1
|
Ling CM, Sheferaw TF, Denno DM, Chasweka D, Kamiza SB, Ordi J, Moxon CA, Kats K, Khoswe S, Mbale E, Ziwoya F, Tembo A, Attipa C, Potani I, Kim PK, Berkley JA, Walson JL, Voskuijl WP, Bandsma RHJ. Hepatic mitochondrial and peroxisomal alterations in acutely ill malnourished Malawian children: A postmortem cohort study. GLOBAL PEDIATRICS 2024; 9:None. [PMID: 39267884 PMCID: PMC11387285 DOI: 10.1016/j.gpeds.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/15/2024] [Accepted: 06/04/2024] [Indexed: 09/15/2024]
Abstract
Objectives To describe and compare liver mitochondrial and peroxisomal histopathology by nutritional status in children who died following hospitalization for acute illness in Malawi. Methods Liver tissue was collected using Minimally Invasive Tissue Sampling from eleven children under-five years old who died during hospitalization and were either non-wasted (n = 4), severely wasted (n = 4) or had edematous malnutrition (n = 3). Histology was assessed on hematoxylin and eosin stained slides. Mitochondrial and peroxisomal ultrastructural features were characterized using electron microscopy (EM) and immunofluorescence (IF). Results Hepatic steatosis was present in 50 % of non-wasted and severely wasted children and all children with edematous malnutrition. Edematous malnutrition was associated with 56 % and 45 % fewer mitochondria than severe wasting (p < 0.001) and no wasting (p = 0.006), respectively, and abnormal mitochondrial morphology compared to severe wasting (p = 0.002) and no wasting (p = 0.035). Peroxisomal abundance was reduced in edematous malnutrition compared to severe wasting (p = 0.005), but did not differ from no-wasting. Conclusion Edematous malnutrition is associated with reduced abundance and altered morphology of hepatic mitochondria and peroxisomes. Interventions targeting improvements in hepatic metabolic function may be beneficial in improving metabolism and reducing mortality in children with severe malnutrition, particularly in those with nutritional edema.
Collapse
Affiliation(s)
- Catriona M Ling
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Tewabu F Sheferaw
- Amsterdam UMC location University of Amsterdam, Amsterdam Centre for Global Child Health, Emma Children's hospital, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Donna M Denno
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Dennis Chasweka
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Steve B Kamiza
- Department of Pathology, Kumuzu University of Health Sciences, Blantyre, Malawi
| | - Jaume Ordi
- Department of Pathology, Hospital Clinic, Universitat de Barcelona, Spain
| | - Christopher A Moxon
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Welcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Kim Kats
- Department of Biomedical Science of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stanley Khoswe
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Emmie Mbale
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Frank Ziwoya
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Abel Tembo
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Charalampos Attipa
- Department of Pathology, Kumuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool Wellcome Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Pathology, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Isabel Potani
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Peter K Kim
- Department of Biochemsitry, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James A Berkley
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Judd L Walson
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Wieger P Voskuijl
- Amsterdam UMC location University of Amsterdam, Amsterdam Centre for Global Child Health, Emma Children's hospital, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Amsterdam UMC location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Robert H J Bandsma
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
- The Childhood Acute Illness & Nutrition (CHAIN) Network, c/o KEMRI Wellcome Trust Research Programme, Nairobi, Kenya
| |
Collapse
|
2
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
3
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Chlubek M, Baranowska-Bosiacka I. Selected Functions and Disorders of Mitochondrial Metabolism under Lead Exposure. Cells 2024; 13:1182. [PMID: 39056765 PMCID: PMC11275214 DOI: 10.3390/cells13141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria play a fundamental role in the energy metabolism of eukaryotic cells. Numerous studies indicate lead (Pb) as a widely occurring environmental factor capable of disrupting oxidative metabolism by modulating the mitochondrial processes. The multitude of known molecular targets of Pb and its strong affinity for biochemical pathways involving divalent metals suggest that it may pose a health threat at any given dose. Changes in the bioenergetics of cells exposed to Pb have been repeatedly demonstrated in research, primarily showing a reduced ability to synthesize ATP. In addition, lead interferes with mitochondrial-mediated processes essential for maintaining homeostasis, such as apoptosis, mitophagy, mitochondrial dynamics, and the inflammatory response. This article describes selected aspects of mitochondrial metabolism in relation to potential mechanisms of energy metabolism disorders induced by Pb.
Collapse
Affiliation(s)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| |
Collapse
|
5
|
Kondadi AK, Reichert AS. Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk. Annu Rev Biophys 2024; 53:147-168. [PMID: 38166176 DOI: 10.1146/annurev-biophys-030822-020736] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (a) within an individual mitochondrion, (b) among mitochondria, and (c) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| |
Collapse
|
6
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Cai M, Li S, Cai K, Du X, Han J, Hu J. Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism 2024; 152:155787. [PMID: 38215964 DOI: 10.1016/j.metabol.2024.155787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
8
|
Chen T, Karedla N, Enderlein J. Measuring sub-nanometer undulations at microsecond temporal resolution with metal- and graphene-induced energy transfer spectroscopy. Nat Commun 2024; 15:1789. [PMID: 38413608 PMCID: PMC10899616 DOI: 10.1038/s41467-024-45822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Out-of-plane fluctuations, also known as stochastic displacements, of biological membranes play a crucial role in regulating many essential life processes within cells and organelles. Despite the availability of various methods for quantifying membrane dynamics, accurately quantifying complex membrane systems with rapid and tiny fluctuations, such as mitochondria, remains a challenge. In this work, we present a methodology that combines metal/graphene-induced energy transfer (MIET/GIET) with fluorescence correlation spectroscopy (FCS) to quantify out-of-plane fluctuations of membranes with simultaneous spatiotemporal resolution of approximately one nanometer and one microsecond. To validate the technique and spatiotemporal resolution, we measure bending undulations of model membranes. Furthermore, we demonstrate the versatility and applicability of MIET/GIET-FCS for studying diverse membrane systems, including the widely studied fluctuating membrane system of human red blood cells, as well as two unexplored membrane systems with tiny fluctuations, a pore-spanning membrane, and mitochondrial inner/outer membranes.
Collapse
Affiliation(s)
- Tao Chen
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
| | - Narain Karedla
- The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 OFA, UK
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7LF, UK
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Str. 40, Göttingen, 37075, Germany.
| |
Collapse
|
9
|
Golombek M, Tsigaras T, Schaumkessel Y, Hänsch S, Weidtkamp-Peters S, Anand R, Reichert AS, Kondadi AK. Cristae dynamics is modulated in bioenergetically compromised mitochondria. Life Sci Alliance 2024; 7:e202302386. [PMID: 37957016 PMCID: PMC10643176 DOI: 10.26508/lsa.202302386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here, we investigated whether and how cristae morphology and dynamics are dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential (ΔΨm), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A, and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not impair cristae dynamics. CCCP treatment leading to ΔΨm abrogation even enhanced cristae dynamics showing its ΔΨm-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange, and cristae membrane dynamics.
Collapse
Affiliation(s)
- Mathias Golombek
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yulia Schaumkessel
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- https://ror.org/024z2rq82 Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- https://ror.org/024z2rq82 Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- https://ror.org/024z2rq82 Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Adhikary A, Mukherjee A, Banerjee R, Nagotu S. DRP1: At the Crossroads of Dysregulated Mitochondrial Dynamics and Altered Cell Signaling in Cancer Cells. ACS OMEGA 2023; 8:45208-45223. [PMID: 38075775 PMCID: PMC10701729 DOI: 10.1021/acsomega.3c06547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 10/08/2024]
Abstract
In the past decade, compelling evidence has accumulated that highlights the role of various subcellular structures in human disease conditions. Dysregulation of these structures greatly impacts cellular function and, thereby, disease conditions. One such organelle extensively studied for its role in several human diseases, especially cancer, is the mitochondrion. DRP1 is a GTPase that is considered the master regulator of mitochondrial fission and thereby also affects the proper functioning of the organelle. Altered signaling pathways are a distinguished characteristic of cancer cells. In this review, we aim to summarize our current understanding of the interesting crosstalk between the mitochondrial structure-function maintained by DRP1 and the signaling pathways that are affected in cancer cells. We highlight the structural aspects of DRP1, its regulation by various modifications, and the association of the protein with various cellular pathways altered in cancer. A better understanding of this association may help in identifying potential pharmacological targets for novel therapies in cancer.
Collapse
Affiliation(s)
- Ankita Adhikary
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Riddhi Banerjee
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
11
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
12
|
Yang Y, Chen CF, Guo FF, Gu YQ, Liang H, Chen ZF. In vitro and in vivo antitumor activities of Ru and Cu complexes with terpyridine derivatives as ligands. J Inorg Biochem 2023; 246:112284. [PMID: 37327592 DOI: 10.1016/j.jinorgbio.2023.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Six terpyridine ligands(L1-L6) with chlorophenol or bromophenol moiety were obtained to prepare metal terpyridine derivatives complexes: [Ru(L1)(DMSO)Cl2] (1), [Ru(L2)(DMSO)Cl2] (2), [Ru(L3)(DMSO)Cl2] (3), [Cu(L4)Br2]·DMSO (4), Cu(L5)Br2 (5), and [Cu(L6)Br2]⋅CH3OH (6). The complexes were fully characterized. Ru complexes 1-3 showed low cytotoxicity against the tested cell lines. Cu complexes 4-6 exhibited higher cytotoxicity against several tested cancer cell lines compared to their ligands and cisplatin, and lower toxicity towards normal human cells. Copper(II) complexes 4-6 arrested T-24 cell cycle in G1 phase. The mechanism studies indicated that complexes 4-6 accumulated in mitochondria of T-24 cells and caused significant reduction of the mitochondrial membrane potential, increase of the intracellular ROS levels and the release of Ca2+, and the activation of the Caspase cascade, finally inducing apoptosis. Animal studies showed that complex 6 obviously inhibited the tumor growth in a mouse xenograft model bearing T-24 tumor cells without significant toxicity.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541004, China
| | - Cai-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fei-Fei Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Environment and Life Science, Nanning Normal University, Nanning 530001, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
13
|
Cao X, Yao F, Zhang B, Sun X. Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng. Front Pharmacol 2023; 14:1218803. [PMID: 37547332 PMCID: PMC10399631 DOI: 10.3389/fphar.2023.1218803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.
Collapse
Affiliation(s)
- Xinxin Cao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Yao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Lubeck M, Derkum NH, Naha R, Strohm R, Driessen MD, Belgardt BF, Roden M, Stühler K, Anand R, Reichert AS, Kondadi AK. MIC26 and MIC27 are bona fide subunits of the MICOS complex in mitochondria and do not exist as glycosylated apolipoproteins. PLoS One 2023; 18:e0286756. [PMID: 37279200 DOI: 10.1371/journal.pone.0286756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Impairments of mitochondrial functions are linked to human ageing and pathologies such as cancer, cardiomyopathy, neurodegeneration and diabetes. Specifically, aberrations in ultrastructure of mitochondrial inner membrane (IM) and factors regulating them are linked to diabetes. The development of diabetes is connected to the 'Mitochondrial Contact Site and Cristae Organising System' (MICOS) complex which is a large membrane protein complex defining the IM architecture. MIC26 and MIC27 are homologous apolipoproteins of the MICOS complex. MIC26 has been reported as a 22 kDa mitochondrial and a 55 kDa glycosylated and secreted protein. The molecular and functional relationship between these MIC26 isoforms has not been investigated. In order to understand their molecular roles, we depleted MIC26 using siRNA and further generated MIC26 and MIC27 knockouts (KOs) in four different human cell lines. In these KOs, we used four anti-MIC26 antibodies and consistently detected the loss of mitochondrial MIC26 (22 kDa) and MIC27 (30 kDa) but not the loss of intracellular or secreted 55 kDa protein. Thus, the protein assigned earlier as 55 kDa MIC26 is nonspecific. We further excluded the presence of a glycosylated, high-molecular weight MIC27 protein. Next, we probed GFP- and myc-tagged variants of MIC26 with antibodies against GFP and myc respectively. Again, only the mitochondrial versions of these tagged proteins were detected but not the corresponding high-molecular weight MIC26, suggesting that MIC26 is indeed not post-translationally modified. Mutagenesis of predicted glycosylation sites in MIC26 also did not affect the detection of the 55 kDa protein band. Mass spectrometry of a band excised from an SDS gel around 55 kDa could not confirm the presence of any peptides derived from MIC26. Taken together, we conclude that both MIC26 and MIC27 are exclusively localized in mitochondria and that the observed phenotypes reported previously are exclusively due to their mitochondrial function.
Collapse
Affiliation(s)
- Melissa Lubeck
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nick H Derkum
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ritam Naha
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecca Strohm
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc D Driessen
- Medical Faculty and University Hospital, Institute of Molecular Medicine, Protein Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, Germany
- Medical Faculty and University Hospital Düsseldorf, Department of Endocrinology and Diabetology, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes, Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Medical Faculty and University Hospital, Institute of Molecular Medicine, Protein Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Medical Faculty and University Hospital Düsseldorf, Institute of Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Rickard BP, Overchuk M, Chappell VA, Kemal Ruhi M, Sinawang PD, Nguyen Hoang TT, Akin D, Demirci U, Franco W, Fenton SE, Santos JH, Rizvi I. Methods to Evaluate Changes in Mitochondrial Structure and Function in Cancer. Cancers (Basel) 2023; 15:2564. [PMID: 37174030 PMCID: PMC10177605 DOI: 10.3390/cancers15092564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
| | - Vesna A. Chappell
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mustafa Kemal Ruhi
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tina Thuy Nguyen Hoang
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Palo Alto, CA 94304, USA
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Suzanne E. Fenton
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Janine H. Santos
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27695, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Jagtap YA, Kumar P, Kinger S, Dubey AR, Choudhary A, Gutti RK, Singh S, Jha HC, Poluri KM, Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front Cell Dev Biol 2023; 11:1146564. [PMID: 36968195 PMCID: PMC10036443 DOI: 10.3389/fcell.2023.1146564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The disturbance in mitochondrial functions and homeostasis are the major features of neuron degenerative conditions, like Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s disease, along with protein misfolding. The aberrantly folded proteins are known to link with impaired mitochondrial pathways, further contributing to disease pathogenesis. Despite their central significance, the implications of mitochondrial homeostasis disruption on other organelles and cellular processes remain insufficiently explored. Here, we have reviewed the dysfunction in mitochondrial physiology, under neuron degenerating conditions. The disease misfolded proteins impact quality control mechanisms of mitochondria, such as fission, fusion, mitophagy, and proteasomal clearance, to the detriment of neuron. The adversely affected mitochondrial functional roles, like oxidative phosphorylation, calcium homeostasis, and biomolecule synthesis as well as its axes and contacts with endoplasmic reticulum and lysosomes are also discussed. Mitochondria sense and respond to multiple cytotoxic stress to make cell adapt and survive, though chronic dysfunction leads to cell death. Mitochondria and their proteins can be candidates for biomarkers and therapeutic targets. Investigation of internetworking between mitochondria and neurodegeneration proteins can enhance our holistic understanding of such conditions and help in designing more targeted therapies.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
- *Correspondence: Amit Mishra,
| |
Collapse
|
17
|
Lysakowski A, Govindaraju AC, Raphael RM. Structural and functional diversity of mitochondria in vestibular/cochlear hair cells and vestibular calyx afferents. Hear Res 2022; 426:108612. [PMID: 36223702 DOI: 10.1016/j.heares.2022.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Mitochondria supply energy in the form of ATP to drive a plethora of cellular processes. In heart and liver cells, mitochondria occupy over 20% of the cellular volume and the major need for ATP is easily identifiable - i.e., to drive cross-bridge recycling in cardiac cells or biosynthetic machinery in liver cells. In vestibular and cochlear hair cells the overall cellular mitochondrial volume is much less, and mitochondria structure varies dramatically in different regions of the cell. The regional demands for ATP and cellular forces that govern mitochondrial structure and localization are not well understood. Below we review our current understanding of the heterogeneity of form and function in hair cell mitochondria. A particular focus of this review will be on regional specialization in vestibular hair cells, where large mitochondria are found beneath the cuticular plate in close association with the striated organelle. Recent findings on the role of mitochondria in hair cell death and aging are covered along with potential therapeutic approaches. Potential avenues for future research are discussed, including the need for integrated computational modeling of mitochondrial function in hair cells and the vestibular afferent calyx.
Collapse
Affiliation(s)
- Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., M/C 512, Chicago, IL 60605, USA.
| | | | | |
Collapse
|
18
|
Bock-Bierbaum T, Funck K, Wollweber F, Lisicki E, von der Malsburg K, von der Malsburg A, Laborenz J, Noel JK, Hessenberger M, Jungbluth S, Bernert C, Kunz S, Riedel D, Lilie H, Jakobs S, van der Laan M, Daumke O. Structural insights into crista junction formation by the Mic60-Mic19 complex. SCIENCE ADVANCES 2022; 8:eabo4946. [PMID: 36044574 PMCID: PMC9432830 DOI: 10.1126/sciadv.abo4946] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial cristae membranes are the oxidative phosphorylation sites in cells. Crista junctions (CJs) form the highly curved neck regions of cristae and are thought to function as selective entry gates into the cristae space. Little is known about how CJs are generated and maintained. We show that the central coiled-coil (CC) domain of the mitochondrial contact site and cristae organizing system subunit Mic60 forms an elongated, bow tie-shaped tetrameric assembly. Mic19 promotes Mic60 tetramerization via a conserved interface between the Mic60 mitofilin and Mic19 CHCH (CC-helix-CC-helix) domains. Dimerization of mitofilin domains exposes a crescent-shaped membrane-binding site with convex curvature tailored to interact with the curved CJ neck. Our study suggests that the Mic60-Mic19 subcomplex traverses CJs as a molecular strut, thereby controlling CJ architecture and function.
Collapse
Affiliation(s)
- Tobias Bock-Bierbaum
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Kathrin Funck
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Florian Wollweber
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University Medical School, Homburg, Saarland, Germany
| | - Elisa Lisicki
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Karina von der Malsburg
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University Medical School, Homburg, Saarland, Germany
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University Medical School, Homburg, Saarland, Germany
| | - Janina Laborenz
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University Medical School, Homburg, Saarland, Germany
| | - Jeffrey K. Noel
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Manuel Hessenberger
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sibylle Jungbluth
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University Medical School, Homburg, Saarland, Germany
| | - Carola Bernert
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Séverine Kunz
- Technology Platform for Electron Microscopy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Section of Protein Biochemistry, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic for Neurology, University Medical Center Göttingen, Göttingen, Germany
- Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University Medical School, Homburg, Saarland, Germany
| | - Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Mendes D, Peixoto F, Oliveira MM, Andrade PB, Videira RA. Mitochondria research and neurodegenerative diseases: on the track to understanding the biological world of high complexity. Mitochondrion 2022; 65:67-79. [PMID: 35623557 DOI: 10.1016/j.mito.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 05/22/2022] [Indexed: 12/18/2022]
Abstract
From the simple unicellular eukaryote to the highly complex multicellular organism like Human, mitochondrion emerges as a ubiquitous player to ensure the organism's functionality. It is popularly known as "the powerhouse of the cell" by its key role in ATP generation. However, our understanding of the physiological relevance of mitochondria is being challenged by data obtained in different fields. In this review, a short history of the mitochondria research field is presented, stressing the findings and questions that allowed the knowledge advances, and put mitochondrion as the main player of safeguarding organism life as well as a key to solve the puzzle of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniela Mendes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto 4050-313, Portugal
| | - Francisco Peixoto
- Chemistry Center - Vila Real (CQ-VR), Biological and Environment Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Maria M Oliveira
- Chemistry Center - Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto 4050-313, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto 4050-313, Portugal.
| |
Collapse
|
20
|
Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog Lipid Res 2022; 86:101163. [DOI: 10.1016/j.plipres.2022.101163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
21
|
Abstract
Transport of intracellular components relies on a variety of active and passive mechanisms, ranging from the diffusive spreading of small molecules over short distances to motor-driven motion across long distances. The cell-scale behavior of these mechanisms is fundamentally dependent on the morphology of the underlying cellular structures. Diffusion-limited reaction times can be qualitatively altered by the presence of occluding barriers or by confinement in complex architectures, such as those of reticulated organelles. Motor-driven transport is modulated by the architecture of cytoskeletal filaments that serve as transport highways. In this review, we discuss the impact of geometry on intracellular transport processes that fulfill a broad range of functional objectives, including delivery, distribution, and sorting of cellular components. By unraveling the interplay between morphology and transport efficiency, we aim to elucidate key structure-function relationships that govern the architecture of transport systems at the cellular scale. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anamika Agrawal
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Zubenelgenubi C Scott
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
22
|
Iovine JC, Claypool SM, Alder NN. Mitochondrial compartmentalization: emerging themes in structure and function. Trends Biochem Sci 2021; 46:902-917. [PMID: 34244035 PMCID: PMC11008732 DOI: 10.1016/j.tibs.2021.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
Within cellular structures, compartmentalization is the concept of spatial segregation of macromolecules, metabolites, and biochemical pathways. Therefore, this concept bridges organellar structure and function. Mitochondria are morphologically complex, partitioned into several subcompartments by a topologically elaborate two-membrane system. They are also dynamically polymorphic, undergoing morphogenesis events with an extent and frequency that is only now being appreciated. Thus, mitochondrial compartmentalization is something that must be considered both spatially and temporally. Here, we review new developments in how mitochondrial structure is established and regulated, the factors that underpin the distribution of lipids and proteins, and how they spatially demarcate locations of myriad mitochondrial processes. Consistent with its pre-eminence, disturbed mitochondrial compartmentalization contributes to the dysfunction associated with heritable and aging-related diseases.
Collapse
Affiliation(s)
- Joseph C Iovine
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
23
|
Raja SO, Chizhik AI, Schmidt CF, Enderlein J, Ghosh A. Mapping Activity-Dependent Quasi-stationary States of Mitochondrial Membranes with Graphene-Induced Energy Transfer Imaging. NANO LETTERS 2021; 21:8244-8249. [PMID: 34520214 DOI: 10.1021/acs.nanolett.1c02672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene-induced energy transfer (GIET) was recently introduced for sub-nanometric axial localization of fluorescent molecules. GIET relies on near-field energy transfer from an optically excited fluorophore to a single sheet of graphene. Recently, we demonstrated its potential by determining the distance between two leaflets of supported lipid bilayers. Here, we use GIET imaging for mapping quasi-stationary states of the inner and outer mitochondrial membranes before and during adenosine triphosphate (ATP) synthesis. We trigger the ATP synthesis state in vitro by activating mitochondria with precursor molecules. Our results demonstrate that the inner membrane approaches the outer membrane, while the outer membrane does not show any measurable change in average axial position upon activation. The inter-membrane space is reduced by ∼2 nm. This direct experimental observation of the subtle dynamics of mitochondrial membranes and the change in intermembrane distance upon activation is relevant for our understanding of mitochondrial function.
Collapse
Affiliation(s)
- Sufi O Raja
- Department of Physics and Soft Matter Center, Duke University, Durham, North Carolina 27708, United States
| | - Alexey I Chizhik
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Christoph F Schmidt
- Department of Physics and Soft Matter Center, Duke University, Durham, North Carolina 27708, United States
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, 37077 Göttingen, Germany
| | - Arindam Ghosh
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
24
|
Xu HJ, Li QY, Zou T, Yin ZQ. Development-related mitochondrial properties of retinal pigment epithelium cells derived from hEROs. Int J Ophthalmol 2021; 14:1138-1150. [PMID: 34414076 DOI: 10.18240/ijo.2021.08.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To explore the temporal mitochondrial characteristics of retinal pigment epithelium (RPE) cells obtained from human embryonic stem cells (hESC)-derived retinal organoids (hEROs-RPE), to verify the optimal period for using hEROs-RPE as donor cells from the aspect of mitochondria and to optimize RPE cell-based therapeutic strategies for age-related macular degeneration (AMD). METHODS RPE cells were obtained from hEROs and from spontaneous differentiation (SD-RPE). The mitochondrial characteristics were analyzed every 20d from day 60 to 160. Mitochondrial quantity was measured by MitoTracker Green staining. Transmission electron microscopy (TEM) was adopted to assess the morphological features of the mitochondria, including their distribution, length, and cristae. Mitochondrial membrane potentials (MMPs) were determined by JC-1 staining and evaluated by flow cytometry, reactive oxygen species (ROS) levels were evaluated by flow cytometry, and adenosine triphosphate (ATP) levels were measured by a luminometer. Differences between two groups were analyzed by the independent-samples t-test, and comparisons among multiple groups were made using one-way ANOVA or Kruskal-Wallis H test when equal variance was not assumed. RESULTS hEROs-RPE and SD-RPE cells from day 60 to 160 were successfully differentiated from hESCs and expressed RPE markers (Pax6, MITF, Bestrophin-1, RPE65, Cralbp). RPE features, including a cobblestone-like morphology with tight junctions (ZO-1), pigments and microvilli, were also observed in both hEROs-RPE and SD-RPE cells. The mitochondrial quantities of hEROs-RPE and SD-RPE cells both peaked at day 80. However, the cristae of hEROs-RPE mitochondria were less mature and abundant than those of SD-RPE mitochondria at day 80, with hEROs-RPE mitochondria becoming mature at day 100. Both hEROs-RPE and SD-RPE cells showed low ROS levels from day 100 to 140 and maintained a normal MMP during this period. However, hEROs-RPE mitochondria maintained a longer time to produce high levels of ATP (from day 120 to 140) than SD-RPE cells (only day 120). CONCLUSION hEROs-RPE mitochondria develop more slowly and maintain a longer time to supply high-level energy than SD-RPE mitochondria. From the mitochondrial perspective, hEROs-RPE cells from day 100 to 140 are an optimal cell source for treating AMD.
Collapse
Affiliation(s)
- Hao-Jue Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qi-You Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zheng-Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
25
|
Cardiolipin, Non-Bilayer Structures and Mitochondrial Bioenergetics: Relevance to Cardiovascular Disease. Cells 2021; 10:cells10071721. [PMID: 34359891 PMCID: PMC8304834 DOI: 10.3390/cells10071721] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
The present review is an attempt to conceptualize a contemporary understanding about the roles that cardiolipin, a mitochondrial specific conical phospholipid, and non-bilayer structures, predominantly found in the inner mitochondrial membrane (IMM), play in mitochondrial bioenergetics. This review outlines the link between changes in mitochondrial cardiolipin concentration and changes in mitochondrial bioenergetics, including changes in the IMM curvature and surface area, cristae density and architecture, efficiency of electron transport chain (ETC), interaction of ETC proteins, oligomerization of respiratory complexes, and mitochondrial ATP production. A relationship between cardiolipin decline in IMM and mitochondrial dysfunction leading to various diseases, including cardiovascular diseases, is thoroughly presented. Particular attention is paid to the targeting of cardiolipin by Szeto–Schiller tetrapeptides, which leads to rejuvenation of important mitochondrial activities in dysfunctional and aging mitochondria. The role of cardiolipin in triggering non-bilayer structures and the functional roles of non-bilayer structures in energy-converting membranes are reviewed. The latest studies on non-bilayer structures induced by cobra venom peptides are examined in model and mitochondrial membranes, including studies on how non-bilayer structures modulate mitochondrial activities. A mechanism by which non-bilayer compartments are formed in the apex of cristae and by which non-bilayer compartments facilitate ATP synthase dimerization and ATP production is also presented.
Collapse
|
26
|
Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. In vivo brain imaging of mitochondrial Ca 2+ in neurodegenerative diseases with multiphoton microscopy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118998. [PMID: 33684410 PMCID: PMC8057769 DOI: 10.1016/j.bbamcr.2021.118998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Mitochondria are involved in a large number of essential roles related to neuronal function. Ca2+ handling by mitochondria is critical for many of these functions, including energy production and cellular fate. Conversely, mitochondrial Ca2+ mishandling has been related to a variety of neurodegenerative diseases. Investigating mitochondrial Ca2+ dynamics is essential for advancing our understanding of the role of intracellular mitochondrial Ca2+ signals in physiology and pathology. Improved Ca2+ indicators, and the ability to target them to different cells and compartments, have emerged as useful tools for analysis of Ca2+ signals in living organisms. Combined with state-of-the-art techniques such as multiphoton microscopy, they allow for the study of mitochondrial Ca2+ dynamics in vivo in mouse models of the disease. Here, we provide an overview of the Ca2+ transporters/ion channels in mitochondrial membranes, and the involvement of mitochondrial Ca2+ in neurodegenerative diseases followed by a summary of the main tools available to evaluate mitochondrial Ca2+ dynamics in vivo using the aforementioned technique.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.
| | - Elizabeth K Kharitonova
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| |
Collapse
|
27
|
Costello MJ, Gilliland KO, Mohamed A, Schey KL, Johnsen S, Brennan LA, Kantorow M. Novel mitochondrial derived Nuclear Excisosome degrades nuclei during differentiation of prosimian Galago (bush baby) monkey lenses. PLoS One 2020; 15:e0241631. [PMID: 33180800 PMCID: PMC7660580 DOI: 10.1371/journal.pone.0241631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022] Open
Abstract
The unique cellular organization and transparent function of the ocular lens depend on the continuous differentiation of immature epithelial cells on the lens anterior surface into mature elongated fiber cells within the lens core. A ubiquitous event during lens differentiation is the complete elimination of organelles required for mature lens fiber cell structure and transparency. Distinct pathways have been identified to mediate the elimination of non-nuclear organelles and nuclei. Recently, we reported the discovery of a unique structure in developing fiber cells of the chick embryo lens, called the Nuclear Excisosome, that is intractably associated with degrading nuclei during lens fiber cell differentiation. In the chick lens, the Nuclear Excisosome is derived from projections of adjacent cells contacting the nuclear envelope during nuclear elimination. Here, we demonstrate that, in contrast to the avian model, Nuclear Excisosomes in a primate model, Galago (bush baby) monkeys, are derived through the recruitment of mitochondria to form unique linear assemblies that define a novel primate Nuclear Excisosome. Four lenses from three monkeys aged 2–5 years were fixed in formalin, followed by paraformaldehyde, then processed for Airyscan confocal microscopy or transmission electron microscopy. For confocal imaging, fluorescent dyes labelled membranes, carbohydrate in the extracellular space, filamentous actin and nuclei. Fiber cells from Galago lenses typically displayed prominent linear structures within the cytoplasm with a distinctive cross-section of four membranes and lengths up to 30 μm. The outer membranes of these linear structures were observed to attach to the outer nuclear envelope membrane to initiate degradation near the organelle-free zone. The origin of these unique structures was mitochondria in the equatorial epithelium (not from plasma membranes of adjacent cells as in the chick embryo model). Early changes in mitochondria appeared to be the collapse of the cristae and modification of one side of the mitochondrial outer membrane to promote accumulation of protein in a dense cluster. As a mitochondrion surrounded the dense protein cluster, an outer mitochondrial membrane enclosed the protein to form a core and another outer mitochondrial membrane formed the outermost layer. The paired membranes of irregular texture between the inner core membrane and the outer limiting membrane appeared to be derived from modified mitochondrial cristae. Several mitochondria were involved in the formation and maturation of these unique complexes that apparently migrated around the fulcrum into the cytoplasm of nascent fiber cells where they were stabilized until the nuclear degradation was initiated. Thus, unlike in the chick embryo, the Galago lenses degraded nuclear envelopes with a Nuclear Excisosome derived from multiple mitochondria in the epithelium that formed novel linear assemblies in developing fiber cells. These findings suggest that recruitment of distinct structures is required for Nuclear Excisosome formation in different species.
Collapse
Affiliation(s)
- M Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kurt O Gilliland
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Ashik Mohamed
- Ophthalmic Biophysics, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Kevin L Schey
- Biochemistry Department, Vanderbilt University, Nashville, TN, United States of America
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC, United States of America
| | - Lisa A Brennan
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States of America
| | - Marc Kantorow
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States of America
| |
Collapse
|
28
|
Elmer-Dixon MM, Xie Z, Alverson JB, Priestley ND, Bowler BE. Curvature-Dependent Binding of Cytochrome c to Cardiolipin. J Am Chem Soc 2020; 142:19532-19539. [PMID: 33156621 DOI: 10.1021/jacs.0c07301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome c binds cardiolipin on the concave surface of the inner mitochondrial membrane, before oxidizing the lipid and initiating the apoptotic pathway. This interaction has been studied in vitro, where mimicking the membrane curvature of the binding environment is difficult. Here we report binding to concave, cardiolipin-containing, membrane surfaces and compare findings to convex binding under the same conditions. For binding to the convex outer surface of cardiolipin-containing vesicles, a two-step structural rearrangement is observed with a small rearrangement detectable by Soret circular dichroism (CD) occurring at an exposed lipid-to-protein ratio (LPR) near 10 and partial unfolding detectable by Trp59 fluorescence occurring at an exposed LPR near 23. On the concave inner surface of cardiolipin-containing vesicles, the structural transitions monitored by Soret CD and Trp59 fluorescence are coincident and occur at an exposed LPR near 58. On the concave inner surface of mitochondrial cristae, we estimate the LPR of cardiolipin to cytochrome c is between 50 and 100. Thus, cytochrome c may have adapted to its native environment so that it can undergo a conformational change that switches on its peroxidase activity when it binds to CL-containing membranes in the cristae early in apoptosis. Our results show that membrane curvature qualitatively affects peripheral protein-lipid interactions and also highlights the disparity between in vitro binding studies and their physiological counterparts where cone-shaped lipids, like cardiolipin, are involved.
Collapse
Affiliation(s)
- Margaret M Elmer-Dixon
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Ziqing Xie
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Jeremy B Alverson
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Nigel D Priestley
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Bruce E Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
29
|
Kondadi AK, Anand R, Reichert AS. Cristae Membrane Dynamics - A Paradigm Change. Trends Cell Biol 2020; 30:923-936. [PMID: 32978040 DOI: 10.1016/j.tcb.2020.08.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
Mitochondria are dynamic organelles that have essential metabolic and regulatory functions. Earlier studies using electron microscopy (EM) revealed an immense diversity in the architecture of cristae - infoldings of the mitochondrial inner membrane (IM) - in different cells, tissues, bioenergetic and metabolic conditions, and during apoptosis. However, cristae were considered to be largely static entities. Recently, advanced super-resolution techniques have revealed that cristae are independent bioenergetic units that are highly dynamic and remodel on a timescale of seconds. These advances, coupled with mechanistic and structural studies on key molecular players, such as the MICOS (mitochondrial contact site and cristae organizing system) complex and the dynamin-like GTPase OPA1, have changed our view on mitochondria in a fundamental way. We summarize these recent findings and discuss their functional implications.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
30
|
Joaquim M, Escobar-Henriques M. Role of Mitofusins and Mitophagy in Life or Death Decisions. Front Cell Dev Biol 2020; 8:572182. [PMID: 33072754 PMCID: PMC7539839 DOI: 10.3389/fcell.2020.572182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria entail an incredible dynamism in their morphology, impacting death signaling and selective elimination of the damaged organelles. In turn, by recycling the superfluous or malfunctioning mitochondria, mostly prevalent during aging, mitophagy contributes to maintain a healthy mitochondrial network. Mitofusins locate at the outer mitochondrial membrane and control the plastic behavior of mitochondria, by mediating fusion events. Besides deciding on mitochondrial interconnectivity, mitofusin 2 regulates physical contacts between mitochondria and the endoplasmic reticulum, but also serves as a decisive docking platform for mitophagy and apoptosis effectors. Thus, mitofusins integrate multiple bidirectional inputs from and into mitochondria and ensure proper energetic and metabolic cellular performance. Here, we review the role of mitofusins and mitophagy at the cross-road between life and apoptotic death decisions. Furthermore, we highlight the impact of this interplay on disease, focusing on how mitofusin 2 and mitophagy affect non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Mariana Joaquim
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Ahmedova A, Mihaylova R, Stoykova S, Mihaylova V, Paunova-Krasteva T, Mihaylov L, Stoitsova S, Nihtianova D, Momekov G, Momekova D, Yoshizawa M. Enhanced cellular uptake of platinum by a tetracationic Pt(II) nanocapsule and its implications to cancer treatment. Eur J Pharm Sci 2020; 155:105545. [PMID: 32927069 DOI: 10.1016/j.ejps.2020.105545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/09/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Abstract
Despite the known limitations of cisplatin chemotherapy, the treatment of cancer by platinum-based drugs remains the method of choice for many oncologists. The advancement in drug delivery formulations and protocols of combined treatments provided effective tools to ameliorate the side effects of platinum-based therapies. Another approach to improve the pharmacological profiles of anticancer platinum drugs is to properly modify their structure and composition, which has produced numerous platinum complexes with improved therapeutic effect. Recently, we have demonstrated the strong anticancer potency of supramolecular nanocapsules that form by self-assembly of four bis-anthracene ligands with two metal ions, either Pt(II) or Pd(II). Herein, we focus our study on the Pt(II) nanocapsule and its uptake by two types of cancer cells, suspension cultures of HL-60 cells and the adherent cancer cells HT-29. Comparison of the platinum uptake by cancer cells treated with the nanocapsule and with cisplatin evidenced superior uptake of platinum caused by the nanocapsule, which in HT-29 and HL-60 cells prevails by 21 and 31 times, respectively. Morphological changes in the HL-60 cells induced by the Pt(II) nanocapsule were studied by transmission electron microscopy (TEM) which provided plausible explanation of the uptake results. These data corroborate also with the known nanocapsule's very high cytotoxicity, better selectivity, and lack of cross-resistance with cisplatin. Additionally, our estimations of the drug-drug interactions in combined treatments established the propensity of the nanocapsule to exert supra-additive cytotoxicity in combination with cisplatin against the bladder cancer T-24 cells. All these findings define the scope for more detailed pharmacological characterization of the presented Pt(II) nanocapsule.
Collapse
Affiliation(s)
- Anife Ahmedova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria.
| | - Rositsa Mihaylova
- Faculty of Pharmacy, Medical University - Sofia, 2 Dunav Street, Sofia 1000, Bulgaria
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria
| | - Veronika Mihaylova
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria
| | - Tsvetelina Paunova-Krasteva
- Department of General Microbiology, The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Lyuben Mihaylov
- Faculty of Chemistry and Pharmacy, Sofia University, 1, J. Bourchier blvd., Sofia 1164, Bulgaria
| | - Stoyanka Stoitsova
- Department of General Microbiology, The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Diana Nihtianova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University - Sofia, 2 Dunav Street, Sofia 1000, Bulgaria
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University - Sofia, 2 Dunav Street, Sofia 1000, Bulgaria
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
32
|
Durairajanayagam D, Singh D, Agarwal A, Henkel R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia 2020; 53:e13666. [PMID: 32510691 DOI: 10.1111/and.13666] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria have multiple functions, including synthesis of adenine triphosphate, production of reactive oxygen species, calcium signalling, thermogenesis and apoptosis. Mitochondria have a significant contribution in regulating the various physiological aspects of reproductive function, from spermatogenesis up to fertilisation. Mitochondrial functionality and intact mitochondrial membrane potential are a pre-requisite for sperm motility, hyperactivation, capacitation, acrosin activity, acrosome reaction and DNA integrity. Optimal mitochondrial activity is therefore crucial for human sperm function and semen quality. However, the precise role of mitochondria in spermatozoa remains to be fully explored. Defects in sperm mitochondrial function severely impair the maintenance of energy production required for sperm motility and may be an underlying cause of asthenozoospermia. Sperm mtDNA is susceptible to oxidative damage and mutations that could compromise sperm function leading to infertility. Males with abnormal semen parameters have increased mtDNA copy number and reduced mtDNA integrity. This review discusses the role of mitochondria in sperm function, along with the causes and impact of its dysfunction on male fertility. Greater understanding of sperm mitochondrial function and its correlation with sperm quality could provide further insights into their contribution in the assessment of the infertile male.
Collapse
Affiliation(s)
- Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Malaysia
| | - Dipty Singh
- Department of Neuroendocrinology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, Faculty of Natural Science, University of the Western Cape, Belville, South Africa
| |
Collapse
|
33
|
Kondadi AK, Anand R, Hänsch S, Urbach J, Zobel T, Wolf DM, Segawa M, Liesa M, Shirihai OS, Weidtkamp-Peters S, Reichert AS. Cristae undergo continuous cycles of membrane remodelling in a MICOS-dependent manner. EMBO Rep 2020; 21:e49776. [PMID: 32067344 PMCID: PMC7054676 DOI: 10.15252/embr.201949776] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial inner membrane can reshape under different physiological conditions. How, at which frequency this occurs in living cells, and the molecular players involved are unknown. Here, we show using state-of-the-art live-cell stimulated emission depletion (STED) super-resolution nanoscopy that neighbouring crista junctions (CJs) dynamically appose and separate from each other in a reversible and balanced manner in human cells. Staining of cristae membranes (CM), using various protein markers or two lipophilic inner membrane-specific dyes, further revealed that cristae undergo continuous cycles of membrane remodelling. These events are accompanied by fluctuations of the membrane potential within distinct cristae over time. Both CJ and CM dynamics depended on MIC13 and occurred at similar timescales in the range of seconds. Our data further suggest that MIC60 acts as a docking platform promoting CJ and contact site formation. Overall, by employing advanced imaging techniques including fluorescence recovery after photobleaching (FRAP), single-particle tracking (SPT), live-cell STED and high-resolution Airyscan microscopy, we propose a model of CJ dynamics being mechanistically linked to CM remodelling representing cristae membrane fission and fusion events occurring within individual mitochondria.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Faculty of Mathematics and Natural Sciences, Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Urbach
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Zobel
- Faculty of Mathematics and Natural Sciences, Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dane M Wolf
- Department of Medicine, Nutrition and Metabolism Section, Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA, USA.,Division of Endocrinology, Department of Medicine, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mayuko Segawa
- Division of Endocrinology, Department of Medicine, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marc Liesa
- Division of Endocrinology, Department of Medicine, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Orian S Shirihai
- Department of Medicine, Nutrition and Metabolism Section, Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA, USA.,Division of Endocrinology, Department of Medicine, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stefanie Weidtkamp-Peters
- Faculty of Mathematics and Natural Sciences, Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
Raghushaker CR, Chandra S, Chakrabarty S, Kabekkodu SP, Satyamoorthy K, Mahato KK. Detection of mitochondrial dysfunction in vitro by laser-induced autofluorescence. JOURNAL OF BIOPHOTONICS 2019; 12:e201900056. [PMID: 31251452 DOI: 10.1002/jbio.201900056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Mitochondrion plays a significant role in a variety of biological functions. Because of their diverse character and location in the cellular systems, mitochondria commonly get exposed to various extrinsic and intrinsic cellular stresses. The present study reports a novel approach to detection of mitochondrial dysfunction based on tryptophan autofluorescence of its proteins in mouse liver, using laser-induced fluorescence (LIF) as a tool. Mitochondria, isolated from the mouse liver, were initially tested for purity and integrity using lactate dehydrogenase and succinate dehydrogenase (SDH) assays. Mitochondrial stress was induced by treating the isolated mitochondria with heavy metals at 10 and 0.01 mM for sodium arsenite and mercuric chloride, respectively. Upon treatment with the heavy metal, tryptophan autofluorescence quenching was recorded at 281 nm excitation. The functional integrity of the mitochondria treated with heavy metals was evaluated by measuring SDH and cytochrome c oxidase activities at various concentrations of mitochondria, which showed impaired activity as compared to control upto a concentration of 6.25 μg. A significant shift was also observed in the autofluorescence of proteins upto the level below 1 μg, suggesting their conformational change and hence altered structural integrity of mitochondria. Circular dichroism spectroscopy data of the mitochondrial proteins treated with heavy metals further validates their conformational change as compared to untreated control. The present study clearly shows that the LIF can be a novel detection tool to detect altered structural integrity of cellular mitochondria upon stress, and it also possesses the potentiality to combine with other interdisciplinary modalities.
Collapse
Affiliation(s)
- Chandavalli R Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subhash Chandra
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shama P Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Krishna K Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
35
|
Elmer-Dixon MM, Hoody J, Steele HBB, Becht DC, Bowler BE. Cardiolipin Preferentially Partitions to the Inner Leaflet of Mixed Lipid Large Unilamellar Vesicles. J Phys Chem B 2019; 123:9111-9122. [DOI: 10.1021/acs.jpcb.9b07690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Baker N, Patel J, Khacho M. Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: How mitochondrial structure can regulate bioenergetics. Mitochondrion 2019; 49:259-268. [PMID: 31207408 DOI: 10.1016/j.mito.2019.06.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 01/21/2023]
Abstract
The dynamic and fluid nature of mitochondria allows for modifications in mitochondrial shape, connectivity and cristae architecture. The precise balance of mitochondrial dynamics is among the most critical features in the control of mitochondrial function. In the past few years, mitochondrial shape has emerged as a key regulatory factor in the determination of the bioenergetic capacity of cells. This is mostly due to the recent discoveries linking changes in cristae organization with supercomplex assembly of the electron transport chain (ETC), also defined as the formation of respirosomes. Here we will review the most current advances demonstrating the impact of mitochondrial dynamics and cristae shape on oxidative metabolism, respiratory efficiency, and redox state. Furthermore, we will discuss the implications of mitochondrial dynamics and supercomplex assembly under physiological and pathological conditions.
Collapse
Affiliation(s)
- Nicole Baker
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeel Patel
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
37
|
Badrinath N, Yoo SY. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 2019; 39:1419-1430. [PMID: 30357389 DOI: 10.1093/carcin/bgy148] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023] Open
Abstract
Mitochondria play pivotal roles in most eukaryotic cells, ranging from energy production to regulation of apoptosis. As sites of cellular respiration, mitochondria experience accumulation of reactive oxygen species (ROS) due to damage in electron transport chain carriers. Mutations in mitochondrial DNA (mtDNA) as well as nuclear DNA are reported in various cancers. Mitochondria have a dual role in cancer: the development of tumors due to mutations in mitochondrial genome and the generation of ROS. Impairment in the mitochondria-regulated apoptosis pathway accelerates tumorigenesis. Numerous strategies targeting mitochondria have been developed to induce the mitochondrial (i.e. intrinsic) apoptosis pathway in cancer cells. This review elaborates the roles of mitochondria in cancer with respect to mutations and apoptosis and discusses mitochondria-targeting strategies as cancer therapies to enhance the killing of cancer cells.
Collapse
Affiliation(s)
- Narayanasamy Badrinath
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - So Young Yoo
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,BIO-IT Foundry Technology Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
38
|
Snigirevskaya ES, Komissarchik YY. Ultrastructural traits of apoptosis. Cell Biol Int 2019; 43:728-738. [DOI: 10.1002/cbin.11148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Ekaterina S. Snigirevskaya
- Group of Cell Membrane Ultrastructure, Institute of CytologyRussian Academy of Sciences4 Tikhoretsky Ave 194064 St. Petersburg Russia
| | - Yan Y. Komissarchik
- Group of Cell Membrane Ultrastructure, Institute of CytologyRussian Academy of Sciences4 Tikhoretsky Ave 194064 St. Petersburg Russia
| |
Collapse
|
39
|
Escobar-Henriques M, Joaquim M. Mitofusins: Disease Gatekeepers and Hubs in Mitochondrial Quality Control by E3 Ligases. Front Physiol 2019; 10:517. [PMID: 31156446 PMCID: PMC6533591 DOI: 10.3389/fphys.2019.00517] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are dynamic organelles engaged in quality control and aging processes. They constantly undergo fusion, fission, transport, and anchoring events, which empower mitochondria with a very interactive behavior. The membrane remodeling processes needed for fusion require conserved proteins named mitofusins, MFN1 and MFN2 in mammals and Fzo1 in yeast. They are the first determinants deciding on whether communication and content exchange between different mitochondrial populations should occur. Importantly, each cell possesses hundreds of mitochondria, with a different severity of mitochondrial mutations or dysfunctional proteins, which potentially spread damage to the entire network. Therefore, the degree of their merging capacity critically influences cellular fitness. In turn, the mitochondrial network rapidly and dramatically changes in response to metabolic and environmental cues. Notably, cancer or obesity conditions, and stress experienced by neurons and cardiomyocytes, for example, triggers the downregulation of mitofusins and thus fragmentation of mitochondria. This places mitofusins upfront in sensing and transmitting stress. In fact, mitofusins are almost entirely exposed to the cytoplasm, a topology suitable for a critical relay point in information exchange between mitochondria and their cellular environment. Consistent with their topology, mitofusins are either activated or repressed by cytosolic post-translational modifiers, mainly by ubiquitin. Ubiquitin is a ubiquitous small protein orchestrating multiple quality control pathways, which is covalently attached to lysine residues in its substrates, or in ubiquitin itself. Importantly, from a chain of events also mediated by E1 and E2 enzymes, E3 ligases perform the ultimate and determinant step in substrate choice. Here, we review the ubiquitin E3 ligases that modify mitofusins. Two mitochondrial E3 enzymes—March5 and MUL1—one ligase located to the ER—Gp78—and finally three cytosolic enzymes—MGRN1, HUWE1, and Parkin—were shown to ubiquitylate mitofusins, in response to a variety of cellular inputs. The respective outcomes on mitochondrial morphology, on contact sites to the endoplasmic reticulum and on destructive processes, like mitophagy or apoptosis, are presented. Ultimately, understanding the mechanisms by which E3 ligases and mitofusins sense and bi-directionally signal mitochondria-cytosolic dysfunctions could pave the way for therapeutic approaches in neurodegenerative, cardiovascular, and obesity-linked diseases.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mariana Joaquim
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Chang L, Zhang X, Gong P, Wang Y, Du B, Li J. Identification and characterization of Letm1 gene in Toxoplasma gondii. Acta Biochim Biophys Sin (Shanghai) 2019; 51:78-87. [PMID: 30423025 DOI: 10.1093/abbs/gmy138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/11/2018] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan that causes toxoplasmosis. Previous studies have shown that the perturbation of mitochondrial metabolism in T. gondii results in growth deficiency in host cells and lack of virulence in animals. Members of this Letm1 protein family are inner mitochondrial membrane proteins which play a role in potassium and hydrogen ion exchange. Letm1 has not been characterized in T. gondii. In this study, a potential TgLetm1 gene (TgGT1_288400) with Letm1-like protein domain coding sequence was identified in T. gondii. Indirect immunofluorescence assays suggested that TgLetm1 localized to the mitochondria in tachyzoites, as indicated by the colocalization with mitochondrial marker Mitotracker. TgLetm1 was found in the membrane fraction by western blot analysis. To investigate the role of TgLetm1 in T. gondii, we generated a tetracycline-inducible TgLetm1-knock-down mutant. The conditional deletion of TgLetm1 resulted in mitochondrial swelling. Functional studies showed that the conditional deletion of TgLetm1 resulted in growth inhibition, deficiency in invasion and replication, and lack of virulence in mice.
Collapse
Affiliation(s)
- Le Chang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuru Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Boya Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
41
|
Irajizad E, Ramachandran R, Agrawal A. Geometric instability catalyzes mitochondrial fission. Mol Biol Cell 2018; 30:160-168. [PMID: 30379601 PMCID: PMC6337907 DOI: 10.1091/mbc.e18-01-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The mitochondrial membrane undergoes extreme remodeling during fission. While a few membrane-squeezing proteins are recognized as the key drivers of fission, there is a growing body of evidence that strongly suggests that conical lipids play a critical role in regulating mitochondrial morphology and fission. However, the mechanisms by which proteins and lipids cooperate to execute fission have not been quantitatively investigated. Here, we computationally model the squeezing of the largely tubular mitochondrion and show that proteins and conical lipids can act synergistically to trigger buckling instability and achieve extreme constriction. More remarkably, the study reveals that the conical lipids can act with different fission proteins to induce hierarchical instabilities and create increasingly narrow and stable constrictions. We reason that this geometric plasticity imparts significant robustness to the fission reaction by arresting the elastic tendency of the membrane to rebound during protein polymerization and depolymerization cycles. Our in vitro study validates protein–lipid cooperativity in constricting membrane tubules. Overall, our work presents a general mechanism for achieving drastic topological remodeling in cellular membranes.
Collapse
Affiliation(s)
- Ehsan Irajizad
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204
| |
Collapse
|
42
|
Könnel A, Bugaeva W, Gügel IL, Philippar K. BANFF: bending of bilayer membranes by amphiphilic α-helices is necessary for form and function of organelles 1. Biochem Cell Biol 2018; 97:243-256. [PMID: 30208283 DOI: 10.1139/bcb-2018-0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
By binding to and inserting into the lipid bilayer, amphiphilic α-helices of proteins are involved in the curvature of biological membranes in all organisms. In particular, they are involved in establishing the complex membrane architecture of intracellular organelles like the endoplasmatic reticulum, Golgi apparatus, mitochondria, and chloroplasts. Thus, amphiphilic α-helices are essential for maintenance of cellular metabolism and fitness of organisms. Here we focus on the structure and function of membrane-intrinsic proteins, which are involved in membrane curvature by amphiphilic α-helices, in mitochondria and chloroplasts of the eukaryotic model organisms yeast and Arabidopsis thaliana. Further, we propose a model for transport of fatty acids and lipid compounds across the envelope of chloroplasts in which amphiphilic α-helices might play a role.
Collapse
Affiliation(s)
- Anne Könnel
- a Center for Human- and Molecular Biology (ZHMB) - Plant Biology, Saarland University, Campus A 2.4, 66123 Saarbrücken, Germany
| | - Wassilina Bugaeva
- a Center for Human- and Molecular Biology (ZHMB) - Plant Biology, Saarland University, Campus A 2.4, 66123 Saarbrücken, Germany
| | - Irene L Gügel
- b Department of Biology I - Botany, Ludwig-Maximilians University München, Großhaderner-Str. 2, 82152 Planegg-Martinsried, Germany
| | - Katrin Philippar
- a Center for Human- and Molecular Biology (ZHMB) - Plant Biology, Saarland University, Campus A 2.4, 66123 Saarbrücken, Germany
| |
Collapse
|
43
|
Abstract
The spatial density of mitochondria was studied by thin-section electron microscopy in
smooth muscles of bladder, iris and gut in mice, rats, guinea-pigs and sheep. Morphometric
data included areas of muscle cell profiles (~6,000 muscle cells were measured) and areas
of their mitochondria (more than three times as many). The visual method delivers accurate
estimates of the extent of the chondrioma (the ensemble of mitochondria in a cell),
measuring all and only the mitochondria in each muscle cell and no other cells. The
digital records obtained can be used again for checks and new searches. Spatial density of
mitochondria varies between about 2 and 10% in different muscles in different species. In
contrast, there is consistency of mitochondrial density within a given muscle in a given
species. For each muscle in each species there is a characteristic mitochondrial density
with modest variation between experiments. On the basis of data from serial sections in
the rat detrusor muscle, mitochondrial density varies very little between the muscle
cells, each cell having a value close to that for the whole muscle. Mitochondrial density
is different in a given muscle, e.g., ileal circular muscle, from the four mammalian
species, with highest values in mouse and lowest in sheep; in mice the mitochondrial
density is nearly three time higher that in sheep. In a given species there are
characteristic variations between different muscles. For example, the bladder detrusor
muscle has markedly fewer mitochondria than the ileum, and the iris has markedly more.
Collapse
|
44
|
Mitochondrial morphology and function impaired by dimethyl sulfoxide and dimethyl Formamide. J Bioenerg Biomembr 2018; 50:297-305. [PMID: 29770896 DOI: 10.1007/s10863-018-9759-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/25/2018] [Indexed: 12/16/2022]
Abstract
In this work, the effects of two non-ionic, non-hydroxyl organic solvents, dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) on the morphology and function of isolated rat hepatic mitochondria were investigated and compared. Mitochondrial ultrastructures impaired by DMSO and DMF were clearly observed by transmission electron microscopy. Spectroscopic and polarographic results demonstrated that organic solvents induced mitochondrial swelling, enhanced the permeation to H+/K+, collapsed the potential inner mitochondrial membrane (IMM), and increased the IMM fluidity. Moreover, with organic solvents addition, the outer mitochondrial membrane (OMM) was broken, accompanied with the release of Cytochrome c, which could activate cell apoptosis signaling pathway. The role of DMSO and DMF in enhancing permeation or transient water pore formation in the mitochondrial phospholipid bilayer might be the main reason for the mitochondrial morphology and function impaired. Mitochondrial dysfunctions induced by the two organic solvents were dose-dependent, but the extents varied. Ethanol (EtOH) showed the highest potential damage on the mitochondrial morphology and functions, followed by DMF and DMSO.
Collapse
|
45
|
Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr 2018; 9:247-262. [PMID: 29767698 PMCID: PMC5952932 DOI: 10.1093/advances/nmy007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - William D Green
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - Melinda A Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, VA
| | - Saame Raza Shaikh
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| |
Collapse
|
46
|
van der Bliek AM, Sedensky MM, Morgan PG. Cell Biology of the Mitochondrion. Genetics 2017; 207:843-871. [PMID: 29097398 PMCID: PMC5676242 DOI: 10.1534/genetics.117.300262] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are best known for harboring pathways involved in ATP synthesis through the tricarboxylic acid cycle and oxidative phosphorylation. Major advances in understanding these roles were made with Caenorhabditiselegans mutants affecting key components of the metabolic pathways. These mutants have not only helped elucidate some of the intricacies of metabolism pathways, but they have also served as jumping off points for pharmacology, toxicology, and aging studies. The field of mitochondria research has also undergone a renaissance, with the increased appreciation of the role of mitochondria in cell processes other than energy production. Here, we focus on discoveries that were made using C. elegans, with a few excursions into areas that were studied more thoroughly in other organisms, like mitochondrial protein import in yeast. Advances in mitochondrial biogenesis and membrane dynamics were made through the discoveries of novel functions in mitochondrial fission and fusion proteins. Some of these functions were only apparent through the use of diverse model systems, such as C. elegans Studies of stress responses, exemplified by mitophagy and the mitochondrial unfolded protein response, have also benefitted greatly from the use of model organisms. Recent developments include the discoveries in C. elegans of cell autonomous and nonautonomous pathways controlling the mitochondrial unfolded protein response, as well as mechanisms for degradation of paternal mitochondria after fertilization. The evolutionary conservation of many, if not all, of these pathways ensures that results obtained with C. elegans are equally applicable to studies of human mitochondria in health and disease.
Collapse
Affiliation(s)
- Alexander M van der Bliek
- Department of Biological Chemistry, Jonsson Comprehensive Cancer Center and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90024
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| | - Phil G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| |
Collapse
|
47
|
Sastri M, Darshi M, Mackey M, Ramachandra R, Ju S, Phan S, Adams S, Stein K, Douglas CR, Kim JJ, Ellisman MH, Taylor SS, Perkins GA. Sub-mitochondrial localization of the genetic-tagged mitochondrial intermembrane space-bridging components Mic19, Mic60 and Sam50. J Cell Sci 2017; 130:3248-3260. [PMID: 28808085 DOI: 10.1242/jcs.201400] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
Each mitochondrial compartment contains varying protein compositions that underlie a diversity of localized functions. Insights into the localization of mitochondrial intermembrane space-bridging (MIB) components will have an impact on our understanding of mitochondrial architecture, dynamics and function. By using the novel visualizable genetic tags miniSOG and APEX2 in cultured mouse cardiac and human astrocyte cell lines and performing electron tomography, we have mapped at nanoscale resolution three key MIB components, Mic19, Mic60 and Sam50 (also known as CHCHD3, IMMT and SAMM50, respectively), in the environment of structural landmarks such as cristae and crista junctions (CJs). Tagged Mic19 and Mic60 were located at CJs, distributed in a network pattern along the mitochondrial periphery and also enriched inside cristae. We discovered an association of Mic19 with cytochrome c oxidase subunit IV. It was also found that tagged Sam50 is not uniformly distributed in the outer mitochondrial membrane and appears to incompletely overlap with Mic19- or Mic60-positive domains, most notably at the CJs.
Collapse
Affiliation(s)
- Mira Sastri
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Manjula Darshi
- Howard Hughes Medical Institute, University of California, San Diego, CA 92093, USA
| | - Mason Mackey
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Stephen Adams
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Kathryn Stein
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Christopher R Douglas
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Jiwan John Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA.,Howard Hughes Medical Institute, University of California, San Diego, CA 92093, USA.,Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| |
Collapse
|
48
|
Javadov S, Chapa-Dubocq X, Makarov V. Different approaches to modeling analysis of mitochondrial swelling. Mitochondrion 2017; 38:58-70. [PMID: 28802667 DOI: 10.1016/j.mito.2017.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are critical players involved in both cell life and death through multiple pathways. Structural integrity, metabolism and function of mitochondria are regulated by matrix volume due to physiological changes of ion homeostasis in cellular cytoplasm and mitochondria. Ca2+ and K+ presumably play a critical role in physiological and pathological swelling of mitochondria when increased uptake (influx)/decreased release (efflux) of these ions enhances osmotic pressure accompanied by high water accumulation in the matrix. Changes in the matrix volume in the physiological range have a stimulatory effect on electron transfer chain and oxidative phosphorylation to satisfy metabolic requirements of the cell. However, excessive matrix swelling associated with the sustained opening of mitochondrial permeability transition pores (PTP) and other PTP-independent mechanisms compromises mitochondrial function and integrity leading to cell death. The mechanisms of transition from reversible (physiological) to irreversible (pathological) swelling of mitochondria remain unknown. Mitochondrial swelling is involved in the pathogenesis of many human diseases such as neurodegenerative and cardiovascular diseases. Therefore, modeling analysis of the swelling process is important for understanding the mechanisms of cell dysfunction. This review attempts to describe the role of mitochondrial swelling in cell life and death and the main mechanisms involved in the maintenance of ion homeostasis and swelling. The review also summarizes and discusses different kinetic models and approaches that can be useful for the development of new models for better simulation and prediction of in vivo mitochondrial swelling.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Xavier Chapa-Dubocq
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Vladimir Makarov
- Department of Physics, Rio Piedras Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
49
|
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem 2017; 397:1097-1114. [PMID: 27289000 DOI: 10.1515/hsz-2016-0145] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023]
Abstract
Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.
Collapse
|
50
|
MacDonald JA, Fowle WH, Woods PhD DC. New insights on mitochondrial heterogeneity observed in prepared mitochondrial samples following a method for freeze-fracture and scanning electron microscopy. Micron 2017; 101:25-31. [PMID: 28609725 DOI: 10.1016/j.micron.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
Mitochondria are dynamic intracellular organelles with diverse roles in tissue- and cell type-specific processes, extending beyond bioenergetics. In keeping with this array of functions, mitochondria are described as heterogeneous both between and within tissue types based on multiple parameters, including a broad spectrum of morphological features, and new research points toward a need for the evaluation of mitochondria as isolated organelles. Although transmission electron microscopy (TEM) is commonly used for the evaluation of mitochondria in tissues and renders mitochondrial structures in ultra-thin sections in two-dimensions, additional information regarding complex features within these organelles can be ascertained using scanning electron microscopy (SEM), which allows for analysis of phenotypic differences in three-dimensions. One challenge in producing mitochondrial images for evaluation of ultrastructure using SEM has been the ability to reliably visualize important intramitochondrial features, the inner membrane and cristae structures, on a large-scale (e.g. multiple mitochondria) within a sample preparation, as mitochondria are enclosed within a double membrane. This can be overcome using a 'freeze-fracture' technique in which mitochondrial preparations are snap-frozen followed by application of intense pressure to break open the organelles, revealing the intact components within. Previously published reports using freeze-fracture strategies for mitochondrial SEM have demonstrated feasibility in whole tissue specimens, but a detailed methodology for SEM analysis on isolated mitochondrial fractions has not been reported. By combining previously reported tissue freeze-fracture strategies, along with utilizing the depth of field created by SEM, herein we present a complete method reliant on the freeze-fracture of mitochondrial fractions prepared by differential centrifugation to produce a comprehensive and direct evaluation of three-dimensional mitochondrial ultrastructure by SEM. Image analysis of internal mitochondrial features demonstrates heterogeneity in mitochondrial ultrastructure from a single sample preparation.
Collapse
Affiliation(s)
- Julie A MacDonald
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - William H Fowle
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dori C Woods PhD
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|