grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Shantanu Guha
- grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Giuseppe Buda De Cesare
- grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Elena Evdokimova
- grid.17063.330000 0001 2157 2938BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5 Canada
| | - Hiram Sanchez
- grid.28803.310000 0001 0701 8607Department of Medicine, University of Wisconsin, Madison, WI 53705 USA ,grid.28803.310000 0001 0701 8607Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53705 USA
| | - Dominika Borek
- grid.267313.20000 0000 9482 7121Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA ,grid.267313.20000 0000 9482 7121Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Pedro Miramón
- grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Junko Yano
- grid.279863.10000 0000 8954 1233Department of Oral and Craniofacial Biology, Louisiana State University Health School of Dentistry, New Orleans, LA 70119 USA
| | - Paul L. Fidel
- grid.279863.10000 0000 8954 1233Department of Oral and Craniofacial Biology, Louisiana State University Health School of Dentistry, New Orleans, LA 70119 USA
| | - Alexei Savchenko
- grid.17063.330000 0001 2157 2938BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5 Canada ,grid.22072.350000 0004 1936 7697Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1 Canada ,Center for Structural Genomics of Infectious Diseases (CSGID), Chicago, IL USA
| | - David R. Andes
- grid.28803.310000 0001 0701 8607Department of Medicine, University of Wisconsin, Madison, WI 53705 USA ,grid.28803.310000 0001 0701 8607Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53705 USA
| | - Peter J. Stogios
- grid.17063.330000 0001 2157 2938BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5 Canada
| | - Michael C. Lorenz
- grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Danielle A. Garsin
- grid.267308.80000 0000 9206 2401Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|
14
|
Kosmidis-Papadimitriou A, Qi S, Squillace O, Rosik N, Bale M, Fryer PJ, Zhang ZJ. Characteristics of respiratory microdroplet nuclei on common substrates. Interface Focus 2022; 12:20210044. [PMID: 34956611 PMCID: PMC8662393 DOI: 10.1098/rsfs.2021.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
To evaluate the role of common substrates in the transmission of respiratory viruses, in particular SARS-CoV-2, uniformly distributed microdroplets (approx. 10 µm diameter) of artificial saliva were generated using an advanced inkjet printing technology to replicate the aerosol droplets and subsequently deposited on five substrates, including glass, polytetrafluoroethylene, stainless steel, acrylonitrile butadiene styrene and melamine. The droplets were found to evaporate within a short timeframe (less than 3 s), which is consistent with previous reports concerning the drying kinetics of picolitre droplets. Using fluorescence microscopy and atomic force microscopy, we found that the surface deposited microdroplet nuclei present two distinctive morphological features as the result of their drying mode, which is controlled by both interfacial energy and surface roughness. Nanomechanical measurements confirm that the nuclei deposited on all substrates possess similar surface adhesion (approx. 20 nN) and Young's modulus (approx. 4 MPa), supporting the proposed core-shell structure of the nuclei. We suggest that appropriate antiviral surface strategies, e.g. functionalization, chemical deposition, could be developed to modulate the evaporation process of microdroplet nuclei and subsequently mitigate the possible surface viability and transmissibility of respiratory virus.
Collapse
Affiliation(s)
| | - Shaojun Qi
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ophelie Squillace
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Nicole Rosik
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Peter J. Fryer
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zhenyu J. Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
15
|
Pisani S, Croce S, Mauramati S, Marmonti M, Cobianchi L, Herman I, Dorati R, Avanzini MA, Genta I, Benazzo M, Conti B. Engineered Full Thickness Electrospun Scaffold for Esophageal Tissue Regeneration: From In Vitro to In Vivo Approach. Pharmaceutics 2022; 14:pharmaceutics14020252. [PMID: 35213985 PMCID: PMC8876746 DOI: 10.3390/pharmaceutics14020252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Acquired congenital esophageal malformations, such as malignant esophageal cancer, require esophagectomy resulting in full thickness resection, which cannot be left untreated. The proposed approach is a polymeric full-thickness scaffold engineered with mesenchymal stem cells (MSCs) to promote and speed up the regeneration process, ensuring adequate support and esophageal tissue reconstruction and avoiding the use of autologous conduits. Copolymers poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) 70:30 and 85:15 ratio were chosen to prepare electrospun tubular scaffolds. Electrospinning apparatus equipped with two different types of tubular mandrels: cylindrical (∅ 10 mm) and asymmetrical (∅ 10 mm and ∅ 8 mm) were used. Tubular scaffolds underwent morphological, mechanical (uniaxial tensile stress) and biological (MTT and Dapi staining) characterization. Asymmetric tubular geometry resulted in the best properties and was selected for in vivo surgical implantation. Anesthetized pigs underwent full thickness circumferential resection of the mid-lower thoracic esophagus, followed by implantation of the asymmetric scaffold. Preliminary in vivo results demonstrated that detached stitch suture achieved better results in terms of animal welfare and scaffold integration; thus, it is to be preferred to continuous suture.
Collapse
Affiliation(s)
- Silvia Pisani
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.M.); (I.H.); (M.B.)
- Correspondence:
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (L.C.)
| | - Simone Mauramati
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.M.); (I.H.); (M.B.)
| | - Marta Marmonti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (R.D.); (I.G.); (B.C.)
| | - Lorenzo Cobianchi
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (L.C.)
| | - Irene Herman
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.M.); (I.H.); (M.B.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (R.D.); (I.G.); (B.C.)
| | | | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (R.D.); (I.G.); (B.C.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.M.); (I.H.); (M.B.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (R.D.); (I.G.); (B.C.)
| |
Collapse
|
16
|
Recent Updates on Microbial Biofilms in Periodontitis: An Analysis of In Vitro Biofilm Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:159-174. [DOI: 10.1007/978-3-030-96881-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Viana CS, Maske TT, Signori C, VAN DE Sande FH, Oliveira EFD, Cenci MS. Influence of caries activity and number of saliva donors: mineral and microbiological responses in a microcosm biofilm model. J Appl Oral Sci 2021; 29:e20200778. [PMID: 34495103 PMCID: PMC8425900 DOI: 10.1590/1678-7757-2020-0778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
Objective this study evaluated the mineral and microbiological response of biofilms originating from different types of saliva inoculum with distinct levels of caries activity. Methodology the biofilms grown over enamel specimens originated from saliva collected from a single donor or five donors with two distinct levels of caries activity (caries-active and caries-free) or from pooling saliva from ten donors (five caries-active and five caries-free). The percentage surface hardness change (%SHC) and microbiological counts served as outcome variables. Results the caries activity of donors did not affect the %SHC values. Inoculum from five donors compared to a single donor showed higher %SHC values (p=0.019). Higher lactobacilli counts were observed when saliva from caries-active donors was used as the inoculum (p=0.017). Pooled saliva from both caries activity levels showed higher mutans streptococci counts (p<0.017). Conclusion Overall, pooled saliva increased the mineral response of the derived biofilms, but all the inoculum conditions formed cariogenic biofilms and caries lesions independently of caries activity.
Collapse
Affiliation(s)
- Chayane Souza Viana
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Odontologia, Pelotas, RS, Brasil
| | - Tamires Timm Maske
- Universidade Federal do Rio Grande do Sul, Departamento de Odontologia Preventiva e Social, Porto Alegre, RS, Brasil
| | - Cácia Signori
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Odontologia, Pelotas, RS, Brasil
| | | | | | | |
Collapse
|
18
|
The influence of biofilm maturation on fluoride's anticaries efficacy. Clin Oral Investig 2021; 26:1269-1282. [PMID: 34328559 DOI: 10.1007/s00784-021-04100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES (1) To explore the influence of biofilm maturation and timing of exposure on fluoride anticaries efficacy and (2) to explore biofilm recovery post-treatment. METHODS Bovine enamel specimens were utilized in a pH cycling model (28 subgroups [n = 18]). Each subgroup received different treatments [exposure]: sodium fluoride [NaF]; stannous fluoride [SnF2]; amine fluoride [AmF]; and de-ionized water [DIW], at a specific period: early: days 1-4; middle: days 3-6; and late: days 7-10. During non-exposure periods, pH cycling included DIW instead of fluorides. Objective 1: part 1 (cycling for 4, 6, or 10 days). Part 2 (cycling for 10 days). Objective 2: early exposure: three sample collection time points (immediate, 3 days, and 6 days post-treatment); middle exposure: two sample collection time points (immediate, 4 days post-treatment). The enamel and biofilm were analyzed ([surface microhardness; mineral loss; lesion depth]; [lactate dehydrogenase enzyme activity; exopolysaccharide amount; viability]). Data were analyzed using ANOVA (p = 0.05). RESULTS Objective 1: Early exposure to fluorides produced protective effects against lesion progression in surface microhardness and mineral loss, but not for lesion depth. Objective 2: Early exposure slowed the demineralization process. SnF2 and AmF were superior to NaF in reducing LDH and EPS values, regardless of exposure time. They also prevented biofilm recovery. CONCLUSION Earlier exposure to SnF2 and AmF may result in less tolerant biofilm. Early fluoride treatment may produce a protective effect against demineralization. SnF2 and AmF may be the choice to treat older biofilm and prevent biofilm recovery. CLINICAL RELEVANCE The study provides an understanding of biofilm-fluoride interaction with mature biofilm (e.g., hard-to-reach areas, orthodontic patients) and fluoride's sustainable effect hours/days after brushing.
Collapse
|
19
|
Hofreiter M, Sneberger J, Pospisek M, Vanek D. Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Sci Int Genet 2021; 54:102538. [PMID: 34265517 DOI: 10.1016/j.fsigen.2021.102538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/07/2021] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
Research on ancient and forensic DNA is related in many ways, and the two fields must deal with similar obstacles. Therefore, communication between these two communities has the potential to improve results in both research fields. Here, we present the insights gained in the ancient DNA community with regard to analyzing DNA from aged skeletal material and the potential use of the developed protocols in forensic work. We discuss the various steps, from choosing samples for DNA extraction to deciding between classical PCR amplification and massively parallel sequencing approaches. Based on the progress made in ancient DNA analyses combined with the requirements of forensic work, we suggest that there is substantial potential for incorporating ancient DNA approaches into forensic protocols, a process that has already begun to a considerable extent. However, taking full advantage of the experiences gained from ancient DNA work will require comparative studies by the forensic DNA community to tailor the methods developed for ancient samples to the specific needs of forensic studies and case work. If successful, in our view, the benefits for both communities would be considerable.
Collapse
Affiliation(s)
- Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | - Jiri Sneberger
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, Prague 2 12843, Czech Republic; Department of the History of the Middle Ages of Museum of West Bohemia, Kopeckeho sady 2, Pilsen 30100, Czech Republic; Nuclear Physics Institute of the CAS, Na Truhlarce 39/64, Prague 18086, Czech Republic
| | - Martin Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, Prague 2 12843, Czech Republic; Biologicals s.r.o., Sramkova 315, Ricany 25101, Czech Republic
| | - Daniel Vanek
- Forensic DNA Service, Janovskeho 18, Prague 7 17000, Czech Republic; Institute of Legal Medicine, Bulovka Hospital, Prague, Czech Republic; Charles University in Prague, 2nd Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
20
|
Göstemeyer G, Woike H, Paris S, Schwendicke F, Schlafer S. Root Caries Preventive Effect of Varnishes Containing Fluoride or Fluoride + Chlorhexidine/Cetylpyridinium Chloride In Vitro. Microorganisms 2021; 9:microorganisms9040737. [PMID: 33916105 PMCID: PMC8065905 DOI: 10.3390/microorganisms9040737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
Caries preventive varnishes containing only fluoride might differ from those containing a combination of fluoride and antimicrobial components in terms of mineralization properties and their impact on the cariogenic biofilm. We compared a fluoride and a fluoride + chlorhexidine (CHX)/cetylpyridinium chloride (CPC) varnish on root caries formation in vitro. One hundred bovine root dentin samples were allocated to five groups (n = 20/group): (1) 7700 ppm fluoride varnish (Fluorprotector S (F)), (2) experimental placebo varnish for F (F-P), (3) 1400 ppm fluoride + 0.3% CHX/0.5% CPC varnish (Cervitec F (CF)), (4) experimental placebo varnish for CF (CF-P), (5) untreated control. Cariogenic challenge was provided using a multi-station, continuous-culture 3-species (Streptococcus mutans (SM), Lactobacillus rhamnosus (LR), Actinomyces naeslundii (AN)) biofilm model for 10 days. Mineral loss (ΔZ) was evaluated using transversal microradiography and bacterial counts in the biofilm assessed as colony-forming units. Fluorescence in situ hybridization (FISH) and confocal microscopy were performed to assess the three-dimensional biofilm architecture. Mean ± SD (vol% × μm) ΔZ was significantly lower for F (9133 ± 758) and CF (9835 ± 1677) compared to control (11362 ± 919) (p < 0.05), without significant differences between F and CF. SM counts were significantly lower and LR counts significantly higher in F- and CF-biofilms compared to control. AN counts were significantly higher in the F-biofilms than in all other groups. According to FISH, SM and LR invaded dentinal tubules only in the control-group. In the CF-group, the basal biofilm layer did not contain SM and AN. Both F and CF varnishes had similar caries-preventive effects and a considerable impact on biofilm structure and composition.
Collapse
Affiliation(s)
- Gerd Göstemeyer
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany; (H.W.); (S.P.)
- Correspondence: ; Tel.: +49-30-450-562-328
| | - Helen Woike
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany; (H.W.); (S.P.)
| | - Sebastian Paris
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany; (H.W.); (S.P.)
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany;
| | - Sebastian Schlafer
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark;
| |
Collapse
|
21
|
Effect of ionizing radiation and cariogenic biofilm challenge on root-dentin caries. Clin Oral Investig 2021; 25:4059-4068. [PMID: 33765193 DOI: 10.1007/s00784-020-03736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/07/2020] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To evaluate the effect of ionizing radiation and cariogenic biofilm challenge using two continuous flow models, normal and reduced salivary flow, on the development of initial root-dentin caries lesions. MATERIALS AND METHODS Microcosm biofilms were grown under two salivary flow rates (0.06 and 0.03 mL min-1) and exposed to 5% sucrose (3 × daily, 0.25 mL min-1, 6 min) dripped over non-irradiated and irradiated root-dentin blocks for up to 7 days. The vibration modes of root dentin, matrix/mineral (M/M), and carbonate/mineral (C/M) ratios were evaluated by FTIR. The mineral density was assessed by micro-CT. RESULTS With normal salivary flow, FTIR revealed an increase in the organic matrix (amide III) and a decrease in the mineral phase (ν4, ν2 PO43-, AII + ν2 CO32-, C/M) in caries lesions. Irradiated dentin exhibited a reduction in the mineral phase (ν1, ν3 PO43-, ν2 CO32-, C/M). Differences in mineral densities were not significant. With reduced salivary flow, FTIR also revealed increased organic matrix (amide III) for irradiated caries lesions and decrease in mineral phase (v4, v2 PO43-, v2 CO32-, and C/M) in caries lesions. ν1, ν3 PO43- precipitated on the surface of irradiated dentin and a lower mineral density was observed. CONCLUSIONS Initial caries lesions differed between non-irradiated and irradiated dentin and between normal and reduced salivary flow rates. Significant mineral loss with exposure of the organic matrix and low mineral density were observed for irradiated dentin with a reduced salivary flow rate. CLINICAL RELEVANCE Ionizing radiation associated with a reduced salivary flow rate enhanced the progression of root-dentin caries.
Collapse
|
22
|
Antibacterial and antibiofilm activities of cinnamon essential oil nanoemulsion against multi-species oral biofilms. Sci Rep 2021; 11:5911. [PMID: 33723345 PMCID: PMC7971021 DOI: 10.1038/s41598-021-85375-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/28/2021] [Indexed: 11/21/2022] Open
Abstract
Cinnamon essential oil (CEO) has antibacterial properties, but its ability to suppress the formation of multi-species oral biofilms has not been fully elucidated. This study evaluated the antibacterial and antibiofilm activities of cinnamon essential oil nanoemulsion (CEON) against oral biofilms formed using a microcosm biofilm model. The biofilms were formed on bovine enamel specimens over a 7-day period, during which all specimens were treated with one of three solutions: 5% CEON (n = 35), 0.5% cocamidopropyl betaine (n = 35), or 0.12% chlorhexidine gluconate (CHX; n = 35). Antibacterial and antibiofilm activities were determined by the red/green ratios (R/G values) of 7-day-old mature biofilms photographed with quantitative light-induced fluorescence-digital, the number of aciduric bacterial colony-forming units (CFUs) within each biofilm, and the absorbance of bacterial suspensions. One-way and repeated-measures analysis of variance were performed to compare differences among the three solutions. R/G values were lowest in the 0.12% CHX group, but not significantly differ from the 5% CEON group. The number of CFUs and absorbance were lowest in the 5% CEON group. This study showed that nanoemulsified CEO inhibited the maturation of multi-species oral biofilms and the growth of oral microorganisms in biofilms, including aciduric bacteria that cause dental caries.
Collapse
|
23
|
Peng JY, Botelho MG, Matinlinna JP, Pan HB, Kukk E, Low KJ. Interaction of storage medium and silver diamine fluoride on demineralized dentin. J Int Med Res 2021; 49:300060520985336. [PMID: 33615855 PMCID: PMC7903840 DOI: 10.1177/0300060520985336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective The effects of saliva on demineralized dentin and silver diamine fluoride (SDF) were investigated in vitro. Methods Dentin samples stored in deionized water (DIW), buffer solution (BS), basal medium mucin (BMM), and unstimulated whole saliva (UWS) were demineralized for 3 days and immersed in the same storage media. SDF as a 38 mass% solution was applied to the dentin samples for 3 minutes after they had been replaced in their respective medium. Surfaces were analyzed by scanning electron microscopy, energy-dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Results Scanning electron microscopy showed various surface deposits and coatings, including occlusion of dentinal tubules. DIW resulted in the thinnest coating, whereas BMM resulted in the thickest. EDX and XPS showed the formation of metallic silver and silver compounds in all four media, with the greatest formation in BS. XRD indicated that the main product was silver chloride except in DIW. Sulphur was found in BMM and UWS. EDX and XPS detected fluoride and XRD detected calcium fluoride and fluorohydroxyapatite in BS, BMM, and UWS. Conclusion The interaction between SDF and demineralized dentin was dependent upon the storage medium. BMM provided an outcome most similar to human saliva.
Collapse
Affiliation(s)
- Jing-Yuan Peng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Michael George Botelho
- Oral Rehabilitation, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
- Michael George Botelho, Oral Rehabilitation, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong, P.R. China.
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Hao-Bo Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Edwin Kukk
- Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences, University of Turku, Turku, Finland
| | - Kam-Jung Low
- HKU-CAS Joint Laboratory on New Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, the University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| |
Collapse
|
24
|
Oral Microbial Diversity Formed and Maintained through Decomposition Product Feedback Regulation and Delayed Responses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5590110. [PMID: 33688360 PMCID: PMC7914081 DOI: 10.1155/2021/5590110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 11/17/2022]
Abstract
Oral microbial diversity plays an important role on oral health maintenance. However, there are only few kinds of substrates available for the microbial flora in oral cavity, and it still remains unclear why oral microbial diversity can be formed and sustained without obvious competitive exclusion. Based on experimental phenomena and data, a new hypothesis was proposed, namely, the decomposition product negative feedback regulation on microbial population size and microbial delay responses including reproductive, reaction, interspecific competition, and substrate decomposition delay responses induced by oral immunity. According to hypothesis and its cellular automata (CA) model, the CA simulation results sufficiently proved that the decomposition product negative feedback regulation and four microbial delay responses could significantly alleviate the interspecific competitions and inhibit the emergence of dominant species, causing the formation and sustenance of oral microbial diversity. This study could also offer effective guidance of prevention and treatment of oral cavity diseases.
Collapse
|
25
|
Askar H, Al-Abdi A, Blunck U, Göstemeyer G, Paris S, Schwendicke F. Secondary Caries Adjacent to Bulk or Incrementally Filled Composites Placed after Selective Excavation In Vitro. MATERIALS 2021; 14:ma14040939. [PMID: 33669469 PMCID: PMC7920447 DOI: 10.3390/ma14040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022]
Abstract
Objectives: selective caries excavation (SE) is recommended for deep carious lesions. Bulk fill composites (BF) may be considered to restore SE-cavities. We compared the susceptibility for secondary caries adjacent to BF versus incrementally filled composites (IF) in SE and non-selectively excavated teeth (NS) in vitro. Methods: in 72 extracted human premolars, artificial caries lesions were induced on pulpo-axial walls of standardized cavities. The lesions were left (SE) or removed (NS), and teeth were restored using two BF, GrandioSO x-tra/Voco (BF-Gra) and SDR/Dentsply (BF-SDR), and an IF, GrandioSO/Voco (IF-Gra) (n = 12/group for SE and NS). After thermo-mechanical cycling (5–55 °C, 8 days), teeth were submitted to a continuous-culture Lactobacillus rhamnosus biofilm model with cyclic loading for 10 days. Mineral loss (ΔZ) of enamel surface lesions (ESL), dentin surface lesions (DSL), and dentin wall lesions (DWL) was analyzed using transversal microradiography. Results: ΔZ was the highest in DSL, followed by ESL, and it was significantly lower in DWL. There were no significant differences in ΔZ between groups in DSL, ESL, and DWL (p > 0.05). Regardless of lesion location, ΔZ did not differ between SE and NS (p > 0.05). Conclusions: BF and IF both showed low risks for DWL (i.e., true secondary caries) after SE in vitro, and surface lesion risk was also not significantly different between materials. SE did not increase secondary caries risk as compared with NS. Clinical Significance: the risk of secondary caries was low after selective excavation in this study, regardless of whether bulk or incrementally filled composites were used
Collapse
Affiliation(s)
- Haitham Askar
- Department of Operative and Preventive Dentistry, Charité—Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, 14197 Berlin, Germany; (A.A.-A.); (U.B.); (G.G.); (S.P.)
- Correspondence: ; Tel.: +49-30-450-562-533; Fax: +49-30-450-562-932
| | - Allam Al-Abdi
- Department of Operative and Preventive Dentistry, Charité—Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, 14197 Berlin, Germany; (A.A.-A.); (U.B.); (G.G.); (S.P.)
| | - Uwe Blunck
- Department of Operative and Preventive Dentistry, Charité—Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, 14197 Berlin, Germany; (A.A.-A.); (U.B.); (G.G.); (S.P.)
| | - Gerd Göstemeyer
- Department of Operative and Preventive Dentistry, Charité—Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, 14197 Berlin, Germany; (A.A.-A.); (U.B.); (G.G.); (S.P.)
| | - Sebastian Paris
- Department of Operative and Preventive Dentistry, Charité—Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, 14197 Berlin, Germany; (A.A.-A.); (U.B.); (G.G.); (S.P.)
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health, Health Services Research, Charité—Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, 14197 Berlin, Germany;
| |
Collapse
|
26
|
Park S, Wang X, Wang B, Xu HHK, Zhang N, Bai Y. The long observation in vitro of prevention effect of novel self-etching orthodontic adhesive modified with 2-methacryloxyethyl phosphorylcholine in enamel demineralization. Dent Mater J 2021; 40:631-640. [PMID: 33518689 DOI: 10.4012/dmj.2019-193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The enamel demineralization is common in fixed orthodontics. Plaque accumulation around the bracket plays a critical role and could cause various degrees of white spot lesions (WSLs) on the surface of teeth. The 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer is a biological polymer with protein repellent and an anti-bacterial adhesion effects. In this study, the enamel shear bond strength (SBS) and protein repellent property in vitro of self-etching orthodontic adhesive with MPC were evaluated. It was found that the self-etching adhesive with 0-7.5%MPC met the orthodontic clinical requirement on the SBS values at three different points of time. The incorporation of 7.5%MPC significantly reduced the bacterial adhesion and total microorganism of the yield biofilm. Moreover, the MTT assay showed that the amount of plaque metabolism in 7.5%MPC was the lowest among the groups. To conclude, the novel protein repellent self-etching adhesive was able to inhibit biofilm formation efficiently and minimize enamel demineralization.
Collapse
Affiliation(s)
- SooRo Park
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Xiaomeng Wang
- Department of Orthodontics, School of Stomatology, Capital Medical University.,Department of Stomatology, Children's Hospital of Shanghai
| | - Bo Wang
- Department of Orthodontics, School of Stomatology, Capital Medical University.,Department of Orthodontics, The First Affiliated Hospital of Dalian Medical University
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University
| |
Collapse
|
27
|
Kreth J, Merritt J, Pfeifer C, Khajotia S, Ferracane J. Interaction between the Oral Microbiome and Dental Composite Biomaterials: Where We Are and Where We Should Go. J Dent Res 2020; 99:1140-1149. [PMID: 32479134 PMCID: PMC7443996 DOI: 10.1177/0022034520927690] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dental composites are routinely placed as part of tooth restoration procedures. The integrity of the restoration is constantly challenged by the metabolic activities of the oral microbiome. This activity directly contributes to a less-than-desirable half-life for the dental composite formulations currently in use. Therefore, many new antimicrobial dental composites are being developed to counteract the microbial challenge. To ensure that these materials will resist microbiome-derived degradation, the model systems used for testing antimicrobial activities should be relevant to the in vivo environment. Here, we summarize the key steps in oral microbial colonization that should be considered in clinically relevant model systems. Oral microbial colonization is a clearly defined developmental process that starts with the formation of the acquired salivary pellicle on the tooth surface, a conditioned film that provides the critical attachment sites for the initial colonizers. Further development includes the integration of additional species and the formation of a diverse, polymicrobial mature biofilm. Biofilm development is discussed in the context of dental composites, and recent research is highlighted regarding the effect of antimicrobial composites on the composition of the oral microbiome. Future challenges are addressed, including the potential of antimicrobial resistance development and how this could be counteracted by detailed studies of microbiome composition and gene expression on dental composites. Ultimately, progress in this area will require interdisciplinary approaches to effectively mitigate the inevitable challenges that arise as new experimental bioactive composites are evaluated for potential clinical efficacy. Success in this area could have the added benefit of inspiring other fields in medically relevant materials research, since microbial colonization of medical implants and devices is a ubiquitous problem in the field.
Collapse
Affiliation(s)
- J. Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - J. Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - C.S. Pfeifer
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - S. Khajotia
- Department of Restorative Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J.L. Ferracane
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
28
|
Yu H, Ganas P, Schwendicke F. Environment-Specific Probiotic Supernatants Modify the Metabolic Activity and Survival of Streptococcus mutans in vitro. Front Microbiol 2020; 11:1447. [PMID: 32670254 PMCID: PMC7332556 DOI: 10.3389/fmicb.2020.01447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
A range of studies showed probiotics like Streptococcus oligofermentans and Limosilactobacillus reuteri to inhibit the cariogenic activity and survival of Streptococcus mutans, possibly via the production of substances like H2O2, reuterin, ammonia and organic acids. We aimed to assess the environment-specific mechanisms underlying this inhibition. We cultured L. reuteri and S. oligofermentans in various environments; minimal medium (MM), MM containing glucose (MM+Glu), glycerol (MM+Gly), lactic acid (MM+Lac), arginine (MM+Arg) and all four substances (MM+all) in vitro. Culture supernatants were obtained and metabolite concentrations (reuterin, ammonia, H2O2, lactate) measured. S. mutans was similarly cultivated in the above six different MM variation media, with glucose being additionally added to the MM+Gly, MM+Lac, and MM+Arg group, with (test groups) and without (control groups) the addition of the supernatants of the described probiotic cultures. Lactate production by S. mutans was measured and its survival (as colony-forming-units/mL) assessed. L. reuteri environment-specifically produced reuterin, H2O2, ammonia and lactate, as did S. oligofermentans. When cultured in S. oligofermentans supernatants, lactate production by S. mutans was significantly reduced (p < 0.01), especially in MM+Lac+Glu and MM+all, with no detectable lactate production at all (controls means ± SD: 4.46 ± 0.41 mM and 6.00 ± 0.29 mM, respectively, p < 0.001). A similar reduction in lactate production was found when S. mutans was cultured in L. reuteri supernatants (p < 0.05) for all groups except MM+Lac+Glu. Survival of S. mutans cultured in S. oligofermentans supernatants in MM+Lac+Glu and MM+all was significantly reduced by 0.6-log10 and 0.5-log10, respectively. Treatment with the supernatant of L. reuteri resulted in a reduction in the viability of S. mutans in MM+Gly+Glu and MM+all by 6.1-log10 and 7.1-log10, respectively. Probiotic effects on the metabolic activity and survival of S. mutans were environment-specific through different pathways.
Collapse
Affiliation(s)
- Haiyue Yu
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral Diagnosis, Digital Health and Health Services Research, Berlin, Germany
| | - Petra Ganas
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral Diagnosis, Digital Health and Health Services Research, Berlin, Germany
| | - Falk Schwendicke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral Diagnosis, Digital Health and Health Services Research, Berlin, Germany
| |
Collapse
|
29
|
Ayoub HM, Gregory RL, Tang Q, Lippert F. The anti-caries efficacy of three fluoride compounds at increasing maturation of a microcosm biofilm. Arch Oral Biol 2020; 117:104781. [PMID: 32622258 DOI: 10.1016/j.archoralbio.2020.104781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To explore the anti-caries efficacy of three fluoride compounds at increasing maturation of a microcosm biofilm. DESIGN Microcosm biofilm, obtained from saliva collected from three donors (IRB #1406440799), was grown on enamel samples (n = 18/group) for 24-h (Brain Heart Infusion; 0.2 % sucrose). Then, pH cycling model started. Three maturations were explored (4d, 8d, and 12d). The pH cycling consisted of daily 2 × 5 min treatments (NaF, SnF2, AmF: 287.5 ppm F, and de-ionized water [DIW]), 4 × 10 min remineralization (BHI, no sucrose, pH 7.0), and 3 × 2:15 h demineralization (BHI, 1% sucrose, pH 4.5). We analyzed the enamel (surface microhardness [VHNchange], integrated mineral loss [ΔZ], lesion depth [L]), and the biofilm (viability [log10 CFU/mL], lactic acid production [LDH], and exopolysaccharide [EPS] amount). Data were analyzed using two-way ANOVA (p = 0.05). RESULTS The interaction between tested variables was significant for VHNchange, viability, LDH, EPS (p = 0.0354, p = 0.0001, p < 0.0001, p < 0.0001), but not for L (p = 0.2412) or ΔZ (p = 0.6811). LDH and EPS analyses exhibited more tolerance of mature biofilm against NaF (LDH and EPS p < 0.0001); NaF-treated groups demonstrated significantly lower results than the control in the 12d group. The effect of SnF2 and AmF continued over time. VHNchange, L, and ΔZ: The effect of SnF2 and AmF was higher than NaF and DIW. L and ΔZ did not result in significant differences over time (all treatments). Within each maturation, fluoride compounds demonstrated statistically significantly lower L and ΔZ values than DIW. CONCLUSIONS Biofilm's maturation may influence the selection of fluoride compounds to achieve an optimum cariostatic effect.
Collapse
Affiliation(s)
- Hadeel M Ayoub
- King Saud University, College of Applied Medical Sciences, Dental Health Department, P.O. Box 145111, Riyadh, 4545, Saudi Arabia; Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA; Indiana University, School of Medicine, Department of Family Medicine, Bowen Center for Health Workforce Research & Policy, 1110 W. Michigan Street, Indianapolis, IN, 46202, USA.
| | - Richard L Gregory
- Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, 1121 W. Michigan Street, Indianapolis, IN, 46202, USA.
| | - Qing Tang
- Indiana University, School of Medicine, Department of Biostatistics, 410 W. 10th Street, HITS 3000, Indianapolis, IN, 46202, USA.
| | - Frank Lippert
- Indiana University, School of Dentistry, Department of Cariology, Operative Dentistry and Dental Public Health, 415 Lansing Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
30
|
Ayoub HM, Gregory RL, Tang Q, Lippert F. Comparison of human and bovine enamel in a microbial caries model at different biofilm maturations. J Dent 2020; 96:103328. [DOI: 10.1016/j.jdent.2020.103328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 11/25/2022] Open
|
31
|
Ayoub HM, Gregory RL, Tang Q, Lippert F. Influence of salivary conditioning and sucrose concentration on biofilm-mediated enamel demineralization. J Appl Oral Sci 2020; 28:e20190501. [PMID: 32236356 PMCID: PMC7105287 DOI: 10.1590/1678-7757-2019-0501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The acquired pellicle formation is the first step in dental biofilm formation. It distinguishes dental biofilms from other biofilm types. OBJECTIVE To explore the influence of salivary pellicle formation before biofilm formation on enamel demineralization. METHODOLOGY Saliva collection was approved by Indiana University IRB. Three donors provided wax-stimulated saliva as the microcosm bacterial inoculum source. Acquired pellicle was formed on bovine enamel samples. Two groups (0.5% and 1% sucrose-supplemented growth media) with three subgroups (surface conditioning using filtered/pasteurized saliva; filtered saliva; and deionized water (DIW)) were included (n=9/subgroup). Biofilm was then allowed to grow for 48 h using Brain Heart Infusion media supplemented with 5 g/l yeast extract, 1 mM CaCl2.2H2O, 5% vitamin K and hemin (v/v), and sucrose. Enamel samples were analyzed for Vickers surface microhardness change (VHNchange), and transverse microradiography measuring lesion depth (L) and mineral loss (∆Z). Data were analyzed using two-way ANOVA. RESULTS The two-way interaction of sucrose concentration × surface conditioning was not significant for VHNchange (p=0.872), ∆Z (p=0.662) or L (p=0.436). Surface conditioning affected VHNchange (p=0.0079), while sucrose concentration impacted ∆Z (p<0.0001) and L (p<0.0001). Surface conditioning with filtered/pasteurized saliva resulted in the lowest VHNchange values for both sucrose concentrations. The differences between filtered/pasteurized subgroups and the two other surface conditionings were significant (filtered saliva p=0.006; DIW p=0.0075). Growing the biofilm in 1% sucrose resulted in lesions with higher ∆Z and L values when compared with 0.5% sucrose. The differences in ∆Z and L between sucrose concentration subgroups was significant, regardless of surface conditioning (both p<0.0001). CONCLUSION Within the study limitations, surface conditioning using human saliva does not influence biofilm-mediated enamel caries lesion formation as measured by transverse microradiography, while differences were observed using surface microhardness, indicating a complex interaction between pellicle proteins and biofilm-mediated demineralization of the enamel surface.
Collapse
Affiliation(s)
- Hadeel M Ayoub
- King Saud University, Dental Health Department, College of Applied Medical Sciences, Riyadh, Saudi Arabia.,Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, Indianapolis, Indiana, USA
| | - Richard L Gregory
- Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, Indianapolis, Indiana, USA
| | - Qing Tang
- Indiana University, School of Medicine, Department of Biostatistics, Indianapolis, Indiana, USA
| | - Frank Lippert
- Indiana University, School of Dentistry, Department of Cariology, Operative Dentistry and Dental Public Health, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
Schulz A, Lang R, Behr J, Hertel S, Reich M, Kümmerer K, Hannig M, Hannig C, Hofmann T. Targeted metabolomics of pellicle and saliva in children with different caries activity. Sci Rep 2020; 10:697. [PMID: 31959821 PMCID: PMC6971297 DOI: 10.1038/s41598-020-57531-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Pellicle is the initial proteinaceous layer that is formed almost instantaneously on all solid surfaces in the oral cavity. It is of essential relevance for any interactions and metabolism on the tooth surface. Up to now, there is no information on the metabolome of this structure. Accordingly, the present study aims to characterise the metabolomic profile of in-situ pellicle in children with different caries activity for the first time in comparison to saliva. Small molecules such as carbohydrates, amino acids, organic acids, and fatty acids, putatively involved in the formation of caries were quantified using mass spectrometry (MS)-based techniques, such as (stable isotope dilution analysis)-ultra-performance liquid chromatography-tandem MS and gas chromatography/electron ionisation-MS. Pellicle and corresponding saliva samples were collected from caries-active, caries-free and caries-rehabilitated 4- to 6-year-old children. The most abundant analytes in pellicle were acetic acid (1.2-10.5 nmol/cm2), propionic acid (0.1-8.5 nmol/cm2), glycine (0.7-3.5 nmol/cm2), serine (0.08-2.3 nmol/cm2), galactose (galactose + mannose; 0.035-0.078 nmol/cm2), lactose (0.002-0.086 nmol/cm2), glucose (0.018-0.953 nmol/cm2), palmitic acid (0.26-2.03 nmol/cm2), and stearic acid (0.34-1.81 nmol/cm2). Significant differences depending on caries activity were detected neither in saliva nor in the corresponding pellicle samples.
Collapse
Affiliation(s)
- Annika Schulz
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354, Freising, Germany
| | - Roman Lang
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354, Freising, Germany.
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Gregor-Mendel-Straße 4, D-85354, Freising, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, D-85354, Freising, Germany
| | - Susann Hertel
- Policlinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Marco Reich
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1 C13, D-21335, Lüneburg, Germany
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1 C13, D-21335, Lüneburg, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry and Periodontology, Saarland University, Universitätsklinikum des Saarlandes, D-66421, Homburg/Saar, Kirrberger Straße, Germany
| | - Christian Hannig
- Policlinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354, Freising, Germany.
- Bavarian Center for Biomolecular Mass Spectrometry, Gregor-Mendel-Straße 4, D-85354, Freising, Germany.
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, D-85354, Freising, Germany.
| |
Collapse
|
33
|
Cross KL, Campbell JH, Balachandran M, Campbell AG, Cooper SJ, Griffen A, Heaton M, Joshi S, Klingeman D, Leys E, Yang Z, Parks JM, Podar M. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat Biotechnol 2019; 37:1314-1321. [PMID: 31570900 PMCID: PMC6858544 DOI: 10.1038/s41587-019-0260-6] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
Abstract
Most microorganisms from all taxonomic levels are uncultured. Single-cell
genomes and metagenomes continue to increase the known diversity of
Bacteria and Archaea, but while
‘omics can be used to infer physiological or ecological roles for species
in a community, most of those hypothetical roles remain unvalidated. Here we
report an approach to capture specific microorganisms from complex communities
into pure cultures using genome-informed antibody engineering. We apply our
reverse genomics approach to isolate and sequence single cells and to cultivate
three different species-level lineages of human oral Saccharibacteria/TM7. Using
our pure cultures we show that all three saccharibacteria species are epibionts
of diverse Actinobacteria. We also isolate and cultivate human
oral SR1 bacteria, which are members of a lineage of previously uncultured
bacteria. Reverse-genomics-enabled cultivation of microorganisms can be applied
to any species from any environment and has the potential to unlock the
isolation, cultivation and characterization of species from as-yet-uncultured
branches of the microbial tree of life.
Collapse
Affiliation(s)
- Karissa L Cross
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - James H Campbell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Natural Sciences, Northwest Missouri State University, Maryville, MO, USA
| | | | - Alisha G Campbell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA.,Department of Natural Sciences, Northwest Missouri State University, Maryville, MO, USA
| | - Sarah J Cooper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA
| | - Ann Griffen
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | | | - Snehal Joshi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dawn Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eugene Leys
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zamin Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. .,Department of Microbiology, University of Tennessee, Knoxville, TN, USA. .,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
34
|
Park M, Sutherland JB, Rafii F. Effects of nano-hydroxyapatite on the formation of biofilms by Streptococcus mutans in two different media. Arch Oral Biol 2019; 107:104484. [PMID: 31382161 DOI: 10.1016/j.archoralbio.2019.104484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/20/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of nano-hydroxyapatite (nHA) on biofilm formation by Streptococcus mutans, which is actively involved in the initiation of dental caries. DESIGN The effects of nHA on growth and biofilm formation by S. mutans were investigated in two media: a saliva analog medium, basal medium mucin (BMM); and a nutrient-rich medium, brain heart infusion (BHI); in the presence and absence of sucrose. RESULTS Sucrose enhanced the growth of S. mutans in both media. In the presence of sucrose, nHA enhanced bacterial growth and biofilm formation more in BMM medium than in BHI. nHA also affected the transcription of glucosyltransferase (gtf) genes and production of polysaccharide differently in the two media. In BHI medium, the transcription of all three gtf genes, coding for enzymes that synthesize soluble and insoluble glucans from sucrose, was increased more than 3-fold by nHA. However, in BMM medium, only the transcription of gtfB and gtfC, coding for insoluble glucans, was substantially enhanced by nHA. CONCLUSIONS nHA appeared to enhance biofilm formation by increasing glucosyltransferase transcription, which resulted in an increase in production of insoluble glucans. This effect was influenced by the growth conditions.
Collapse
Affiliation(s)
- Miseon Park
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - John B Sutherland
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
35
|
A novel microbiological medium for the growth of periodontitis associated pathogens. J Microbiol Methods 2019; 163:105647. [DOI: 10.1016/j.mimet.2019.105647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023]
|
36
|
Role of Amino Acid Metabolism in the Virulence of Human Pathogenic Fungi. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00124-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Karkowska-Kuleta J, Satala D, Bochenska O, Rapala-Kozik M, Kozik A. Moonlighting proteins are variably exposed at the cell surfaces of Candida glabrata, Candida parapsilosis and Candida tropicalis under certain growth conditions. BMC Microbiol 2019; 19:149. [PMID: 31269895 PMCID: PMC6609379 DOI: 10.1186/s12866-019-1524-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adaptability to different environmental conditions is an essential characteristic of pathogenic microorganisms as it facilitates their invasion of host organisms. The most external component of pathogenic yeast-like fungi from the Candida genus is the multilayered cell wall. This structure is composed mainly of complex polysaccharides and proteins that can undergo dynamic changes to adapt to the environmental conditions of colonized niches. RESULTS We utilized cell surface shaving with trypsin and a shotgun proteomic approach to reveal the surface-exposed proteins of three important non-albicans Candida species-C. glabrata, C. parapsilosis and C. tropicalis. These proteinaceous components were identified after the growth of the fungal cells in various culture media, including artificial saliva, artificial urine and vagina-simulative medium under aerobic conditions and anaerobically in rich YPD medium. Several known proteins involved in cell wall maintenance and fungal pathogenesis were identified at the cell surface as were a number of atypical cell wall components-pyruvate decarboxylase (Pdc11), enolase (Eno1) and glyceraldehyde-3-phosphate dehydrogenase (Tdh3) which are so-called 'moonlighting' proteins. Notably, many of these proteins showed significant upregulation at the cell surface in growth media mimicking the conditions of infection compared to defined synthetic medium. CONCLUSIONS Moonlighting proteins are expressed under diverse conditions at the cell walls of the C. glabrata, C. parapsilosis and C. tropicalis fungal pathogens. This indicates a possible universal surface-associated role of these factors in the physiology of these fungi and in the pathology of the infections they cause.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
38
|
Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii. mBio 2019; 10:mBio.01179-19. [PMID: 31213561 PMCID: PMC6581863 DOI: 10.1128/mbio.01179-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial communities have a great impact in health and disease. C. albicans interacts with multiple microorganisms in the oral cavity, frequently forming polymicrobial biofilms. We report on the synergistic interactions between C. albicans and the Gram-positive bacterium S. gordonii, for which we have examined the different contributions of adhesive interactions, filamentation, and the extracellular matrix to the formation of dual-species biofilms. Our results demonstrate that growth in the presence of the bacterium can restore the biofilm-forming ability of different C. albicans mutant strains with defects in adhesion and filamentation. The mixed-species biofilms also show high levels of resistance to antibacterial and antifungal antibiotics, and our results indicate that the fungal biofilm matrix protects bacterial cells within these mixed-species biofilms. Our observations add to a growing body of evidence indicating a high level of complexity in the reciprocal interactions and consortial behavior of fungal/bacterial biofilms. Fungal and bacterial populations coexist in the oral cavity, frequently forming mixed-species biofilms that complicate treatment against polymicrobial infections. However, despite relevance to oral health, the bidirectional interactions between these microbial populations are poorly understood. In this study, we aimed to elucidate the mechanisms underlying the interactions between the fungal species Candida albicans and the bacterial species Streptococcus gordonii as they coexist in mixed-species biofilms. Specifically, the interactions of different C. albicans mutant strains deficient in filamentation (efg1Δ/Δ and brg1Δ/Δ), adhesive interactions (als3Δ/Δ and bcr1Δ/Δ), and production of matrix exopolymeric substances (EPS) (kre5Δ/Δ, mnn9Δ/Δ, rlm1Δ/Δ, and zap1Δ/Δ) were evaluated with S. gordonii under different conditions mimicking the environment in the oral cavity. Interestingly, our results revealed that growth of the biofilm-deficient C. albicansals3Δ/Δ and bcr1Δ/Δ mutant strains in synthetic saliva or with S. gordonii restored their biofilm-forming ability. Moreover, challenging previous observations indicating an important role of morphogenetic conversions in the interactions between these two species, our results indicated a highly synergistic interaction between S. gordonii and the C. albicans filamentation-deficient efg1Δ/Δ and brg1Δ/Δ deletion mutants, which was particularly noticeable when the mixed biofilms were grown in synthetic saliva. Importantly, dual-species biofilms were found to exhibit increase in antimicrobial resistance, indicating that components of the fungal exopolymeric material confer protection to streptococcal cells against antibacterial treatment. Collectively, these findings unravel a high degree of complexity in the interactions between C. albicans and S. gordonii in mixed-species biofilms, which may impact homeostasis in the oral cavity.
Collapse
|
39
|
Heersema LA, Smyth HDC. A Multispecies Biofilm In Vitro Screening Model of Dental Caries for High-Throughput Susceptibility Testing. High Throughput 2019; 8:E14. [PMID: 31151195 PMCID: PMC6631723 DOI: 10.3390/ht8020014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/27/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
There is a current need to develop and optimize new therapeutics for the treatment of dental caries, but these efforts are limited by the relatively low throughput of relevant in vitro models. The aim of this work was to bridge the 96-well microtiter plate system with a relevant multispecies dental caries model that could be reproducibly grown to allow for the high-throughput screening of anti-biofilm therapies. Various media and inoculum concentrations were assessed using metabolic activity, biomass, viability, and acidity assays to determine the optimal laboratory-controlled conditions for a multispecies biofilm composed of Streptococcus gordonii, Streptococcus mutans, and Candida albicans. The selected model encompasses several of the known fundamental characteristics of dental caries-associated biofilms. The 1:1 RPMI:TSBYE 0.6% media supported the viability and biomass production of mono- and multispecies biofilms best. Kinetic studies over 48 h in 1:1 RPMI:TSBYE 0.6% demonstrated a stable biofilm phase between 10 and 48 h for all mono- and multispecies biofilms. The 1:1:0.1 S. gordonii: S. mutans: C. albicans multispecies biofilm in 1:1 RPMI:TSBYE 0.6% is an excellent choice for a high-throughput multispecies model of dental caries. This high-throughput multispecies model can be used for screening novel therapies and for better understanding the treatment effects on biofilm interactions and stability.
Collapse
Affiliation(s)
- Lara A Heersema
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 787812, USA.
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
- The LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Schwendicke F, Al-Abdi A, Pascual Moscardó A, Ferrando Cascales A, Sauro S. Remineralization effects of conventional and experimental ion-releasing materials in chemically or bacterially-induced dentin caries lesions. Dent Mater 2019; 35:772-779. [DOI: 10.1016/j.dental.2019.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/13/2019] [Indexed: 01/16/2023]
|
41
|
Hydroxyl radicals generated by hydrogen peroxide photolysis recondition biofilm-contaminated titanium surfaces for subsequent osteoblastic cell proliferation. Sci Rep 2019; 9:4688. [PMID: 30886168 PMCID: PMC6423011 DOI: 10.1038/s41598-019-41126-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
Titanium dental implants have been successfully used for decades; however, some implants are affected by peri-implantitis due to bacterial infection, resulting in loss of supporting bone. This study aimed to evaluate the effect of an antimicrobial chemotherapy employing H2O2 photolysis-developed to treat peri-implantitis-on biofilm-contaminated titanium surfaces in association with osteoblastic cell proliferation on the treated surface. Titanium discs were sandblasted and acid-etched, followed by contamination with a three-species biofilm composed of Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mitis. This biofilm model was used as a simplified model of clinical peri-implantitis biofilm. The discs were subjected to ultrasound scaling, followed by H2O2 photolysis, wherein 365-nm LED irradiation of the disc immersed in 3% H2O2 was performed for 5 min. We analysed proliferation of mouse osteoblastic cells (MC3T3-E1) cultured on the treated discs. Compared with intact discs, biofilm contamination lowered cell proliferation on the specimen surface, whereas H2O2 photolysis recovered cell proliferation. Thus, H2O2 photolysis can recover the degraded biocompatibility of biofilm-contaminated titanium surfaces and can potentially be utilised for peri-implantitis treatment. However, to verify the findings of this study in relation to clinical settings, assessment using a more clinically relevant multi-species biofilm model is necessary.
Collapse
|
42
|
Lehmensiek M, Askar H, Brouwer F, Blunck U, Paris S, Schwendicke F. Restoration integrity, but not material or cementation strategy determined secondary caries lesions next to indirect restorations in vitro. Dent Mater 2018; 34:e317-e323. [DOI: 10.1016/j.dental.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/30/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
|
43
|
Signori C, Hartwig AD, Silva-Júnior IFD, Correa MB, Azevedo MS, Cenci MS. The role of human milk and sucrose on cariogenicity of microcosm biofilms. Braz Oral Res 2018; 32:e109. [PMID: 30328901 DOI: 10.1590/1807-3107bor-2018.vol32.0109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effect of human milk, alone and associated with sucrose, in the cariogenicity of biofilms in a microcosm biofilm model and compared with the cariogenicity of sucrose and bovine milk. Microcosm biofilms were grown in enamel discs in 24-well plates. Six growth conditions were studied: DMM (chemically defined artificial saliva - negative control), DMM with 1% of sucrose (DMM+s) (positive control), human milk with DMM, human milk with DMM+s, bovine milk with DMM, and bovine milk with DMM+s. After 5 days, the outcome variables surface hardness change (%SHC), microbiological composition of biofilms, and pH of supernatant were analyzed. All groups had significantly lower hardness loss compared to the DMM group with 1% of sucrose. Human and bovine milk associated with sucrose showed higher hardness loss. The supernatant pH values after 6 hours of different treatments were similar for the groups sucrose and human milk associated with sucrose (p>0.05). After 18 hours at rest in pure DMM, an increase in the pH of the supernatant was observed. Higher values of total microorganisms count were found for sucrose and bovine milk groups compared to the group supplemented only by DMM. Bovine milk group showed greater amount of total aciduric microorganisms in comparison to human milk group. Within the limits of this study, it can be infered that both human and cow milks have some cariogenic potential, although differing from sucrose in terms of mineral loss.
Collapse
Affiliation(s)
- Cácia Signori
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Graduate Program in Dentistry, Pelotas, RS, Brazil
| | - Andréia Drawanz Hartwig
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Graduate Program in Dentistry, Pelotas, RS, Brazil
| | - Ivam Freire da Silva-Júnior
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Graduate Program in Dentistry, Pelotas, RS, Brazil
| | - Marcos Britto Correa
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Graduate Program in Dentistry, Pelotas, RS, Brazil
| | - Marina Sousa Azevedo
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Graduate Program in Dentistry, Pelotas, RS, Brazil
| | - Maximiliano Sérgio Cenci
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Graduate Program in Dentistry, Pelotas, RS, Brazil
| |
Collapse
|
44
|
Kim HN, Kim JB, Jeong SH. Remineralization effects when using different methods to apply fluoride varnish in vitro. J Dent Sci 2018; 13:360-366. [PMID: 30895146 PMCID: PMC6388808 DOI: 10.1016/j.jds.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/12/2018] [Indexed: 11/26/2022] Open
Abstract
Background/purpose Remineralization efficacy for early caries lesion may change when fluoride varnish (FV) is applied directly or indirectly to the lesion. This in vitro study compared direct and indirect remineralization efficacies of FV on artificial caries lesions and evaluated acid-resistance of lesion remineralized by FV and artificial saliva. Materials and methods One hundred and twenty-six bovine demineralized specimens were allocated to four varnish groups (Duraphat®, EnamelPro®, MI™, and ClinproWhite™, n = 28 each) and a negative-control group (n = 14). Half of specimens from each varnish group had the FV applied and the other specimens didn't. The specimens treated and not treated with the FV were immersed together in 20 mL of artificial saliva at 37 °C for 24 h. Then the applied FV was removed carefully from the specimen, and immersion process was continued in fresh artificial saliva for 48 h. The negative-control group was immersed in artificial saliva for same time as in varnish groups. The acid resistance of remineralized specimens from varnish groups was compared to negative-control group. Vickers microhardness number (VHN) was measured to evaluate re-demineralization effect. Results The ΔVHN was significantly higher for indirect remineralization (134.4 ± 31.5, mean ± SD) than for direct remineralization (66.8 ± 27.9). All varnish groups showed significant differences between the direct and indirect application methods. The acid resistance of remineralized specimens was higher in the all FV groups than in the negative-control. Conclusion This in vitro study confirmed that the remineralization effect of fluoride varnishes would be higher in the vicinity than the underneath of the varnish treated surface.
Collapse
Affiliation(s)
- Han-Na Kim
- Department of Dental Hygiene, College of Health and Medical Sciences, Cheongju University, Daesung-ro 298, Cheongwon-gu, Cheongju, 28503, South Korea
| | - Jin-Bom Kim
- Department of Preventive and Community Dentistry, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, 50612, South Korea.,BK PLUS Project, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Seung-Hwa Jeong
- Department of Preventive and Community Dentistry, School of Dentistry, Pusan National University, Busandaehak-ro 49, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, 50612, South Korea.,BK PLUS Project, School of Dentistry, Pusan National University, Yangsan, South Korea
| |
Collapse
|
45
|
Antimicrobial effect of bioceramic cements on multispecies microcosm biofilm: a confocal laser microscopy study. Clin Oral Investig 2018; 23:1367-1372. [DOI: 10.1007/s00784-018-2551-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/27/2018] [Indexed: 11/29/2022]
|
46
|
An In Vitro Model for Candida albicans⁻Streptococcus gordonii Biofilms on Titanium Surfaces. J Fungi (Basel) 2018; 4:jof4020066. [PMID: 29866990 PMCID: PMC6023327 DOI: 10.3390/jof4020066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/31/2018] [Accepted: 06/03/2018] [Indexed: 11/22/2022] Open
Abstract
The oral cavity serves as a nutrient-rich haven for over 600 species of microorganisms. Although many are essential to maintaining the oral microbiota, some can cause oral infections such as caries, periodontitis, mucositis, and endodontic infections, and this is further exacerbated with dental implants. Most of these infections are mixed species in nature and associated with a biofilm mode of growth. Here, after optimization of different parameters including cell density, growth media, and incubation conditions, we have developed an in vitro model of C. albicans–S. gordonii mixed-species biofilms on titanium discs that is relevant to infections of peri-implant diseases. Our results indicate a synergistic effect for the development of biofilms when both microorganisms were seeded together, confirming the existence of beneficial, mutualistic cross-kingdom interactions for biofilm formation. The morphological and architectural features of these dual-species biofilms formed on titanium were determined using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Mixed biofilms formed on titanium discs showed a high level of resistance to combination therapy with antifungal and antibacterial drugs. This model can serve as a platform for further analyses of complex fungal/bacterial biofilms and can also be applied to screening of new drug candidates against mixed-species biofilms.
Collapse
|
47
|
Secondary caries formation with a two-species biofilm artificial mouth. Dent Mater 2018; 34:786-796. [DOI: 10.1016/j.dental.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/31/2018] [Accepted: 02/11/2018] [Indexed: 12/28/2022]
|
48
|
Mystkowska J, Niemirowicz-Laskowska K, Łysik D, Tokajuk G, Dąbrowski JR, Bucki R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects. Int J Mol Sci 2018; 19:E743. [PMID: 29509686 PMCID: PMC5877604 DOI: 10.3390/ijms19030743] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.
Collapse
Affiliation(s)
- Joanna Mystkowska
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Katarzyna Niemirowicz-Laskowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Dawid Łysik
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Grażyna Tokajuk
- Department of Integrated Dentistry, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Jan R Dąbrowski
- Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland.
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| |
Collapse
|
49
|
Bacterial reduction in sealed caries lesions is strain- and material-specific. Sci Rep 2018; 8:3767. [PMID: 29491366 PMCID: PMC5830646 DOI: 10.1038/s41598-018-21842-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022] Open
Abstract
Sealing can arrest caries lesions. We aimed to evaluate if sealing effects and kinetics are bacterial-strain and sealing-material specific. Human dentin discs were mounted in a dual-chamber device. Caries lesions were induced chemically and contaminated with either Lactobacillus rhamnosus (LR) or Streptococcus sobrinus (SS). For (1) kinetics assessment, the initial bacterial load and the sealing period were varied, and lesions sealed using a self-etch adhesive and composite. For (2) comparing materials, six sealing protocols (#1-#6) were evaluated: 1# Self-etch adhesive plus composite placed without a liner, or #2 calcium hydroxide, or #3 mineral trioxide aggregate, or #4 Biodentine liners; #5 antibacterial adhesive plus composite; #6 glass ionomer cement. Pulpal fluid flow was simulated during sealing. The outcome was the number of surviving bacteria (CFU) per g dentin. For LR, bacterial survival increased significantly with increasing initial bacterial load and decreased with longer sealing periods. The relative reduction followed a first-order kinetics. More LR survived under calcium hydroxide or MTA than other materials (p < 0.001). For SS, nearly no bacteria survived sealing regardless of sealing period, initial bacterial load or sealing material. In conclusion, sealing effects and kinetics were strain- and material-specific.
Collapse
|
50
|
CARVALHO TP, MASKE TT, SIGNORI C, BRAUNER KV, OLIVEIRA EFD, CENCI MS. Desenvolvimento de lesões de cárie em dentina em um modelo de biofilme simplificado in vitro: um estudo piloto. REVISTA DE ODONTOLOGIA DA UNESP 2018. [DOI: 10.1590/1807-2577.06017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Introdução Modelos laboratoriais de biofilmes vêm sendo desenvolvidos com a finalidade de simular o ambiente bucal e o processo de formação da cárie dental. Objetivo Estabelecer e padronizar um modelo de biofilme in vitro para o desenvolvimento de lesões de cárie em dentina. Material e método Doze discos padronizados de dentina bovina foram divididos em três tempos experimentais: 4, 7 e 10 dias. As amostras de cada tempo experimental foram inoculadas com Streptococcus mutans UA 159 em meio de cultura BHI com 1% de sacarose e cultivadas em anaerobiose. As variáveis de resposta foram a perda de dureza integrada (ΔS) dos discos de dentina e dureza do substrato em diferentes profundidades. Os dados de ΔS foram analisados através de ANOVA seguido do teste Tukey, ambos com significância de 5%, e os dados de dureza de profundidade de lesão analisados descritivamente. Resultado Houve maior perda mineral aos 10 dias de crescimento microbiológico quando comparados aos 4 dias (p = 0,034), no entanto não houve diferença entre 7 e 10 dias (p = 0,853). O grupo de 4 dias mostrou perda de dureza em regiões mais superficiais (10-40µm); e o grupo de 10 dias mostrou desmineralização em áreas mais profundas, até 150 µm. Conclusão O modelo proposto mostrou-se capaz de desenvolver lesões de cárie artificiais em dentina. Em 7 dias, as lesões subsuperficiais de dentina foram adequadas para estudos de des-remineralização.
Collapse
|