1
|
Rathore SS, Liu Y, Yu H, Wan C, Lee M, Yin Q, Stowell MHB, Shen J. Intracellular Vesicle Fusion Requires a Membrane-Destabilizing Peptide Located at the Juxtamembrane Region of the v-SNARE. Cell Rep 2019; 29:4583-4592.e3. [PMID: 31875562 PMCID: PMC6990648 DOI: 10.1016/j.celrep.2019.11.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/13/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Intracellular vesicle fusion is mediated by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. It is generally accepted that membrane fusion occurs when the vesicle and target membranes are brought into close proximity by SNAREs and SM proteins. In this work, we demonstrate that, for fusion to occur, membrane bilayers must be destabilized by a conserved membrane-embedded motif located at the juxtamembrane region of the vesicle-anchored v-SNARE. Comprised of basic and hydrophobic residues, the juxtamembrane motif perturbs the lipid bilayer structure and promotes SNARE-SM-mediated membrane fusion. The juxtamembrane motif can be functionally substituted with an unrelated membrane-disrupting peptide in the membrane fusion reaction. These findings establish the juxtamembrane motif of the v-SNARE as a membrane-destabilizing peptide. Requirement of membrane-destabilizing peptides is likely a common feature of biological membrane fusion.
Collapse
Affiliation(s)
- Shailendra S Rathore
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - Yinghui Liu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - MyeongSeon Lee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
2
|
Worch R, Dudek A, Krupa J, Szymaniec A, Setny P. Charged N-terminus of Influenza Fusion Peptide Facilitates Membrane Fusion. Int J Mol Sci 2018; 19:E578. [PMID: 29443945 PMCID: PMC5855800 DOI: 10.3390/ijms19020578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 11/16/2022] Open
Abstract
Cleavage of hemagglutinin precursor (HA0) by cellular proteases results in the formation of two subunits, HA1 and HA2. The N-terminal fragment of HA2, named a fusion peptide (HAfp), possess a charged, amine N-terminus. It has been shown that the N-terminus of HAfp stabilizes the structure of a helical hairpin observed for a 23-amino acid long peptide (HAfp1-23), whose larger activity than HAfp1-20 has been demonstrated recently. In this paper, we analyze the effect of N-terminal charge on peptide-mediated fusion efficiency and conformation changes at the membrane interface by comparison with the corresponding N-acetylated peptides of 20- and 23-amino acid lengths. We found that higher fusogenic activities of peptides with unmodified amino termini correlates with their ability to form helical hairpin structures oriented perpendicularly to the membrane plane. Molecular dynamics simulations showed that acetylated peptides adopt open and surface-bound conformation more often, which induced less disorder of the phospholipid chains, as compared to species with unmodified amino termini.
Collapse
Affiliation(s)
- Remigiusz Worch
- Institute of Physics, Polish Academy of Sciences, Lotników 32/46 Avenue, 02-668 Warsaw, Poland.
| | - Anita Dudek
- Centre of New Technologies, University of Warsaw, Banacha 2C Street, 02-097 Warsaw, Poland.
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Joanna Krupa
- Institute of Physics, Polish Academy of Sciences, Lotników 32/46 Avenue, 02-668 Warsaw, Poland.
| | - Anna Szymaniec
- Institute of Physics, Polish Academy of Sciences, Lotników 32/46 Avenue, 02-668 Warsaw, Poland.
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | - Piotr Setny
- Centre of New Technologies, University of Warsaw, Banacha 2C Street, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Pan J, Sahoo PK, Dalzini A, Hayati Z, Aryal CM, Teng P, Cai J, Gutierrez HR, Song L. Membrane Disruption Mechanism of a Prion Peptide (106-126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2017; 121:5058-5071. [PMID: 28459565 PMCID: PMC5770145 DOI: 10.1021/acs.jpcb.7b02772] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Prasana K. Sahoo
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Annalisa Dalzini
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Chinta M. Aryal
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
4
|
Varela ARP, Couto AS, Fedorov A, Futerman AH, Prieto M, Silva LC. Glucosylceramide Reorganizes Cholesterol-Containing Domains in a Fluid Phospholipid Membrane. Biophys J 2016; 110:612-622. [PMID: 26840726 PMCID: PMC4744164 DOI: 10.1016/j.bpj.2015.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Glucosylceramide (GlcCer), one of the simplest glycosphingolipids, plays key roles in physiology and pathophysiology. It has been suggested that GlcCer modulates cellular events by forming specialized domains. In this study, we investigated the interplay between GlcCer and cholesterol (Chol), an important lipid involved in the formation of liquid-ordered (lo) phases. Using fluorescence microscopy and spectroscopy, and dynamic and electrophoretic light scattering, we characterized the interaction between these lipids in different pH environments. A quantitative description of the phase behavior of the ternary unsaturated phospholipid/Chol/GlcCer mixture is presented. The results demonstrate coexistence between lo and liquid-disordered (ld) phases. However, the extent of lo/ld phase separation is sparse, mainly due to the ability of GlcCer to segregate into tightly packed gel domains. As a result, the phase diagram of these mixtures is characterized by an extensive three-phase coexistence region of fluid (ld-phospholipid enriched)/lo (Chol enriched)/gel (GlcCer enriched). Moreover, the results show that upon acidification, GlcCer solubility in the lo phase is increased, leading to a larger lo/ld coexistence region. Quantitative analyses allowed us to determine the differences in the composition of the phases at neutral and acidic pH. These results predict the impact of GlcCer on domain formation and membrane organization in complex biological membranes, and provide a background for unraveling the relationship between the biophysical properties of GlcCer and its biological action.
Collapse
Affiliation(s)
- Ana R P Varela
- iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal; Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - André Sá Couto
- iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Aleksander Fedorov
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Manuel Prieto
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Liana C Silva
- iMed.ULisboa-Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Content Delivery of Lipidic Nanovesicles in Electropermeabilized Cells. J Membr Biol 2015; 248:849-55. [DOI: 10.1007/s00232-015-9789-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 12/29/2022]
|
6
|
Lata K, Chattopadhyay K. Helicobacter pylori TlyA agglutinates liposomes and induces fusion and permeabilization of the liposome membranes. Biochemistry 2014; 53:3553-63. [PMID: 24846696 DOI: 10.1021/bi500152n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Helicobacter pylori TlyA is a pore-forming hemolysin with potent cytotoxic activity. To explore the potential membrane-damaging activity of H. pylori TlyA, we have studied its interaction with the synthetic liposome vesicles. In our study, H. pylori TlyA shows a prominent ability to associate with the liposome vesicles without displaying an obligatory requirement for any protein receptor on the liposome membranes. Interaction of TlyA triggers agglutination of the liposome vesicles. Such agglutinating activity of TlyA could also be observed with erythrocytes before the induction of its pore-forming hemolytic activity. In addition to its agglutinating activity against liposomes, TlyA also induces fusion and disruption of the liposome membranes. Altogether, our study highlights novel membrane-damaging properties of H. pylori TlyA that have not been documented previously with any other TlyA family protein.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Sector 81, SAS Nagar, Manauli 140306, Punjab, India
| | | |
Collapse
|
7
|
Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2013; 32:693-710. [PMID: 24309541 DOI: 10.1016/j.biotechadv.2013.11.009] [Citation(s) in RCA: 708] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/09/2013] [Accepted: 11/27/2013] [Indexed: 12/22/2022]
Abstract
Nanotechnology has been widely used in the development of new strategies for drug delivery and cancer therapy. Compared to traditional drug delivery systems, nano-based drug delivery system have greater potential in a variety of areas, such as multiple targeting functionalization, in vivo imaging, combined drug delivery, extended circulation time, and systemic control release. Nano-systems incorporating stimulus-responsive materials have remarkable properties which allow them to bypass biological barriers and achieve targeted intracellular drug delivery. As a result of the active metabolism of tumor cells, the tumor microenvironment (TME) is highly acidic compared to normal tissues. pH-Sensitive nano-systems have now been developed in which drug release is specifically triggered by the acidic tumor environment. Studies have demonstrated that novel pH-sensitive drug delivery systems are capable of improving the efficiency of cancer treatment. A number of these have been translated from bench to clinical application and have been approved by the Food and Drug Administration (FDA) for treatment of various cancerous diseases. Herein, this review mainly focuses on pH-sensitive nano-systems, including advances in drug delivery, mechanisms of drug release, and possible improvements in drug absorption, with the emphasis on recent research in this field. With deeper understanding of the difference between normal and tumor tissues, it might be possible to design ever more promising pH-responsive nano-systems for drug delivery and cancer therapy in the near future.
Collapse
Affiliation(s)
- Juan Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuran Huang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Anil Kumar
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London (UCL), London, United Kingdom
| | - Shubin Jin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Anbu Mozhi
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
8
|
Tenchov BG, MacDonald RC, Lentz BR. Fusion peptides promote formation of bilayer cubic phases in lipid dispersions. An x-ray diffraction study. Biophys J 2013; 104:1029-37. [PMID: 23473485 DOI: 10.1016/j.bpj.2012.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/08/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022] Open
Abstract
Small angle x-ray diffraction revealed a strong influence of the N-terminal influenza hemagglutinin fusion peptide on the formation of nonlamellar lipid phases. Comparative measurements were made on a series of three peptides, a 20-residue wild-type X-31 influenza virus fusion peptide, GLFGAIAGFIENGWEGMIDG, and its two point-mutant, fusion-incompetent peptides G1E and G13L, in mixtures with hydrated phospholipids, either dipalmitoleoylphosphatidylethanolamine (DPoPE), or monomethylated dioleoyl phosphatidylethanolamine (DOPE-Me), at lipid/peptide molar ratios of 200:1 and 50:1. All three peptides suppressed the HII phase and shifted the L(α)-H(II) transition to higher temperatures, simultaneously promoting formation of inverted bicontinuous cubic phases, Q(II), which becomes inserted between the L(α) and H(II) phases on the temperature scale. Peptide-induced Q(II) had strongly reduced lattice constants in comparison to the Q(II) phases that form in pure lipids. Q(II) formation was favored at the expense of both L(α) and H(II) phases. The wild-type fusion peptide, WT-20, was distinguished from G1E and G13L by the markedly greater magnitude of its effect. WT-20 disordered the L(α) phase and completely abolished the HII phase in DOPE-Me/WT-20 50:1 dispersions, converted the Q(II) phase type from Im3m to Pn3m and reduced the unit cell size from ∼38 nm for the Im3m phase of DOPE-Me dispersions to ∼15 nm for the Pn3m phase in DOPE-Me/WT-20 peptide mixtures. The strong reduction of the cubic phase lattice parameter suggests that the fusion-promoting WT-20 peptide may function by favoring bilayer states of more negative gaussian curvature and promoting fusion along pathways involving Pn3m phase-like fusion pore intermediates rather than pathways involving H(II) phase-like intermediates.
Collapse
Affiliation(s)
- Boris G Tenchov
- Department of Medical Physics and Biophysics, Medical University Sofia, Sofia, Bulgaria.
| | | | | |
Collapse
|
9
|
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013; 65:36-48. [PMID: 23036225 DOI: 10.1016/j.addr.2012.09.037] [Citation(s) in RCA: 2947] [Impact Index Per Article: 267.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/10/2012] [Accepted: 09/20/2012] [Indexed: 02/06/2023]
Abstract
The first closed bilayer phospholipid systems, called liposomes, were described in 1965 and soon were proposed as drug delivery systems. The pioneering work of countless liposome researchers over almost 5 decades led to the development of important technical advances such as remote drug loading, extrusion for homogeneous size, long-circulating (PEGylated) liposomes, triggered release liposomes, liposomes containing nucleic acid polymers, ligand-targeted liposomes and liposomes containing combinations of drugs. These advances have led to numerous clinical trials in such diverse areas as the delivery of anti-cancer, anti-fungal and antibiotic drugs, the delivery of gene medicines, and the delivery of anesthetics and anti-inflammatory drugs. A number of liposomes (lipidic nanoparticles) are on the market, and many more are in the pipeline. Lipidic nanoparticles are the first nanomedicine delivery system to make the transition from concept to clinical application, and they are now an established technology platform with considerable clinical acceptance. We can look forward to many more clinical products in the future.
Collapse
|
10
|
Kedika B, Patri SV. Design, Synthesis, and inVitro Transfection Biology of Novel Tocopherol Based Monocationic Lipids: A Structure−Activity Investigation. J Med Chem 2010; 54:548-61. [DOI: 10.1021/jm100704u] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bhavani Kedika
- Department of Chemistry, National Institute of Technology, Warangal 506004, Andhra Pradesh, India
| | - Srilakshmi V. Patri
- Department of Chemistry, National Institute of Technology, Warangal 506004, Andhra Pradesh, India
| |
Collapse
|
11
|
Balamurali V, Pramodkuma T, Srujana N, Venkatesh M, Gupta NV, Krishna K, Gangadhara H. pH Sensitive Drug Delivery Systems: A Review. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ajdd.2011.24.48] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Chen T, McIntosh D, He Y, Kim J, Tirrell DA, Scherrer P, Fenske DB, Sandhu AP, Cullis PR. Alkylated derivatives of poly(ethylacrylic acid) can be inserted into preformed liposomes and trigger pH-dependent intracellular delivery of liposomal contents. Mol Membr Biol 2009; 21:385-93. [PMID: 15764368 DOI: 10.1080/09687860400010516] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Poly(ethylacrylic acid) (PEAA) is a pH-sensitive polymer that undergoes a transition from a hydrophilic to a hydrophobic form as the pH is lowered from neutral to acidic values. In this work we show that pH sensitive liposomes capable of intracellular delivery can be constructed by inserting a lipid derivative of PEAA into preformed large unilamellar vesicles (LUV) using a simple one step incubation procedure. The lipid derivatives of PEAA were synthesized by reacting a small proportion (3%) of the carboxylic groups of PEAA with C10 alkylamines to produce C10-PEAA. Incubation of C10-PEAA with preformed LUV resulted in the association of up to 8% by weight of derivatized polymer with the LUV without inducing aggregation. The resulting C10-PEAA-LUV exhibited pH-dependent fusion and leakage of LUV contents on reduction of the external pH below pH 6.0 as demonstrated by lipid mixing and release of calcein encapsulated in the LUV. In addition, C10-PEAA-LUV exhibited pH dependent intracellular delivery properties following uptake into COS-7 cells with appreciable delivery to the cell cytoplasm as evidenced by the appearance of diffuse intracellular calcein fluorescence. It is demonstrated that the cytoplasmic delivery of calcein by C10-PEAA-LUV could be inhibited by agents (bafilomycin or chloroquine) that inhibit acidification of endosomal compartments, indicating that this intracellular delivery resulted from the pH-dependent destabilization of LUV and endosomal membranes by the PEAA component of the C10-PEAA-LUV. It is concluded that C10-PEAA-LUV represents a promising intracellular delivery system for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF. Colloidal soft matter as drug delivery system. J Pharm Sci 2009; 98:1-42. [DOI: 10.1002/jps.21423] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Pérez-López S, Vila-Romeu N, Alsina Esteller MA, Espina M, Haro I, Mestres C. Interaction of GB Virus C/Hepatitis G Virus Synthetic Peptides with Lipid Langmuir Monolayers and Large Unilamellar Vesicles. J Phys Chem B 2008; 113:319-27. [DOI: 10.1021/jp806938y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Silvia Pérez-López
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain, Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Campus of Ourense, 32004 Ourense, Spain, and Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Barcelona, Spain
| | - Nuria Vila-Romeu
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain, Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Campus of Ourense, 32004 Ourense, Spain, and Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Barcelona, Spain
| | - M. Asunción Alsina Esteller
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain, Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Campus of Ourense, 32004 Ourense, Spain, and Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Barcelona, Spain
| | - Marta Espina
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain, Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Campus of Ourense, 32004 Ourense, Spain, and Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Barcelona, Spain
| | - Isabel Haro
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain, Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Campus of Ourense, 32004 Ourense, Spain, and Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Barcelona, Spain
| | - Concepció Mestres
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain, Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Campus of Ourense, 32004 Ourense, Spain, and Unit of Synthesis and Biomedical Application of Peptides, Department of Biomedical Chemistry, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
15
|
Chen T, Choi LS, Einstein S, Klippenstein MA, Scherrer P, Cuhis PR. Proton-Induced Permeability and Fusion of Large Unilamellar Vesicles by Covalently Conjugated Poly(2-Ethylacrylic Acid). J Liposome Res 2008. [DOI: 10.3109/08982109909018658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Vasir JK, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 2007; 59:718-28. [PMID: 17683826 PMCID: PMC2002520 DOI: 10.1016/j.addr.2007.06.003] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 06/12/2007] [Indexed: 12/14/2022]
Abstract
Many therapeutics require efficient cytosolic delivery either because the receptors for those drugs are located in the cytosol or their site of action is an intracellular organelle that requires transport through the cytosolic compartment. To achieve efficient cytosolic delivery of therapeutics, different nanomaterials have been developed that consider the diverse physicochemical nature of therapeutics (macromolecule to small molecule; water soluble to water insoluble) and various membrane associated and intracellular barriers that these systems need to overcome to efficiently deliver and retain therapeutics in the cytoplasmic compartment. Our interest is in investigating PLGA and PLA-based nanoparticles for intracellular delivery of drugs and genes. The present review discusses the various aspects of our studies and emphasizes the need for understanding of the molecular mechanisms of intracellular trafficking of nanoparticles in order to develop an efficient cytosolic delivery system.
Collapse
Affiliation(s)
- Jaspreet K Vasir
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
17
|
Karanth H, Murthy RSR. pH-sensitive liposomes--principle and application in cancer therapy. J Pharm Pharmacol 2007; 59:469-83. [PMID: 17430630 DOI: 10.1211/jpp.59.4.0001] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The purpose of this review is to provide an insight into the different aspects of pH-sensitive liposomes. The review consists of 6 parts: the first introduces different types of medications made in liposomal drug delivery to overcome several drawbacks; the second elaborates the development of pH-sensitive liposomes; the third explains diverse mechanisms associated with the endocytosis and the cytosolic delivery of the drugs through pH-sensitive liposomes; the fourth describes the role and importance of pH-sensitive lipid dioleoylphosphatidylethanolamine (DOPE) and research carried on it; the fifth explains successful strategies used so far using the mechanism of pH sensitivity for fusogenic activity; the final part is a compilation of research that has played a significant role in emphasizing the success of pH-sensitive liposomes as an efficient drug delivery system in the treatment of malignant tumours. pH-Sensitive liposomes have been extensively studied in recent years as an amicable alternative to conventional liposomes in effectively targeting and accumulating anti-cancer drugs in tumours. This research suggests that pH-sensitive liposomes are more efficient in delivering anti-cancer drugs than conventional and long-circulating liposomes due to their fusogenic property. Research focused on the clinical and therapeutic side of pH-sensitive liposomes would enable their commercial utility in cancer treatment.
Collapse
Affiliation(s)
- H Karanth
- New Drug Delivery Systems Laboratory, Pharmacy Department, Donors' Plaza, Opp. University Main Office, M S University of Baroda, Vadodara-390 002, India
| | | |
Collapse
|
18
|
Carafa M, Di Marzio L, Marianecci C, Cinque B, Lucania G, Kajiwara K, Cifone MG, Santucci E. Designing novel pH-sensitive non-phospholipid vesicle: characterization and cell interaction. Eur J Pharm Sci 2006; 28:385-93. [PMID: 16797946 DOI: 10.1016/j.ejps.2006.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/06/2006] [Accepted: 04/10/2006] [Indexed: 11/23/2022]
Abstract
In this work, we report the preparation, the characterization and interaction with cells of novel pH-sensitive non-phospholipid vesicle formulations, from a non-ionic surfactant mixed with cholesterol (CHOL) and his derivative cholesteryl hemisuccinate (CHEMS), as pH-sensitive molecule. This molecule, can destabilize the vesicle lipid bilayer when exposed to an acidic environment, with a subsequent release of vesicular content, enhancing the cytoplasmatic delivery of drugs to target cells. Vesicles were characterized by static and dynamic light scattering, in order to evaluate their dimensions, bilayer thickness and vesicle stability. Membrane permeability changes were determined by the release of entrapped hydroxypyrene-1,3,6-trisulfonic acid (HPTS). Also diphenylhesatriene (DPH) fluorescence anisotropy and zeta potential measurements were used to evidence the pH sensitivity. Furthermore vesicles were characterized by means of electronic microscopy after freeze-fracture. The interaction of non-lipid vesicles containing different fluorescent dyes with Raw 264.7, mouse monocite macrophage, were analyzed by flow cytometric analysis. The obtained results indicate that the pH-sensitive vesicular structures show good plasma stability and relevant pH-sensitivity. Moreover this formulation was able to interact with target membranes (i.e. plasma or endosomal membrane) and to release the encapsulated material into the cytoplasm.
Collapse
Affiliation(s)
- M Carafa
- Dip. di Scienze del Farmaco, Faculty of Pharmacy, University G. D'Annunzio, Via dei Vestini, 66100 Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Vaccaro L, Cross KJ, Kleinjung J, Straus SK, Thomas DJ, Wharton SA, Skehel JJ, Fraternali F. Plasticity of influenza haemagglutinin fusion peptides and their interaction with lipid bilayers. Biophys J 2004; 88:25-36. [PMID: 15475582 PMCID: PMC1305003 DOI: 10.1529/biophysj.104.044537] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A detailed molecular dynamics study of the haemagglutinin fusion peptide (N-terminal 20 residues of the HA2 subunits) in a model bilayer has yielded useful information about the molecular interactions leading to insertion into the lipids. Simulations were performed on the native sequence, as well as a number of mutant sequences, which are either fusogenic or nonfusogenic. For the native sequence and fusogenic mutants, the N-terminal 11 residues of the fusion peptides are helical and insert with a tilt angle of approximately 30 degrees with respect to the membrane normal, in very good agreement with experimental data. The tilted insertion of the native sequence peptide leads to membrane bilayer thinning and the calculated order parameters show larger disorder of the alkyl chains. These results indicate that the lipid packing is perturbed by the fusion peptide and could be used to explain membrane fusion. For the nonfusogenic sequences investigated, it was found that most of them equilibrate parallel to the interface plane and do not adopt a tilted conformation. The presence of a charged residue at the beginning of the sequence (G1E mutant) resulted in a more difficult case, and the outcomes do not fall straightforwardly into the general picture. Sequence searches have revealed similarities of the fusion peptide of influenza haemagglutinin with peptide sequences such as segments of porin, amyloid alpha eta peptide, and a peptide from the prion sequence. These results confirm that the sequence can adopt different folds in different environments. The plasticity and the conformational dependence on the local environment could be used to better understand the function of fusion peptides.
Collapse
Affiliation(s)
- Loredana Vaccaro
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Karen J. Cross
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Jens Kleinjung
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Suzana K. Straus
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - David J. Thomas
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Stephen A. Wharton
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - John J. Skehel
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Franca Fraternali
- National Institute for Medical Research, London, United Kingdom; Bioinformatics Unit, Faculty of Sciences, Free University of Amsterdam, Amsterdam, The Netherlands; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and Biological Nuclear Magnetic Resonance Unit, Institute for Clinical Research, Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Abstract
Antibody or ligand-mediated targeting of liposomal anticancer drugs to antigens expressed selectively or over-expressed on tumor cells is increasingly being recognized as an effective strategy for increasing the therapeutic indices of anticancer drugs. This review summarizes some recent advances in the field of ligand-targeted liposomes (LTLs) for the delivery of anticancer drugs. New approaches used in the design and optimization of LTLs is discussed and the advantages and potential problems associated with their therapeutic applications are described. New technologies are widening the spectrum of ligands available for targeting and are allowing choices to be made regarding affinity, internalization and size. The time is rapidly approaching where we will see translation of anticancer drugs entrapped in LTLs to the clinic.
Collapse
Affiliation(s)
- P Sapra
- Department of Pharmacology, University of Alberta, Edmonton AB, Canada, T6G 2H7
| | | |
Collapse
|
21
|
Lockwood NA, Tu RS, Zhang Z, Tirrell MV, Thomas DD, Karim CB. Structure and function of integral membrane protein domains resolved by peptide-amphiphiles: application to phospholamban. Biopolymers 2003; 69:283-92. [PMID: 12833255 DOI: 10.1002/bip.10365] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have used synthetic lipidated peptides ("peptide-amphiphiles") to study the structure and function of isolated domains of integral transmembrane proteins. We used 9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis to prepare full-length phospholamban (PLB(1-52)) and its cytoplasmic (PLB(1-25)K: phospholamban residues 1-25 plus a C-terminal lysine), and transmembrane (PLB(26-52)) domains, and a 38-residue model alpha-helical sequence as a control. We created peptide-amphiphiles by linking the C-terminus of either the isolated cytoplasmic domain or the model peptide to a membrane-anchoring, lipid-like hydrocarbon tail. Circular dichroism measurements showed that the model peptide-amphiphile, either in aqueous suspension or in lipid bilayers, had a higher degree of alpha-helical secondary structure than the unlipidated model peptide. We hypothesized that the peptide-amphiphile system would allow us to study the function and structure of the PLB(1-25)K cytoplasmic domain in a native-like configuration. We compared the function (inhibition of the Ca-ATPase in reconstituted membranes) and structure (via CD) of the PLB(1-25) amphiphile to that of PLB and its isolated transmembrane and cytoplasmic domains. Our results indicate that the cytoplasmic domain PLB(1-25)K has no effect on Ca-ATPase (calcium pump) activity, even when tethered to the membrane in a manner mimicking its native configuration, and that the transmembrane domain of PLB is sufficient for inhibition of the Ca-ATPase.
Collapse
Affiliation(s)
- Nathan A Lockwood
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yao C, Huang Y, Li X, Ruan P. Effects of pH on structure and function of single living erythrocyte. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/bf03184176] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Kono K, Takagishi T. Fusogenic Polymer–Modified Liposomes for the Delivery of Genes and Charged Fluorophores. Methods Enzymol 2003; 373:422-32. [PMID: 14714419 DOI: 10.1016/s0076-6879(03)73027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Kenji Kono
- Department of Applied Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuencho, Sakai, Osaka 599-8531, Japan
| | | |
Collapse
|
24
|
Mastrobattista E, Koning GA, van Bloois L, Filipe ACS, Jiskoot W, Storm G. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins. J Biol Chem 2002; 277:27135-43. [PMID: 12021269 DOI: 10.1074/jbc.m200429200] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody-directed liposomes (immunoliposomes) are frequently used for targeted drug delivery. However, delivery of large biotherapeutic molecules (i.e. peptides, proteins, or nucleic acids) with immunoliposomes is often hampered by an inefficient cytosolic release of entrapped macromolecules after target cell binding and subsequent endocytosis of immunoliposomes. To enhance cytosolic drug delivery from immunoliposomes present inside endosomes, a pH-dependent fusogenic peptide (diINF-7) resembling the NH(2)-terminal domain of influenza virus hemagglutinin HA-2 subunit was used. Functional characterization of this dimeric peptide showed its ability to induce fusion between liposome membranes and leakage of liposome-entrapped compounds when exposed to low pH. In a second series of experiments, diINF-7 peptides were encapsulated in immunoliposomes to enhance the endosomal escape of diphtheria toxin A chain (DTA), which inhibits protein synthesis when delivered into the cytosol of target cells. Immunoliposomes targeted to the internalizing epidermal growth factor receptor on the surface of ovarian carcinoma cells (OVCAR-3) and containing encapsulated DTA did not show any cytotoxicity toward OVCAR-3 cells. Cytotoxicity was only observed when diINF-7 peptides and DTA were co-encapsulated in the immunoliposomes. Thus, diINF-7 peptides entrapped inside liposomes can greatly enhance cytosolic delivery of liposomal macromolecules by pH-dependent destabilization of endosomal membranes after cellular uptake of liposomes.
Collapse
Affiliation(s)
- Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht University, P.O. Box 80 082, Utrecht 3508 TB, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
de Souza DL, Frisch B, Duportail G, Schuber F. Membrane-active properties of alpha-MSH analogs: aggregation and fusion of liposomes triggered by surface-conjugated peptides. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:222-37. [PMID: 11779571 DOI: 10.1016/s0005-2736(01)00436-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reaction of the melanotropin hormone analogs [Nle(4),D-Phe(7)]-alpha-MSH and [Nle(4),D-Phe(7)]-alpha-MSH(4-10), which were extended at their N-terminus by a thiol-functionalized spacer arm, with preformed liposomes containing thiol-reactive (phospho)lipid derivatives resulted in the aggregation of the vesicles and in a partial leakage of their inner contents. This aggregation/leakage effect, which was only observed when the peptides were covalently conjugated to the surface of the liposomes, was correlated with the fusion of the vesicles as demonstrated by the observed decrease in resonance energy transfer between probes in a membrane lipid mixing assay. A limited fusion was confirmed by monitoring the mixing of the liposome inner contents (formation of 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylene bis(pyridinium bromide) complex). The membrane-active properties of the peptides could be correlated with changes in the fluorescence emission spectra of their tryptophan residue, which suggested that after their covalent binding to the outer surface of the liposomes they can partition within the core of the bilayers. A blue shift of 10 nm was observed for [Nle(4),D-Phe(7)]-alpha-MSH which was correlated with an increase in fluorescence anisotropy and with changes in the accessibility of the coupled peptide as assessed by the quenching of fluorescence of its tryptophan residue by iodide (Stern-Volmer plots). These results should be related to the previously described capacity of alpha-MSH, and analogs, to interact with membranes and with the favored conformation of these peptides which, via a beta-turn, segregate their central hydrophobic residues into a domain that could insert into membranes and, as shown here, trigger their destabilization.
Collapse
Affiliation(s)
- Debora Lima de Souza
- Laboratoire de Chimie Bioorganique, UMR 7514 CNRS/ULP, Université Louis Pasteur, Faculté de Pharmacie, Illkirch, France
| | | | | | | |
Collapse
|
26
|
Félix MM, Shimanouchi T, Umakoshi H, Yoshimoto M, Kuboi R. Characterization of Stimuli-Induced Membrane Fusion of Liposomes. KAGAKU KOGAKU RONBUN 2002. [DOI: 10.1252/kakoronbunshu.28.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matundu Menayame Félix
- Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University
| | - Toshinori Shimanouchi
- Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University
| | - Hirosh Umakoshi
- Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University
| | - Makoto Yoshimoto
- Department of Applied Chemical Engineering, Faculty of Engineering, Yamaguchi University
| | - Ryoichi Kuboi
- Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
27
|
Abstract
Temperature-sensitive liposomes are considered to be a promising tool to achieve site-specific delivery of drugs. These liposomes have been prepared using lipids whose membranes undergo a gel-to-liquid crystalline phase transition a few degrees above physiological temperature. However, recently, temperature-sensitization of liposomes has been attempted using thermosensitive polymers. So far, functional liposomes whose contents release behavior, surface properties, and affinity to cell surface can be controlled in a temperature-dependent manner, have been developed according to this strategy. The design and function of these thermosensitive polymer-modified liposomes have been outlined in this review.
Collapse
Affiliation(s)
- K Kono
- Department of Applied Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
28
|
Zhelev DV, Stoicheva N, Scherrer P, Needham D. Interaction of synthetic HA2 influenza fusion peptide analog with model membranes. Biophys J 2001; 81:285-304. [PMID: 11423414 PMCID: PMC1301511 DOI: 10.1016/s0006-3495(01)75699-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The interaction of the synthetic 21 amino acid peptide (AcE4K) with 1-oleoyl-2-[caproyl-7-NBD]-sn-glycero-3-phosphocholine membranes is used as a model system for the pH-sensitive binding of fusion peptides to membranes. The sequence of AcE4K (Ac-GLFEAIAGFIENGWEGMIDGK) is based on the sequence of the hemagglutinin HA2 fusion peptide and has similar partitioning into phosphatidylcholine membranes as the viral peptide. pH-dependent partitioning in the membrane, circular dichroism, tryptophan fluorescence, change of membrane area, and membrane strength, are measured to characterize various key aspects of the peptide-membrane interaction. The experimental results show that the partitioning of AcE4K in the membrane is pH dependent. The bound peptide inserts in the membrane, which increases the overall membrane area in a pH-dependent manner, however the depth of insertion of the peptide in the membrane is independent of pH. This result suggests that the binding of the peptide to the membrane is driven by the protonation of its three glutamatic acids and the aspartic acid, which results in an increase of the number of bound molecules as the pH decreases from pH 7 to 4.5. The transition between the bound state and the free state is characterized by the Gibbs energy for peptide binding. This Gibbs energy for pH 5 is equal to -30.2 kJ/mol (-7.2 kcal/mol). Most of the change of the Gibbs energy during the binding of AcE4K is due to the enthalpy of binding -27.3 kJ/mol (-6.5 kcal/mol), while the entropy change is relatively small and is on the order of 6.4 J/mol.K (2.3 cal/mol.K). The energy barrier separating the bound and the free state, is characterized by the Gibbs energy of the transition state for peptide adsorption. This Gibbs energy is equal to 51.3 kJ/mol (12.3 kcal/mol). The insertion of the peptide into the membrane is coupled with work for creation of a vacancy for the peptide in the membrane. This work is calculated from the measured area occupied by a single peptide molecule (220 A(2)) and the membrane elasticity (190 mN/m), and is equal to 15.5 kJ/mol (3.7 kcal/mol). The comparison of the work for creating a vacancy and the Gibbs energy of the transition state shows that the work for creating a vacancy may have significant effect on the rate of peptide insertion and therefore plays an important role in peptide binding. Because the work for creating a vacancy depends on membrane elasticity and the elasticity of the membrane is dependent on membrane composition, this provides a tool for modulating the pH for membrane instability by changing membrane composition. The insertion of the peptide in the membrane does not affect the membrane permeability for water, which shows that the peptide does not perturb substantially the packing of the hydrocarbon region. However, the ability of the membrane to retain solutes in the presence of peptide is compromised, suggesting that the inserted peptide promotes formation of short living pores. The integrity of the membrane is substantially compromised below pH 4.8 (threshold pH), when large pores are formed and the membrane breaks down. The binding of the peptide in the pore region is reversible, and the pore size varies on the experimental conditions, which suggests that the peptide in the pore region does not form oligomers.
Collapse
Affiliation(s)
- D V Zhelev
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300, USA.
| | | | | | | |
Collapse
|
29
|
Kirchmeier MJ, Ishida T, Chevrette J, Allen TM. CORRELATIONS BETWEEN THE RATE OF INTRACELLULAR RELEASE OF ENDOCYTOSED LIPOSOMAL DOXORUBICIN AND CYTOTOXICITY AS DETERMINED BY A NEW ASSAY. J Liposome Res 2001; 11:15-29. [DOI: 10.1081/lpr-100103167] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Chávez A, Pujol M, Haro I, Alsina MA, Cajal Y. Membrane fusion by an RGD-containing sequence from the core protein VP3 of hepatitis A virus and the RGA-analogue: implications for viral infection. Biopolymers 2001; 58:63-77. [PMID: 11072230 DOI: 10.1002/1097-0282(200101)58:1<63::aid-bip70>3.0.co;2-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interaction of an RGD-containing epitope from the hepatitis A virus VP3 capsid protein and its RGA-analogue with lipid membranes was studied by biophysical methods. Two types of model membrane were used: vesicles and monolayers spread at the air/water interface, with a composition that closely resembles the lipid moiety of hepatocyte membranes: PC/SM/PE/PC (40:33:12:15; PC: 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM: sphingomyelin from chicken egg yolk; PE, 1,2-dipalmitoyl-phosphatidylethanolamine; PS: L-alpha-phosphatidyl-L-serine from bovine brain). In addition, zwitterionic PC/SM/PE (47:39:14) and cationic PC/SM/PE/DOTAP (40:33:12:15; DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane) membranes were also prepared in order to dissect the electrostatic and hydrophobic components in the interaction. Changes in tryptophan fluorescence, acrylamide quenching, and resonance energy transfer experiments in the presence of vesicles, as well as the kinetics of insertion in monolayers, indicate that both peptides bind to the three types of membrane at neutral and acidic pH; however, binding is irreversible only at low pH. Membrane-destabilizing and fusogenic activities are triggered by acidification at pH 4-6, characteristic of the endosome. Fluorescence experiments show that VP3-RGD and VP3-RGA induce mixing of lipids and leakage or mixing of aqueous contents in anionic and cationic vesicles at pH 4-6, indicating leaky fusion. Interaction with zwitterionic vesicles (PC/SM/PE) results in leakage without lipid mixing, indicating pore formation. Replacement of aspartic acid in the RGD motif by alanine maintains the membrane-destabilizing properties of the peptide at low pH, but not its antigenicity. Since the RGD tripeptide is related to receptor-mediated cell adhesion and antigenicity, results suggest that receptor binding is not a molecular requirement for fusion. The possible involvement of peptide-induced membrane destabilization in the mechanism of hepatitis A virus infection of hepatocytes by the endosomal route is discussed.
Collapse
Affiliation(s)
- A Chávez
- Department of Physical Chemistry, School of Pharmacy, University of Barcelona, Avn. Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Abstract
Although membrane fusion occurs ubiquitously and continuously in all eukaroytic cells, little is known about the mechanism that governs lipid bilayer fusion associated with any intracellular fusion reactions. Recent studies of the fusion of enveloped viruses with host cell membranes have helped to define the fusion process. The identification and characterization of key proteins involved in fusion reactions have mainly driven recent advances in our understanding of membrane fusion. The most important denominator among the fusion proteins is the fusion peptide. In this review, work done in the last few years on the molecular mechanism of viral membrane fusion will be highlighted, focusing in particular on the role of the fusion peptide and the modification of the lipid bilayer structure. Much of what is known regarding the molecular mechanism of viral membrane fusion has been gained using liposomes as model systems in which the molecular components of the membrane and the environment are strictly controlled. Many amphilphilic peptides have a high affinity for lipid bilayers, but only a few sequences are able to induce membrane fusion. The presence of alpha-helical structure in at least part of the fusion peptide is strongly correlated with activity whereas, beta-structure tends to be less prevalent, associated with non-native experimental conditions, and more related to vesicle aggregation than fusion. The specific angle of insertion of the peptides into the membrane plane is also found to be an important characteristic for the fusion process. A shallow penetration, extending only to the central aliphatic core region, is likely responsible for the destabilization of the lipids required for coalescence of the apposing membranes and fusion.
Collapse
Affiliation(s)
- I Martin
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces (LPCMI) CP206/2, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
32
|
Affiliation(s)
- D C Drummond
- Research Institute, California Pacific Medical Center, 94115, San Francisco, CA, USA
| | | | | |
Collapse
|
33
|
Kono K, Iwamoto M, Nishikawa R, Yanagie H, Takagishi T. Design of fusogenic liposomes using a poly(ethylene glycol) derivative having amino groups. J Control Release 2000; 68:225-35. [PMID: 10925131 DOI: 10.1016/s0168-3659(00)00263-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As a novel fusogenic liposome, we designed liposomes modified with poly(glycidol) having beta-alanine residues, which is a poly(ethylene glycol) derivative with positively charged groups. The polymer-modified liposomes of egg yolk phosphatidylcholine (EYPC) and dioleoylphosphatidylethanolamine (DOPE) were prepared by reverse phase evaporation. Fusion of the polymer-modified liposomes with anionic liposomes consisting of phosphatidic acid and DOPE was investigated. Fusion ability of the polymer-modified liposomes increased with increasing amount of the polymer fixed on the liposome. Also, inclusion of DOPE was necessary for the generation of the fusion ability of the polymer-modified liposomes. CV1 cells treated with the polymer-modified DOPE/EYPC liposomes containing calcein displayed diffuse fluorescence, suggesting that calcein was introduced into the cytoplasm. In contrast, only punctual fluorescence was observed in the cells treated with the polymer-modified EYPC liposomes containing calcein, indicating that calcein remained in the endosome and/or lysosome. In addition, COS1 cells were transfected efficiently by treatment with the polymer-modified EYPC/DOPE liposomes containing pSV2cat plasmid, whereas the transfection was not induced by treatment with the polymer-modified EYPC liposomes. Close correlation between fusion ability of the polymer-modified liposomes and their ability to deliver their contents to the cytoplasm implies that membrane fusion plays an important role in the liposome-mediated cytoplasmic delivery.
Collapse
Affiliation(s)
- K Kono
- Department of Applied Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Osaka, Japan.
| | | | | | | | | |
Collapse
|
34
|
Ortiz A, Cajal Y, Haro I, Reig F, Alsina MA. Fluorescence study on the interaction of a multiple antigenic peptide from hepatitis A virus with lipid vesicles. Biopolymers 2000; 53:455-66. [PMID: 10775061 DOI: 10.1002/(sici)1097-0282(200005)53:6<455::aid-bip2>3.0.co;2-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The interaction of the multiple antigenic peptide MAP4VP3 with lipid membranes has been studied by spectroscopic techniques. MAP4VP3 is a multimeric peptide that corresponds to four units of the sequence 110-121 of the capsid protein VP3 of hepatitis A virus. In order to evaluate the electrostatic and hydrophobic components on the lipid-peptide interaction, small unilamelar vesicles of different compositions, including zwitterionic dipalmitoylphosphatidylcholine (DPPC), anionic dipalmitoylphosphatidylcholine/phatidylinositol (DPPC:PI 9:1), and cationic dipalmitoylphosphatidylcholine/stearylamine (DPPC:SA 9.5:0.5), were used as membrane models. Intrinsic tryptophan fluorescence changes and energy transfer experiments show that MAP4VP3 binds to all three types of vesicles with the same stoichiometry, indicating that the electrostatic component of the interaction is not important for binding of this anionic peptide. Steady-state polarization experiments with vesicles labeled with 1,6-diphenyl-1,3,5-hexatriene or with 1-anilino-8-naphtalene sulphonic acid indicate that MAP4VP3 induces a change in the packing of the bilayers, with a decrease in the fluidity of the lipids and an increase in the temperature of phase transition in all the vesicles. The percentage of lipid exposed to the bulk aqueous phase is around 60% in intact vesicles, and it does not change upon binding of MAP4VP3 to DPPC vesicles, indicating that the peptide does not alter the permeability of the membrane. An increase in the amount of lipid exposed to the aqueous phase in cationic vesicles indicates either lipid flip-flop or disruption of the vesicles. Binding to DPPC vesicles occurs without leakage of entrapped carboxyfluorescein, even at high mol fractions of peptide. However, a time-dependent leakage is seen with cationic DPPC/SA and anionic DPPC/PI vesicles, indicating that the peptide induces membrane destabilization and not lipid flip-flop. Resonance energy transfer experiments show that MAP4VP3 leakage from cationic vesicles is due to membrane fusion, whereas leakage from anionic vesicles is not accompanied by lipid mixing. Results show that MAP4VP3 interacts strongly with the lipid components of the membrane, and although binding is not of electrostatic nature, the bound form of the peptide has different activity depending on the membrane net charge; thus, it is membrane disruptive in cationic and anionic vesicles, whereas no destabilizing effect is seen in DPPC vesicles.
Collapse
Affiliation(s)
- A Ortiz
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Zignani M, Drummond DC, Meyer O, Hong K, Leroux JC. In vitro characterization of a novel polymeric-based pH-sensitive liposome system. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:383-94. [PMID: 10675515 DOI: 10.1016/s0005-2736(99)00234-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study demonstrates rapid and pH-sensitive release of a highly water-soluble fluorescent aqueous content marker, pyranine, from egg phosphatidylcholine liposomes following incorporation of N-isopropylacrylamide (NIPA) copolymers in liposomal membranes. The pH-sensitivity of this system correlates with the precipitation of the copolymers at acidic pH. In vitro release can be significantly improved by increasing the percentage of anchor in the copolymer and thus favoring its binding to the liposomal bilayer. In the case of liposomes containing a poly(ethylene glycol)-phospholipid conjugate, the insertion of the pH-sensitive copolymer in the liposomal membrane appears to be sterically inhibited. Dye release from these formulations at acidic pH can still be achieved by varying the anchor molar ratio and/or molecular mass of the polymers or by including the latter during the liposome preparation procedure. Removal of unbound polymer results in decreased leakage only when the copolymer is inserted by incubation with preformed liposomes, but can be overcome by preparing liposomes in the presence of polymer. Aqueous content and lipid mixing assays suggest contents release can occur without membrane fusion. The results of this study indicate that the addition of pH-sensitive copolymers of NIPA represents promising strategy for improving liposomal drug delivery.
Collapse
Affiliation(s)
- M Zignani
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Canada
| | | | | | | | | |
Collapse
|
36
|
Mastrobattista E, Koning GA, Storm G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv Drug Deliv Rev 1999; 40:103-127. [PMID: 10837783 DOI: 10.1016/s0169-409x(99)00043-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review presents an overview of the field of immunoliposome-mediated targeting of anticancer agents. First, problems that are encountered when immunoliposomes are used for systemic anticancer drug delivery and potential solutions are discussed. Second, an update is given of the in vivo results obtained with immunoliposomes in tumor models. Finally, new developments on the utilization of immunoliposomes for the treatment of cancer are highlighted.
Collapse
Affiliation(s)
- E Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Pharmacy, Utrecht University, Sorbonnelaan 16, 3508 TB, Utrecht, The Netherlands
| | | | | |
Collapse
|
37
|
Abstract
Membrane fusion is essential for cell survival and has attracted a great deal of both theoretical and experimental interest. Fluorescence (de)quenching measurements were designed to distinguish between bilayermerging and vesicle-mixing. Theoretical studies and various microscopic and diffraction methods have elucidated the mechanism of membrane fusion. These have revealed that membrane proximity and high defect density in the adjacent bilayers are the only prerequisites for fusion. Intermediates, such as stalk or inverse micellar structures can, but need not, be involved in vesicle fusion. Nonlamellar phase creation is accompanied by massive membrane fusion although it is not a requirement for bilayer merging. Propensity for membrane fusion is increased by increasing the local membrane disorder as well by performing manipulations that bring bilayers closer together. Membrane rigidification and enlarged bilayer separation opposes this trend. Membrane fusion is promoted by defects created in the bilayer due to the vicinity of lipid phase transition, lateral phase separation or domain generation, high local membrane curvature, osmotic or electric stress in or on the membrane; the addition of amphiphats or macromolecules which insert themselves into the membrane, freezing or other mechanical membrane perturbation have similar effects. Lowering the water activity by the addition of water soluble polymers or by partial system dehydration invokes membrane aggregation and hence facilitates fusion; as does the membrane charge neutralization after proton or other ion binding to the lipids and intermembrane scaffolding by proteins or other macromolecules. The alignment of defect rich domains and polypeptides or protein binding is pluripotent: not only does it increase the number of proximal defects in the bilayers, it triggers the vesicle aggregation and is fusogenic. Exceptions are the bound molecules that create steric or electrical barriers between the membranes which prevent fusion. Membrane fusion can be non-leaky but it is very common to lose material from the vesicle interior during the later stages of membrane unification, that is, after a few hundred microseconds following the induction of fusion.
Collapse
Affiliation(s)
- G Cevc
- Medizinische Biophysik, Technische Universität München, Klinikum r.d.I., Ismaningerstrasse 22, D-81675, Munich, Germany
| | | |
Collapse
|
38
|
Gerasimov OV, Boomer JA, Qualls MM, Thompson DH. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliv Rev 1999; 38:317-338. [PMID: 10837763 DOI: 10.1016/s0169-409x(99)00035-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A growing body of literature describes the development and applications of novel targeting and/or contents release triggering schemes to improve the therapeutic index of drugs encapsulated within liposomes. This review focuses on literature appearing between January 1995-December 1997 that report 1) antibody and receptor-mediated targeting approaches for improving drug localization and 2) acid, enzymatic, thermal or photochemical triggering processes that destabilize membranes and improve drug bioavailability via cytoplasmic delivery of liposomal contents.
Collapse
Affiliation(s)
- OV Gerasimov
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
39
|
Martin I, Ruysschaert J, Epand RM. Role of the N-terminal peptides of viral envelope proteins in membrane fusion. Adv Drug Deliv Rev 1999; 38:233-255. [PMID: 10837759 DOI: 10.1016/s0169-409x(99)00031-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is an important biological process that is observed in a wide variety of intra and intercellular events. In this review, work done in the last few years on the molecular mechanism of viral membrane fusion is highlighted, focusing in particular on the role of the fusion peptide and the modification of the lipid bilayer structure. While the Influenza hemagglutinin is currently the best understand fusion protein, there is still much to be learned about the key events in enveloped virus fusion reactions. This review compares our current understanding of the membrane fusion activity of Influenza and retrovirus viruses. We shall be concerned especially with the studies that lead to interpretations at the molecular level, so we shall concentrate on model membrane systems where the molecular components of the membrane and the environment are strictly controlled.
Collapse
Affiliation(s)
- I Martin
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces (LCPMI) CP206/2, Université Libre de Bruxelles. 1050, Brussels, Belgium
| | | | | |
Collapse
|
40
|
Kim CH, Macosko JC, Shin YK. The mechanism for low-pH-induced clustering of phospholipid vesicles carrying the HA2 ectodomain of influenza hemagglutinin. Biochemistry 1998; 37:137-44. [PMID: 9425033 DOI: 10.1021/bi971982w] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Homotrimeric hemagglutinin (HA) is one of the major spike membrane glycoproteins of the influenza virus. Initial pH-triggered conformational changes in the target membrane-interacting HA2 domain are necessary for a preliminary step in membrane fusion. Using spin-labeling electron paramagnetic resonance (EPR) spectroscopy, we examined subsequent pH-dependent changes of a membrane-bound HA2 construct (FHA2, aa 1-127). Residues 91-94, 108-115, 122, and 125 were mutated to cysteine and spin-labeled. Low solvent accessibility and side chain mobility were observed by EPR at positions 91-94, 122, and 125. Spin-labels at residues 108-115 were solvent-exposed and highly mobile, revealing the presence of a flexible loop. These results are consistent with the low-pH crystal structure of a truncated HA2 domain, particularly the unusual kink loop at residues 108-115 [Bullough et al. (1994) Nature (London) 371, 37-43]. Most interestingly, at endosomal pH, spin-labels at 108-115 become immobile and no longer solvent-exposed, and this change is reversible upon reneutralization. However, little change in the EPR line shape and accessibility of spin-labels was observed in other regions. This observation implies that the FHA2 trimers interact reversibly via this specific loop, most likely in an intermolecular fashion. Furthermore, this interaction correlates well with a reversible pH-dependent clustering of FHA2-bearing vesicles evidenced by the reversible increase in turbidity and further confirmed in detail by electron microscopy. The implications of this reversible, pH-dependent interaction between FHA2 trimers are discussed in light of recent fusion models.
Collapse
Affiliation(s)
- C H Kim
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|