1
|
Chen B, Li J, Yao S, Wang G, Wang X. Seed-specific expression of phosphatidate phosphohydrolases increases soybean oil content and seed weight. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:23. [PMID: 39994717 PMCID: PMC11849322 DOI: 10.1186/s13068-025-02620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Soybean is a major oil crop and a primary protein source for livestock, and soybean oil is the most common input for biodiesel. Identifying genes that enhance soybean yield and oil content is crucial for breeding programs. Phosphatidic acid (PA) phosphohydrolase (PAH), which dephosphorylates PA to diacylglycerol (DAG), plays a critical role in lipid synthesis, and yet their potential in improving agronomic traits of oil crops remains unexplored. RESULTS This study shows that seed-specific expression of AtPAH1/2 enhances PA turnover into DAG and triacylglycerol (TAG) accumulation in soybean seeds. PAH overexpression upregulated the expression of DAG acyltransferase (DGAT) but suppressed phospholipid: DAG acyltransferase (PDAT). In addition, seed-specific expression of AtPAH1/2 increases soybean seed size and weight. Furthermore, analysis of the variation of the soybean PAHs in 4414 soybean accessions indicated that the advantageous effects of GmPAHs on oil content and seed weight were selected during domestication. CONCLUSION These findings suggest that targeting PAHs represents a promising strategy for enhancing soybean seed oil content and yield in current cultivars and landraces soybeans.
Collapse
Affiliation(s)
- Beibei Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Geliang Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
2
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
3
|
Wu S, Hu C, Wang X, Wang Y, Yu M, Xiao H, Shabala S, Wu K, Tan Q, Xu S, Sun X. Cadmium-induced changes in composition and co-metabolism of glycerolipids species in wheat root: Glycerolipidomic and transcriptomic approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127115. [PMID: 34537635 DOI: 10.1016/j.jhazmat.2021.127115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Lipids are the structural constituents of cell membranes and play crucial roles in plant adaptation to abiotic stresses. The aim of this study was to use glycerolipidomic and transcriptomic to analyze the changes in lipids metabolism induced by cadmium (Cd) exposure in wheat. The results indicated that Cd stress did not decrease the concentrations of monogalactosyldiacyglycerol (MGDG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and phosphatidic acid at 6 h, but decreased digalactosyldoacylglycerol (DGDG), MGDG, PC, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and LPC concentrations in wheat root at 24 h. Although the concentrations of highly abundant glycerolipids PC and PE were decreased, the ratios of PC/PE increased thus contributing to wheat adaptation to Cd stress. Cd did not reduce the extent of total lipid unsaturation due to the unchanged concentrations of high abundance species of C36:4, C34:2, C34:3 and C36:6 at 6 h, indicative of their roles in resisting Cd stress. The correlation analysis revealed the glycerolipids species experiencing co-metabolism under Cd stress, which is driven by the activated expression of genes related to glycerolipid metabolism, desaturation and oxylipin synthesis. This study gives insights into the changes of glycerolipids induced by Cd and the roles in wheat adaptation to Cd stress.
Collapse
Affiliation(s)
- Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA
| | - Yiwen Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Hongdong Xiao
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Kongjie Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoujun Xu
- Institute of Quality Stander and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciencs, Guangzhou 510640, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
4
|
Wang J, Shan Q, Ran Y, Sun D, Zhang H, Zhang J, Gong S, Zhou A, Qiao K. Molecular Characterization of a Tolerant Saline-Alkali Chlorella Phosphatidate Phosphatase That Confers NaCl and Sorbitol Tolerance. Front Microbiol 2021; 12:738282. [PMID: 34650539 PMCID: PMC8506161 DOI: 10.3389/fmicb.2021.738282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The gene encoding a putative phosphatidate phosphatase (PAP) from tolerant saline-alkali (TSA) Chlorella, ChPAP, was identified from a yeast cDNA library constructed from TSA Chlorella after a NaCl treatment. ChPAP expressed in yeast enhanced its tolerance to NaCl and sorbitol. The ChPAP protein from a GFP-tagged construct localized to the plasma membrane and the lumen of vacuoles. The relative transcript levels of ChPAP in Chlorella cells were strongly induced by NaCl and sorbitol as assessed by northern blot analyses. Thus, ChPAP may play important roles in promoting Na-ion movement into the cell and maintaining the cytoplasmic ion balance. In addition, ChPAP may catalyze diacylglycerol pyrophosphate to phosphatidate in vacuoles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Crotta Asis A, Savoretti F, Cabruja M, Gramajo H, Gago G. Characterization of key enzymes involved in triacylglycerol biosynthesis in mycobacteria. Sci Rep 2021; 11:13257. [PMID: 34168231 PMCID: PMC8225852 DOI: 10.1038/s41598-021-92721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Phosphatidic acid phosphatase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. PAP activity has a key role in the regulation of PA flux towards TAG or glycerophospholipid synthesis. In this work we have characterized two Mycobacterium smegmatis genes encoding for functional PAP proteins. Disruption of both genes provoked a sharp reduction in de novo TAG biosynthesis in early growth phase cultures under stress conditions. In vivo labeling experiments demonstrated that TAG biosynthesis was restored in the ∆PAP mutant when bacteria reached exponential growth phase, with a concomitant reduction of phospholipid synthesis. In addition, comparative lipidomic analysis showed that the ∆PAP strain had increased levels of odd chain fatty acids esterified into TAGs, suggesting that the absence of PAP activity triggered other rearrangements of lipid metabolism, like phospholipid recycling, in order to maintain the wild type levels of TAG. Finally, the lipid changes observed in the ∆PAP mutant led to defective biofilm formation. Understanding the interaction between TAG synthesis and the lipid composition of mycobacterial cell envelope is a key step to better understand how lipid homeostasis is regulated during Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Agostina Crotta Asis
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Franco Savoretti
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matías Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Stanford University, Stanford, USA
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
6
|
The Lipid A 1-Phosphatase, LpxE, Functionally Connects Multiple Layers of Bacterial Envelope Biogenesis. mBio 2019; 10:mBio.00886-19. [PMID: 31213552 PMCID: PMC6581854 DOI: 10.1128/mbio.00886-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dephosphorylation of the lipid A 1-phosphate by LpxE in Gram-negative bacteria plays important roles in antibiotic resistance, bacterial virulence, and modulation of the host immune system. Our results demonstrate that in addition to removing the 1-phosphate from lipid A, LpxEs also dephosphorylate undecaprenyl pyrophosphate, an important metabolite for the synthesis of the essential envelope components, peptidoglycan and O-antigen. Therefore, LpxEs participate in multiple layers of biogenesis of the Gram-negative bacterial envelope and increase antibiotic resistance. This discovery marks an important step toward understanding the regulation and biogenesis of the Gram-negative bacterial envelope. Although distinct lipid phosphatases are thought to be required for processing lipid A (component of the outer leaflet of the outer membrane), glycerophospholipid (component of the inner membrane and the inner leaflet of the outer membrane), and undecaprenyl pyrophosphate (C55-PP; precursors of peptidoglycan and O antigens of lipopolysaccharide) in Gram-negative bacteria, we report that the lipid A 1-phosphatases, LpxEs, functionally connect multiple layers of cell envelope biogenesis in Gram-negative bacteria. We found that Aquifex aeolicus LpxE structurally resembles YodM in Bacillus subtilis, a phosphatase for phosphatidylglycerol phosphate (PGP) with a weak in vitro activity on C55-PP, and rescues Escherichia coli deficient in PGP and C55-PP phosphatase activities; deletion of lpxE in Francisella novicida reduces the MIC value of bacitracin, indicating a significant contribution of LpxE to the native bacterial C55-PP phosphatase activity. Suppression of plasmid-borne lpxE in F. novicida deficient in chromosomally encoded C55-PP phosphatase activities results in cell enlargement, loss of O-antigen repeats of lipopolysaccharide, and ultimately cell death. These discoveries implicate LpxE as the first example of a multifunctional regulatory enzyme that orchestrates lipid A modification, O-antigen production, and peptidoglycan biogenesis to remodel multiple layers of the Gram-negative bacterial envelope.
Collapse
|
7
|
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2015; 40:133-59. [DOI: 10.1093/femsre/fuv008] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
|
8
|
Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 2014; 99:2191-207. [PMID: 25213912 DOI: 10.1007/s00253-014-6002-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/28/2023]
Abstract
Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.
Collapse
Affiliation(s)
- Martín A Hernández
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial N° 1, Km 4-Ciudad Universitaria, 9000, Comodoro Rivadavia, Chubut, Argentina
| | | | | | | | | |
Collapse
|
9
|
Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 2014; 38:892-915. [PMID: 24597968 DOI: 10.1111/1574-6976.12069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.
Collapse
Affiliation(s)
- Barbara Koch
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
10
|
Deng XD, Cai JJ, Fei XW. Involvement of phosphatidate phosphatase in the biosynthesis of triacylglycerols in Chlamydomonas reinhardtii. J Zhejiang Univ Sci B 2013; 14:1121-31. [PMID: 24302712 PMCID: PMC3863370 DOI: 10.1631/jzus.b1300180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/18/2013] [Indexed: 12/22/2022]
Abstract
Lipid biosynthesis is essential for eukaryotic cells, but the mechanisms of the process in microalgae remain poorly understood. Phosphatidic acid phosphohydrolase or 3-sn-phosphatidate phosphohydrolase (PAP) catalyzes the dephosphorylation of phosphatidic acid to form diacylglycerols and inorganic orthophosphates. This reaction is integral in the synthesis of triacylglycerols. In this study, the mRNA level of the PAP isoform CrPAP2 in a species of Chlamydomonas was found to increase in nitrogen-free conditions. Silencing of the CrPAP2 gene using RNA interference resulted in the decline of lipid content by 2.4%-17.4%. By contrast, over-expression of the CrPAP2 gene resulted in an increase in lipid content by 7.5%-21.8%. These observations indicate that regulation of the CrPAP2 gene can control the lipid content of the algal cells. In vitro CrPAP2 enzyme activity assay indicated that the cloned CrPAP2 gene exhibited biological activities.
Collapse
Affiliation(s)
- Xiao-dong Deng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jia-jia Cai
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiao-wen Fei
- School of Science, Hainan Medical College, Haikou 571101, China
| |
Collapse
|
11
|
Pascual F, Soto-Cardalda A, Carman GM. PAH1-encoded phosphatidate phosphatase plays a role in the growth phase- and inositol-mediated regulation of lipid synthesis in Saccharomyces cerevisiae. J Biol Chem 2013; 288:35781-92. [PMID: 24196957 DOI: 10.1074/jbc.m113.525766] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids in the exponential phase of growth occurs at the expense of the storage lipid triacylglycerol. As exponential phase cells progress into the stationary phase, the synthesis of triacylglycerol occurs at the expense of phospholipids. Early work indicates a role of the phosphatidate phosphatase (PAP) in this metabolism; the enzyme produces the diacylglycerol needed for the synthesis of triacylglycerol and simultaneously controls the level of phosphatidate for the synthesis of phospholipids. Four genes (APP1, DPP1, LPP1, and PAH1) encode PAP activity in yeast, and it has been unclear which gene is responsible for the synthesis of triacylglycerol throughout growth. An analysis of lipid synthesis and composition, as well as PAP activity in various PAP mutant strains, showed the essential role of PAH1 in triacylglycerol synthesis throughout growth. Pah1p is a phosphorylated enzyme whose in vivo function is dependent on its dephosphorylation by the Nem1p-Spo7p protein phosphatase complex. nem1Δ mutant cells exhibited defects in triacylglycerol synthesis and lipid metabolism that mirrored those imparted by the pah1Δ mutation, substantiating the importance of Pah1p dephosphorylation throughout growth. An analysis of cells bearing PPAH1-lacZ and PPAH1-DPP1 reporter genes showed that PAH1 expression was induced throughout growth and that the induction in the stationary phase was stimulated by inositol supplementation. A mutant analysis indicated that the Ino2p/Ino4p/Opi1p regulatory circuit and transcription factors Gis1p and Rph1p mediated this regulation.
Collapse
Affiliation(s)
- Florencia Pascual
- From the Department of Food Science, Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | | | | |
Collapse
|
12
|
Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Fact 2013; 12:9. [PMID: 23356794 PMCID: PMC3599759 DOI: 10.1186/1475-2859-12-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphatidic acid phosphatase (PAP, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. Despite the importance of PAP activity in TAG producing bacteria, studies to establish its role in lipid metabolism have been so far restricted only to eukaryotes. Considering the increasing interest of bacterial TAG as a potential source of raw material for biofuel production, we have focused our studies on the identification and physiological characterization of the putative PAP present in the TAG producing bacterium Streptomyces coelicolor. RESULTS We have identified two S. coelicolor genes, named lppα (SCO1102) and lppβ (SCO1753), encoding for functional PAP proteins. Both enzymes mediate, at least in part, the formation of DAG for neutral lipid biosynthesis. Heterologous expression of lppα and lppβ genes in E. coli resulted in enhanced PAP activity in the membrane fractions of the recombinant strains and concomitantly in higher levels of DAG. In addition, the expression of these genes in yeast complemented the temperature-sensitive growth phenotype of the PAP deficient strain GHY58 (dpp1lpp1pah1). In S. coelicolor, disruption of either lppα or lppβ had no effect on TAG accumulation; however, the simultaneous mutation of both genes provoked a drastic reduction in de novo TAG biosynthesis as well as in total TAG content. Consistently, overexpression of Lppα and Lppβ in the wild type strain of S. coelicolor led to a significant increase in TAG production. CONCLUSIONS The present study describes the identification of PAP enzymes in bacteria and provides further insights on the genetic basis for prokaryotic oiliness. Furthermore, this finding completes the whole set of enzymes required for de novo TAG biosynthesis pathway in S. coelicolor. Remarkably, the overexpression of these PAPs in Streptomyces bacteria contributes to a higher productivity of this single cell oil. Altogether, these results provide new elements and tools for future cell engineering for next-generation biofuels production.
Collapse
Affiliation(s)
- Santiago Comba
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | | | | | | |
Collapse
|
13
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2013; 11:e0161. [PMID: 23505340 PMCID: PMC3563272 DOI: 10.1199/tab.0161] [Citation(s) in RCA: 749] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
14
|
Chae M, Carman GM. Characterization of the yeast actin patch protein App1p phosphatidate phosphatase. J Biol Chem 2013; 288:6427-37. [PMID: 23335564 DOI: 10.1074/jbc.m112.449629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast App1p is a phosphatidate phosphatase (PAP) that associates with endocytic proteins at cortical actin patches. App1p, which catalyzes the conversion of phosphatidate (PA) to diacylglycerol, is unique among Mg(2+)-dependent PAP enzymes in that its reaction is not involved with de novo lipid synthesis. Instead, App1p PAP is thought to play a role in endocytosis because its substrate and product facilitate membrane fission/fusion events and regulate enzymes that govern vesicular movement. App1p PAP was purified from yeast and characterized with respect to its enzymological, kinetic, and regulatory properties. Maximum PAP activity was dependent on Triton X-100 (20 mm), PA (2 mm), Mg(2+) (0.5 mm), and 2-mercaptoethanol (10 mm) at pH 7.5 and 30 °C. Analysis of surface dilution kinetics with Triton X-100/PA-mixed micelles yielded constants for surface binding (Ks(A) = 11 mm), interfacial PA binding (Km(B) = 4.2 mol %), and catalytic efficiency (Vmax = 557 μmol/min/mg). The activation energy, turnover number, and equilibrium constant were 16.5 kcal/mol, 406 s(-1), and 16.2, respectively. PAP activity was stimulated by anionic lipids (cardiolipin, phosphatidylglycerol, phosphatidylserine, and CDP-diacylglycerol) and inhibited by zwitterionic (phosphatidylcholine and phosphatidylethanolamine) and cationic (sphinganine) lipids, nucleotides (ATP and CTP), N-ethylmaleimide, propranolol, phenylglyoxal, and divalent cations (Ca(2+), Mn(2+), and Zn(2+)). App1p also utilized diacylglycerol pyrophosphate and lyso-PA as substrates with specificity constants 4- and 7-fold lower, respectively, when compared with PA.
Collapse
Affiliation(s)
- Minjung Chae
- Department of Food Science, Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
15
|
Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms. PLoS One 2012; 7:e48674. [PMID: 23139812 PMCID: PMC3490873 DOI: 10.1371/journal.pone.0048674] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/27/2012] [Indexed: 11/25/2022] Open
Abstract
Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation.
Collapse
|
16
|
Rani SH, Saha S, Rajasekharan R. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis. MICROBIOLOGY-SGM 2012; 159:155-166. [PMID: 23103975 DOI: 10.1099/mic.0.063156-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The biosynthesis of triacylglycerol (TAG) occurs in the microsomal membranes of eukaryotes. Here, we report the identification and functional characterization of diacylglycerol acyltransferase (DGAT), a member of the 10 S cytosolic TAG biosynthetic complex (TBC) in Rhodotorula glutinis. Both a full-length and an N-terminally truncated cDNA clone of a single gene were isolated from R. glutinis. The DGAT activity of the protein encoded by RgDGAT was confirmed in vivo by the heterologous expression of cDNA in a Saccharomyces cerevisiae quadruple mutant (H1246) that is defective in TAG synthesis. RgDGAT overexpression in yeast was found to be capable of acylating diacylglycerol (DAG) in an acyl-CoA-dependent manner. Quadruple mutant yeast cells exhibit growth defects in the presence of oleic acid, but wild-type yeast cells do not. In an in vivo fatty acid supplementation experiment, RgDGAT expression rescued quadruple mutant growth in an oleate-containing medium. We describe a soluble acyl-CoA-dependent DAG acyltransferase from R. glutinis that belongs to the DGAT3 class of enzymes. The study highlights the importance of an alternative TAG biosynthetic pathway in oleaginous yeasts.
Collapse
Affiliation(s)
- Sapa Hima Rani
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Saikat Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ram Rajasekharan
- Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore 570 020, India.,Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Han S, Bahmanyar S, Zhang P, Grishin N, Oegema K, Crooke R, Graham M, Reue K, Dixon JE, Goodman JM. Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J Biol Chem 2012; 287:3123-37. [PMID: 22134922 PMCID: PMC3283218 DOI: 10.1074/jbc.m111.324350] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Indexed: 11/06/2022] Open
Abstract
Lipin-1 catalyzes the formation of diacylglycerol from phosphatidic acid. Lipin-1 mutations cause lipodystrophy in mice and acute myopathy in humans. It is heavily phosphorylated, and the yeast ortholog Pah1p becomes membrane-associated and active upon dephosphorylation by the Nem1p-Spo7p membrane complex. A mammalian ortholog of Nem1p is the C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1, formerly "dullard"), but its Spo7p-like partner is unknown, and the need for its existence is debated. Here, we identify the metazoan ortholog of Spo7p, TMEM188, renamed nuclear envelope phosphatase 1-regulatory subunit 1 (NEP1-R1). CTDNEP1 and NEP1-R1 together complement a nem1Δspo7Δ strain to block endoplasmic reticulum proliferation and restore triacylglycerol levels and lipid droplet number. The two human orthologs are in a complex in cells, and the amount of CTDNEP1 is increased in the presence of NEP1-R1. In the Caenorhabditis elegans embryo, expression of nematode CTDNEP1 and NEP1-R1, as well as lipin-1, is required for normal nuclear membrane breakdown after zygote formation. The expression pattern of NEP1-R1 and CTDNEP1 in human and mouse tissues closely mirrors that of lipin-1. CTDNEP1 can dephosphorylate lipins-1a, -1b, and -2 in human cells only in the presence of NEP1-R1. The nuclear fraction of lipin-1b is increased when CTDNEP1 and NEP1-R1 are co-expressed. Therefore, NEP1-R1 is functionally conserved from yeast to humans and functions in the lipin activation pathway.
Collapse
Affiliation(s)
| | - Shirin Bahmanyar
- the Ludwig Institute for Cancer Research, Department of Cell and Molecular Medicine, and
| | - Peixiang Zhang
- the Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, and
| | - Nick Grishin
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Karen Oegema
- the Ludwig Institute for Cancer Research, Department of Cell and Molecular Medicine, and
| | | | - Mark Graham
- ISIS Pharmaceuticals, Inc., Carlsbad, California 92008
| | - Karen Reue
- the Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, and
| | - Jack E. Dixon
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093
| | | |
Collapse
|
18
|
Ullah AHJ, Sethumadhavan K, Shockey J. Measuring phosphatidic acid phosphohydrolase (EC 3.1.3.4) activity using two phosphomolybdate-based colorimetric methods. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abc.2012.24052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Soto-Cardalda A, Fakas S, Pascual F, Choi HS, Carman GM. Phosphatidate phosphatase plays role in zinc-mediated regulation of phospholipid synthesis in yeast. J Biol Chem 2011; 287:968-77. [PMID: 22128164 DOI: 10.1074/jbc.m111.313130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids is coordinately regulated by mechanisms that control the homeostasis of the essential mineral zinc (Carman, G.M., and Han, G. S. (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322-330; Eide, D. J. (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 284, 18565-18569). The synthesis of phosphatidylcholine is balanced by the repression of CDP-diacylglycerol pathway enzymes and the induction of Kennedy pathway enzymes. PAH1-encoded phosphatidate phosphatase catalyzes the penultimate step in triacylglycerol synthesis, and the diacylglycerol generated in the reaction may also be used for phosphatidylcholine synthesis via the Kennedy pathway. In this work, we showed that the expression of PAH1-encoded phosphatidate phosphatase was induced by zinc deficiency through a mechanism that involved interaction of the Zap1p zinc-responsive transcription factor with putative upstream activating sequence zinc-responsive elements in the PAH1 promoter. The pah1Δ mutation resulted in the derepression of the CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol pathway enzyme) and loss of the zinc-mediated regulation of the enzyme. Loss of phosphatidate phosphatase also resulted in the derepression of the CKI1-encoded choline kinase (Kennedy pathway enzyme) but decreased the synthesis of phosphatidylcholine when cells were deficient of zinc. This result confirmed the role phosphatidate phosphatase plays in phosphatidylcholine synthesis via the Kennedy pathway.
Collapse
Affiliation(s)
- Aníbal Soto-Cardalda
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
20
|
Mietkiewska E, Siloto RMP, Dewald J, Shah S, Brindley DN, Weselake RJ. Lipins from plants are phosphatidate phosphatases that restore lipid synthesis in a pah1Δ mutant strain of Saccharomyces cerevisiae. FEBS J 2011; 278:764-75. [PMID: 21205207 DOI: 10.1111/j.1742-4658.2010.07995.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The identification of the yeast phosphatidate phosphohydrolase (PAH1) gene encoding an enzyme with phosphatidate phosphatase (PAP; 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) activity led to the discovery of mammalian Lipins and subsequently to homologous genes from plants. In the present study, we describe the functional characterization of Arabidopsis and Brassica napus homologs of PAH1. Recombinant expression studies confirmed that homologous PAHs from plants can rescue different phenotypes exhibited by the yeast pah1Δ strain, such as temperature growth sensitivity and atypical neutral lipid composition. Using this expression system, we examined the role of the putative catalytic motif DXDXT and other conserved residues by mutational analysis. Mutants within the carboxy-terminal lipin domain displayed significantly decreased PAP activity, which was reflected by their limited ability to complement different phenotypes of pah1Δ. Subcellular localization studies using a green fluorescent protein fusion protein showed that Arabidopsis PAH1 is mostly present in the cytoplasm of yeast cells. However, upon oleic acid stimulation, green fluorescent protein fluorescence was predominantly found in the nucleus, suggesting that plant PAH1 might be involved in the transcriptional regulation of gene expression. In addition, we demonstrate that mutation of conserved residues that are essential for the PAP activity of the Arabidopsis PAH1 enzyme did not impair its nuclear localization in response to oleic acid. In conclusion, the present study provides evidence that Arabidopsis and B. napus PAHs restore lipid synthesis in yeast and that DXDXT is a functional enzymic motif within plant PAHs.
Collapse
Affiliation(s)
- Elzbieta Mietkiewska
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2010; 8:e0133. [PMID: 22303259 PMCID: PMC3244904 DOI: 10.1199/tab.0133] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
22
|
Han GS, Carman GM. Characterization of the human LPIN1-encoded phosphatidate phosphatase isoforms. J Biol Chem 2010; 285:14628-38. [PMID: 20231281 DOI: 10.1074/jbc.m110.117747] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human LPIN1 gene encodes the protein lipin 1, which possesses phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase; EC 3.1.3.4) activity (Han, G.-S., Wu, W.-I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210-9218). In this work, we characterized human lipin 1 alpha, beta, and gamma isoforms that were expressed in Escherichia coli and purified to near homogeneity. PA phosphatase activities of the alpha, beta, and gamma isoforms were dependent on Mg(2+) or Mn(2+) ions at pH 7.5 at 37 degrees C. The activities were inhibited by concentrations of Mg(2+) and Mn(2+) above their optimums and by Ca(2+), Zn(2+), N-ethylmaleimide, propranolol, and the sphingoid bases sphingosine and sphinganine. The activities were thermally labile at temperatures above 40 degrees C. The alpha, beta, and gamma activities followed saturation kinetics with respect to the molar concentration of PA (K(m) values of 0.35, 0.24, and 0.11 mm, respectively) but followed positive cooperative (Hill number approximately 2) kinetics with respect to the surface concentration of PA (K(m) values of 4.2, 4.5, and 4.3 mol %, respectively) in Triton X-100/PA-mixed micelles. The turnover numbers (k(cat)) for the alpha, beta, and gamma isoforms were 68.8 + or - 3.5, 42.8 + or - 2.5, and 5.7 + or - 0.2 s(-1), respectively, whereas their energy of activation values were 14.2, 15.5, and 18.5 kcal/mol, respectively. The isoform activities were dependent on PA as a substrate and required at least one unsaturated fatty acyl moiety for maximum activity.
Collapse
Affiliation(s)
- Gil-Soo Han
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
23
|
Grkovich A, Dennis EA. Phosphatidic acid phosphohydrolase in the regulation of inflammatory signaling. ACTA ACUST UNITED AC 2009; 49:114-20. [PMID: 19534028 DOI: 10.1016/j.advenzreg.2009.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrej Grkovich
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
24
|
Abstract
The lipid composition of biological membranes is crucial for many aspects of organelle function, including growth, signalling, and transport. Lipins represent a novel family of lipid phosphatases that dephosphorylate phosphatidic acid (PA) to produce diacylglycerol (DAG), and perform key functions in phospholipid and triacylglycerol biosynthesis and gene expression. In addition to its role in lipid biosynthesis, the yeast lipin Pah1p and its regulators are required for the maintenance of a spherical nuclear shape. This review summarizes recent advances in our understanding of the yeast lipin Pah1p and highlights the possible roles of phospholipid metabolism in nuclear membrane biogenesis.
Collapse
Affiliation(s)
- Symeon Siniossoglou
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK.
| |
Collapse
|
25
|
Carman GM, Han GS. Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J Biol Chem 2009; 284:2593-7. [PMID: 18812320 PMCID: PMC2631973 DOI: 10.1074/jbc.r800059200] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
26
|
Theofilopoulos S, Lykidis A, Leondaritis G, Mangoura D. Novel function of the human presqualene diphosphate phosphatase as a type II phosphatidate phosphatase in phosphatidylcholine and triacylglyceride biosynthesis pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:731-42. [DOI: 10.1016/j.bbalip.2008.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 08/29/2008] [Accepted: 09/11/2008] [Indexed: 11/27/2022]
|
27
|
Racagni G, Villasuso AL, Pasquaré SJ, Giusto NM, Machado E. Diacylglycerol pyrophosphate inhibits the alpha-amylase secretion stimulated by gibberellic acid in barley aleurone. PHYSIOLOGIA PLANTARUM 2008; 134:381-93. [PMID: 18573189 DOI: 10.1111/j.1399-3054.2008.01148.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
ABA plays an important regulatory role in seed germination because it inhibits the response to GA in aleurone, a secretory tissue surrounding the endosperm. Phosphatidic acid (PA) is a well-known intermediary in ABA signaling, but the role of diacylglycerol pyrophosphate (DGPP) in germination processes is not clearly established. In this study, we show that PA produced by phospholipase D (E.C. 3.1.4.4) during the antagonist effect of ABA in GA signaling is rapidly phosphorylated by phosphatidate kinase (PAK) to DGPP. This is a crucial fact for aleurone function because exogenously added dioleoyl-DGPP inhibits secretion of alpha-amylase (E.C. 3.2.1.1). Aleurone treatment with ABA and 1-butanol results in normal secretory activity, and this effect is reversed by addition of dioleoyl-DGPP. We also found that ABA decreased the activity of an Mg2+-independent, N-ethylmaleimide-insensitive form of phosphatidate phosphohydrolase (PAP2) (E.C. 3.1.3.4), leading to reduction of PA dephosphorylation and increased PAK activity. Sequence analysis using Arabidopsis thaliana lipid phosphate phosphatase (LPP) sequences as queries identified two putative molecular homologues, termed HvLPP1 and HvLPP2, encoding putative Lpps with the presence of well-conserved structural Lpp domains. Our results are consistent with a role of DGPP as a regulator of ABA antagonist effect in GA signaling and provide evidence about regulation of PA level by a PAP2 during ABA response in aleurone.
Collapse
Affiliation(s)
- Graciela Racagni
- Química Biológica, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
28
|
Rajakumari S, Grillitsch K, Daum G. Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 2008; 47:157-71. [DOI: 10.1016/j.plipres.2008.01.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 11/25/2022]
|
29
|
Han GS, Siniossoglou S, Carman GM. The cellular functions of the yeast lipin homolog PAH1p are dependent on its phosphatidate phosphatase activity. J Biol Chem 2007; 282:37026-35. [PMID: 17971454 DOI: 10.1074/jbc.m705777200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae PAH1-encoded Mg2+-dependent phosphatidate phosphatase (PAP1, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol and Pi. This enzyme plays a major role in the synthesis of triacylglycerols and phospholipids in S. cerevisiae. PAP1 contains the DXDX(T/V) catalytic motif (DIDGT at residues 398-402) that is shared by the mammalian fat-regulating protein lipin 1 and the superfamily of haloacid dehalogenase-like proteins. The yeast enzyme also contains a conserved glycine residue (Gly80) that is essential for the fat-regulating function of lipin 1 in a mouse model. In this study, we examined the roles of the putative catalytic motif and the conserved glycine for PAP1 activity by a mutational analysis. The PAP1 activities of the D398E and D400E mutant enzymes were reduced by >99.9%, and the activity of the G80R mutant enzyme was reduced by 98%. The mutant PAH1 alleles whose products lacked PAP1 activity were nonfunctional in vivo and failed to complement the pah1Delta mutant phenotypes of temperature sensitivity, respiratory deficiency, nuclear/endoplasmic reticulum membrane expansion, derepression of INO1 expression, and alterations in lipid composition. These results demonstrated that the PAP1 activity of the PAH1 gene product is essential for its roles in lipid metabolism and cell physiology.
Collapse
Affiliation(s)
- Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
30
|
Havriluk T, Lozy F, Siniossoglou S, Carman GM. Colorimetric determination of pure Mg(2+)-dependent phosphatidate phosphatase activity. Anal Biochem 2007; 373:392-4. [PMID: 17910939 PMCID: PMC2194655 DOI: 10.1016/j.ab.2007.08.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 11/21/2022]
Abstract
The malachite green-molybdate reagent was used for a colorimetric assay of pure Mg2(+)-dependent phosphatidate phosphatase activity. This enzyme plays a major role in fat metabolism. Enzyme activity was linear with time and protein concentration, and with the concentration of water-soluble dioctanoyl phosphatidate. The colorimetric assay was used to examine enzyme inhibition by phenylglyoxal, propranolol, and dimethyl sulfoxide. Pure enzyme and a water-soluble phosphatidate substrate were required for the assay, which should be applicable to a well-defined large-scale screen of Mg2(+)-dependent phosphatidate phosphatise inhibitors (or activators).
Collapse
Affiliation(s)
- Tara Havriluk
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Fred Lozy
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, CB2 2XY Cambridge, United Kingdom
| | - George M. Carman
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
- Corresponding author George M. Carman, Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, Tel: 732-932-9611 ext 217,
| |
Collapse
|
31
|
Carman GM, Han GS. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci 2006; 31:694-9. [PMID: 17079146 PMCID: PMC1769311 DOI: 10.1016/j.tibs.2006.10.003] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/14/2006] [Accepted: 10/20/2006] [Indexed: 11/29/2022]
Abstract
Phosphatidate phosphatase (PAP) enzymes catalyze the dephosphorylation of phosphatidate, yielding diacylglycerol and inorganic phosphate. In eukaryotic cells, PAP activity has a central role in the synthesis of phospholipids and triacylglycerol through its product diacylglycerol, and it also generates and/or degrades lipid-signaling molecules that are related to phosphatidate. There are two types of PAP enzyme, Mg(2+) dependent (PAP1) and Mg(2+) independent (PAP2), but only genes encoding PAP2 enzymes had been identified until recently, when a gene (PAH1) encoding a PAP1 enzyme was found in Saccharomyces cerevisiae. This discovery has revealed a molecular function of the mammalian protein lipin, a deficiency of which causes lipodystrophy in mice. With molecular information now available for both types of PAP, the specific roles of these enzymes in lipid metabolism are being clarified.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
32
|
O’Hara L, Han GS, Peak-Chew S, Grimsey N, Carman GM, Siniossoglou S. Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J Biol Chem 2006; 281:34537-48. [PMID: 16968695 PMCID: PMC1769310 DOI: 10.1074/jbc.m606654200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the conserved lipin Pah1p/Smp2p in Saccharomyces cerevisiae was previously shown to control transcription of phospholipid biosynthetic genes and nuclear structure by regulating the amount of membrane present at the nuclear envelope (Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., and Siniossoglou, S. (2005) EMBO J. 24, 1931-1941). A recent report identified Pah1p as a Mg2+-dependent phosphatidate (PA) phosphatase that regulates de novo lipid synthesis (Han G.-S., Wu, W. I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210-9218). In this work we use a combination of mass spectrometry and systematic mutagenesis to identify seven Ser/Thr-Pro motifs within Pah1p that are phosphorylated in vivo. We show that phosphorylation on these sites is required for the efficient transcriptional derepression of key enzymes involved in phospholipid biosynthesis. The phosphorylation-deficient Pah1p exhibits higher PA phosphatase-specific activity than the wild-type Pah1p, indicating that phosphorylation of Pah1p controls PA production. Opi1p is a transcriptional repressor of phospholipid biosynthetic genes, responding to PA levels. Genetic analysis suggests that Pah1p regulates transcription of these genes through both Opi1p-dependent and -independent mechanisms. We also provide evidence that derepression of phospholipid biosynthetic genes is not sufficient to induce the nuclear membrane expansion shown in the pah1delta cells.
Collapse
Affiliation(s)
- Laura O’Hara
- From the Cambridge Institute for Medical Research,
University of Cambridge, Wellcome Trust/MRC Building, Hills Road, CB2 2XY
Cambridge, United Kingdom
| | - Gil-Soo Han
- Department of Food Science, Cook College, New
Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New
Jersey 08901, and
| | - Sew Peak-Chew
- Medical Research Council Laboratory of Molecular
Biology, Hills Road, CB2 2QH Cambridge, United Kingdom
| | - Neil Grimsey
- From the Cambridge Institute for Medical Research,
University of Cambridge, Wellcome Trust/MRC Building, Hills Road, CB2 2XY
Cambridge, United Kingdom
| | - George M. Carman
- Department of Food Science, Cook College, New
Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New
Jersey 08901, and
| | - Symeon Siniossoglou
- From the Cambridge Institute for Medical Research,
University of Cambridge, Wellcome Trust/MRC Building, Hills Road, CB2 2XY
Cambridge, United Kingdom
- To whom correspondence should be addressed: CIMR,
Wellcome Trust/MRC Bldg., Hills Rd. CB2 2XY, Cambridge UK. E-mail:
| |
Collapse
|
33
|
de Kroon AIPM. Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:343-52. [PMID: 17010666 DOI: 10.1016/j.bbalip.2006.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 11/29/2022]
Abstract
Phosphatidylcholine (PC) is a very abundant membrane lipid in most eukaryotes including the model organism Saccharomyces cerevisiae. Consequently, the molecular species profile of PC, i.e. the ensemble of PC molecules with acyl chains differing in number of carbon atoms and double bonds, is important in determining the physical properties of eukaryotic membranes, and should be tightly regulated. In this review current insights in the contributions of biosynthesis, turnover, and remodeling by acyl chain exchange to the maintenance of PC homeostasis at the level of the molecular species in yeast are summarized. In addition, the phospholipid class-specific changes in membrane acyl chain composition induced by PC depletion are discussed, which identify PC as key player in a novel regulatory mechanism balancing the proportions of bilayer and non-bilayer lipids in yeast.
Collapse
Affiliation(s)
- Anton I P M de Kroon
- Department Biochemistry of Membranes, Bijvoet Institute and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
34
|
Caballero MJ, Gallardo G, Robaina L, Montero D, Fernández A, Izquierdo M. Vegetable lipid sources affect in vitro biosynthesis of triacylglycerols and phospholipids in the intestine of sea bream (Sparus aurata). Br J Nutr 2006; 95:448-54. [PMID: 16512929 DOI: 10.1079/bjn20051529] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the good growth performance of several fish species when dietary fish oil is partly replaced by vegetable oils, recent studies have reported several types of intestinal morphological alterations in cultured fish fed high contents of vegetable lipid sources. However, the physiological process implied in these morphological changes have not been clarified yet, since alterations in the physiological mechanisms involved in the different processes of lipid absorption could be responsible for such gut morphological features. The objective of the present study was to investigate the activities of reacylation pathways in fish, the glycerol-3-phosphate and the monoacylglycerol pathways, in order to clarify the intestinal triacylglycerol (TAG) and phospholipid biosynthesis to better understand the morphological alterations observed in the intestine of fish fed vegetable oils. Intestinal microsomes of sea bream fed different lipid sources (fish, soyabean and rapeseed oils) at three different inclusion levels were isolated and incubated with L-[(14)C(U)]glycerol-3-phosphate and [1-(14)C]palmitoyl CoA. The results showed that in this fish species the glycerol-3-phosphate pathway is mainly involved in phospholipid synthesis, whereas TAG synthesis is mainly mediated by the monoacylglycerol pathway. Feeding with rapeseed oil reduced the reacylation activity in both pathways, explaining the high accumulation of lipid droplets in the supranuclear portion of the intestinal epithelium, whereas soyabean oil enhanced phosphatidylcholine synthesis, being associated with the increase in VLDL found in previous studies.
Collapse
Affiliation(s)
- Maria José Caballero
- Department of Comparative Pathology, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
35
|
Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud JM, Chardot T. Lipid particle composition of the yeastYarrowia lipolytica depends on the carbon source. Proteomics 2006; 6:1450-9. [PMID: 16470660 DOI: 10.1002/pmic.200500339] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lipid particles (LP) of all types of cells are a depot of neutral lipids. The present investigation deals with the isolation of LP from the yeast Yarrowia lipolytica and the characterization of their lipid and protein composition. Properties of LP varied depending on the carbon source. LP from glucose-grown cells revealed a mean diameter of 650 nm with a hydrophobic core mainly formed of triacylglycerols (TAG) and a minor amount of steryl esters (SE). Oleic acid was the major fatty acid species esterified in LP. When cells were grown on oleic acid, LP size increased 3.8-fold, the particles exhibited a significantly lower ratio of TAG to SE, and the relative amount of oleic acid in LP lipids increased compared to cells grown on glucose. Analysis of LP proteins revealed an increasing number of polypeptides when cells were shifted from glucose- to oleic acid-containing medium. Twenty-one major LP proteins were identified under both growth conditions, and additional nine polypeptides were specific for growth on oleic acid. Identification of these proteins by MS and comparison of the deduced ORFs to those from Saccharomyces cerevisiae revealed that most proteins of Y. lipolytica LP are involved in lipid metabolism. LP proteins specific for growth on oleic acid are also enzymes involved in lipid metabolism, but some of them are also components of the intracellular traffic machinery. Thus, proteom analysis of LP proteins suggests involvement of this compartment in different cell biological processes.
Collapse
|
36
|
Han GS, Wu WI, Carman GM. The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem 2006; 281:9210-8. [PMID: 16467296 PMCID: PMC1424669 DOI: 10.1074/jbc.m600425200] [Citation(s) in RCA: 437] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mg(2+)-dependent phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of PA to yield diacylglycerol and P(i). In this work, we identified the Saccharomyces cerevisiae PAH1 (previously known as SMP2) gene that encodes Mg(2+)-dependent PA phosphatase using amino acid sequence information derived from a purified preparation of the enzyme (Lin, Y.-P., and Carman, G. M. (1989) J. Biol. Chem. 264, 8641-8645). Overexpression of PAH1 in S. cerevisiae directed elevated levels of Mg(2+)-dependent PA phosphatase activity, whereas the pah1Delta mutation caused reduced levels of enzyme activity. Heterologous expression of PAH1 in Escherichia coli confirmed that Pah1p is a Mg(2+)-dependent PA phosphatase enzyme and showed that its enzymological properties were very similar to those of the enzyme purified from S. cerevisiae. The PAH1-encoded enzyme activity was associated with both the membrane and cytosolic fractions of the cell, and the membrane-bound form of the enzyme was salt-extractable. Lipid analysis showed that mutants lacking PAH1 accumulated PA and had reduced amounts of diacylglycerol and its derivative triacylglycerol.ThePAH1-encoded Mg(2+)-dependent PA phosphatase shows homology to mammalian lipin, a fat-regulating protein whose molecular function is unknown. Heterologous expression of human LPIN1 in E. coli showed that lipin 1 is also a Mg(2+)-dependent PA phosphatase enzyme.
Collapse
Affiliation(s)
| | | | - George M. Carman
- To whom correspondence should be addressed. Dept of Food Science, Rutgers University, 65 Dudley Rd., New Brunswick, NJ 08901. Tel: 732-932-9611 (ext. 217); E-mail:
| |
Collapse
|
37
|
Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M, Shinozaki K. An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:107-17. [PMID: 15960620 DOI: 10.1111/j.1365-313x.2005.02431.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphatidic acid (PA) functions as a lipid signaling molecule in plants. Physiological analysis showed that PA triggers early signal transduction events that lead to responses to abscisic acid (ABA) during seed germination. We measured PA production during seed germination and found increased PA levels during early germination. To investigate the role of PA during seed germination, we focused on the PA catabolic enzyme lipid phosphate phosphatase (LPP). LPP catalyzes the conversion of PA to diacylglycerol (DAG). There are 4 LPP genes in the Arabidopsis genome. Among them, AtLPP2 and AtLPP3 are expressed during seed germination. Two AtLPP2 T-DNA insertional mutants (lpp2-1 and lpp2-2) showed hypersensitivity to ABA and significant PA accumulation during germination. Furthermore, double-mutant analysis showed that ABA-insensitive 4 (ABI4) is epistatic to AtLPP2 but ABA-insensitive 3 (ABI3) is not. These results suggest that PA is involved in ABA signaling and that AtLPP2 functions as a negative regulator upstream of ABI4, which encodes an AP2-type transcription factor, in ABA signaling during germination.
Collapse
Affiliation(s)
- Takeshi Katagiri
- Plant Molecular Biology Laboratory, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Dobrzyn A, Dobrzyn P, Miyazaki M, Sampath H, Chu K, Ntambi JM. Stearoyl-CoA desaturase 1 deficiency increases CTP:choline cytidylyltransferase translocation into the membrane and enhances phosphatidylcholine synthesis in liver. J Biol Chem 2005; 280:23356-62. [PMID: 15829484 DOI: 10.1074/jbc.m502436200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in monounsaturated fatty acid synthesis. Previously, we showed that Scd1 deficiency reduces liver triglyceride accumulation and considerably decreases synthesis of very low density lipoprotein and its secretion in both lean and obese mice. In the present study, we found that Scd1 deficiency significantly modulates hepatic glycerophospholipid profile. The content of phosphatidylcholine (PC) was increased by 40% and the activities of CTP:choline cytidylyltransferase (CCT), the rate-limiting enzyme in de novo PC synthesis, and choline phosphotransferase were increased by 64 and 53%, respectively, in liver of Scd1-/- mice. In contrast, the protein level of phosphatidylethanolamine N-methyltransferase, an enzyme involved in PC synthesis via methylation of phosphatidylethanolamine, was decreased by 80% in the liver of Scd1-/- mice. Membrane translocation of CCT is required for its activation. Immunoblot analyses demonstrated that twice as much CCTalpha was associated with plasma membrane in livers of Scd1-/- compared with wild type mice, suggesting that Scd1 mutation leads to an increase in CCT membrane affinity. The incorporation of [(3)H]glycerol into PC was increased by 2.5-fold in Scd1-/- primary hepatocytes compared with those of wild type mice. Furthermore, mitochondrial glycerol-3-phosphate acyltransferase activity was reduced by 42% in liver of Scd1-/- mice; however, the activities of microsomal glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase, and ethanolamine phosphotransferase were not affected by Scd1 mutation. Our study revealed that SCD1 deficiency specifically increases CCT activity by promoting its translocation into membrane and enhances PC biosynthesis in liver.
Collapse
Affiliation(s)
- Agnieszka Dobrzyn
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | |
Collapse
|
39
|
Carman GM, Kersting MC. Phospholipid synthesis in yeast: regulation by phosphorylation. Biochem Cell Biol 2004; 82:62-70. [PMID: 15052328 DOI: 10.1139/o03-064] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a model eukaryotic organism for the study of the regulation of phospholipid synthesis. The major phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine) are synthesized by complementary (CDP-diacylglycerol and Kennedy) pathways. The regulation of these pathways is complex and is controlled by genetic and biochemical mechanisms. Inositol plays a major role in the regulation of phospholipid synthesis. Inositol-mediated regulation involves the expression of genes and the modulation of enzyme activities. Phosphorylation is a major mechanism by which enzymes and transcription factors are regulated, and indeed, key phospholipid biosynthetic enzymes have been identified as targets of phosphorylation. Protein kinase A phosphorylates CTP synthetase, choline kinase, Mg2+-dependent phosphatidate phosphatase, phosphatidylserine synthase, and the transcription factor Opi1p. CTP synthetase and Opi1p are also phosphorylated by protein kinase C. The phosphorylation of these proteins plays a role in regulating their activities and (or) function in phospholipid synthesis.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
40
|
Tran AX, Karbarz MJ, Wang X, Raetz CRH, McGrath SC, Cotter RJ, Trent MS. Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J Biol Chem 2004; 279:55780-91. [PMID: 15489235 PMCID: PMC2552395 DOI: 10.1074/jbc.m406480200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic bacteria modify the lipid A portion of their lipopolysaccharide to help evade the host innate immune response. Modification of the negatively charged phosphate groups of lipid A aids in resistance to cationic antimicrobial peptides targeting the bacterial cell surface. The lipid A of Helicobacter pylori contains a phosphoethanolamine (pEtN) unit directly linked to the 1-position of the disaccharide backbone. This is in contrast to the pEtN units found in other pathogenic Gram-negative bacteria, which are attached to the lipid A phosphate group to form a pyrophosphate linkage. This study describes two enzymes involved in the periplasmic modification of the 1-phosphate group of H. pylori lipid A. By using an in vitro assay system, we demonstrate the presence of lipid A 1-phosphatase activity in membranes of H. pylori. In an attempt to identify genes encoding possible lipid A phosphatases, we cloned four putative orthologs of Escherichia coli pgpB, the phosphatidylglycerol-phosphate phosphatase, from H. pylori 26695. One of these orthologs, Hp0021, is the structural gene for the lipid A 1-phosphatase and is required for removal of the 1-phosphate group from mature lipid A in an in vitro assay system. Heterologous expression of Hp0021 in E. coli resulted in the highly selective removal of the 1-phosphate group from E. coli lipid A, as demonstrated by mass spectrometry. We also identified the structural gene for the H. pylori lipid A pEtN transferase (Hp0022). Mass spectrometric analysis of the lipid A isolated from E. coli expressing Hp0021 and Hp0022 shows the addition of a single pEtN group at the 1-position, confirming that Hp0022 is responsible for the addition of a pEtN unit at the 1-position in H. pylori lipid A. In summary, we demonstrate that modification of the 1-phosphate group of H. pylori lipid A requires two enzymatic steps.
Collapse
Affiliation(s)
- An X. Tran
- Department of Microbiology, J. H. Quillen College of Medicine, Johnson City, Tennessee 37614
| | - Mark J. Karbarz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Xiaoyuan Wang
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Christian R. H. Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Sara C. McGrath
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert J. Cotter
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - M. Stephen Trent
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- To whom correspondence should be addressed: Box 70579, Johnson City, TN 37614. Tel.: 423-439-6293; Fax: 423-439-8044; E-mail:
| |
Collapse
|
41
|
Oshiro J, Han GS, Carman GM. Diacylglycerol pyrophosphate phosphatase in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1635:1-9. [PMID: 14642771 DOI: 10.1016/j.bbalip.2003.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Diacylglycerol pyrophosphate (DGPP) phosphatase in the yeast Saccharomyces cerevisiae is a Mg(2+)-independent and N-ethylmaleimide-insensitive 34-kDa vacuolar membrane-associated enzyme. It catalyzes the dephosphorylation of DGPP to form phosphatidate (PA) and then removes the phosphate from PA to form diacylglycerol (DAG). The enzyme is a member of the lipid phosphate phosphatase superfamily that contains a three-domain lipid phosphatase motif required for catalytic activity. Expression of the DPP1 gene, which encodes DGPP phosphatase, is induced by zinc depletion, by inositol supplementation, and when cells enter the stationary phase. Induction by zinc depletion is mediated by the transcription factor Zap1p, which binds to a zinc-responsive element in the DPP1 promoter. Repression of DPP1 expression is mediated by the transcription factor Gis1p, which binds to three post-diauxic shift elements in the promoter. Regulation of DPP1 correlates with the expression of DGPP phosphatase activity and the cellular levels of DGPP and PA.
Collapse
Affiliation(s)
- June Oshiro
- Graduate Program in Microbiology and Molecular Genetics, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
42
|
Choi HS, Sreenivas A, Han GS, Carman GM. Regulation of phospholipid synthesis in the yeast cki1Delta eki1Delta mutant defective in the Kennedy pathway. The Cho1-encoded phosphatidylserine synthase is regulated by mRNA stability. J Biol Chem 2004; 279:12081-7. [PMID: 14739287 DOI: 10.1074/jbc.m400297200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the most abundant phospholipid phosphatidylcholine is synthesized by the complementary CDP-diacylglycerol and Kennedy pathways. Using a cki1Delta eki1Delta mutant defective in choline kinase and ethanolamine kinase, we examined the consequences of a block in the Kennedy pathway on the regulation of phosphatidylcholine synthesis by the CDP-diacylglycerol pathway. The cki1Delta eki1Delta mutant exhibited increases in the synthesis of phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine via the CDP-diacylglycerol pathway. The increase in phospholipid synthesis correlated with increased activity levels of the CDP-diacylglycerol pathway enzymes phosphatidylserine synthase, phosphatidylserine decarboxylase, phosphatidylethanolamine methyltransferase, and phospholipid methyltransferase. However, other enzyme activities, including phosphatidylinositol synthase and phosphatidate phosphatase, were not affected in the cki1Delta eki1Delta mutant. For phosphatidylserine synthase, the enzyme catalyzing the committed step in the pathway, activity was regulated by increases in the levels of mRNA and protein. Decay analysis of CHO1 mRNA indicated that a dramatic increase in transcript stability was a major component responsible for the elevated level of phosphatidylserine synthase. These results revealed a novel mechanism that controls phospholipid synthesis in yeast.
Collapse
Affiliation(s)
- Hyeon-Son Choi
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
43
|
Han GS, Johnston CN, Carman GM. Vacuole membrane topography of the DPP1-encoded diacylglycerol pyrophosphate phosphatase catalytic site from Saccharomyces cerevisiae. J Biol Chem 2003; 279:5338-45. [PMID: 14630917 DOI: 10.1074/jbc.m311779200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate phosphatase is a vacuole membrane-associated enzyme that catalyzes the removal of the beta-phosphate from diacylglycerol pyrophosphate to form phosphatidate, and it then removes the phosphate from phosphatidate to form diacylglycerol. The enzyme has six putative transmembrane domains and a hydrophilic region that contains a phosphatase motif required for its catalytic activity. In this work, we examined the topography of diacylglycerol-pyrophosphate phosphatase catalytic site within the transverse plane of the vacuole membrane. Results of protease protection analysis using endoproteinase Lys-C and labeling of cysteine residues using sulfhydryl reagents were consistent with a model where the catalytic site of diacylglycerol-pyrophosphate phosphatase was oriented to the cytosolic face of the vacuole membrane. In addition, diacylglycerol-pyrophosphate phosphatase activity was found with intact vacuoles. The phospholipids diacylglycerol pyrophosphate (0.6 mol %) and phosphatidate (1.4 mol %) were found in the vacuole membrane, and their levels decreased to an undetectable level and by 79%, respectively, when cells were depleted for zinc. The reduced levels of diacylglycerol pyrophosphate and phosphatidate correlated with the induced expression of diacylglycerol-pyrophosphate phosphatase. This work suggested that diacylglycerol pyrophosphate phosphatase functions to regulate the levels of diacylglycerol pyrophosphate and phosphatidate on the cytosolic face of the vacuole membrane.
Collapse
Affiliation(s)
- Gil-Soo Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
44
|
Karbarz MJ, Kalb SR, Cotter RJ, Raetz CRH. Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1-phosphatase. J Biol Chem 2003; 278:39269-79. [PMID: 12869541 PMCID: PMC2553562 DOI: 10.1074/jbc.m305830200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid A of Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, displays several significant structural differences when compared with Escherichia coli. An especially striking feature of R. leguminosarum lipid A is that it lacks both the 1- and 4'-phosphate groups. Distinct lipid A phosphatases that attack either the 1 or the 4' positions have previously been identified in extracts of R. leguminosarum and Rhizobium etli but not Sinorhizobium meliloti or E. coli. Here we describe the identification of a hybrid cosmid (pMJK-1) containing a 25-kb R. leguminosarum 3841 DNA insert that directs the overexpression of the lipid A 1-phosphatase. Transfer of pMJK-1 into S. meliloti 1021 results in heterologous expression of 1-phosphatase activity, which is normally absent in extracts of strain 1021, and confers resistance to polymyxin. Sequencing of a 7-kb DNA fragment derived from the insert of pMJK-1 revealed the presence of a lipid phosphatase ortholog (designated LpxE). Expression of lpxE in E. coli behind the T7lac promoter results in the appearance of robust 1-phosphatase activity, which is normally absent in E. coli membranes. Matrix-assisted laser-desorption/time of flight and radiochemical analysis of the product generated in vitro from the model substrate lipid IVA confirms the selective removal of the 1-phosphate group. These findings show that lpxE is the structural gene for the 1-phosphatase. The availability of lpxE may facilitate the re-engineering of lipid A structures in diverse Gram-negative bacteria and allow assessment of the role of the 1-phosphatase in R. leguminosarum symbiosis with plants. Possible orthologs of LpxE are present in some intracellular human pathogens, including Francisella tularensis, Brucella melitensis, and Legionella pneumophila.
Collapse
Affiliation(s)
- Mark J. Karbarz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Suzanne R. Kalb
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert J. Cotter
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Christian R. H. Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- To whom correspondence should be addressed: Dept. of Biochemistry, Duke University Medical Center, P.O. Box 3711, Durham, NC 27710. Tel.: 919-684-5326; Fax: 919-684-8885; E-mail:
| |
Collapse
|
45
|
Oshiro J, Han GS, Iwanyshyn WM, Conover K, Carman GM. Regulation of the yeast DPP1-encoded diacylglycerol pyrophosphate phosphatase by transcription factor Gis1p. J Biol Chem 2003; 278:31495-503. [PMID: 12799368 DOI: 10.1074/jbc.m305452200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate phosphatase catalyzes the dephosphorylation of diacylglycerol pyrophosphate to form phosphatidate and Pi. The enzyme also dephosphorylates phosphatidate to form diacylglycerol and Pi. Because diacylglycerol pyrophosphate, phosphatidate, and diacylglycerol have roles as lipid signal molecules in higher eukaryotic cells, it is important to understand how diacylglycerol pyrophosphate phosphatase is regulated. Analysis of DPP1 expression using PDPP1-lacZ reporter genes with a series of deletions from the 5' end of the promoter indicated sequences responsible for enzyme expression. Three binding sites (URSPDS) for transcription factor Gis1p were identified in the DPP1 promoter (consensus sequence of 5'-T(A/T)AGGGAT-3'). A gis1 Delta mutant exhibited elevated levels of DPP1 expression and diacylglycerol pyrophosphate phosphatase activity. Direct interaction between Gis1p and DPP1 promoter elements was demonstrated by electrophoretic mobility shift assays. Mutations in the three URSPDS elements within the DPP1 promoter abolished Gis1p-DNA interactions in vitro and abolished the regulation of DPP1 in vivo. These data indicated that Gis1p was a repressor of DPP1 expression. Phospholipid composition analysis of the gis1 Delta mutant showed that Gis1p played a role in regulating the cellular level of diacylglycerol pyrophosphate, as well as the levels of the major phospholipids phosphatidylethanolamine and phosphatidylcholine.
Collapse
Affiliation(s)
- June Oshiro
- Graduate Program in Microbiology and Molecular Genetics and Deparetment of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
46
|
Sorger D, Daum G. Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 2003; 61:289-99. [PMID: 12743757 DOI: 10.1007/s00253-002-1212-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Revised: 11/29/2002] [Accepted: 11/29/2002] [Indexed: 10/25/2022]
Abstract
Triacylglycerol (TAG) is the major storage component for fatty acids, and thus for energy, in eukaryotic cells. In this mini-review, we describe recent progress that has been made with the yeast Saccharomyces cerevisiae in understanding formation of TAG and its cell biological role. Formation of TAG involves the synthesis of phosphatidic acid (PA) and diacylglycerol (DAG), two key intermediates of lipid metabolism. De novo formation of PA in yeast as in other types of cells can occur either through the glycerol-3-phosphate- or dihydroxyacetone phosphate-pathways-each named after its respective precursor. PA, formed in two steps of acylation, is converted to DAG by phosphatidate phosphatase. Acylation of DAG to yield TAG is catalyzed mainly by the two yeast proteins Dga1p and Lro1p, which utilize acyl-CoA or phosphatidylcholine, respectively, as acyl donors. In addition, minor alternative routes of DAG acylation appear to exist. Endoplasmic reticulum and lipid particles (LP), the TAG storage compartment in yeast, are the major sites of TAG synthesis. The interplay of these organelles, formation of LP, and enzymatic properties of enzymes catalyzing the synthesis of PA, DAG, and TAG in yeast are discussed in this communication.
Collapse
Affiliation(s)
- D Sorger
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, Austria
| | | |
Collapse
|
47
|
Nanjundan M, Possmayer F. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1-23. [PMID: 12471011 DOI: 10.1152/ajplung.00029.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The lung contains two distinct forms of phosphatidic acid phosphatase (PAP). PAP1 is a cytosolic enzyme that is activated through fatty acid-induced translocation to the endoplasmic reticulum, where it converts phosphatidic acid (PA) to diacylglycerol (DAG) for the biosynthesis of phospholipids and neutral lipids. PAP1 is Mg(2+) dependent and sulfhydryl reagent sensitive. PAP2 is a six-transmembrane-domain integral protein localized to the plasma membrane. Because PAP2 degrades sphingosine-1-phosphate (S1P) and ceramide-1-phosphate in addition to PA and lyso-PA, it has been renamed lipid phosphate phosphohydrolase (LPP). LPP is Mg(2+) independent and sulfhydryl reagent insensitive. This review describes LPP isoforms found in the lung and their location in signaling platforms (rafts/caveolae). Pulmonary LPPs likely function in the phospholipase D pathway, thereby controlling surfactant secretion. Through lowering the levels of lyso-PA and S1P, which serve as agonists for endothelial differentiation gene receptors, LPPs regulate cell division, differentiation, apoptosis, and mobility. LPP activity could also influence transdifferentiation of alveolar type II to type I cells. It is considered likely that these lipid phosphohydrolases have critical roles in lung morphogenesis and in acute lung injury and repair.
Collapse
Affiliation(s)
- Meera Nanjundan
- Department of Obstetrics and Gynaecology, Canadian Institutes of Health Research Group in Fetal and Neonatal Health and Development, The University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5
| | | |
Collapse
|
48
|
Rush JS, Cho SK, Jiang S, Hofmann SL, Waechter CJ. Identification and characterization of a cDNA encoding a dolichyl pyrophosphate phosphatase located in the endoplasmic reticulum of mammalian cells. J Biol Chem 2002; 277:45226-34. [PMID: 12198133 DOI: 10.1074/jbc.m207076200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CWH8 gene in Saccharomyces cerevisiae has been shown recently (Fernandez, F., Rush, J. S., Toke, D. A., Han, G., Quinn, J. E., Carman, G. M., Choi, J.-Y., Voelker, D. R., Aebi, M., and Waechter, C. J. (2001) J. Biol. Chem. 276, 41455-41464) to encode a dolichyl pyrophosphate (Dol-P-P) phosphatase associated with crude microsomal fractions. Mutations in CWH8 result in the accumulation of Dol-P-P, deficiency in lipid intermediate synthesis, defective protein N-glycosylation, and a reduced growth rate. A cDNA (DOLPP1, GenBank accession number AB030189) from mouse brain encoding a homologue of the yeast CWH8 gene is now shown to complement the defects in growth and protein N-glycosylation, and to correct the accumulation of Dol-P-P in the cwh8Delta yeast mutant. Northern blot analyses demonstrate a wide distribution of the DOLPP1 mRNA in mouse tissues. Overexpression of Dolpp1p in yeast, COS, and Sf9 cells produces substantial increases in Dol-P-P phosphatase activity but not in dolichyl monophosphate or phosphatidic acid phosphatase activities in microsomal fractions. Subcellular fractionation and immunofluorescence studies localize the enzyme encoded by DOLPP1 to the endoplasmic reticulum of COS cells. The results of protease sensitivity studies with microsomal vesicles from the lpp1Delta/dpp1Delta yeast mutant expressing DOLPP1 are consistent with Dolpp1p having a luminally oriented active site. The sequence of the DOLPP1 cDNA predicts a polypeptide with 238 amino acids, and a new polypeptide corresponding to 27 kDa is observed when DOLPP1 is expressed in yeast, COS, and Sf9 cells. This study is the first identification and characterization of a cDNA clone encoding an essential component of a mammalian lipid pyrophosphate phosphatase that is highly specific for Dol-P-P. The specificity, subcellular location, and topological orientation of the active site described in the current study strongly support a role for Dolpp1p in the recycling of Dol-P-P discharged during protein N-glycosylation reactions on the luminal leaflet of the endoplasmic reticulum in mammalian cells.
Collapse
Affiliation(s)
- Jeffrey S Rush
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
49
|
Vance DE. Chapter 8 Phospholipid biosynthesis in eukaryotes. BIOCHEMISTRY OF LIPIDS, LIPOPROTEINS AND MEMBRANES, 4TH EDITION 2002. [DOI: 10.1016/s0167-7306(02)36010-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Pierrugues O, Brutesco C, Oshiro J, Gouy M, Deveaux Y, Carman GM, Thuriaux P, Kazmaier M. Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLPP1 gene in response to stress. J Biol Chem 2001; 276:20300-8. [PMID: 11278556 DOI: 10.1074/jbc.m009726200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An Arabidopsis thaliana gene (AtLPP1) was isolated on the basis that it was transiently induced by ionizing radiation. The putative AtLPP1 gene product showed homology to the yeast and mammalian lipid phosphate phosphatase enzymes and possessed a phosphatase signature sequence motif. Heterologous expression and biochemical characterization of the AtLPP1 gene in yeast showed that it encoded an enzyme (AtLpp1p) that exhibited both diacylglycerol pyrophosphate phosphatase and phosphatidate phosphatase activities. Kinetic analysis indicated that diacylglycerol pyrophosphate was the preferred substrate for AtLpp1p in vitro. A second Arabidopsis gene (AtLPP2) was identified based on sequence homology to AtLPP1 that was also heterologously expressed in yeast. The AtLpp2p enzyme also utilized diacylglycerol pyrophosphate and phosphatidate but with no preference for either substrate. The AtLpp1p and AtLpp2p enzymes showed differences in their apparent affinities for diacylglycerol pyrophosphate and phosphatidate as well as other enzymological properties. Northern blot analyses showed that the AtLPP1 gene was preferentially expressed in leaves and roots, whereas the AtLPP2 gene was expressed in all tissues examined. AtLPP1, but not AtLPP2, was regulated in response to various stress conditions. The AtLPP1 gene was transiently induced by genotoxic stress (gamma ray or UV-B) and elicitor treatments with mastoparan and harpin. The regulation of the AtLPP1 gene in response to stress was consistent with the hypothesis that its encoded lipid phosphate phosphatase enzyme may attenuate the signaling functions of phosphatidate and/or diacylglycerol pyrophosphate that form in response to stress in plants.
Collapse
Affiliation(s)
- O Pierrugues
- CEA/Cadarache, DSV-DEVM Laboratoire de Radiobiologie Végétale, 13108 Saint Paul-lez-Durance, France
| | | | | | | | | | | | | | | |
Collapse
|