1
|
Vasanthakumaran M, Ramesh M, Murugan K, Hema T, Rajaganesh R, Hwang JS. Developmental toxicity, biochemical and biomarker in the zebrafish (Danio rerio) embryo exposed to biosynthesized cadmium oxide nanoparticles. CHEMOSPHERE 2024; 369:143851. [PMID: 39622455 DOI: 10.1016/j.chemosphere.2024.143851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Cadmium oxide nanoparticles (CdO-NPs) play an important role in health applications due to their antibacterial properties. However, ecotoxicological investigations of these NPs and their adverse effects on aquatic organisms are necessary to protect the environment. Zebrafish is widely used as a model organism to explore toxic effects at multiple levels of integration. Hence, the objective of this work was to pursue possible harmful impacts of CdO -NPs that have been produced through biosynthesis, utilizing extract from the lily plant Gloriosa superba leaves, on the growth and biochemical changes in zebrafish (Danio rerio) embryos and larvae. UV, SEM, TEM, FTIR, EDAX, DLS, and ZETA-potential techniques were employed to examine the structure and morphology of the biosynthesized CdO-NPs. The identification of bioactive chemicals from the leaf extract of G. superba was conducted using GC-MS. To study the in vivo toxicity of CdO-NPs, zebrafish embryos and larvae were treated with two different concentrations of G. superba leave extract (0.5 and 1.0 mg/mL) at 96 h after fertilization (hpf). Bended tail, pericardial edema, shortened yolk sac extension, scoliosis, and damaged eyes were observed in the CdO-NPs treated groups. In addition, there was a considerable decrease in the levels of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferases (GST), and lipid peroxidation (LPO). The CdO-NPs treated groups showed significant alterations in biochemical markers, including protein levels, glucose levels, and acetylcholinesterase (AChE) activity. Overall, our findings indicated that CdO-NPs induced a dose-dependent toxicity in zebrafish embryos. The investigated parameters serve as reliable biomarkers for the surveillance of CdO-NPs in aquatic ecosystems and their impact on living animals.
Collapse
Affiliation(s)
- Murugan Vasanthakumaran
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India; Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Rajapandian Rajaganesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
2
|
Pan K, Zhu Y, Chen P, Yang K, Chen Y, Wang Y, Dai Z, Huang Z, Zhong P, Zhao X, Fan S, Ning L, Zhang J, Chen P. Biological functions and biomedical applications of extracellular vesicles derived from blood cells. Free Radic Biol Med 2024; 222:43-61. [PMID: 38848784 DOI: 10.1016/j.freeradbiomed.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
There is a growing interest in using extracellular vesicles (EVs) for therapeutic applications. EVs are composed of cytoplasmic proteins and nucleic acids and an external lipid bilayer containing transmembrane proteins on their surfaces. EVs can alter the state of the target cells by interacting with the receptor ligand of the target cell or by being internalised by the target cell. Blood cells are the primary source of EVs, and 1 μL of plasma contains approximately 1.5 × 107 EVs. Owing to their easy acquisition and the avoidance of cell amplification in vitro, using blood cells as a source of therapeutic EVs has promising clinical application prospects. This review summarises the characteristics and biological functions of EVs derived from different blood cell types (platelets, erythrocytes, and leukocytes) and analyses the prospects and challenges of using them for clinical therapeutic applications. In summary, blood cell-derived EVs can regulate different cell types such as immune cells (macrophages, T cells, and dendritic cells), stem cells, and somatic cells, and play a role in intercellular communication, immune regulation, and cell proliferation. Overall, blood cell-derived EVs have the potential for use in vascular diseases, inflammatory diseases, degenerative diseases, and injuries. To promote the clinical translation of blood cell-derived EVs, researchers need to perform further studies on EVs in terms of scalable and reproducible isolation technology, quality control, safety, stability and storage, regulatory issues, cost-effectiveness, and long-term efficacy.
Collapse
Affiliation(s)
- Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiwei Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Ke Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yongcheng Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China
| | - Zhenxiang Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Peiyu Zhong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
3
|
Gershner GH, Hunter CJ. Redox Chemistry: Implications for Necrotizing Enterocolitis. Int J Mol Sci 2024; 25:8416. [PMID: 39125983 PMCID: PMC11312856 DOI: 10.3390/ijms25158416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Reduction-oxidation (redox) chemistry plays a vital role in human homeostasis. These reactions play critical roles in energy generation, as part of innate immunity, and in the generation of secondary messengers with various functions such as cell cycle progression or the release of neurotransmitters. Despite this cornerstone role, if left unchecked, the body can overproduce reactive oxygen species (ROS) or reactive nitrogen species (RNS). When these overwhelm endogenous antioxidant systems, oxidative stress (OS) occurs. In neonates, OS has been associated with retinopathy of prematurity (ROP), leukomalacia, and bronchopulmonary dysplasia (BPD). Given its broad spectrum of effects, research has started to examine whether OS plays a role in necrotizing enterocolitis (NEC). In this paper, we will discuss the basics of redox chemistry and how the human body keeps these in check. We will then discuss what happens when these go awry, focusing mostly on NEC in neonates.
Collapse
Affiliation(s)
- Grant H. Gershner
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA;
- Department of Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| | - Catherine J. Hunter
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA;
- Department of Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
D’Apolito E, Sisalli MJ, Tufano M, Annunziato L, Scorziello A. Oxidative Metabolism in Brain Ischemia and Preconditioning: Two Sides of the Same Coin. Antioxidants (Basel) 2024; 13:547. [PMID: 38790652 PMCID: PMC11117774 DOI: 10.3390/antiox13050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.
Collapse
Affiliation(s)
- Elena D’Apolito
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | - Maria Josè Sisalli
- Department of Translational Medicine, Federico II University of Naples, 80131 Napoli, Italy;
| | - Michele Tufano
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| | | | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Napoli, Italy; (E.D.); (M.T.)
| |
Collapse
|
5
|
Yamasaki H, Itoh RD, Mizumoto KB, Yoshida YS, Otaki JM, Cohen MF. Spatiotemporal Characteristics Determining the Multifaceted Nature of Reactive Oxygen, Nitrogen, and Sulfur Species in Relation to Proton Homeostasis. Antioxid Redox Signal 2024. [PMID: 38407968 DOI: 10.1089/ars.2023.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) act as signaling molecules, regulating gene expression, enzyme activity, and physiological responses. However, excessive amounts of these molecular species can lead to deleterious effects, causing cellular damage and death. This dual nature of ROS, RNS, and RSS presents an intriguing conundrum that calls for a new paradigm. Recent Advances: Recent advancements in the study of photosynthesis have offered significant insights at the molecular level and with high temporal resolution into how the photosystem II oxygen-evolving complex manages to prevent harmful ROS production during the water-splitting process. These findings suggest that a dynamic spatiotemporal arrangement of redox reactions, coupled with strict regulation of proton transfer, is crucial for minimizing unnecessary ROS formation. Critical Issues: To better understand the multifaceted nature of these reactive molecular species in biology, it is worth considering a more holistic view that combines ecological and evolutionary perspectives on ROS, RNS, and RSS. By integrating spatiotemporal perspectives into global, cellular, and biochemical events, we discuss local pH or proton availability as a critical determinant associated with the generation and action of ROS, RNS, and RSS in biological systems. Future Directions: The concept of localized proton availability will not only help explain the multifaceted nature of these ubiquitous simple molecules in diverse systems but also provide a basis for new therapeutic strategies to manage and manipulate these reactive species in neural disorders, pathogenic diseases, and antiaging efforts.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ryuuichi D Itoh
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | | | - Yuki S Yoshida
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Joji M Otaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Michael F Cohen
- University of California Cooperative Extension, Santa Clara County, San Jose, California, USA
| |
Collapse
|
6
|
Mathis BJ, Kato H, Matsuishi Y, Hiramatsu Y. Endogenous and exogenous protection from surgically induced reactive oxygen and nitrogen species. Surg Today 2024; 54:1-13. [PMID: 36348164 DOI: 10.1007/s00595-022-02612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Surgical intervention creates reactive oxygen species through diverse molecular mechanisms, including direct stimulation of immune-mediated inflammation necessary for wound healing. However, dysregulation of redox homeostasis in surgical patients overwhelms the endogenous defense system, slowing the healing process and damaging organs. We broadly surveyed reactive oxygen species that result from surgical interventions and the endogenous and/or exogenous antioxidants that control them. This study assimilates current reports on surgical sources of reactive oxygen and nitrogen species along with literature reports on the effects of endogenous and exogenous antioxidants in human, animal, and clinical settings. Although exogenous antioxidants are generally beneficial, endogenous antioxidant systems account for over 80% of total activity, varying based on patient age, sex, and health or co-morbidity status, especially in smokers, the diabetic, and the obese. Supplementation of exogenous compounds for support in surgical patients is thus theoretically beneficial, but a lack of persuasive clinical evidence has left this potential patient support strategy without clear guidelines. A more thorough understanding of the mechanisms of exogenous antioxidants in patients with compromised health statuses and pharmacokinetic profiling may increase the utility of such support in both the operating and recovery rooms.
Collapse
Affiliation(s)
- Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, 2-1-1 Amakubo, Tsukuba, 305-8576, Ibaraki, Japan.
| | - Hideyuki Kato
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yujiro Matsuishi
- Department of Neuroscience Nursing, St. Luke's International University, Tokyo, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Negrellos A, Rice AM, Dos Santos PC, King SB. Sulfinamide Formation from the Reaction of Bacillithiol and Nitroxyl. ACS Chem Biol 2023; 18:2524-2534. [PMID: 38012810 PMCID: PMC11229778 DOI: 10.1021/acschembio.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Bacillithiol (BSH) replaces glutathione (GSH) as the most prominent low-molecular-weight thiol in many low G + C gram-positive bacteria. BSH plays roles in metal binding, protein/enzyme regulation, detoxification, redox buffering, and bacterial virulence. Given the small amounts of BSH isolated from natural sources and relatively lengthy chemical syntheses, the reactions of BSH with pertinent reactive oxygen, nitrogen, and sulfur species remain largely unexplored. We prepared BSH and exposed it to nitroxyl (HNO), a reactive nitrogen species that influences bacterial sulfur metabolism. The profile of this reaction was distinct from HNO oxidation of GSH, which yielded mixtures of disulfide and sulfinamide. The reaction of BSH and HNO (generated from Angeli's salt) gives only sulfinamide products, including a newly proposed cyclic sulfinamide. Treatment of a glucosamine-cysteine conjugate, which lacks the malic acid group, with HNO forms disulfide, implicating the malic acid group in sulfinamide formation. This finding supports a mechanism involving the formation of an N-hydroxysulfenamide intermediate that dehydrates to a sulfenium ion that can be trapped by water or internally trapped by an amide nitrogen to give the cyclic sulfinamide. The biological relevance of BSH reactivity toward HNO is provided through in vivo experiments demonstrating that Bacillus subtilis exposed to HNO shows a growth phenotype, and a strain unable to produce BSH shows hypersensitivity toward HNO in minimal medium cultures. Thiol analysis of HNO-exposed cultures shows an overall decrease in reduced BSH levels, which is not accompanied by increased levels of BSSB, supporting a model involving the formation of an oxidized sulfinamide derivative, identified in vivo by high-pressure liquid chromatography/mass spectrometry. Collectively, these findings reveal the unique chemistry and biology of HNO with BSH in bacteria that produce this biothiol.
Collapse
Affiliation(s)
- Alberto Negrellos
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27107, United States
| | - Allison M Rice
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27107, United States
| | - Patricia C Dos Santos
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27107, United States
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27107, United States
| |
Collapse
|
8
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
9
|
Tong Y, Guo H, Abbas Z, Zhang J, Wang J, Cheng Q, Peng S, Yang T, Bai T, Zhou Y, Li J, Wei X, Si D, Zhang R. Optimizing postbiotic production through solid-state fermentation with Bacillus amyloliquefaciens J and Lactiplantibacillus plantarum SN4 enhances antibacterial, antioxidant, and anti-inflammatory activities. Front Microbiol 2023; 14:1229952. [PMID: 37744928 PMCID: PMC10512978 DOI: 10.3389/fmicb.2023.1229952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Background Postbiotics are an emerging research interest in recent years and are fairly advanced compared to prebiotics and probiotics. The composition and function of postbiotics are closely related to fermentation conditions. Methods In this study, we developed a solid-state fermentation preparation method for postbiotics with antimicrobial, antioxidant, and anti-inflammatory activities. The antibacterial activity was improved 3.62 times compared to initial fermentation conditions by using optimization techniques such as single factor experiments, Plackett-Burman design (PBD), steepest ascent method (SAM), and central composite design (CCD) methods. The optimized conditions were carried out with an initial water content of 50% for 8 days at 37°C and fermentation strains of Bacillus amyloliquefaciens J and Lactiplantibacillus plantarum SN4 at a ratio of 1:1 with a total inoculum size of 8%. The optimized SSF medium content ratios of peptide powder, wheat bran, corn flour, and soybean meal were 4, 37.4, 30, and 28.6%, respectively. Results Under these optimized conditions, postbiotics with a concentration of 25 mg/mL showed significant broad-spectrum antibacterial capabilities against Escherichia coli, Salmonella, and Staphylococcus aureus and strong antioxidant activity against ABTS, DPPH, and OH radicals. Moreover, the optimized postbiotics exhibited good anti-inflammatory ability for reducing nitric oxide (NO) secretion in RAW 264.7 macrophage cells in response to LPS-induced inflammation. Furthermore, the postbiotics significantly improved intestinal epithelial wound healing capabilities after mechanical injury, such as cell scratches in IPEC-J2 cells (p < 0.05). Conclusion In brief, we developed postbiotics through optimized solid-state fermentation with potential benefits for gut health. Therefore, our findings suggested that the novel postbiotics could be used as potential functional food products for improving body health.
Collapse
Affiliation(s)
- Yucui Tong
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - He'nan Guo
- School of Medicine, Tsinghua University, Beijing, China
| | - Zaheer Abbas
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junyong Wang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang Cheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuyue Peng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Yang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting Bai
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yichen Zhou
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinzhuan Li
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xubiao Wei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Wei C, Vanhatalo A, Kadach S, Stoyanov Z, Abu-Alghayth M, Black MI, Smallwood MJ, Rajaram R, Winyard PG, Jones AM. Reduction in blood pressure following acute dietary nitrate ingestion is correlated with increased red blood cell S-nitrosothiol concentrations. Nitric Oxide 2023; 138-139:1-9. [PMID: 37268184 DOI: 10.1016/j.niox.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Dietary nitrate (NO3-) supplementation can enhance nitric oxide (NO) bioavailability and lower blood pressure (BP) in humans. The nitrite concentration ([NO2-]) in the plasma is the most commonly used biomarker of increased NO availability. However, it is unknown to what extent changes in other NO congeners, such as S-nitrosothiols (RSNOs), and in other blood components, such as red blood cells (RBC), also contribute to the BP lowering effects of dietary NO3-. We investigated the correlations between changes in NO biomarkers in different blood compartments and changes in BP variables following acute NO3- ingestion. Resting BP was measured and blood samples were collected at baseline, and at 1, 2, 3, 4 and 24 h following acute beetroot juice (∼12.8 mmol NO3-, ∼11 mg NO3-/kg) ingestion in 20 healthy volunteers. Spearman rank correlation coefficients were determined between the peak individual increases in NO biomarkers (NO3-, NO2-, RSNOs) in plasma, RBC and whole blood, and corresponding decreases in resting BP variables. No significant correlation was observed between increased plasma [NO2-] and reduced BP, but increased RBC [NO2-] was correlated with decreased systolic BP (rs = -0.50, P = 0.03). Notably, increased RBC [RSNOs] was significantly correlated with decreases in systolic (rs = -0.68, P = 0.001), diastolic (rs = -0.59, P = 0.008) and mean arterial pressure (rs = -0.64, P = 0.003). Fisher's z transformation indicated no difference in the strength of the correlations between increases in RBC [NO2-] or [RSNOs] and decreased systolic blood pressure. In conclusion, increased RBC [RSNOs] may be an important mediator of the reduction in resting BP observed following dietary NO3- supplementation.
Collapse
Affiliation(s)
- Chenguang Wei
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Anni Vanhatalo
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Stefan Kadach
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Zdravko Stoyanov
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Mohammed Abu-Alghayth
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, AL Nakhil, Bisha, 67714, Saudi Arabia
| | - Matthew I Black
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Miranda J Smallwood
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Raghini Rajaram
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Paul G Winyard
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK
| | - Andrew M Jones
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, UK.
| |
Collapse
|
11
|
Guerreiro G, Deon M, Vargas CR. Evaluation of biochemical profile and oxidative damage to lipids and proteins in patients with lysosomal acid lipase deficiency. Biochem Cell Biol 2023; 101:294-302. [PMID: 37042460 DOI: 10.1139/bcb-2022-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Lysosomal acid lipase deficiency (LALD) is an inborn error of metabolism that lacks satisfactory treatment, which leads to the development of severe hepatic and cardiac complications and may even lead to death. In this sense, knowledge of the mechanisms involved in the pathophysiology of this disorder becomes essential to allow the search for new therapeutic strategies. There are no studies in the literature investigating the role of reactive species and inflammatory processes in the pathophysiology of this disorder. Therefore, the aim of this work was to investigate parameters of oxidative and inflammatory stress in LALD patients. In this work, we obtained results that demonstrate that LALD patients are susceptible to oxidative stress caused by an increase in the production of free radicals, observed by the increase of 2-7-dihydrodichlorofluorescein. The decrease in sulfhydryl content reflects oxidative damage to proteins, as well as a decrease in antioxidant defenses. Likewise, the increase in urinary levels of di-tyrosine observed also demonstrates oxidative damage to proteins. Furthermore, the determination of chitotriosidase activity in the plasma of patients with LALD was significantly higher, suggesting a pro-inflammatory state. An increase in plasma oxysterol levels was observed in patients with LALD, indicating an important relationship between this disease and cholesterol metabolism and oxidative stress. Also, we observed in LALD patients increased levels of nitrate production. The positive correlation found between oxysterol levels and activity of chitotriosidase in these patients indicates a possible link between the production of reactive species and inflammation. In addition, an increase in lipid profile biomarkers such as total and low-density lipoprotein cholesterol were demonstrated in the patients, which reinforces the involvement of cholesterol metabolism. Thus, we can assume that, in LALD, oxidative and nitrosative damage, in addition to inflammatory process, play an important role in its evolution and future clinical manifestations. In this way, we can suggest that the study of the potential benefit of the use of antioxidant and anti-inflammatory substances as an adjuvant tool in the treatment will be important, which should be associated with the already recommended therapy.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Porto Alegre 90610-000, RS, Brasil
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, Porto Alegre, 90035-903, RS, Brasil
| | - Marion Deon
- Faculdade de Farmácia, UFRGS, Porto Alegre 90610-000, RS, Brasil
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, Porto Alegre, 90035-903, RS, Brasil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Porto Alegre 90610-000, RS, Brasil
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, Porto Alegre, 90035-903, RS, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, Porto Alegre, 90035-000, RS, Brasil
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, 90610-000, RS, Brasil
| |
Collapse
|
12
|
Matsunaga T, Sano H, Takita K, Morita M, Yamanaka S, Ichikawa T, Numakura T, Ida T, Jung M, Ogata S, Yoon S, Fujino N, Kyogoku Y, Sasaki Y, Koarai A, Tamada T, Toyama A, Nakabayashi T, Kageyama L, Kyuwa S, Inaba K, Watanabe S, Nagy P, Sawa T, Oshiumi H, Ichinose M, Yamada M, Sugiura H, Wei FY, Motohashi H, Akaike T. Supersulphides provide airway protection in viral and chronic lung diseases. Nat Commun 2023; 14:4476. [PMID: 37491435 PMCID: PMC10368687 DOI: 10.1038/s41467-023-40182-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Supersulphides are inorganic and organic sulphides with sulphur catenation with diverse physiological functions. Their synthesis is mainly mediated by mitochondrial cysteinyl-tRNA synthetase (CARS2) that functions as a principal cysteine persulphide synthase (CPERS). Here, we identify protective functions of supersulphides in viral airway infections (influenza and COVID-19), in aged lungs and in chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF). We develop a method for breath supersulphur-omics and demonstrate that levels of exhaled supersulphides increase in people with COVID-19 infection and in a hamster model of SARS-CoV-2 infection. Lung damage and subsequent lethality that result from oxidative stress and inflammation in mouse models of COPD, IPF, and ageing were mitigated by endogenous supersulphides production by CARS2/CPERS or exogenous administration of the supersulphide donor glutathione trisulphide. We revealed a protective role of supersulphides in airways with various viral or chronic insults and demonstrated the potential of targeting supersulphides in lung disease.
Collapse
Affiliation(s)
- Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Katsuya Takita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shun Yamanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Sunghyeon Yoon
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yusaku Sasaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Atsuhiko Toyama
- Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto, 604-8511, Japan
| | - Takakazu Nakabayashi
- Bio-Structural Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Lisa Kageyama
- Bio-Structural Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Shigeru Kyuwa
- Laboratory of Biomedical Science, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, 1122, Hungary
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
13
|
Martínez MA, Aedo H, Lopez-Torres B, Maximiliano JE, Martínez-Larrañaga MR, Anadón A, Martínez M, Peteiro C, Cueto M, Rubiño S, Hortos M, Ares I. Bifurcaria bifurcata extract exerts antioxidant effects on human Caco-2 cells. ENVIRONMENTAL RESEARCH 2023; 231:116141. [PMID: 37187306 DOI: 10.1016/j.envres.2023.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
The present research study investigated the potential protective effect of Bifurcaria bifurcata extract on cell viability and antioxidant defences of cultured human Caco-2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (tert-BOOH). Aqueous extracts were firstly characterized in terms of total phenolic contents. Concentrations of reduced glutathione (GSH) and malondialdehyde (MDA), generation of reactive oxygen species (ROS), nitric oxide (NO) production, antioxidant enzymes activities [NADPH quinone dehydrogenase 1 (NQO1) and glutathione S-transferase (GST)], caspase 3/7 activity and gene expression linked to apoptosis, proinflammation and oxidative stress signaling pathways were used as markers of cellular oxidative status. B. bifurcata extract prevented the cytotoxicity, the decrease of GSH, the increase of MDA levels and the ROS generation induced by tert-BOOH. B. bifurcata extract prevented the significant decrease of NQO1 and GST activities, and the significant increase of caspase 3/7 activity induced by tert-BOOH. B. bifurcata extract also caused an over-expression of GSTM2, Nrf2 and AKT1 transcriptors, as well as reduced ERK1, JNK1, Bax, BNIP3, NFκB1, IL-6 and HO-1 gene expressions induced by tert-BOOH suggesting an increase in cellular resistance against oxidative stress. The results of the biomarkers analyzed show that treatment of Caco-2 cells with B. bifurcata extract enhance antioxidant defences, which imply an improved cell response to an oxidative challenge. B. bifurcata extract possesses strong antioxidant properties and may be a potential effective alternative to oxidant agents in the functional food industry.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Hugo Aedo
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Cesar Peteiro
- Planta de Algas, Unidad de Cultivos Marinos "El Bocal", Centro Oceanográfico de Santander, Instituto Español de Oceanografía (IEO, CSIC), 39012, Santander, Spain
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Spain
| | - Susana Rubiño
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - María Hortos
- Institut de Recerca i Tecnología Agroalimentaries (IRTA), Centro de Monells, 17121, Monells, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
14
|
Yamasaki H, Imai H, Tanaka A, Otaki JM. Pleiotropic Functions of Nitric Oxide Produced by Ascorbate for the Prevention and Mitigation of COVID-19: A Revaluation of Pauling's Vitamin C Therapy. Microorganisms 2023; 11:397. [PMID: 36838362 PMCID: PMC9963342 DOI: 10.3390/microorganisms11020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Linus Pauling, who was awarded the Nobel Prize in Chemistry, suggested that a high dose of vitamin C (l-ascorbic acid) might work as a prevention or treatment for the common cold. Vitamin C therapy was tested in clinical trials, but clear evidence was not found at that time. Although Pauling's proposal has been strongly criticized for a long time, vitamin C therapy has continued to be tested as a treatment for a variety of diseases, including coronavirus infectious disease 2019 (COVID-19). The pathogen of COVID-19, SARS-CoV-2, belongs to the β-coronavirus lineage, which includes human coronavirus, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). This review intends to shed new light on vitamin C antiviral activity that may prevent SARS-CoV-2 infection through the chemical production of nitric oxide (NO). NO is a gaseous free radical that is largely produced by the enzyme NO synthase (NOS) in cells. NO produced by upper epidermal cells contributes to the inactivation of viruses and bacteria contained in air or aerosols. In addition to enzymatic production, NO can be generated by the chemical reduction of inorganic nitrite (NO2-), an alternative mechanism for NO production in living organisms. Dietary vitamin C, largely contained in fruits and vegetables, can reduce the nitrite in saliva to produce NO in the oral cavity when chewing foods. In the stomach, salivary nitrite can also be reduced to NO by vitamin C secreted from the epidermal cells of the stomach. The strong acidic pH of gastric juice facilitates the chemical reduction of salivary nitrite to produce NO. Vitamin C contributes in multiple ways to the host innate immune system as a first-line defense mechanism against pathogens. Highlighting chemical NO production by vitamin C, we suggest that controversies on the therapeutic effects of vitamin C in previous clinical trials may partly be due to less appreciation of the pleiotropic functions of vitamin C as a universal bioreductant.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| | | | | | | |
Collapse
|
15
|
Microwave‐Assisted Multicomponent Synthesis of New 6‐Arylated 5‐Hydroxy‐benzo[
a
]phenazine Derivatives and Their Potential Anti‐inflammatory Activity. ChemistrySelect 2023. [DOI: 10.1002/slct.202204376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Zhou Q, Peterson BW, Liu Y, Yuan H. Editorial: Biomaterials with the regulation of reactive oxygen/nitrogen species for biomedical applications. Front Bioeng Biotechnol 2022; 10:1083727. [PMID: 36507267 PMCID: PMC9732808 DOI: 10.3389/fbioe.2022.1083727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Qihui Zhou
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China,*Correspondence: Qihui Zhou, ; Brandon W. Peterson, ; Yong Liu, ; Huihua Yuan,
| | - Brandon W. Peterson
- Department of Biomedical Engineering, University of Medical Center Groningen, Groningen, Netherlands,*Correspondence: Qihui Zhou, ; Brandon W. Peterson, ; Yong Liu, ; Huihua Yuan,
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China,*Correspondence: Qihui Zhou, ; Brandon W. Peterson, ; Yong Liu, ; Huihua Yuan,
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, China,*Correspondence: Qihui Zhou, ; Brandon W. Peterson, ; Yong Liu, ; Huihua Yuan,
| |
Collapse
|
17
|
Wu M, Zhang Z, Yong J, Schenk PM, Tian D, Xu ZP, Zhang R. Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. Top Curr Chem (Cham) 2022; 380:29. [PMID: 35695976 PMCID: PMC9192387 DOI: 10.1007/s41061-022-00392-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
Luminescence chemosensors are one of the most useful tools for the determination and imaging of small biomolecules and ions in situ in real time. Based on the unique photo-physical/-chemical properties of ruthenium(II) (Ru(II)) complexes, the development of Ru(II) complex-based chemosensors has attracted increasing attention in recent years, and thus many Ru(II) complexes have been designed and synthesized for the detection of ions and small biomolecules in biological and environmental samples. In this work, we summarize the research advances in the development of Ru(II) complex-based chemosensors for the determination of ions and small biomolecules, including anions, metal ions, reactive biomolecules and amino acids, with a particular focus on binding/reaction-based chemosensors for the investigation of intracellular analytes' evolution through luminescence analysis and imaging. The advances, challenges and future research directions in the development of Ru(II) complex-based chemosensors are also discussed.
Collapse
Affiliation(s)
- Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
18
|
Anti-Inflammatory Activity of Glabralactone, a Coumarin Compound from Angelica sinensis, via Suppression of TRIF-Dependent IRF-3 Signaling and NF-κB Pathways. Mediators Inflamm 2022; 2022:5985255. [PMID: 35586367 PMCID: PMC9110254 DOI: 10.1155/2022/5985255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/05/2022] Open
Abstract
The dried root of Angelica sinensis (A. sinensis) has been widely used in Chinese traditional medicine for various diseases such as inflammation, osteoarthritis, infections, mild anemia, fatigue, and high blood pressure. Searching for the secondary metabolites of A. sinensis has been mainly conducted. However, the bioactivity of coumarins in the plant remains unexplored. Therefore, this study was designed to evaluate the anti-inflammatory activity of glabralactone, a coumarin compound from A. sinensis, using in vitro and in vivo models, and to elucidate the underlying molecular mechanisms of action. Glabralactone effectively inhibited nitric oxide production in lipopolysaccharide- (LPS-) stimulated RAW264.7 macrophage cells. The downregulation of LPS-induced mRNA and protein expression of iNOS, TNF-α, IL-1β, and miR-155 was found by glabralactone. The activation of NF-κB and TRIF-dependent IRF-3 pathway was also effectively suppressed by glabralactone in LPS-stimulated macrophages. Glabralactone (5 and 10 mg/kg) exhibited an in vivo anti-inflammatory activity with the reduction of paw edema volume in carrageenan-induced rat model, and the expressions of iNOS and IL-1β proteins were suppressed by glabralactone in the paw soft tissues of the animal model. Taken together, glabralactone exhibited an anti-inflammatory activity in in vitro and in vivo models. These findings reveal that glabralactone might be one of the potential components for the anti-inflammatory activity of A. sinensis and may be prioritized in the development of a chemotherapeutic agent for the treatment of inflammatory diseases.
Collapse
|
19
|
Wang X, Li X, Xiong D, Ren H, Chen H, Ju Z. Exposure of adult sea urchin Strongylocentrotus intermedius to stranded heavy fuel oil causes developmental toxicity on larval offspring. PeerJ 2022; 10:e13298. [PMID: 35462773 PMCID: PMC9029359 DOI: 10.7717/peerj.13298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Heavy fuel oil (HFO) spills pose serious threat to coastlines and sensitive resources. Stranded HFO that occurs along the coastline could cause long-term and massive damage to the marine environment and indirectly affect the survival of parental marine invertebrates. However, our understanding of the complex associations within invertebrates is primarily limited, particularly in terms of the toxicity effects on the offspring when parents are exposed to stranded HFO. Here, we investigated the persistent effects on the early development stage of the offspring following stranded HFO exposure on the sea urchin Strongylocentrotus intermedius. After 21 d exposure, sea urchins exhibited a significant decrease in the reproductive capacity; while the reactive oxygen species level, 3-nitrotyrosine protein level, protein carbonyl level, and heat shock proteins 70 expression in the gonadal tissues and gametes significantly increased as compared to the controls, indicating that HFO exposure could cause development toxicity on offspring in most traits of larval size. These results suggested that the stranded HFO exposure could increase oxidative stress of gonadal tissues, impair reproductive functions in parental sea urchins, and subsequently impact on development of their offspring. This study provides valuable information regarding the persistent toxicity effects on the offspring following stranded HFO exposure on sea urchins.
Collapse
|
20
|
Tang F, Wu C, Zhai Z, Wang K, Liu X, Xiao H, Zhuo S, Li P, Tang B. Recent progress in small-molecule fluorescent probes for endoplasmic reticulum imaging in biological systems. Analyst 2022; 147:987-1005. [PMID: 35230358 DOI: 10.1039/d1an02290c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum (ER) is an indispensable organelle in eukaryotic cells involved in protein synthesis and processing, as well as calcium storage and release. Therefore, maintaining the quality of ER is of great importance for cellular homeostasis. Aberrant fluctuations of bioactive species in the ER will result in homeostasis disequilibrium and further cause ER stress, which has evolved to contribute to the pathogenesis of various diseases. Therefore, the real-time monitoring of various bioactive species in the ER is of high priority to ascertain the mysterious roles of ER, which will contribute to unveiling the corresponding mechanism of organism disturbances. Recently, fluorescence imaging has emerged as a robust technique for the direct visualization of molecular events due to its outstanding sensitivity, high temporal-spatial resolution and noninvasive nature. In this review, we comprehensively summarize the recent progress in design strategies, bioimaging applications, potential directions and challenges of ER-targetable small-molecular fluorescent probes.
Collapse
Affiliation(s)
- Fuyan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China. .,College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Zhaodong Zhai
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Xueli Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China. .,College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
21
|
Increasing Inhibition of the Rat Brain 2-Oxoglutarate Dehydrogenase Decreases Glutathione Redox State, Elevating Anxiety and Perturbing Stress Adaptation. Pharmaceuticals (Basel) 2022; 15:ph15020182. [PMID: 35215295 PMCID: PMC8875720 DOI: 10.3390/ph15020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Specific inhibitors of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) are administered to animals to model the downregulation of the enzyme as observed in neurodegenerative diseases. Comparison of the effects of succinyl phosphonate (SP, 0.02 mmol/kg) and its uncharged precursor, triethyl succinyl phosphonate (TESP, 0.02 and 0.1 mmol/kg) reveals a biphasic response of the rat brain metabolism and physiology to increasing perturbation of OGDH function. At the low (TE)SP dose, glutamate, NAD+, and the activities of dehydrogenases of 2-oxoglutarate and malate increase, followed by their decreases at the high TESP dose. The complementary changes, i.e., an initial decrease followed by growth, are demonstrated by activities of pyruvate dehydrogenase and glutamine synthetase, and levels of oxidized glutathione and citrulline. While most of these indicators return to control levels at the high TESP dose, OGDH activity decreases and oxidized glutathione increases, compared to their control values. The first phase of metabolic perturbations does not cause significant physiological changes, but in the second phase, the ECG parameters and behavior reveal decreased adaptability and increased anxiety. Thus, lower levels of OGDH inhibition are compensated by the rearranged metabolic network, while the increased levels induce a metabolic switch to a lower redox state of the brain, associated with elevated stress of the animals.
Collapse
|
22
|
Bandaru LJM, Ayyalasomayajula N, Murumulla L, Challa S. Mechanisms associated with the dysregulation of mitochondrial function due to lead exposure and possible implications on the development of Alzheimer's disease. Biometals 2022; 35:1-25. [PMID: 35048237 DOI: 10.1007/s10534-021-00360-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 01/17/2023]
Abstract
Lead (Pb) is a multimedia contaminant with various pathophysiological consequences, including cognitive decline and neural abnormalities. Recent findings have reported an association of Pb toxicity with Alzheimer's disease (AD). Studies have revealed that mitochondrial dysfunction is a pathological characteristic of AD. According to toxicology reports, Pb promotes mitochondrial oxidative stress by lowering complex III activity in the electron transport chain, boosting reactive oxygen species formation, and reducing the cell's antioxidant defence system. Here, we review recent advances in the role of mitochondria in Pb-induced AD pathology, as well as the mechanisms associated with the mitochondrial dysfunction, such as the depolarisation of the mitochondrial membrane potential, mitochondrial permeability transition pore opening; mitochondrial biogenesis, bioenergetics and mitochondrial dynamics alterations; and mitophagy and apoptosis. We also discuss possible therapeutic options for mitochondrial-targeted neurodegenerative disease (AD).
Collapse
Affiliation(s)
- Lakshmi Jaya Madhuri Bandaru
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Neelima Ayyalasomayajula
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India.
| |
Collapse
|
23
|
Llorens-Cebrià C, Molina-Van den Bosch M, Vergara A, Jacobs-Cachá C, Soler MJ. Antioxidant Roles of SGLT2 Inhibitors in the Kidney. Biomolecules 2022; 12:143. [PMID: 35053290 PMCID: PMC8773577 DOI: 10.3390/biom12010143] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
The reduction-oxidation (redox) system consists of the coupling and coordination of various electron gradients that are generated thanks to serial reduction-oxidation enzymatic reactions. These reactions happen in every cell and produce radical oxidants that can be mainly classified into reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS modulate cell-signaling pathways and cellular processes fundamental to normal cell function. However, overproduction of oxidative species can lead to oxidative stress (OS) that is pathological. Oxidative stress is a main contributor to diabetic kidney disease (DKD) onset. In the kidney, the proximal tubular cells require a high energy supply to reabsorb proteins, metabolites, ions, and water. In a diabetic milieu, glucose-induced toxicity promotes oxidative stress and mitochondrial dysfunction, impairing tubular function. Increased glucose level in urine and ROS enhance the activity of sodium/glucose co-transporter type 2 (SGLT2), which in turn exacerbates OS. SGLT2 inhibitors have demonstrated clear cardiovascular benefits in DKD which may be in part ascribed to the generation of a beneficial equilibrium between oxidant and antioxidant mechanisms.
Collapse
Affiliation(s)
- Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
| | - Mireia Molina-Van den Bosch
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
| | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RD21/0005/0016, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RD21/0005/0016, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RD21/0005/0016, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
de Almeida Torres R, de Almeida Torres R, Luchini A, Anjos Ferreira A. The oxidative and inflammatory nature of age-related macular degeneration. JOURNAL OF CLINICAL OPHTHALMOLOGY AND RESEARCH 2022. [DOI: 10.4103/jcor.jcor_268_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Tang MS, Lee HW, Weng MW, Wang HT, Hu Y, Chen LC, Park SH, Chan HW, Xu J, Wu XR, Wang H, Yang R, Galdane K, Jackson K, Chu A, Halzack E. DNA damage, DNA repair and carcinogenicity: Tobacco smoke versus electronic cigarette aerosol. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108409. [PMID: 35690412 PMCID: PMC9208310 DOI: 10.1016/j.mrrev.2021.108409] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023]
Abstract
The allure of tobacco smoking is linked to the instant gratification provided by inhaled nicotine. Unfortunately, tobacco curing and burning generates many mutagens including more than 70 carcinogens. There are two types of mutagens and carcinogens in tobacco smoke (TS): direct DNA damaging carcinogens and procarcinogens, which require metabolic activation to become DNA damaging. Recent studies provide three new insights on TS-induced DNA damage. First, two major types of TS DNA damage are induced by direct carcinogen aldehydes, cyclic-1,N2-hydroxy-deoxyguanosine (γ-OH-PdG) and α-methyl-1, N2-γ-OH-PdG, rather than by the procarcinogens, polycyclic aromatic hydrocarbons and aromatic amines. Second, TS reduces DNA repair proteins and activity levels. TS aldehydes also prevent procarcinogen activation. Based on these findings, we propose that aldehydes are major sources of TS induce DNA damage and a driving force for carcinogenesis. E-cigarettes (E-cigs) are designed to deliver nicotine in an aerosol state, without burning tobacco. E-cigarette aerosols (ECAs) contain nicotine, propylene glycol and vegetable glycerin. ECAs induce O6-methyl-deoxyguanosines (O6-medG) and cyclic γ-hydroxy-1,N2--propano-dG (γ-OH-PdG) in mouse lung, heart and bladder tissues and causes a reduction of DNA repair proteins and activity in lungs. Nicotine and nicotine-derived nitrosamine ketone (NNK) induce the same types of DNA adducts and cause DNA repair inhibition in human cells. After long-term exposure, ECAs induce lung adenocarcinoma and bladder urothelial hyperplasia in mice. We propose that E-cig nicotine can be nitrosated in mouse and human cells becoming nitrosamines, thereby causing two carcinogenic effects, induction of DNA damage and inhibition of DNA repair, and that ECA is carcinogenic in mice. Thus, this article reviews the newest literature on DNA adducts and DNA repair inhibition induced by nicotine and ECAs in mice and cultured human cells, and provides insights into ECA carcinogenicity in mice.
Collapse
Affiliation(s)
- Moon-Shong Tang
- Department of Environmental Medicine, Pathology and Medicine, United States.
| | - Hyun-Wook Lee
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Mao-Wen Weng
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Hsiang-Tsui Wang
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Yu Hu
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Lung-Chi Chen
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Sung-Hyun Park
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Huei-Wei Chan
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Jiheng Xu
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Xue-Ru Wu
- Departmemt of Urology, New York University School of Medicine, New York, NY10016, United States
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson MedicalSchool, Rutgers University, Piscataway, NJ 08854, United States
| | - Rui Yang
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Karen Galdane
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Kathryn Jackson
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Annie Chu
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Elizabeth Halzack
- Department of Environmental Medicine, Pathology and Medicine, United States
| |
Collapse
|
26
|
Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021; 13:cancers13225762. [PMID: 34830916 PMCID: PMC8616433 DOI: 10.3390/cancers13225762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glycyrrhizin (GL) has anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant activity. In particular, GL reduces multidrug resistance (MDR) in cancer cells, which is a major obstacle to chemotherapy. Nitric oxide (NO) also plays an important role in MDR, and GL affects NO concentration in the tumor microenvironment. However, the effects of GL and NO interaction on MDR have not been reviewed. Here, we review the role of GL as an NO regulator in cancer cells and its subsequent anti-MDR effect and posit that GL is a promising MDR inhibitor for cancer chemotherapy. Abstract Chemotherapy is used widely for cancer treatment; however, the evolution of multidrug resistance (MDR) in many patients limits the therapeutic benefits of chemotherapy. It is important to overcome MDR for enhanced chemotherapy. ATP-dependent efflux of drugs out of cells is the main mechanism of MDR. Recent studies have suggested that nitric oxide (NO) can be used to overcome MDR by inhibiting the ATPase function of ATP-dependent pumps. Several attempts have been made to deliver NO to the tumor microenvironment (TME), however there are limitations in delivery. Glycyrrhizin (GL), an active compound of licorice, has been reported to both reduce the MDR effect by inhibiting ATP-dependent pumps and function as a regulator of NO production in the TME. In this review, we describe the potential role of GL as an NO regulator and MDR inhibitor that efficiently reduces the MDR effect in cancer chemotherapy.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea
- Elixir Pharmatech Inc., Seoul 04763, Korea
- Correspondence:
| |
Collapse
|
27
|
Chen S, Chang Y, Ding Y. Roles of H 2S and NO in regulating the antioxidant system of Vibrio alginolyticus under norfloxacin stress. PeerJ 2021; 9:e12255. [PMID: 34707937 PMCID: PMC8500093 DOI: 10.7717/peerj.12255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
Antioxidant system is of great importance for organisms to regulate the level of excessive reactive oxygen species (ROS) under the environmental stresses including antibiotics stress. Effects of norfloxacin (NOR) on cystathionine-β-synthase (CBS), nitric oxide synthase (NOS) and antioxidant enzymes were investigated, and interaction between NO and H2S and their regulation on the antioxidant system of Vibrio alginolyticus under NOR were determined as well in the present study. After treated with 2 µg/mL NOR (1/2 MIC), CBS content, H2S and NO contents decreased while H2O2 accumulation and the antioxidant-related genes mRNA level increased. Additionally, the endogenous H2S content in V. alginolyticus was increased by the exogenous NO, while H2O2 accumulation and the relative expression level of SOD (Superoxide dismutase gene) decreased under exogenous NO or H2S. And the content of endogenous NO and NOS in V. alginolyticus increased under the exogenous H2S as well. Taken together, these results showed that anti-oxidative ability in V. alginolyticus was respectively enhanced by the gas molecules of H2S and NO under NOR-induced stress, and there may be a crosstalk regulative mechanism between H2S and NO. These results lay a foundation for the research of regulation network of H2S and NO, and provide a hint to synthesize anti-vibrio drugs in the future.
Collapse
Affiliation(s)
- Shuhe Chen
- Fisheries College, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yunsheng Chang
- Fisheries College, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yu Ding
- Fisheries College, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals and Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
28
|
Ozawa H, Miyazawa T, Miyazawa T. Effects of Dietary Food Components on Cognitive Functions in Older Adults. Nutrients 2021; 13:2804. [PMID: 34444965 PMCID: PMC8398286 DOI: 10.3390/nu13082804] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
Population aging has recently been an important issue as the number of elderly people is growing worldwide every year, and the extension of social security costs is financially costly. The increase in the number of elderly people with cognitive decline is a serious problem related to the aging of populations. Therefore, it is necessary to consider not only physical care but also cognitive patterns in the future care of older adults. Since food contains a variety of bioactive substances, dietary patterns may help improve age-related cognitive decline. However, the relationship between cognitive function and individual food components remains ambiguous as no clear efficacy or mechanism has been confirmed. Against this background, this review summarizes previous reports on the biological process of cognitive decline in the elderly and the relationship between individual compounds in foods and cognitive function, as well as the role of individual components of food in cognitive function, in the following order: lipids, carotenoids, vitamins, phenolic compounds, amino acids, peptides, and proteins. Based on the research presented in this review, a proper diet that preserves cognitive function has the potential to improve age-related cognitive decline, Alzheimer's disease, and Parkinson's disease. Hopefully, this review will help to trigger the development of new foods and technologies that improve aging and cognitive functions and extend the healthy life span.
Collapse
Affiliation(s)
| | | | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (H.O.); (T.M.)
| |
Collapse
|
29
|
He Z, Xu Q, Newland B, Foley R, Lara-Sáez I, Curtin JF, Wang W. Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. J Mater Chem B 2021; 9:6326-6346. [PMID: 34304256 DOI: 10.1039/d1tb00728a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are generated in cellular metabolism and are essential for cellular signalling networks and physiological functions. However, the functions of ROS are 'double-edged swords' to living systems that have a fragile redox balance between ROS generation and elimination. A modest increase of ROS leads to enhanced cell proliferation, survival and benign immune responses, whereas ROS stress that overwhelms the cellular antioxidant capacity can damage nucleic acids, proteins and lipids, resulting in oncogenic mutations and cell death. ROS are therefore involved in many pathological conditions. On the other hand, ROS present selective toxicity and have been utilised against cancer and pathogens, thus also acting as a double-edged sword in the healthcare field. Injectable antioxidative hydrogels are gel precursors that form hydrogel constructs in situ upon delivery in vivo to maintain an antioxidative capacity. These hydrogels have been developed to counter ROS-induced pathological conditions, with significant advantages of biocompatibility, excellent moldability, and minimally invasive delivery. The intrinsic, readily controllable ROS-scavenging ability of the functionalised hydrogels overcomes many drawbacks of small molecule antioxidants. This review summarises the roles of ROS under pathological conditions and describes the state-of-the-art of injectable antioxidative hydrogels. A particular emphasis is also given to current ROS-producing therapeutic interventions, enabling potential application of injectable antioxidant hydrogels to prevent the adverse effects of many cancer and infection treatments.
Collapse
Affiliation(s)
- Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
30
|
Tabakh H, McFarland AP, Thomason MK, Pollock AJ, Glover RC, Zaver SA, Woodward JJ. 4-Hydroxy-2-nonenal antimicrobial toxicity is neutralized by an intracellular pathogen. eLife 2021; 10:59295. [PMID: 33955352 PMCID: PMC8174450 DOI: 10.7554/elife.59295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Pathogens encounter numerous antimicrobial responses during infection, including
the reactive oxygen species (ROS) burst. ROS-mediated oxidation of host membrane
poly-unsaturated fatty acids (PUFAs) generates the toxic alpha-beta carbonyl
4-hydroxy-2-nonenal (4-HNE). Although studied extensively in the context of
sterile inflammation, research into 4-HNE’s role during infection remains
limited. Here, we found that 4-HNE is generated during bacterial infection, that
it impacts growth and survival in a range of bacteria, and that the
intracellular pathogen Listeria monocytogenes induces many
genes in response to 4-HNE exposure. A component of the L.
monocytogenes 4-HNE response is the expression of the genes
lmo0103 and lmo0613, deemed
rha1 and rha2 (reductase of
host alkenals), respectively, which code for two
NADPH-dependent oxidoreductases that convert 4-HNE to the product
4-hydroxynonanal (4-HNA). Loss of these genes had no impact on L.
monocytogenes bacterial burdens during murine or tissue culture
infection. However, heterologous expression of rha1/2 in
Bacillus subtilis significantly increased bacterial
resistance to 4-HNE in vitro and promoted bacterial survival following
phagocytosis by murine macrophages in an ROS-dependent manner. Thus, Rha1 and
Rha2 are not necessary for 4-HNE resistance in L. monocytogenes
but are sufficient to confer resistance to an otherwise sensitive organism in
vitro and in host cells. Our work demonstrates that 4-HNE is a previously
unappreciated component of ROS-mediated toxicity encountered by bacteria within
eukaryotic hosts.
Collapse
Affiliation(s)
- Hannah Tabakh
- Department of Microbiology, University of Washington, Seattle, United States
| | - Adelle P McFarland
- Department of Microbiology, University of Washington, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Maureen K Thomason
- Department of Microbiology, University of Washington, Seattle, United States
| | - Alex J Pollock
- Department of Microbiology, University of Washington, Seattle, United States
| | - Rochelle C Glover
- Department of Microbiology, University of Washington, Seattle, United States
| | - Shivam A Zaver
- Department of Microbiology, University of Washington, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, United States
| |
Collapse
|
31
|
Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for "turn-on" Cu 2+ detection in living cancer cells. J Inorg Biochem 2021; 220:111466. [PMID: 33933927 DOI: 10.1016/j.jinorgbio.2021.111466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 12/24/2022]
Abstract
In recent years, fluorescent sensors have emerged as attractive imaging probes due to their distinct responses toward bio-relevant metal ions. However, the bioimaging application main barrier is the 'turn-off' response toward paramagnetic metal ions such as Cu2+ under physiological conditions. Herein, we report a new sensor (2-methyl(4-bromo-N-ethylpiperazinyl-1,8-naphthalimido)-4-(1H-phenanthro[9,10-d]imidazole-2-yl) phenol)NPP with multifunctional (Naphthalimide, Piperazine, Phenanthroimidazole) units for fluorescent and colourimetric detection of Cu2+ in an aqueous medium. Both absorption and fluorescence spectral titration strategies were used to monitor the Cu2+-sensing property of NPP. The NPP displays a weak emission at ca. 455 nm, which remarkably enhances (⁓3.2-fold) upon selective binding of Cu2+ over a range of metal ions, including other paramagnetic metal ions (Mn2+, Fe3+, Co2+). The stoichiometry, binding constant (Ka) and the LOD (limit of detection) of NPP toward Cu2+ ions were found to be 1:1, 5.0 (± 0.2) × 104 M-1 and 6.5 (± 0.4) × 10-7 M, respectively. We have also used NPP as a fluorescent probe to detect Cu2+ in live (human cervical HeLa) cancer cells. The emission intensity of NPP was almost recovered in HeLa cells by incubating 'in situ' the derived Cu2+ complex (NPP-Cu2+) in the presence of a benchmark chelating agent such as EDTA (ethylenediaminetetraacetate). The fluorescent emission of NPP was reverted significantly in each cycle upon sequencial addition of Cu2+ and EDTA to the NPP solution. Overall, NPP is a novel, simple, economic and portable sensor that can detect Cu2+ in biological and environmental scenarios.
Collapse
|
32
|
Blignaut M, Harries S, Lochner A, Huisamen B. Ataxia Telangiectasia Mutated Protein Kinase: A Potential Master Puppeteer of Oxidative Stress-Induced Metabolic Recycling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8850708. [PMID: 33868575 PMCID: PMC8032526 DOI: 10.1155/2021/8850708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Ataxia Telangiectasia Mutated protein kinase (ATM) has recently come to the fore as a regulatory protein fulfilling many roles in the fine balancing act of metabolic homeostasis. Best known for its role as a transducer of DNA damage repair, the activity of ATM in the cytosol is enjoying increasing attention, where it plays a central role in general cellular recycling (macroautophagy) as well as the targeted clearance (selective autophagy) of damaged mitochondria and peroxisomes in response to oxidative stress, independently of the DNA damage response. The importance of ATM activation by oxidative stress has also recently been highlighted in the clearance of protein aggregates, where the expression of a functional ATM construct that cannot be activated by oxidative stress resulted in widespread accumulation of protein aggregates. This review will discuss the role of ATM in general autophagy, mitophagy, and pexophagy as well as aggrephagy and crosstalk between oxidative stress as an activator of ATM and its potential role as a master regulator of these processes.
Collapse
Affiliation(s)
- Marguerite Blignaut
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Sarah Harries
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Amanda Lochner
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Barbara Huisamen
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
33
|
Karami E, Esfahrood ZR, Mansouri R, Haerian A, Abdian-Asl A. Effect of epigallocatechin-3-gallate on tumor necrosis factor-alpha production by human gingival fibroblasts stimulated with bacterial lipopolysaccharide: An in vitro study. J Indian Soc Periodontol 2021; 25:11-16. [PMID: 33642735 PMCID: PMC7904023 DOI: 10.4103/jisp.jisp_323_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Evidence shows that epigallocatechin-3-gallate (EGCG) in green tea has anti-inflammatory effects. Aim: This study assessed the effect of EGCG on the production of tumor necrosis factor-alpha (TNF-α) as an inflammatory cytokine in periodontitis, which produced by human gingival fibroblasts (HGFs) stimulated with lipopolysaccharide (LPS) of Porphyromonas gingivalis. Materials and Methods: In this study, HGFs were cultured and subjected to LPS and EGCG. Cell viability of different concentrations of EGCG (10, 25, 50, 75, and 100 μM) and LPS (1, 10, 20, and 50 μg/mL) was assessed using methyl-thiazole-tetrazolium (MTT) assay. Then, the best concentrations of EGCG and P. gingivalis LPS were used simultaneously and separately to assess the production of TNF-α by HGFs using the enzyme-linked immunosorbent assay (ELISA). Assessments were done at 1, 3, and 5 days. Data were read using the ELISA reader and analyzed by the SPSS through two-way ANOVA. Results: LPS at 1, 10, and 20 and EGCG at 10.25 and 50 μM showed the least cytotoxicity in MTT assay. ELISA showed EGCG alone decreased the production of TNF-α in all days, except 10 μM on day 1. 1, 10, and 20 μg/mL LPS increased the output of TNF-α on days 1 and 3 while reducing it on day 5. The combination of EGCG and LPS showed a decrease of TNF-α in all days except on day 5 that revealed an increase in the production of TNF-α at 25 and 50 μM EGCG. Conclusion: In the combination use of EGCG and LPS, EGCG shows anti-inflammatory effects by decreasing the production of TNF-α by HGFs stimulated with P. gingivalis.
Collapse
Affiliation(s)
- Elahe Karami
- Department of Periodontics, School of Dentistry, Shahid Sadughi University of Medical Science, Yazd, Iran
| | - Zeinab Rezaei Esfahrood
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mansouri
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Blood and oncology research center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Haerian
- Department of Periodontics, School of Dentistry, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Amir Abdian-Asl
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
34
|
Chirayil S, Jordan VC, Martins AF, Paranawithana N, Ratnakar SJ, Sherry AD. Manganese(II)-Based Responsive Contrast Agent Detects Glucose-Stimulated Zinc Secretion from the Mouse Pancreas and Prostate by MRI. Inorg Chem 2021; 60:2168-2177. [PMID: 33507742 PMCID: PMC8112388 DOI: 10.1021/acs.inorgchem.0c02688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Mn(II)-based zinc-sensitive MRI contrast agent, MnPyC3A-BPEN, was prepared, characterized, and applied in imaging experiments to detect glucose-stimulated zinc secretion (GSZS) from the mouse pancreas and prostate in vivo. Thermodynamic and kinetic stability tests showed that MnPyC3A-BPEN has superior kinetic inertness compared to GdDTPA, is less susceptible to transmetalation in the presence of excess Zn2+ ions, and less susceptible to transchelation by albumin. In comparison with other gadolinium-based zinc sensors bearing a single zinc binding moiety, MnPyC3A-BPEN appears to be a reliable alternative for imaging β-cell function in the pancreas and glucose-stimulated zinc secretion from the prostate.
Collapse
Affiliation(s)
- Sara Chirayil
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Veronica Clavijo Jordan
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - André F Martins
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Werner Siemens Imaging Center, Eberhard Karls University Tübingen, Tübingen 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen 72076, Germany
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Namini Paranawithana
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - S James Ratnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
35
|
Pinto D, Sut S, Dall'Acqua S, Delerue-Matos C, Rodrigues F. Actinidia arguta Pulp: Phytochemical Composition, Radical Scavenging Activity, and in Vitro Cells Effects. Chem Biodivers 2021; 18:e2000925. [PMID: 33491874 DOI: 10.1002/cbdv.202000925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 01/27/2023]
Abstract
Hardy kiwifruit (Actinidia arguta) is a highly appreciated exotic fruit endowed with outstanding bioactive compounds. The present work proposes to characterize the pulp from A. arguta organic fruits, emphasizing its radicals scavenging capacity and effects on intestinal cells (Caco-2 and HT29-MTX). The physicochemical properties and phenolic profile were also screened. The total phenolic and flavonoid contents (TPC and TFC, respectively) of pulp were 12.21 mg GAE/g on dry weight (DW) and 5.92 mg CE/g DW, respectively. A high antioxidant activity was observed (FRAP: 151.41 μmol FSE/g DW; DPPH: 12.17 mg TE/g DW). Furthermore, the pulp did not induce a toxic effect on Caco-2 and HT29-MTX cells viability up to 1000 μg/mL. Regarding in vitro scavenging capacity, the pulp revealed the highest scavenging power against NO. (IC50 =3.45 μg/mL) and HOCl (IC50 =12.77 μg/mL). These results emphasize the richness of A. arguta fruit pulp to be used in different food products.
Collapse
Affiliation(s)
- Diana Pinto
- REQUIMTE/LAQV, Polytechnic of Porto - School of Engineering, Rua Dr. António Bernardino de Almeida, 4249-015, Porto, Portugal
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35121, Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 5, 35121, Padova, Italy
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Polytechnic of Porto - School of Engineering, Rua Dr. António Bernardino de Almeida, 4249-015, Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Polytechnic of Porto - School of Engineering, Rua Dr. António Bernardino de Almeida, 4249-015, Porto, Portugal
| |
Collapse
|
36
|
Yeo J, Lee J, Lee S, Kim WJ. Polymeric Antioxidant Materials for Treatment of Inflammatory Disorders. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiwon Yeo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Junseok Lee
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- OmniaMed Co, Ltd Pohang 37673 Republic of Korea
| | - Sanggi Lee
- School of Interdisciplinary Bioscience and Bioengineering (I‐Bio) Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Won Jong Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- OmniaMed Co, Ltd Pohang 37673 Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I‐Bio) Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
37
|
Bell M, Kumar A, Sevilla MD. Electron-Induced Repair of 2'-Deoxyribose Sugar Radicals in DNA: A Density Functional Theory (DFT) Study. Int J Mol Sci 2021; 22:ijms22041736. [PMID: 33572317 PMCID: PMC7916153 DOI: 10.3390/ijms22041736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
In this work, we used ωB97XD density functional and 6-31++G** basis set to study the structure, electron affinity, populations via Boltzmann distribution, and one-electron reduction potentials (E°) of 2′-deoxyribose sugar radicals in aqueous phase by considering 2′-deoxyguanosine and 2′-deoxythymidine as a model of DNA. The calculation predicted the relative stability of sugar radicals in the order C4′• > C1′• > C5′• > C3′• > C2′•. The Boltzmann distribution populations based on the relative stability of the sugar radicals were not those found for ionizing radiation or OH-radical attack and are good evidence the kinetic mechanisms of the processes drive the products formed. The adiabatic electron affinities of these sugar radicals were in the range 2.6–3.3 eV which is higher than the canonical DNA bases. The sugar radicals reduction potentials (E°) without protonation (−1.8 to −1.2 V) were also significantly higher than the bases. Thus the sugar radicals will be far more readily reduced by solvated electrons than the DNA bases. In the aqueous phase, these one-electron reduced sugar radicals (anions) are protonated from solvent and thus are efficiently repaired via the “electron-induced proton transfer mechanism”. The calculation shows that, in comparison to efficient repair of sugar radicals by the electron-induced proton transfer mechanism, the repair of the cyclopurine lesion, 5′,8-cyclo-2′-dG, would involve a substantial barrier.
Collapse
|
38
|
Fuchi Y, Murase H, Kai R, Kurata K, Karasawa S, Sasaki S. Artificial Host Molecules to Covalently Capture 8-Nitro-cGMP in Neutral Aqueous Solutions and in Cells. Bioconjug Chem 2021; 32:385-393. [PMID: 33529519 DOI: 10.1021/acs.bioconjchem.1c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New 1,3-diazaphenoxazine derivatives (nitroG-Grasp-Guanidine, NGG) have been developed to covalently capture 8-nitro-cGMP in neutral aqueous solutions, which furnish a thiol reactive group to displace the 8-nitro group and a guanidine unit for interaction with the cyclic phosphate. The thiol group was introduced to the 1,3-diazaphenoxazine skeleton through a 2-aminobenzylthiol group (NGG-H) and its 4-methyl (NGG-pMe) and 6-methyl (NGG-oMe) substituted derivatives. The covalent adducts were formed between the NGG derivatives and 8-nitro-cGMP in neutral aqueous solutions. Among the NGG derivatives, the one with the 6-methyl group (NGG-oMe) exhibited the most efficient capture reaction. Furthermore, NGG-H showed a cell permeability into HEK-293 and RAW 264.7 cells and reduced the intracellular 8-nitro-cGMP level. The NGG derivatives developed in this study would become a valuable tool to study the intracellular role of 8-nitro-cGMP.
Collapse
Affiliation(s)
- Yasufumi Fuchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.,Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hirotaka Murase
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan
| | - Ryosuke Kai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kakeru Kurata
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.,Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan
| |
Collapse
|
39
|
Niki E, Noguchi N. Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants. Free Radic Res 2021; 55:352-363. [PMID: 33327809 DOI: 10.1080/10715762.2020.1866181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin E acts as essential antioxidant against detrimental oxidation of biological molecules induced by multiple reactive species. To gain more insight into the physiological role of vitamin E, the levels of its oxidation products in humans under normal and pathological conditions were compared. α-Tocopherol quinone (α-TQ) and 5-nitro-γ-tocopherol (5-NgT) were focused. α-TQ is produced by multiple oxidants including oxygen radicals, peroxynitrite, hypochlorite, singlet oxygen, and ozone, while 5-NgT is produced by nitrogen dioxide radical derived from peroxynitrite and the reaction of nitrite and hypochlorite. The reported concentrations of α-TQ and 5-NgT in healthy human plasma are highly variable ranging from 15 to 360 and 4 to 170 nM, respectively. In general, the molar ratio 5-NgT/γ-tocopherol was higher than the ratio α-TQ/α-tocopherol. Both absolute concentrations of α-TQ and 5-NgT and the molar ratios to the parent tocopherols were elevated significantly in the plasma of patients with various diseases compared with healthy subjects except neurological diseases. The molar ratios of the products to the respective parent compounds decreased in the order of 5-NgT/γ-tocopherol > α-TQ/α-tocopherol > hydroxyoctadecadienoate/linoleate > 3-nitrotyrosine/tyrosine > isoprostane/arachidonate. The molar ratios of nitrated products to the respective parent compounds in human plasma are approximately 10-2 for 5-NgT and 10-5 for 3-nitrotyrosine, nitro-oleic acid, and 8-nitroguaine. These data indicate that vitamin E acts as an important physiological antioxidant and that α-TQ and 5-NgT represent biomarker for oxidative stress and nitrative stress respectively.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Japan
| | - Noriko Noguchi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
40
|
Jideani AIO, Silungwe H, Takalani T, Omolola AO, Udeh HO, Anyasi TA. Antioxidant-rich natural fruit and vegetable products and human health. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1866597] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Afam I. O. Jideani
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Postharvest-Handling Group, ISEKI-Food Association, Vienna, Austria
| | - Henry Silungwe
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Thakhani Takalani
- Univen Centre for Continuing Education, University of Venda, Thohoyandou 0950, South Africa
| | - Adewale O Omolola
- Department of Agricultural Engineering, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Henry O Udeh
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Tonna A Anyasi
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
41
|
Duică F, Dănilă CA, Boboc AE, Antoniadis P, Condrat CE, Onciul S, Suciu N, Creţoiu SM, Varlas VN, Creţoiu D. Impact of Increased Oxidative Stress on Cardiovascular Diseases in Women With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:614679. [PMID: 33679617 PMCID: PMC7930620 DOI: 10.3389/fendo.2021.614679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder that affects around 5% to 10% of women of childbearing age worldwide, making it the most common source of anovulatory infertility. PCOS is defined by increased levels of androgens, abnormal ovulation, irregular menstrual cycles, and polycystic ovarian morphology in one or both ovaries. Women suffering from this condition have also been shown to frequently associate certain cardiovascular comorbidities, including obesity, hypertension, atherosclerosis, and vascular disease. These factors gradually lead to endothelial dysfunction and coronary artery calcification, thus posing an increased risk for adverse cardiac events. Traditional markers such as C-reactive protein (CRP) and homocysteine, along with more novel ones, specifically microRNAs (miRNAs), can accurately signal the risk of cardiovascular disease (CVD) in PCOS women. Furthermore, studies have also reported that increased oxidative stress (OS) coupled with poor antioxidant status significantly add to the increased cardiovascular risk among these patients. OS additionally contributes to the modified ovarian steroidogenesis, consequently leading to hyperandrogenism and infertility. The present review is therefore aimed not only at bringing together the most significant information regarding the role of oxidative stress in promoting CVD among PCOS patients, but also at highlighting the need for determining the efficiency of antioxidant therapy in these patients.
Collapse
Affiliation(s)
- Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Cezara Alina Dănilă
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Andreea Elena Boboc
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Panagiotis Antoniadis
- Division of Molecular Diagnostics and Biotechnology, Antisel RO SRL, Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
- Doctoral School of Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- *Correspondence: Carmen Elena Condrat,
| | - Sebastian Onciul
- Department of Cardiology, Clinical Emergency Hospital, Bucharest, Romania
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, Bucharest, Romania
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
42
|
Human Nitric Oxide Synthase-Its Functions, Polymorphisms, and Inhibitors in the Context of Inflammation, Diabetes and Cardiovascular Diseases. Int J Mol Sci 2020; 22:ijms22010056. [PMID: 33374571 PMCID: PMC7793075 DOI: 10.3390/ijms22010056] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
In various diseases, there is an increased production of the free radicals needed to carry out certain physiological processes but their excessive amounts can cause oxidative stress and cell damage. Enzymes play a major role in the transformations associated with free radicals. One of them is nitric oxide synthase (NOS), which catalyzes the formation of nitric oxide (NO). This enzyme exists in three forms (NOS1, NOS2, NOS3), each encoded by a different gene. The following work presents the most important information on the NOS isoforms and their role in the human body, including NO synthesis in various tissues and cells, intercellular signaling and activities supporting the immune system and regulating blood vessel functions. The role of NOS in pathological conditions such as obesity, diabetes and heart disease is considered. Attention is also paid to the influence of the polymorphisms of these genes, encoding particular isoforms, on the development of these pathologies and the role of NOS inhibitors in the treatment of patients.
Collapse
|
43
|
Khan FH, Dervan E, Bhattacharyya DD, McAuliffe JD, Miranda KM, Glynn SA. The Role of Nitric Oxide in Cancer: Master Regulator or NOt? Int J Mol Sci 2020; 21:ijms21249393. [PMID: 33321789 PMCID: PMC7763974 DOI: 10.3390/ijms21249393] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.
Collapse
Affiliation(s)
- Faizan H. Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Dibyangana D. Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Jake D. McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Katrina M. Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| | - Sharon A. Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
- Correspondence:
| |
Collapse
|
44
|
Bresolí-Obach R, Frattini M, Abbruzzetti S, Viappiani C, Agut M, Nonell S. Tetramethylbenzidine: An Acoustogenic Photoacoustic Probe for Reactive Oxygen Species Detection. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5952. [PMID: 33096750 PMCID: PMC7590141 DOI: 10.3390/s20205952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Photoacoustic imaging is attracting a great deal of interest owing to its distinct advantages over other imaging techniques such as fluorescence or magnetic resonance image. The availability of photoacoustic probes for reactive oxygen and nitrogen species (ROS/RNS) could shed light on a plethora of biological processes mediated by these key intermediates. Tetramethylbenzidine (TMB) is a non-toxic and non-mutagenic colorless dye that develops a distinctive blue color upon oxidation. In this work, we have investigated the potential of TMB as an acoustogenic photoacoustic probe for ROS/RNS. Our results indicate that TMB reacts with hypochlorite, hydrogen peroxide, singlet oxygen, and nitrogen dioxide to produce the blue oxidation product, while ROS, such as the superoxide radical anion, sodium peroxide, hydroxyl radical, or peroxynitrite, yield a colorless oxidation product. TMB does not penetrate the Escherichia coli cytoplasm but is capable of detecting singlet oxygen generated in its outer membrane.
Collapse
Affiliation(s)
- Roger Bresolí-Obach
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (R.B.-O.); (M.F.); (M.A.)
- Department of Chemistry, Katholieke Universiteit Leuven, celestijnenlaan 200F, 3001 Heverlee (Leuven), Belgium
| | - Marcello Frattini
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (R.B.-O.); (M.F.); (M.A.)
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy; (S.A.); (C.V.)
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy; (S.A.); (C.V.)
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy; (S.A.); (C.V.)
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (R.B.-O.); (M.F.); (M.A.)
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; (R.B.-O.); (M.F.); (M.A.)
| |
Collapse
|
45
|
Protection from Ultraviolet Damage and Photocarcinogenesis by Vitamin D Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:227-253. [PMID: 32918222 DOI: 10.1007/978-3-030-46227-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds.
Collapse
|
46
|
Wang TH, Eaton L, Pamenter ME. Nitric oxide homeostasis is maintained during acute in vitro hypoxia and following reoxygenation in naked mole-rat but not mouse cortical neurons. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110792. [PMID: 32805413 DOI: 10.1016/j.cbpa.2020.110792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 11/27/2022]
Abstract
Reactive nitrogen species (RNS), including nitric oxide (NO), are important cellular messengers when tightly regulated, but unregulated production of RNS during hypoxia or ischemia and reoxygenation is deleterious to hypoxia-intolerant brain. Therefore, maintaining NO homeostasis during hypoxia/ischemia and reoxygenation may be a hallmark of hypoxia-tolerant brain. Unlike most mammals, naked mole-rats (NMRs; Heterocephalus glaber) are tolerant of repeated bouts of hypoxia in vivo. Although there is some evidence that NMR brain is tolerant of hypoxia/ischemia, little is known about the underlying neuroprotective mechanism(s), and their tolerance to reoxygenation injury has not been examined. We hypothesized that NMR brain would maintain NO homeostasis better than hypoxia-intolerant mouse brain during hypoxic/ischemic stresses and following reoxygenation. To test this, we exposed adult NMR and mouse cortical slices to transitions from normoxia (21% O2) to hypoxia (< 1% O2) or ischemia (oxygen glucose deprivation, OGD), followed by reoxygenation, while measuring neuronal NO production. We report that NMR cortical neurons maintain NO homeostasis during hypoxia/OGD and avoid bursts of NO upon reoxygenation. Conversely, mouse cortical neurons maintain NO homeostasis in OGD but not hypoxia and exhibit a burst of NO upon reperfusion. This suggests that maintenance of NO homeostasis during fluctuating O2 availability may be a contributing neuroprotective mechanism against hypoxia/ischemia and reoxygenation injury in hypoxia-tolerant NMR brain.
Collapse
Affiliation(s)
- Tina H Wang
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
47
|
Genç Y, Bardakci H, Yücel Ç, Karatoprak GŞ, Küpeli Akkol E, Hakan Barak T, Sobarzo-Sánchez E. Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations. Mar Drugs 2020; 18:md18080423. [PMID: 32823595 PMCID: PMC7459739 DOI: 10.3390/md18080423] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are natural fat-soluble pigments synthesized by plants, algae, fungi and microorganisms. They are responsible for the coloration of different photosynthetic organisms. Although they play a role in photosynthesis, they are also present in non-photosynthetic plant tissues, fungi, and bacteria. These metabolites have mainly been used in food, cosmetics, and the pharmaceutical industry. In addition to their utilization as pigmentation, they have significant therapeutically applications, such as improving immune system and preventing neurodegenerative diseases. Primarily, they have attracted attention due to their antioxidant activity. Several statistical investigations indicated an association between the use of carotenoids in diets and a decreased incidence of cancer types, suggesting the antioxidant properties of these compounds as an important factor in the scope of the studies against oxidative stress. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. Numerous of bioactive compounds such as marine carotenoids have low stability, are poorly absorbed, and own very limited bioavailability. The new technique is nanoencapsulation, which can be used to preserve marine carotenoids and their original properties during processing, storage, improve their physiochemical properties and increase their health-promoting effects. This review aims to describe the role of marine carotenoids, their potential applications and different types of advanced nanoformulations preventing and treating oxidative stress related disorders.
Collapse
Affiliation(s)
- Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey;
| | - Hilal Bardakci
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| |
Collapse
|
48
|
Odyniec ML, Park SJ, Gardiner JE, Webb EC, Sedgwick AC, Yoon J, Bull SD, Kim HM, James TD. A fluorescent ESIPT-based benzimidazole platform for the ratiometric two-photon imaging of ONOO - in vitro and ex vivo. Chem Sci 2020; 11:7329-7334. [PMID: 33033609 PMCID: PMC7499849 DOI: 10.1039/d0sc02347g] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023] Open
Abstract
In this work, we have developed an ESIPT-based benzimidazole platform (MO-E1 and MO-E2) for the two-photon cell imaging of ONOO- and a potential ONOO--activated theranostic scaffold (MO-E3). Each benzimidazole platform, MO-E1-3, were shown to rapidly detect ONOO- at micromolar concentrations (LoD = 0.28 μM, 6.53 μM and 0.81 μM respectively). The potential theranostic MO-E3 was shown to release the parent fluorophore and drug indomethacin in the presence of ONOO- but unfortunately did not perform well in vitro due to low solubility. Despite this, the parent scaffold MO-E2 demonstrated its effectiveness as a two-photon imaging tool for the ratiometric detection of endogenous ONOO- in RAW264.7 macrophages and rat hippocampus tissue. These results demonstrate the utility of this ESIPT benzimidazole-based platform for theranostic development and bioimaging applications.
Collapse
Affiliation(s)
- Maria L Odyniec
- Department of Chemistry , University of Bath , BA2 7AY , UK . ;
| | - Sang-Jun Park
- Department of Chemistry , Ajou University , 16499 , Suwon , Korea .
| | | | - Emily C Webb
- Department of Chemistry , University of Bath , BA2 7AY , UK . ;
| | - Adam C Sedgwick
- Department of Chemistry , University of Texas at Austin , 105 E, 24th Street , A5300 , Austin , USA
| | - Juyoung Yoon
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Steven D Bull
- Department of Chemistry , University of Bath , BA2 7AY , UK . ;
| | - Hwan Myung Kim
- Department of Chemistry , Ajou University , 16499 , Suwon , Korea .
| | - Tony D James
- Department of Chemistry , University of Bath , BA2 7AY , UK . ;
| |
Collapse
|
49
|
Borowiec BG, Scott GR. Hypoxia acclimation alters reactive oxygen species homeostasis and oxidative status in estuarine killifish ( Fundulus heteroclitus). J Exp Biol 2020; 223:jeb222877. [PMID: 32457064 DOI: 10.1242/jeb.222877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Hypoxia is common in aquatic environments, and exposure to hypoxia followed by re-oxygenation is often believed to induce oxidative stress. However, there have been relatively few studies of reactive oxygen species (ROS) homeostasis and oxidative status in fish that experience natural hypoxia-re-oxygenation cycles. We examined how exposure to acute hypoxia (2 kPa O2) and subsequent re-oxygenation (to 20 kPa O2) affects redox status, oxidative damage and anti-oxidant defenses in estuarine killifish (Fundulus heteroclitus), and whether these effects were ameliorated or potentiated by prolonged (28 days) acclimation to either constant hypoxia or intermittent cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia). Acute hypoxia and re-oxygenation led to some modest and transient changes in redox status, increases in oxidized glutathione, depletion of scavenging capacity and oxidative damage to lipids in skeletal muscle. The liver had greater scavenging capacity, total glutathione concentrations and activities of anti-oxidant enzymes (catalase, glutathione peroxidase) than muscle, and generally experienced less variation in glutathiones and lipid peroxidation. Unexpectedly, acclimation to constant hypoxia or intermittent hypoxia led to a more oxidizing redox status (muscle and liver) and it increased oxidized glutathione (muscle). However, hypoxia-acclimated fish exhibited little to no oxidative damage (as reflected by lipid peroxidation and aconitase activity), in association with improvements in scavenging capacity and catalase activity in muscle. We conclude that hypoxia acclimation leads to adjustments in ROS homeostasis and oxidative status that do not reflect oxidative stress, but may instead be part of the suite of responses that killifish use to cope with chronic hypoxia.
Collapse
Affiliation(s)
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4L8
| |
Collapse
|
50
|
Promising Polyphenols in Parkinson’s Disease Therapeutics. Neurochem Res 2020; 45:1731-1745. [DOI: 10.1007/s11064-020-03058-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
|