1
|
Norris TA, Augenstein TE, Rodriguez KM, Claflin ES, Krishnan C. Shaping corticospinal pathways in virtual reality: effects of task complexity and sensory feedback during mirror therapy in neurologically intact individuals. J Neuroeng Rehabil 2024; 21:154. [PMID: 39232841 PMCID: PMC11373181 DOI: 10.1186/s12984-024-01454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Restoration of limb function for individuals with unilateral weakness typically requires volitional muscle control, which is often not present for individuals with severe impairment. Mirror therapy-interventions using a mirror box to reflect the less-impaired limb onto the more-impaired limb-can facilitate corticospinal excitability, leading to enhanced recovery in severely impaired clinical populations. However, the mirror box applies limitations on mirror therapy, namely that all movements appear bilateral and are confined to a small area, impeding integration of complex activities and multisensory feedback (e.g., visuo-tactile stimulation). These limitations can be addressed with virtual reality, but the resulting effect on corticospinal excitability is unclear. OBJECTIVE Examine how virtual reality-based unilateral mirroring, complex activities during mirroring, and visuo-tactile stimulation prior to mirroring affect corticospinal excitability. MATERIALS AND METHODS Participants with no known neurological conditions (n = 17) donned a virtual reality system (NeuRRoVR) that displayed a first-person perspective of a virtual avatar that matched their motions. Transcranial magnetic stimulation-induced motor evoked potentials in the nondominant hand muscles were used to evaluate corticospinal excitability in four conditions: resting, mirroring, mirroring with prior visuo-tactile stimulation (mirroring + TACT), and control. During mirroring, the movements of each participant's dominant limb were reflected onto the nondominant limb of the virtual avatar, and the avatar's dominant limb was kept immobile (i.e., unilateral mirroring). The mirroring + TACT condition was the same as the mirroring condition, except that mirroring was preceded by visuo-tactile stimulation of the nondominant limb. During the control condition, unilateral mirroring was disabled. During all conditions, participants performed simple (flex/extend fingers) and complex (stack virtual blocks) activities. RESULTS We found that unilateral mirroring increased corticospinal excitability compared to no mirroring (p < 0.001), complex activities increased excitability compared to simple activities during mirroring (p < 0.001), and visuo-tactile stimulation prior to mirroring decreased excitability (p = 0.032). We also found that these features did not interact with each other. DISCUSSIONS The findings of this study shed light onto the neurological mechanisms of mirror therapy and demonstrate the unique ways in which virtual reality can augment mirror therapy. The findings have important implications for rehabilitation for design of virtual reality systems for clinical populations.
Collapse
Affiliation(s)
- Trevor A Norris
- Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
| | - Thomas E Augenstein
- Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
- Robotics Department, University of Michigan, Ann Arbor, MI, USA
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Kazandra M Rodriguez
- Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Edward S Claflin
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Room 3013), Ann Arbor, MI, 48108, USA.
- Robotics Department, University of Michigan, Ann Arbor, MI, USA.
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Physical Therapy, University of Michigan-Flint, Flint, MI, USA.
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Chan HH, Fisher BM, Oimoen MA, Chintada L, Khanna H, Sonneborn CA, Hogue O, Machado AG, Baker KB. Carry-Over Effect of Deep Cerebellar Stimulation-Mediated Motor Recovery in a Rodent Model of Traumatic Brain Injury. Neurorehabil Neural Repair 2024:15459683241277194. [PMID: 39215643 DOI: 10.1177/15459683241277194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND We previously demonstrated that deep brain stimulation (DBS) of lateral cerebellar nucleus (LCN) can enhance motor recovery and functional reorganization of perilesional cortex in rodent models of stroke or TBI. OBJECTIVE Considering the treatment-related neuroplasticity observed at the perilesional cortex, we hypothesize that chronic LCN DBS-enhanced motor recovery observed will carry-over even after DBS has been deactivated. METHODS Here, we directly tested the enduring effects of LCN DBS in male Long Evans rats that underwent controlled cortical impact (CCI) injury targeting sensorimotor cortex opposite their dominant forepaw followed by unilateral implantation of a macroelectrode into the LCN opposite the lesion. Animals were randomized to DBS or sham treatment for 4 weeks during which the motor performance were characterize by behavioral metrics. After 4 weeks, stimulation was turned off, with assessments continuing for an additional 2 weeks. Afterward, all animals were euthanized, and tissue was harvested for further analyses. RESULTS Treated animals showed significantly greater motor improvement across all behavioral metrics relative to untreated animals during the 4-week treatment, with functional gains persisting across 2-week post-treatment. This motor recovery was associated with the increase in CaMKIIα and BDNF positive cell density across perilesional cortex in treated animals. CONCLUSIONS LCN DBS enhanced post-TBI motor recovery, the effect of which was persisted up to 2 weeks beyond stimulation offset. Such evidence should be considered in relation to future translational efforts as, unlike typical DBS applications, treatment may only need to be provided until such time as a new function plateau is achieved.
Collapse
Affiliation(s)
- Hugh H Chan
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Brittany M Fisher
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Margaret A Oimoen
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Latavya Chintada
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Hemen Khanna
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Claire A Sonneborn
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - André G Machado
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kenneth B Baker
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Paydar A, Khorasani L, Harris NG. Constraint Induced Movement Therapy Confers only a Transient Behavioral Benefit but Enduring Functional Circuit-Level Changes after Experimental TBI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606449. [PMID: 39149371 PMCID: PMC11326145 DOI: 10.1101/2024.08.02.606449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Although the behavioral outcome of Constraint-Induced Movement Therapy (CIMT) is well known, and that a combination of CIMT and arm use training potentiates the effect, there has been limited study of the brain circuits involved that respond to therapy. An understanding of CIMT from a brain network level would be useful for guiding the duration of effective therapy, the type of training regime to potentiate the outcome, as well as brain regional targets that might be amenable for direct neuromodulation. Here we investigated the effect of CIMT therapy alone unconfounded by additional rehabilitation training in order to determine the impact of intervention at the circuit level. Adult rats were injured by controlled cortical impact injury and studied before and then after 2wks of CIMT or noCIMT at 1-3wks post-injury using a combination of forelimb behavioral tasks and task-based and resting state functional magnetic resonance imaging at 3 and 7wks post-injury and compared to sham rats. There was no difference in behavior or functional imaging between CIMT and noCIMT after injury before intervention so that data are unlikely to be confounded by differences in injury severity. CIMT produced only a transient reduction in limb deficits compared to noCIMT immediately after the intervention, but no difference thereafter. However, CIMT resulted in a persistent reduction in contralesional limb-evoked activation and a corresponding ipsilesional cortical plasticity compared to noCIMT that endured 4wks after intervention. This was associated with a significant amelioration of intra and inter-hemispheric connectivity present in the noCIMT group at 7wks post-injury.
Collapse
Affiliation(s)
- Afshin Paydar
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Laila Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Intellectual Development and Disabilities Research Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
The pericontused cortex can support function early after TBI but it remains functionally isolated from normal afferent input. Exp Neurol 2023; 359:114260. [PMID: 36404463 DOI: 10.1016/j.expneurol.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 12/30/2022]
Abstract
Traumatically injured brain functional connectivity (FC) is altered in a region-dependent manner with some regions functionally disconnected while others are hyperconnected after experimental TBI. Remote, homotopic cortical regions become hyperexcitable after injury, and we hypothesize that this results in increased trans-hemispheric cortical inhibition, preventing reorganization of the primary injured hemisphere. Previously we have shown that temporary silencing the contralesional cortex at 1wk normalizes affected forelimb behavioral use, but not at 4wks. To investigate the potential mechanism for this and to determine whether this occurs due to restoration of afferent pathway FC, and/or reorganization of brain circuits, we probed forelimb circuit function with sensorimotor task-evoked-fMRI, resting state fMRI seed-based analysis, and exploratory structural equation modelling (SEM) of directed causal connections due to forelimb task at 1 and 4wks post-injury after temporary, contralateral silencing with intraparenchymal injection of muscimol versus vehicle, as well as from sham rats. As predicted, silencing at 1wk and 4wks post-injury decimated the contralesional cortical forelimb map evoked by stimulation of the opposite, unaffected forelimb compared to vehicle-injected injured rats indicating the success of the intervention. Surprisingly however, this also resulted in activation of the pericontused cortex ipsilateral to the stimulated forelimb at 1wk, yet this same region could not be activated by directly stimulating the opposite, injury-affected forelimb. Underpinning this were significant increases in interhemispheric FC at the level of the cortex but decreases within subcortical regions. Causal SEM analysis confirmed increased corticothalamic connectivity and suggested changes from and to bilateral thalamus are important for the effect. At 4wks post-injury only cortical increases in FC were found in response to silencing indicating a less flexible brain, and ipsilesional cortex evoked activity was mostly absent. The absence of a reinstatement of ipsilesional evoked activity through normal pathways by temporary neuromodulation despite prior data showing behavioral improvements under the same conditions, indicates that while the pericontused cortex does retain function initially after injury, it is too functionally disconnected to be controlled by normal afferent input. More significant alterations in cross-brain FC during neuromodulation at 1wk compared to 4wk post-injury, suggest that more distributed brain activity accounts for prior behavior improvements in sensorimotor function, and that hemispheric imbalance in function is causally involved in early loss of sensorimotor function in this TBI model.
Collapse
|
5
|
Werner C, Schönhammer JG, Steitz MK, Lambercy O, Luft AR, Demkó L, Easthope CA. Using Wearable Inertial Sensors to Estimate Clinical Scores of Upper Limb Movement Quality in Stroke. Front Physiol 2022; 13:877563. [PMID: 35592035 PMCID: PMC9110656 DOI: 10.3389/fphys.2022.877563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Neurorehabilitation is progressively shifting from purely in-clinic treatment to therapy that is provided in both clinical and home-based settings. This transition generates a pressing need for assessments that can be performed across the entire continuum of care, a need that might be accommodated by application of wearable sensors. A first step toward ubiquitous assessments is to augment validated and well-understood standard clinical tests. This route has been pursued for the assessment of motor functioning, which in clinical research and practice is observation-based and requires specially trained personnel. In our study, 21 patients performed movement tasks of the Action Research Arm Test (ARAT), one of the most widely used clinical tests of upper limb motor functioning, while trained evaluators scored each task on pre-defined criteria. We collected data with just two wrist-worn inertial sensors to guarantee applicability across the continuum of care and used machine learning algorithms to estimate the ARAT task scores from sensor-derived features. Tasks scores were classified with approximately 80% accuracy. Linear regression between summed clinical task scores (across all tasks per patient) and estimates of sum task scores yielded a good fit (R 2 = 0.93; range reported in previous studies: 0.61-0.97). Estimates of the sum scores showed a mean absolute error of 2.9 points, 5.1% of the total score, which is smaller than the minimally detectable change and minimally clinically important difference of the ARAT when rated by a trained evaluator. We conclude that it is feasible to obtain accurate estimates of ARAT scores with just two wrist worn sensors. The approach enables administration of the ARAT in an objective, minimally supervised or remote fashion and provides the basis for a widespread use of wearable sensors in neurorehabilitation.
Collapse
Affiliation(s)
- Charlotte Werner
- Spinal Cord Injury Research Center, University Hospital Balgrist, Zurich, Switzerland
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Josef G. Schönhammer
- Cereneo Foundation, Center for Interdisciplinary Research (CEFIR), Vitznau, Switzerland
| | - Marianne K. Steitz
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology and Clinical Neuroscience Center, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Zurich, Singapore
| | - Andreas R. Luft
- Division of Vascular Neurology and Neurorehabilitation, Department of Neurology and Clinical Neuroscience Center, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Cereneo, Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - László Demkó
- Spinal Cord Injury Research Center, University Hospital Balgrist, Zurich, Switzerland
| | - Chris Awai Easthope
- Cereneo Foundation, Center for Interdisciplinary Research (CEFIR), Vitznau, Switzerland
| |
Collapse
|
6
|
Ramos-Languren LE, Avila-Luna A, García-Díaz G, Rodríguez-Labrada R, Vázquez-Mojena Y, Parra-Cid C, Montes S, Bueno-Nava A, González-Piña R. Glutamate, Glutamine, GABA and Oxidative Products in the Pons Following Cortical Injury and Their Role in Motor Functional Recovery. Neurochem Res 2021; 46:3179-3189. [PMID: 34387812 DOI: 10.1007/s11064-021-03417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
Brain injury leads to an excitatory phase followed by an inhibitory phase in the brain. The clinical sequelae caused by cerebral injury seem to be a response to remote functional inhibition of cerebral nuclei located far from the motor cortex but anatomically related to the injury site. It appears that such functional inhibition is mediated by an increase in lipid peroxidation (LP). To test this hypothesis, we report data from 80 rats that were allocated to the following groups: the sham group (n = 40), in which rats received an intracortical infusion of artificial cerebrospinal fluid (CSF); the injury group (n = 20), in which rats received CSF containing ferrous chloride (FeCl2, 50 mM); and the recovery group (n = 20), in which rats were injured and allowed to recover. Beam-walking, sensorimotor and spontaneous motor activity tests were performed to evaluate motor performance after injury. Lipid fluorescent products (LFPs) were measured in the pons. The total pontine contents of glutamate (GLU), glutamine (GLN) and gamma-aminobutyric acid (GABA) were also measured. In injured rats, the motor deficits, LFPs and total GABA and GLN contents in the pons were increased, while the GLU level was decreased. In contrast, in recovering rats, none of the studied variables were significantly different from those in sham rats. Thus, motor impairment after cortical injury seems to be mediated by an inhibitory pontine response, and functional recovery may result from a pontine restoration of the GLN-GLU-GABA cycle, while LP may be a primary mechanism leading to remote pontine inhibition after cortical injury.
Collapse
Affiliation(s)
- Laura E Ramos-Languren
- Faculty of Psychology, Coordination of Psychobiology and Neurosciences, National Autonomous University of Mexico, Av. Universidad 3040 Col, Copilco Universidad Alcaldía Coyoacán, 04510, Mexico City, Mexico
| | - Alberto Avila-Luna
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Gabriela García-Díaz
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Roberto Rodríguez-Labrada
- School of Physical Culture, University of Holguín, Avenida XX Aniversario, 80100, Holguín, Cuba
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Yaimee Vázquez-Mojena
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Carmen Parra-Cid
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Sergio Montes
- Reynosa-Aztlan Multidisciplinary Unit, Autonomous University of Tamaulipas, Fuente de Diana, Aztlán, 88740, Tamaulipas, Mexico
| | - Antonio Bueno-Nava
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Rigoberto González-Piña
- Laboratory of Aging Biology, National Geriatric Institute, Av. Contreras 428 Col. San Jerónimo Lídice Alcaldía Magdalena Contreras, 10200, Mexico City, Mexico.
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico.
- Department of Special Education, University of the Americas Mexico City College, Puebla # 223 Col. Roma Alcaldía Cuauhtemoc, 06700, Mexico City, Mexico.
| |
Collapse
|
7
|
Caliendo ET, Kim N, Edasery D, Askin G, Nowak S, Gerber LM, Baum KT, Blackwell LS, Koterba CH, Hoskinson KR, Kurowski BG, McLaughlin M, Tlustos SJ, Watson WD, Niogi SN, Suskauer SJ, Shah SA. Acute Imaging Findings Predict Recovery of Cognitive and Motor Function after Inpatient Rehabilitation for Pediatric Traumatic Brain Injury: A Pediatric Brain Injury Consortium Study. J Neurotrauma 2021; 38:1961-1968. [PMID: 33504256 PMCID: PMC8418527 DOI: 10.1089/neu.2020.7437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in children; survivors experience long-term cognitive and motor deficits. To date, studies predicting outcome following pediatric TBI have primarily focused on acute behavioral responses and proxy measures of injury severity; unsurprisingly, these measures explain very little of the variance following heterogenous injury. In adults, certain acute imaging biomarkers help predict cognitive and motor recovery following moderate to severe TBI. This multi-center, retrospective study, characterizes the day-of-injury computed tomographic (CT) reports of pediatric, adolescent, and young adult patients (2 months to 21 years old) who received inpatient rehabilitation services for TBI (n = 247). The study also determines the prognostic utility of CT findings for cognitive and motor outcomes assessed by the Pediatric Functional Independence Measure, converted to age-appropriate developmental functional quotient (DFQ), at discharge from rehabilitation. Subdural hematomas (66%), contusions (63%), and subarachnoid hemorrhages (59%) were the most common lesions; the majority of subjects had less severe Rotterdam CT scores (88%, ≤ 3). After controlling for age, gender, mechanism of injury, length of acute hospital stay, and admission DFQ in multivariate regression analyses, the highest Rotterdam score (β = -25.2, p < 0.01) and complete cisternal effacement (β = -19.4, p < 0.05) were associated with lower motor DFQ, and intraventricular hemorrhage was associated with lower motor (β = -3.7, p < 0.05) and cognitive DFQ (β = -4.9, p < 0.05). These results suggest that direct detection of intracranial injury provides valuable information to aid in prediction of recovery after pediatric TBI, and needs to be accounted for in future studies of prognosis and intervention.
Collapse
Affiliation(s)
| | - Nayoung Kim
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, New York, USA
- Blythedale Children's Hospital, Valhalla, New York, USA
| | - David Edasery
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Gulce Askin
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Sophie Nowak
- Blythedale Children's Hospital, Valhalla, New York, USA
| | - Linda M. Gerber
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Katherine T. Baum
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura S. Blackwell
- Department of Neuropsychology, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Christine H. Koterba
- Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kristen R. Hoskinson
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Brad G. Kurowski
- Division of Pediatric Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Departments of Pediatrics and Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew McLaughlin
- Division of Pediatric Rehabilitation Medicine, Children's Mercy, Kansas City, Missouri, USA
- University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Sarah J. Tlustos
- Department of Rehabilitation, Children's Hospital Colorado and Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - William D. Watson
- Blythedale Children's Hospital, Valhalla, New York, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Sumit N. Niogi
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Stacy J. Suskauer
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sudhin A. Shah
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, New York, USA
- Blythedale Children's Hospital, Valhalla, New York, USA
| |
Collapse
|
8
|
Katz DI, Dwyer B. Clinical Neurorehabilitation: Using Principles of Neurological Diagnosis, Prognosis, and Neuroplasticity in Assessment and Treatment Planning. Semin Neurol 2021; 41:111-123. [PMID: 33663002 DOI: 10.1055/s-0041-1725132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurorehabilitation aspires to restore a person to his or her fullest potential after incurring neurological dysfunction. In medical rehabilitation, diagnosis involves assessment of medical conditions and their effects on functioning. It is usually a team effort that involves an amalgam of diagnostic assessments by multiple disciplines, leading to a collection of rehabilitative treatment plans and goals. This article discusses a clinical neurological paradigm, using rigorous clinical assessment of neuropathological and clinical diagnosis, along with prognostication of natural history and recovery. In the context of the role of neuroplasticity in recovery, this paradigm can add significant value to rehabilitation team management and planning. It contributes to enhanced understanding of neurological impairments and syndromes as they relate to functional disability, aiding in targeting deficits and setting treatment goals. Rehabilitation strategies and goals should be informed by natural history and prognosis, and viewed in the framework of the stage of recovery. Prognostic formulations should suggest an emphasis on restorative versus compensatory strategies for functional problems. Treatment planning should be informed by evidence on how interventions modulate brain reorganization in promoting recovery. Strategies that promote adaptive neuroplasticity should be favored, especially with restorative efforts, and evidence supporting optimal techniques, timing, and dosing of rehabilitation should be considered in treatment planning.
Collapse
Affiliation(s)
- Douglas I Katz
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Encompass Health Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Encompass Health Braintree Rehabilitation Hospital, Braintree, Massachusetts
| |
Collapse
|
9
|
Hughes CML, Baye M, Gordon-Murer C, Louie A, Sun S, Belay GJ, Zhang X. Quantitative Assessment of Upper Limb Motor Function in Ethiopian Acquired Brain Injured Patients Using a Low-Cost Wearable Sensor. Front Neurol 2020; 10:1323. [PMID: 31920943 PMCID: PMC6920247 DOI: 10.3389/fneur.2019.01323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 11/18/2022] Open
Abstract
Acquired brain injuries place a significant burden on sub-Saharan African rehabilitation clinicians and health care facilities. While wearable sensors have the potential to alleviate these issues, many are beyond the financial capabilities of the majority of African persons and clinics. To bridge this gap, we have developed a low-cost wrist-worn sensor (the outREACH sensor) capable of accurately measuring upper limb movement kinematics. In this study we evaluated the extent to which the outREACH sensor is sensitive to the hand performing the task (unimpaired, impaired) and level of impairment (mild, moderate) in 14 Ethiopian persons with acquired brain injury (mean age = 51.6 ± 12.2 years, 1 female, 13 male). Participants performed an object manipulation task with both the impaired and the unimpaired limb, and reaching performance was measured using standard kinematic measures (i.e., movement time, spectral arc length, peak velocity, peak acceleration, mean velocity, mean acceleration). Overall, movements were smoother and faster when performed by the patient's unimpaired limb. In contrast, maximum velocity did not differ between the two limbs. Moreover, the outREACH sensor was sensitive to differences in performance-based upper limb impairment. Fugl-Meyer assessment for upper extremity scores were significantly correlated with movement time, spectral arc length, and peak velocity. Upper limb movement kinematics can be accurately measured using the outREACH sensor. The outREACH sensor can be a valuable addition to standardized clinical measures that provides rehabilitation clinicians with information regarding initial upper limb impairment level and changes in function across the rehabilitation lifespan.
Collapse
Affiliation(s)
- Charmayne M L Hughes
- Health Equity Institute NeuroTech Lab, San Francisco State University, San Francisco, CA, United States.,Department of Kinesiology, San Francisco State University, San Francisco, CA, United States
| | - Moges Baye
- Department of Physiotherapy, University of Gondar, Gondar, Ethiopia
| | - Chloe Gordon-Murer
- Health Equity Institute NeuroTech Lab, San Francisco State University, San Francisco, CA, United States.,Department of Kinesiology, San Francisco State University, San Francisco, CA, United States
| | - Alexander Louie
- School of Engineering, San Francisco State University, San Francisco, CA, United States
| | - Selena Sun
- Health Equity Institute NeuroTech Lab, San Francisco State University, San Francisco, CA, United States
| | | | - Xiaorong Zhang
- School of Engineering, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
10
|
Jang SH, Seo YS. Difference between injuries of the corticospinal tract and corticoreticulospinal tract in patients with diffuse axonal injury: a diffusion tensor tractography study. Int J Neurosci 2019; 130:124-129. [PMID: 31524551 DOI: 10.1080/00207454.2019.1667779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: No studies have investigated differences in injury of the corticospinal tract (CST) and corticoreticulospinal tract (CRT) following diffuse axonal injury (DAI) to date. Therefore, we investigated differences in injury of the CST and CRT in patients with DAI using diffusion tensor tractography (DTT).Methods: Twenty consecutive patients with DAI and 20 control subjects were recruited. CST and CRT were reconstructed. Each part of the CST and CRT was analyzed in terms of DTT parameters and configuration.Results: Upon group analysis, decreased FA and TV values were observed in both the CST and CRT in the patient group compared with the control group (%) (p < .05). In the individual analysis in terms of the TV, significantly higher injury incidence was observed for the CRT (47.5%) than the CST (25.0%) (p < .05). Evaluation of the DTT configuration revealed significantly higher injury incidence for the CRT (50.0%) than the CST (17.5%) (p < .05). Specifically, the incidence of discontinuation was significantly higher for the CRT (40.0%) than the CST (10.0%) (p < .05).Conclusions: Injury of the CST and CRT was detected in patients with DAI using DTT. In terms of the incidence and severity of neural injury, the CRT appeared to be more vulnerable to DAI than the CST.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Taegu, Republic of Korea
| | - You Sung Seo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Taegu, Republic of Korea
| |
Collapse
|
11
|
Verley DR, Torolira D, Pulido B, Gutman B, Bragin A, Mayer A, Harris NG. Remote Changes in Cortical Excitability after Experimental Traumatic Brain Injury and Functional Reorganization. J Neurotrauma 2018; 35:2448-2461. [PMID: 29717625 DOI: 10.1089/neu.2017.5536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although cognitive and behavioral deficits are well known to occur following traumatic brain injury (TBI), motor deficits that occur even after mild trauma are far less known, yet are equally persistent. This study was aimed at making progress toward determining how the brain reorganizes in response to TBI. We used the adult rat controlled cortical impact injury model to study the ipsilesional forelimb map evoked by electrical stimulation of the affected limb, as well as the contralesional forelimb map evoked by stimulation of the unaffected limb, both before injury and at 1, 2, 3, and 4 weeks after using functional magnetic resonance imaging (fMRI). End-point c-FOS immunohistochemistry data following 1 h of constant stimulation of the unaffected limb were acquired in the same rats to avoid any potential confounds due to altered cerebrovascular coupling. Single and paired-pulse sensory evoked potential (SEP) data were recorded from skull electrodes over the contralesional cortex in a parallel series of rats before injury, at 3 days, and at 1, 2, 3, and 4 weeks after injury in order to determine whether alterations in cortical excitability accompanied reorganization of the cortical map. The results show a transient trans-hemispheric shift in the ipsilesional cortical map as indicated by fMRI, remote contralesional increases in cortical excitability that occur in spatially similar regions to altered fMRI activity and greater c-FOS activation, and reduced or absent ipsilesional cortical activity chronically. The contralesional changes also were indicated by reduced SEP latency within 3 days after injury, but not by blood oxygenation level-dependent fMRI until much later. Detailed interrogation of cortical excitability using paired-pulse electrophysiology showed that the contralesional cortex undergoes both an early and a late post-injury period of hyper-excitability in response to injury, interspersed by a period of relatively normal activity. From these data, we postulate a cross-hemispheric mechanism by which remote cortex excitability inhibits ipsilesional activation by rebalanced cortical excitation-inhibition.
Collapse
Affiliation(s)
- Derek R Verley
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Daniel Torolira
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Brandon Pulido
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Boris Gutman
- 2 Department of Neurology, Imaging Genetics Center, Keck/ University of Southern California School of Medicine, Institute for Neuroimaging and Informatics, University of Southern California , California
| | - Anatol Bragin
- 3 Department of Neurology, University of California , Los Angeles, California
| | - Andrew Mayer
- 4 The MIND Research Network and Department of Neurology, University of New Mexico , Albuquerque, New Mexico
| | - Neil G Harris
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| |
Collapse
|
12
|
Nissinen J, Andrade P, Natunen T, Hiltunen M, Malm T, Kanninen K, Soares JI, Shatillo O, Sallinen J, Ndode-Ekane XE, Pitkänen A. Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy. Epilepsy Res 2017; 136:18-34. [DOI: 10.1016/j.eplepsyres.2017.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
|
13
|
Demers M, Levin MF. Do Activity Level Outcome Measures Commonly Used in Neurological Practice Assess Upper-Limb Movement Quality? Neurorehabil Neural Repair 2017; 31:623-637. [DOI: 10.1177/1545968317714576] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marika Demers
- McGill University, Montréal, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montréal, Montréal, Canada
| | - Mindy F. Levin
- McGill University, Montréal, Canada
- Center for Interdisciplinary Research in Rehabilitation of Greater Montréal, Montréal, Canada
| |
Collapse
|
14
|
Esquenazi A, Lee S, Wikoff A, Packel A, Toczylowski T, Feeley J. A Comparison of Locomotor Therapy Interventions: Partial-Body Weight-Supported Treadmill, Lokomat, and G-EO Training in People With Traumatic Brain Injury. PM R 2017; 9:839-846. [PMID: 28093370 DOI: 10.1016/j.pmrj.2016.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Literature in the application of gait training techniques in persons with traumatic brain injury (TBI) is limited. Current techniques require multiple staff and are physically demanding. The use of a robotic locomotor training may provide improved training capacity for this population. OBJECTIVE To examine the impact of 3 different modes of locomotor therapy on gait velocity and spatiotemporal symmetry using an end effector robot (G-EO); a robotic exoskeleton (Lokomat), and manual assisted partial-body weight-supported treadmill training (PBWSTT) in participants with traumatic brain injury. DESIGN Randomized, prospective study. SETTING Tertiary rehabilitation hospital. PARTICIPANTS A total of 22 individuals with ≥12 months chronic TBI with hemiparetic pattern able to walk overground without assistance at velocities between 0.2 and 0.6 m/s. INTERVENTION Eighteen sessions of 45 minutes of assigned locomotor training. OUTCOME MEASURES Overground walking self-selected velocity (SSV), maximal velocity (MV), spatiotemporal asymmetry ratio, 6-Minute Walk Test (6MWT), and mobility domain of Stroke Impact Scale (MSIS). RESULTS Severity in walking dysfunction was similar across groups as determined by walking velocity data. At baseline, participants in the Lokomat group had a baseline velocity that was slightly slower compared with the other groups. Training elicited a statistically significant median increase in SSV for all groups compared with pretraining (Lokomat, P = .04; G-EO, P = .03; and PBWSTT, P = .02) and MV excluding the G-EO group (Lokomat, P = .04; PBWSTT, P = .03 and G-EO, P = .15). There were no pre-post significant differences in swing time, stance time, and step length asymmetry ratios at SSV or MV for any of the interventions. Mean rank in the change of SSV and MV was not statistically significantly different between groups. Participants in the G-EO and PBWSTT groups significantly improved their 6MWT posttraining (P = .04 and .03, respectively). The MSIS significantly improved only for the Lokomat group (P = .04 and .03). The data did not elicit between-groups significant differences for 6MWT and MSIS. There was less use of staff for Lokomat than G-EO. CONCLUSIONS Locomotor therapy using G-EO, Lokomat, or PBWSTT in individuals with chronic TBI increased SSV and MV without significant changes in gait symmetry. Staffing needed for therapy provision was the least for the Lokomat. A larger study may further elucidate changes in gait symmetry and other training parameters. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Alberto Esquenazi
- MossRehab Gait and Motion Analysis Laboratory, 60 Township Line Rd, Elkins Park, PA 19027(∗).
| | - Stella Lee
- MossRehab Gait and Motion Analysis Laboratory, Elkins Park, PA(†)
| | - Amanda Wikoff
- MossRehab Gait and Motion Analysis Laboratory, Elkins Park, PA(‡)
| | - Andrew Packel
- MossRehab Gait and Motion Analysis Laboratory, Elkins Park, PA(§)
| | | | - John Feeley
- MossRehab Gait and Motion Analysis Laboratory, Elkins Park, PA(#)
| |
Collapse
|
15
|
Lotze M, Grodd W, Rodden FA, Gut E, Schönle PW, Kardatzki B, Cohen LG. Neuroimaging Patterns Associated with Motor Control in Traumatic Brain Injury. Neurorehabil Neural Repair 2016; 20:14-23. [PMID: 16467275 DOI: 10.1177/1545968305282919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To determine if patients with traumatic brain injury (TBI) and motor deficits show differences in functional activation maps during repetitive hand movements relative to healthy controls. Are there predictors for motor outcome in the functional maps of these patients? Methods. In an exploratory cross-sectional study, functional magnetic resonance imaging (fMRI) was used to study the blood-oxygenation-level-dependent (BOLD) response in cortical motor areas of 34 patients suffering from moderate motor deficits after TBI as they performed unilateral fist-clenching motions. Twelve of these patients with unilateral motor deficits were studied 3 months after TBI and a 2nd time approximately 4 months later. Results. Compared to age-matched, healthy controls performing the same task, TBI patients showed diminished fMRI-signal change in the primary sensorimotor cortex contralateral to the moving hand (cSM1), the contralateral dorsal premotor cortex, and bilaterally in the supplementary motor areas (SMAs). Clinical impairment and the magnitude of the fMRI-signal change in cSM1 and SMA were negatively correlated. Patients with poor and good motor recovery showed comparable motor impairment at baseline. Only patients who evolved to “poor clinical outcome” had decreased fMRI-signal change in the cSM1 during baseline. Conclusions. These observations raise the hypothesis that the magnitude of the fMRI-signal change in the cSM1 region could have prognostic value in the evaluation of patients with TBI.
Collapse
Affiliation(s)
- M Lotze
- Department of Neuroradiology, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Avila-Luna A, Verduzco-Mendoza A, Bueno-Nava A. Effects of dopamine D1 receptor activation and blockade on dopamine and noradrenaline levels in the rat brain. Neurosci Lett 2015; 612:116-120. [PMID: 26639424 DOI: 10.1016/j.neulet.2015.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/15/2022]
Abstract
The noradrenergic and dopaminergic systems are associated with the motor system and have anatomical and functional connections that have not yet been studied. The present study aimed to examine the specific role of D1 receptors (D1Rs) on noradrenergic and dopaminergic responses in the rat brain. Male Wistar rats were assigned to eight groups to receive systemic injection of a D1R agonist (SKF-38393) at 0, 1, 5 or 10mg/kg or injection of a D1R antagonist (SCH-23390) at 0, 0.25, 0.5 or 1mg/kg. Dopamine (DA) and noradrenaline (NA) levels were measured using high-performance liquid chromatography. Injection of SKF-38393 alone at 1, 5 and 10mg/kg did not alter DA levels in the midbrain, cerebral cortex or pons, while it significantly increased these levels in the striatum (at 1 and 10mg/kg), hippocampus (at 1mg/kg) and cerebellum (at 1 and 5mg/kg). Administration of SKF-38393 at 1, 5, and 10mg/kg decreased the NA levels in the midbrain, pons, hippocampus (except at 1mg/kg) and cortex (except at 5mg/kg), whereas the opposite effect was observed in the striatum. SCH-23390 decreased the DA levels in the cortex (at 0.25 and 0.5mg/kg) and pons (at 0.5mg/kg). In contrast, 0.25, 0.5 and 1mg/kg SCH-23390 increased the DA levels in the cerebellum, whereas no differences from the control levels were observed for the DA levels in the striatum, midbrain and hippocampus. SCH-23390 at 0.5 and 1mg/kg increased the NA levels in the striatum. In contrast, the midbrain, hippocampus, cortex, pons and cerebellum did not exhibit altered NA levels. Our results demonstrate that the activation of D1Rs modulates the response of the noradrenergic system in nearly all of the investigated brain structures; thus, the blockade of D1Rs attenuates the effects induced by D1R activation.
Collapse
Affiliation(s)
- Alberto Avila-Luna
- División de Neurociencias, Instituto Nacional de Rehabilitación, 'Luis Guillermo Ibarra Ibarra', Secretaría de Salud, Calzada México-Xochimilco 289, Arenal de Guadalupe, C.P. 14389, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- División de Neurociencias, Instituto Nacional de Rehabilitación, 'Luis Guillermo Ibarra Ibarra', Secretaría de Salud, Calzada México-Xochimilco 289, Arenal de Guadalupe, C.P. 14389, Mexico City, Mexico
| | - Antonio Bueno-Nava
- División de Neurociencias, Instituto Nacional de Rehabilitación, 'Luis Guillermo Ibarra Ibarra', Secretaría de Salud, Calzada México-Xochimilco 289, Arenal de Guadalupe, C.P. 14389, Mexico City, Mexico.
| |
Collapse
|
17
|
Yoon KJ, Lee YT, Chung PW, Lee YK, Kim DY, Chun MH. Effects of Repetitive Transcranial Magnetic Stimulation on Behavioral Recovery during Early Stage of Traumatic Brain Injury in Rats. J Korean Med Sci 2015; 30:1496-502. [PMID: 26425049 PMCID: PMC4575941 DOI: 10.3346/jkms.2015.30.10.1496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/10/2015] [Indexed: 11/26/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising technique that modulates neural networks. However, there were few studies evaluating the effects of rTMS in traumatic brain injury (TBI). Herein, we assessed the effectiveness of rTMS on behavioral recovery and metabolic changes using brain magnetic resonance spectroscopy (MRS) in a rat model of TBI. We also evaluated the safety of rTMS by measuring brain swelling with brain magnetic resonance imaging (MRI). Twenty male Sprague-Dawley rats underwent lateral fluid percussion and were randomly assigned to the sham (n=10) or the rTMS (n=10) group. rTMS was applied on the fourth day after TBI and consisted of 10 daily sessions for 2 weeks with 10 Hz frequency (total pulses=3,000). Although the rTMS group showed an anti-apoptotic effect around the peri-lesional area, functional improvements were not significantly different between the two groups. Additionally, rTMS did not modulate brain metabolites in MRS, nor was there any change of brain lesion or edema after magnetic stimulation. These data suggest that rTMS did not have beneficial effects on motor recovery during early stages of TBI, although an anti-apoptosis was observed in the peri-lesional area.
Collapse
Affiliation(s)
- Kyung Jae Yoon
- Department of Physical Medicine & Rehabilitation, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Medical Research Institute, Regenerative & Neuroscience Laboratory, Kangbuk Samsung Hospital, Seoul, Korea
| | - Yong-Taek Lee
- Department of Physical Medicine & Rehabilitation, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Medical Research Institute, Regenerative & Neuroscience Laboratory, Kangbuk Samsung Hospital, Seoul, Korea
| | - Pil-Wook Chung
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Kyung Lee
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae Yul Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Evans TM, Jaramillo CA, Sataranatarajan K, Watts L, Sabia M, Qi W, Van Remmen H. The effect of mild traumatic brain injury on peripheral nervous system pathology in wild-type mice and the G93A mutant mouse model of motor neuron disease. Neuroscience 2015; 298:410-23. [PMID: 25921732 DOI: 10.1016/j.neuroscience.2015.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/19/2015] [Accepted: 04/21/2015] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is associated with a risk of neurodegenerative disease. Some suggest a link between TBI and motor neuron disease (MND), including amyotrophic lateral sclerosis (ALS). To investigate the potential mechanisms linking TBI to MND, we measured motor function and neuropathology following mild-TBI in wild-type and a transgenic model of ALS, G93A mutant mice. Mild-TBI did not alter the lifespan of G93A mice or age of onset; however, rotarod performance was impaired in G93A verses wild-type mice. Grip strength was reduced only in G93A mice after mild-TBI. Increased electromyography (EMG) abnormalities and markers of denervation (AchR, Runx1) indicate that mild-TBI may result in peripheral effects that are exaggerated in G93A mice. Markers of inflammation (cell edema, astrogliosis and microgliosis) were detected at 24 and 72h in the brain and spinal cord in wild-type and G93A mice. Levels of F2-isoprostanes, a marker of oxidative stress, were increased in the spinal cord 24h post mild-TBI in wild-type mice but were not affected by TBI in G93A mice. In summary, our data demonstrate that mild-TBI induces inflammation and oxidative stress and negatively impacts muscle denervation and motor performance, suggesting mild-TBI can potentiate motor neuron pathology and influence the development of MND in mice.
Collapse
Affiliation(s)
- T M Evans
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - C A Jaramillo
- Polytrauma Rehabilitation Center, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA; Department of Rehabilitation Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - K Sataranatarajan
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| | - L Watts
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - M Sabia
- South Texas Veterans Health Care System, San Antonio, TX, USA.
| | - W Qi
- South Texas Veterans Health Care System, San Antonio, TX, USA.
| | - H Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
19
|
Iaccarino MA, Bhatnagar S, Zafonte R. Rehabilitation after traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:411-22. [PMID: 25702231 DOI: 10.1016/b978-0-444-52892-6.00026-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a growing problem in the US, with significant morbidity and economic implications. This diagnosis spans a wide breath of injuries from concussion to severe TBI. Thus, rehabilitation is equally diverse in its treatment strategies targeting those symptoms that are functionally limiting with the ultimate goal of independence and community reintegration. In severe TBI, rehabilitation can be lifelong. Acute care rehabilitation focuses on emergence from coma and prognostication of recovery. Therapeutic modalities and exercise, along with pharmacologic intervention, can target long-term motor and cognitive sequelae. Complications of severe TBI that are functionally limiting and impede therapy include heterotopic ossification, agitation, dysautonomia, and spasticity. In mild TBI, most patients recover quickly but education on repeat exposure is imperative, with the implications of consecutive injuries being potentially devastating. Furthermore, rehabilitation targets lingering symptoms including sleep disturbance, visuospatial deficits, headaches, and cognitive dysfunction. As research on the entire TBI population improves, commonalities in the disease process may emerge, helping rationalize therapeutic interventions and providing more robust targets for treatment.
Collapse
Affiliation(s)
- Mary Alexis Iaccarino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Boston, MA, USA
| | - Saurabha Bhatnagar
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Veterans Administration, Boston and Harvard Medical School, Boston, MA, USA
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Woman's Hopsital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Yeo SS, Jang SH. Corticospinal tract recovery in a patient with traumatic transtentorial herniation. Neural Regen Res 2014; 8:469-73. [PMID: 25206689 PMCID: PMC4146130 DOI: 10.3969/j.issn.1673-5374.2013.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/06/2013] [Indexed: 11/18/2022] Open
Abstract
Transtentorial herniation is one of the causes of motor weakness in traumatic brain injury. In this study, we report on a patient who underwent decompressive craniectomy due to traumatic intracerebral hemorrhage. Brain CT images taken after surgery showed intracerebral hemorrhage in the left fronto-temporal lobe and left transtentorial herniation. The patient presented with severe paralysis of the right extremities at the time of intracerebral hemorrhage onset, but the limb motor function recovered partially at 6 months after onset and to nearly normal level at 27 months. Through diffusion tensor tractography, the left corticospinal tract was disrupted below the cerebral peduncle at 1 month after onset and the disrupted left corticospinal tract was reconstructed at 27 months. These findings suggest that recovery of limb motor function in a patient with traumatic transtentorial herniation can come to be true by recovery of corticospinal tract.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| |
Collapse
|
21
|
Pitkänen A, Kemppainen S, Ndode-Ekane XE, Huusko N, Huttunen JK, Gröhn O, Immonen R, Sierra A, Bolkvadze T. Posttraumatic epilepsy - disease or comorbidity? Epilepsy Behav 2014; 38:19-24. [PMID: 24529830 DOI: 10.1016/j.yebeh.2014.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI) can cause a myriad of sequelae depending on its type, severity, and location of injured structures. These can include mood disorders, posttraumatic stress disorder and other anxiety disorders, personality disorders, aggressive disorders, cognitive changes, chronic pain, sleep problems, motor or sensory impairments, endocrine dysfunction, gastrointestinal disturbances, increased risk of infections, pulmonary disturbances, parkinsonism, posttraumatic epilepsy, or their combinations. The progression of individual pathologies leading to a given phenotype is variable, and some progress for months. Consequently, the different post-TBI phenotypes appear within different time windows. In parallel with morbidogenesis, spontaneous recovery occurs both in experimental models and in human TBI. A great challenge remains; how can we dissect the specific mechanisms that lead to the different endophenotypes, such as posttraumatic epileptogenesis, in order to identify treatment approaches that would not compromise recovery?
Collapse
Affiliation(s)
- Asla Pitkänen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, PO Box 1777, FIN-70211 Kuopio, Finland.
| | - Samuli Kemppainen
- Kainuu Central Hospital, Kainuu Social Welfare and Health Care Joint Authority, Kajaani, Finland; Northern Finland Laboratory Centre (NordLab), Sotkamontie 13, FIN-87300 Kajaani, Finland
| | - Xavier Ekolle Ndode-Ekane
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Huusko
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Joanna K Huttunen
- Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Olli Gröhn
- Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Riikka Immonen
- Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Alejandra Sierra
- Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Tamuna Bolkvadze
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
22
|
Liu NK, Zhang YP, Zou J, Verhovshek T, Chen C, Lu QB, Walker CL, Shields CB, Xu XM. A semicircular controlled cortical impact produces long-term motor and cognitive dysfunction that correlates well with damage to both the sensorimotor cortex and hippocampus. Brain Res 2014; 1576:18-26. [PMID: 24905625 DOI: 10.1016/j.brainres.2014.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/22/2014] [Accepted: 05/28/2014] [Indexed: 11/29/2022]
Abstract
Animal models of traumatic brain injury (TBI) are essential for testing novel hypotheses and therapeutic interventions. Unfortunately, due to the broad heterogeneity of TBI in humans, no single model has been able to reproduce the entire spectrum of these injuries. The controlled cortical impact (CCI) model is one of the most commonly used models of contusion TBI. However, behavioral evaluations have revealed transient impairment in motor function after CCI in rats and mice. Here we report a new semicircular CCI (S-CCI) model by increasing the impact tip area to cover both the motor cortex and hippocampal regions in adult mice. Mice were subjected to S-CCI or CCI using an electromagnetic impactor (Impactor One, MyNeuroLab; semicircular tip: 3mm radius; CCI tip diameter: 3mm). We showed that S-CCI, at two injury severities, significantly decreased the neuroscore and produced deficits in performance on a rotarod device for the entire duration of the study. In contrast, the CCI induced motor deficits only at early stages after the injury, suggesting that the S-CCI model produces long-lasting motor deficits. Morris water maze test showed that both CCI and S-CCI produced persisting memory deficits. Furthermore, adhesive removal test showed significant somatosensory and motor deficits only in the S-CCI groups. Histological analysis showed a large extent of cortical contusion lesions, including both the sensory and motor cortex, and hippocampal damage in the S-CCI. These findings collectively suggest that the current model may offer sensitive, reliable, and clinically relevant outcomes for assessments of therapeutic strategies for TBI.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Department of Anatomy and Cell Biology, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi-Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Jian Zou
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Department of Anatomy and Cell Biology, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tom Verhovshek
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Department of Anatomy and Cell Biology, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Department of Anatomy and Cell Biology, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qing-Bo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Department of Anatomy and Cell Biology, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Department of Anatomy and Cell Biology, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Department of Anatomy and Cell Biology, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
23
|
Szaflarski JP, Nazzal Y, Dreer LE. Post-traumatic epilepsy: current and emerging treatment options. Neuropsychiatr Dis Treat 2014; 10:1469-77. [PMID: 25143737 PMCID: PMC4136984 DOI: 10.2147/ndt.s50421] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) leads to many undesired problems and complications, including immediate and long-term seizures/epilepsy, changes in mood, behavioral, and personality problems, cognitive and motor deficits, movement disorders, and sleep problems. Clinicians involved in the treatment of patients with acute TBI need to be aware of a number of issues, including the incidence and prevalence of early seizures and post-traumatic epilepsy (PTE), comorbidities associated with seizures and anticonvulsant therapies, and factors that can contribute to their emergence. While strong scientific evidence for early seizure prevention in TBI is available for phenytoin (PHT), other antiepileptic medications, eg, levetiracetam (LEV), are also being utilized in clinical settings. The use of PHT has its drawbacks, including cognitive side effects and effects on function recovery. Rates of recovery after TBI are expected to plateau after a certain period of time. Nevertheless, some patients continue to improve while others deteriorate without any clear contributing factors. Thus, one must ask, 'Are there any actions that can be taken to decrease the chance of post-traumatic seizures and epilepsy while minimizing potential short- and long-term effects of anticonvulsants?' While the answer is 'probably,' more evidence is needed to replace PHT with LEV on a permanent basis. Some have proposed studies to address this issue, while others look toward different options, including other anticonvulsants (eg, perampanel or other AMPA antagonists), or less established treatments (eg, ketamine). In this review, we focus on a comparison of the use of PHT versus LEV in the acute TBI setting and summarize the clinical aspects of seizure prevention in humans with appropriate, but general, references to the animal literature.
Collapse
Affiliation(s)
- Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA ; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yara Nazzal
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA ; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura E Dreer
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Harris NG, Chen SF, Pickard JD. Cortical reorganization after experimental traumatic brain injury: a functional autoradiography study. J Neurotrauma 2013; 30:1137-46. [PMID: 23305562 PMCID: PMC3700473 DOI: 10.1089/neu.2012.2785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cortical sensorimotor (SM) maps are a useful readout for providing a global view of the underlying status of evoked brain function, as well as a gross overview of ongoing mechanisms of plasticity. Recent evidence in the rat controlled cortical impact (CCI) injury model shows that the ipsilesional (injured) hemisphere is temporarily permissive for axon sprouting. This would predict that size and spatial alterations in cortical maps may occur much earlier than previously tested and that they might be useful as potential markers of the postinjury plasticity period as well as indicators of outcome. We investigated the evolution of changes in brain activation evoked by affected hindlimb electrical stimulation at 4, 7, and 30 days following CCI or sham injury over the hindlimb cortical region of adult rats. [(14)C]-iodoantipyrine autoradiography was used to quantitatively examine the local cerebral blood flow changes in response to hindlimb stimulation as a marker for neuronal activity. The results show that although ipsilesional hindlimb SM activity was persistently depressed from 4 days, additional novel regions of ipsilesional activity appeared concurrently within SM barrel and S2 regions as well as posterior auditory cortex. Simultaneously with this was the appearance of evoked activity within the intact, contralesional cortex that was maximal at 4 and 7 days, compared to stimulated sham-injured rats, where activation was solely unilateral. By 30 days, however, contralesional activation had greatly subsided and existing ipsilesional activity was enhanced within the same novel cortical regions that were identified acutely. These data indicate that significant reorganization of the cortical SM maps occurs after injury that evolves with a particular postinjury time course. We discuss these data in terms of the known mechanisms of plasticity that are likely to underlie these map changes, with particular reference to the differences and similarities that exist between rodent models of stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7039, USA.
| | | | | |
Collapse
|
25
|
Kozlowski DA, Leasure JL, Schallert T. The Control of Movement Following Traumatic Brain Injury. Compr Physiol 2013; 3:121-39. [DOI: 10.1002/cphy.c110005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Zou F, Xu J, Fu H, Cao J, Mao H, Gong M, Cui G, Zhang Y, Shi W, Chen J. Different functions of HIPK2 and CtBP2 in traumatic brain injury. J Mol Neurosci 2012; 49:395-408. [PMID: 23076816 DOI: 10.1007/s12031-012-9906-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/09/2012] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to neuronal dysfunction and over-reactive astrocytes. In our study, homeodomain interacting protein kinase 2 (HIPK2) can interact with C-terminal binding protein 2 (CtBP2) in rat brain, which is a component of Wnt-regulated transcription. Up to now, the functions of HIPK2 and CtBP2 in CNS are still with limited acquaintance. In our study, we found that the interaction between HIPK2 and CtBP2 was involved in central nervous system (CNS) injury and repair. We performed an acute TBI model in adult rats. Western blot and immunohistochemistry analysis revealed that both HIPK2 and CtBP2 significantly increased in the peritrauma brain cortex in comparison to contralateral cerebral cortex. And immunofluorescence double-labeling revealed that HIPK2 was mainly co-expressed with NeuN but less GFAP. Meanwhile, we also examined that the expression profiles of active-caspase-3 was correlated with the expression of HIPK2 and the expression profiles of the proliferating cell nuclear antigen (PCNA) was correlated with the expression of CtBP2. HIPK2 participated in apoptosis of neurons, but CtBP2 was associated with the activation and proliferation of astrocytes. Immunoprecipitation further showed that they enhanced the interaction with each other in the pathophysiology process. In conclusion, this was the first description that HIPK2 interacted with CtBP2 in traumatic brains. Our data suggest that HIPK2 and CtBP2 might play important roles in CNS pathophysiology after TBI, and might provide a basis for the further study on their roles in regulating the prognosis after TBI.
Collapse
Affiliation(s)
- Feihui Zou
- Department of Neurology, Surgical Comprehensive Laboratory Affiliated Hospital of Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province, 226001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
What is the role of brain mechanisms underlying arousal in recovery of motor function after structural brain injuries? Curr Opin Neurol 2012; 24:564-9. [PMID: 22002078 DOI: 10.1097/wco.0b013e32834cd4f5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Standard neurorehabilitation approaches have limited impact on motor recovery in patients with severe brain injuries. Consideration of the contributions of impaired arousal offers a novel approach to understand and enhance recovery. RECENT FINDINGS Animal and human neuroimaging studies are elucidating the neuroanatomical bases of arousal and of arousal regulation, the process by which the cerebrum mobilizes resources. Studies of patients with disorders of consciousness have revealed that recovery of these processes is associated with marked improvements in motor performance. Recent studies have also demonstrated that patients with less severe brain injuries also have impaired arousal, manifesting as diminished sustained attention, fatigue, and apathy. In these less severely injured patients, it is difficult to connect disorders of arousal with motor recovery because of a lack of measures of arousal that are independent of motor function. SUMMARY Arousal impairment is common after brain injury and likely plays a significant role in recovery of motor function. A more detailed understanding of this connection will help to develop new therapeutic strategies applicable for a wide range of patients. This requires new tools that continuously and objectively measure arousal in patients with brain injury, to correlate with detailed measures of motor performance and recovery.
Collapse
|
28
|
Mumford N, Duckworth J, Thomas PR, Shum D, Williams G, Wilson PH. Upper-limb virtual rehabilitation for traumatic brain injury: A preliminary within-group evaluation of the elements system. Brain Inj 2012; 26:166-76. [DOI: 10.3109/02699052.2011.648706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Andriessen TMJC, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 2011; 14:2381-92. [PMID: 20738443 PMCID: PMC3823156 DOI: 10.1111/j.1582-4934.2010.01164.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. TBI severity classification, based on the hospital admission Glasgow Coma Scale (GCS) score, ranges from mild (GCS 13-15) and moderate (GCS 9-12) to severe (GCS ≤ 8). The GCS reflects the risk of dying from TBI, which is low after mild (∼1%), intermediate after moderate (up to 15%) and high (up to 40%) after severe TBI. Intracranial damage can be focal, such as epidural and subdural haematomas and parenchymal contusions, or diffuse, for example traumatic axonal injury and diffuse cerebral oedema, although this distinction is somewhat arbitrary. Study of the cellular and molecular post-traumatic processes is essential for the understanding of TBI pathophysiology but even more to find therapeutic targets for the development of neuroprotective drugs to be eventually used in human beings. To date, studies in vitro and in vivo, mainly in animals but also in human beings, are unravelling the pathological TBI mechanisms at high pace. Nevertheless, TBI pathophysiology is all but completely elucidated. Neuroprotective treatment studies in human beings have been disappointing thus far and have not resulted in commonly accepted drugs. This review presents an overview on the clinical aspects and the pathophysiology of focal and diffuse TBI, and it highlights several acknowledged important events that occur on molecular and cellular level after TBI.
Collapse
|
30
|
Hayward NMEA, Immonen R, Tuunanen PI, Ndode-Ekane XE, Gröhn O, Pitkänen A. Association of chronic vascular changes with functional outcome after traumatic brain injury in rats. J Neurotrauma 2010; 27:2203-19. [PMID: 20839948 DOI: 10.1089/neu.2010.1448] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We tested the hypothesis that vascular remodeling in the cortex, hippocampus, and thalamus is associated with long-term functional recovery after traumatic brain injury (TBI). We induced TBI with lateral fluid-percussion (LFP) injury in adult rats. Animals were followed-up for 9 months, during which we tested motor performance using a neuroscore test, spatial learning and memory with a Morris water maze, and seizure susceptibility with a pentylenetetrazol (PTZ) test. At 8 months, they underwent structural MRI, and cerebral blood flow (CBF) was assessed by arterial spin labeling (ASL) MRI. Then, rats were perfused for histology to assess the density of blood vessels. In the perilesional cortex, the CBF decreased by 56% (p < 0.01 compared to controls), and vessel density increased by 28% (p < 0.01). There was a negative correlation between CBF in the perilesional cortex and vessel density (r = -0.75, p < 0.01). However, in the hippocampus, we found a 13% decrease in CBF ipsilaterally (p < 0.05) and 20% contralaterally (p < 0.01), and no change in vessel number. In the ipsilateral thalamus, the increase in CBF (34%, p < 0.01) was associated with a remarkable increase in vessel density (78%, p < 0.01). Animals showed motor impairment that was not associated with vascular changes. Instead, poor performance in the Morris water maze correlated with enhanced thalamic vessel density (r = -0.81, p < 0.01). Finally, enhanced seizure susceptibility was associated with reduced CBF in the ipsilateral hippocampus (r = 0.78, p < 0.05) and increased vascular density in the thalamus (r = 0.69, p < 0.05). There was little interaction between the behavioral measures. The present study demonstrates that each of the investigated brain areas has a unique pattern of vascular abnormalities. Chronic alterations in CBF could not be attributed to changes in vascular density. Association of thalamic hypervascularity to epileptogenesis warrants further studies. Finally, hippocampal hypoperfusion may predict later seizure susceptibility in the LFP injury model of TBI, which could be of value for pre-clinical antiepileptogenesis trials.
Collapse
Affiliation(s)
- Nick M E A Hayward
- Department of Neurobiology, Biomedical NMR Group, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
31
|
Huijgen BCH, Vollenbroek-Hutten MMR, Zampolini M, Opisso E, Bernabeu M, Van Nieuwenhoven J, Ilsbroukx S, Magni R, Giacomozzi C, Marcellari V, Marchese SS, Hermens HJ. Feasibility of a home-based telerehabilitation system compared to usual care: arm/hand function in patients with stroke, traumatic brain injury and multiple sclerosis. J Telemed Telecare 2009; 14:249-56. [PMID: 18633000 DOI: 10.1258/jtt.2008.080104] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We conducted a randomized controlled multicentre trial to investigate the feasibility of a telerehabilitation intervention for arm/hand function (the Home Care Activity Desk [HCAD] training) in a home setting. Usual care was compared to HCAD training. The hypothesis was that the clinical outcomes of the HCAD intervention would be at least the same as those measured after a period of usual care for patients with stroke, traumatic brain injury (TBI) and multiple sclerosis (MS) with respect to their arm/hand function. Eighty-one patients with affected arm/hand function resulting from either stroke, MS or TBI were recruited in Italy, Spain and Belgium; 11 were lost during follow-up (14%). The outcome measures were the Action Research Arm Test (ARAT) and the Nine Hole Peg Test (NHPT). There were no significant differences between the two groups on the outcome measures (ARAT and NHPT); in both groups, patients maintained or even improved their arm/hand function. The HCAD training was found to be as feasible as usual care in terms of clinical outcomes, and both therapists and patients were satisfied with the HCAD intervention. A telerehabilitation intervention using HCAD may increase the efficiency of care.
Collapse
Affiliation(s)
- Barbara C H Huijgen
- Roessingh Research and Development, Roessinghbleekweg 33b, 7522 AH Enschede, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
OBJECTIVE To evaluate upper extremity shortness in patients with hemiplegic cerebral palsy (HCP) and to investigate the association between extremity shortness, motor level, and muscle tone. DESIGN Prospective, controlled study. SUBJECTS Forty-two children with HCP and 29 healthy children. METHODS Radiographs of the involved and the uninvolved humerus, forearm, and hands were obtained with a radiographic ruler placed adjacent to the extremity. The lengths and the diameters of both the diaphyses and metaphyses of the humerus, ulna, radius, and the second and the fifth metacarpal bones were measured in patients and the control group. The discrepancy was calculated as a percentage compared with the normal side. The Ashworth Scale was used in the evaluation of spasticity, and the Brunnstrom recovery staging was used in the motor evaluation. RESULTS Children with HCP had significant differences in bone lengths and diameters compared with control children. There was no significant correlation between the upper extremity Brunnstrom stagings and the differences of bone length and diameter. A significant correlation was observed between the hand Brunnstrom staging and percentage difference of the bone length and diameter. The spasticity level showed no relation to the differences in bone length and diameter. CONCLUSIONS Children with HCP have significant side-to-side limb-length discrepancy when compared with control children. The discrepancy increases with age. The extent of shortening did not appear to be related to upper extremity function and spasticity. The extremity shortness showed a relation to hand function.
Collapse
Affiliation(s)
- Sibel Ozbudak Demir
- Ankara Physical Medicine, Rehabilitation, Education and Research Hospital of the Ministry of Health, Ankara.
| | | | | | | |
Collapse
|
33
|
Ang JHY, Man DWK. The discriminative power of the Wolf motor function test in assessing upper extremity functions in persons with stroke. Int J Rehabil Res 2006; 29:357-61. [PMID: 17106357 DOI: 10.1097/mrr.0b013e3280118e65] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Wolf motor function test is a new time-based method to evaluate upper extremity function both on a joint-specific level and on total limb movements, while performing some functional tasks. The purpose of this paper is to investigate the discriminating power of the Wolf motor function test in classifying individuals with stroke into different levels according to Brunnstrom's stages of recovery. Discriminant analysis was used and the results showed that the Wolf motor function test can classify 86.7% of original grouped cases into the correct groupings. A high correlation was found between the Wolf motor function test, the Brunnstrom stages of recovery and the Fugl-Meyer Assessment. The Wolf motor function test is found to be an instrument capable of discriminating the upper extremity motor function of the individuals with stroke into different functional groups.
Collapse
Affiliation(s)
- Josephine Hui Yung Ang
- Occupational Therapy Department, MacLehose Medical Rehabilitation Centre, Hospital Authority, Hong Kong, China
| | | |
Collapse
|
34
|
Gonzalez-Pina R, Bueno-Nava A, Montes S, Alfaro-Rodriguez A, Gonzalez-Maciel A, Reynoso-Robles R, Ayala-Guerrero F. Pontine and cerebellar norepinephrine content in adult rats recovering from focal cortical injury. Neurochem Res 2006; 31:1443-9. [PMID: 17094035 DOI: 10.1007/s11064-006-9196-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/05/2006] [Indexed: 11/24/2022]
Abstract
Norepinephrine (NE) plays an important role in motor recovery after brain damage. Most studies concerning NE activity have been performed in the cerebellum, while the role of the pons, the site where the norepinephrinergic locus coeruleus is located, has not yet been elucidated. For this work, we studied the changes in cerebellar and pontine NE content in sham-operated (n = 17), motor cortex injured (n = 6) and recovered rats (n = 12). Motor effects were assessed by means of footprint analysis and sensorimotor evaluation. It was found that after cortical brain damage, the stride length decreases while the stride angle increases after 6 h post-surgery, while the sensorimotor evaluation showed an increase in the motor deficit. Recovery was observed after 24 h. NE content increased in the pons after 6 h and returned to normal levels in recovered rats, with no significant changes observed in the cerebellum. Based on the functional remote inhibition, it is possible that NE exerts an autoinhibitory effect in the pons after motor cortical ablation. On the other hand, the absence of an effect in the cerebellum suggests that cerebellar NE activity related to damage and/or recovery is limited to discrete areas of the structure.
Collapse
Affiliation(s)
- Rigoberto Gonzalez-Pina
- Laboratorio de Neuroplasticidad, Torre de Investigación, Instituto Nacional de Rehabilitacion, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
35
|
Povlishock JT, Katz DI. Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 2005; 20:76-94. [PMID: 15668572 DOI: 10.1097/00001199-200501000-00008] [Citation(s) in RCA: 449] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review focuses on the potential for traumatic brain injury to evoke both focal and diffuse changes within the brain parenchyma, while considering the cellular constituents involved and the subcellular perturbations that contribute to their dysfunction. New insight is provided on the pathobiology of traumatically induced cell body injury and diffuse axonal damage. The consequences of axonal damage in terms of subsequent deafferentation and any potential retrograde cell death and atrophy are addressed. The regional and global metabolic sequelae are also considered. This detailed presentation of the neuropathological consequences of traumatic brain injury is used to set the stage for better appreciating the neurological recovery occurring after traumatic injury. Although the pathological and clinical effects of focal and diffuse damage are usually intermingled, the different clinical manifestations of recovery patterns associated with focal versus diffuse injuries are presented. The recognizable patterns of recovery, involving unconsciousness, posttraumatic confusion/amnesia, and postconfusional restoration, that typically occur across the full spectrum of diffuse injury are described, recognizing that the patient's long-term recovery may involve more idiosyncratic combinations of dysfunction. The review highlights the relationship of focal lesions to localizing syndromes that may be embedded in the evolving natural history of diffuse pathology. It is noted that injuries with primarily focal pathology do not necessarily follow a comparable pattern of recovery with distinct phases. Potential linkages of these recovery patterns to the known neuropathological sequelae of injury and various reparative mechanisms are considered and it is proposed that potential biological markers and newer imaging technologies will better define these linkages.
Collapse
Affiliation(s)
- John T Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, 1101 East Marshall St, PO Box 980709, Richmond, VA 23298, USA.
| | | |
Collapse
|
36
|
Katz DI, White DK, Alexander MP, Klein RB. Recovery of ambulation after traumatic brain injury. Arch Phys Med Rehabil 2004; 85:865-9. [PMID: 15179637 DOI: 10.1016/j.apmr.2003.11.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To identify variables that are predictive of independent ambulation after traumatic brain injury (TBI) and to define the time course of recovery. DESIGN Retrospective review of consecutive admissions of patients with severe TBI over a 32-month period. SETTING Brain injury unit in an acute, inpatient rehabilitation hospital. PARTICIPANTS Of 264 patients screened, 116 met criteria that included the ability to participate in motor and functional evaluation on admission to acute rehabilitation, and the absence of other neurologic disorders or fractures that affect one's ability to ambulate. INTERVENTION Inpatient rehabilitation on a specialized TBI unit by an interdisciplinary team.Main outcome measures Recovery of independent ambulation and time to recover independent ambulation. RESULTS Of eligible patients, 73.3% achieved independent ambulation by latest follow-up (up to 5.1 mo). Patients who achieved independent ambulation were significantly younger (P<.05), had better gait scores on admission (P<.05), and tended to be less severely injured-based on duration of posttraumatic amnesia (PTA; P=.058)-than those who did not ambulate independently. There were no differences in recovery based on neuropathologic profile. Mean time to independent ambulation +/- standard deviation was 5.7+/-4.3 weeks; of those achieving independent ambulation, 82.4% did so by 2 months and 94.1% by 3 months. If not independent by 3 months postinjury, patients had a 13.9% chance of recovery. Multivariate regression analysis generated prediction models for time to independent ambulation, using admission FIM instrument scores and age (38% of variance); initial gait score, loss of consciousness, and age (40% of variance); or initial gait score and PTA (58% of variance), when restricted to just those patients with diffuse axonal injury. CONCLUSIONS Most patients with severe TBI achieved independent ambulation; the vast majority did so within 3 months postinjury. Functional measures, injury severity measures, and age can help guide prognosis and expectations for time to recover.
Collapse
Affiliation(s)
- Douglas I Katz
- HealthSouth Braintree Rehabilitation Hospital, 250 Pond Street, Braintree, MA 02184, USA.
| | | | | | | |
Collapse
|