1
|
Li F, Artiushin G, Sehgal A. Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. eLife 2023; 12:e86336. [PMID: 37140181 PMCID: PMC10205086 DOI: 10.7554/elife.86336] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Endocytosis through Drosophila glia is a significant determinant of sleep amount and occurs preferentially during sleep in glia of the blood-brain barrier (BBB). To identify metabolites whose trafficking is mediated by sleep-dependent endocytosis, we conducted metabolomic analysis of flies that have increased sleep due to a block in glial endocytosis. We report that acylcarnitines, fatty acids conjugated to carnitine to promote their transport, accumulate in heads of these animals. In parallel, to identify transporters and receptors whose loss contributes to the sleep phenotype caused by blocked endocytosis, we screened genes enriched in barrier glia for effects on sleep. We find that knockdown of lipid transporters LRP1&2 or of carnitine transporters ORCT1&2 increases sleep. In support of the idea that the block in endocytosis affects trafficking through specific transporters, knockdown of LRP or ORCT transporters also increases acylcarnitines in heads. We propose that lipid species, such as acylcarnitines, are trafficked through the BBB via sleep-dependent endocytosis, and their accumulation reflects an increased need for sleep.
Collapse
Affiliation(s)
- Fu Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory Artiushin
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
2
|
Yee SW, Buitrago D, Stecula A, Ngo HX, Chien HC, Zou L, Koleske ML, Giacomini KM. Deorphaning a solute carrier 22 family member, SLC22A15, through functional genomic studies. FASEB J 2020; 34:15734-15752. [PMID: 33124720 DOI: 10.1096/fj.202001497r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
The human solute carrier 22A (SLC22A) family consists of 23 members, representing one of the largest families in the human SLC superfamily. Despite their pharmacological and physiological importance in the absorption and disposition of a range of solutes, eight SLC22A family members remain classified as orphans. In this study, we used a multifaceted approach to identify ligands of orphan SLC22A15. Ligands of SLC22A15 were proposed based on phylogenetic analysis and comparative modeling. The putative ligands were then confirmed by metabolomic screening and uptake assays in SLC22A15 transfected HEK293 cells. Metabolomic studies and transporter assays revealed that SLC22A15 prefers zwitterionic compounds over cations and anions. We identified eight zwitterions, including ergothioneine, carnitine, carnosine, gabapentin, as well as four cations, including MPP+ , thiamine, and cimetidine, as substrates of SLC22A15. Carnosine was a specific substrate of SLC22A15 among the transporters in the SLC22A family. SLC22A15 transport of several substrates was sodium-dependent and exhibited a higher Km for ergothioneine, carnitine, and carnosine compared to previously identified transporters for these ligands. This is the first study to characterize the function of SLC22A15. Our studies demonstrate that SLC22A15 may play an important role in determining the systemic and tissue levels of ergothioneine, carnosine, and other zwitterions.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Dina Buitrago
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Huy X Ngo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Megan L Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Organic Cation Transporters in Human Physiology, Pharmacology, and Toxicology. Int J Mol Sci 2020; 21:ijms21217890. [PMID: 33114309 PMCID: PMC7660683 DOI: 10.3390/ijms21217890] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Individual cells and epithelia control the chemical exchange with the surrounding environment by the fine-tuned expression, localization, and function of an array of transmembrane proteins that dictate the selective permeability of the lipid bilayer to small molecules, as actual gatekeepers to the interface with the extracellular space. Among the variety of channels, transporters, and pumps that localize to cell membrane, organic cation transporters (OCTs) are considered to be extremely relevant in the transport across the plasma membrane of the majority of the endogenous substances and drugs that are positively charged near or at physiological pH. In humans, the following six organic cation transporters have been characterized in regards to their respective substrates, all belonging to the solute carrier 22 (SLC22) family: the organic cation transporters 1, 2, and 3 (OCT1–3); the organic cation/carnitine transporter novel 1 and 2 (OCTN1 and N2); and the organic cation transporter 6 (OCT6). OCTs are highly expressed on the plasma membrane of polarized epithelia, thus, playing a key role in intestinal absorption and renal reabsorption of nutrients (e.g., choline and carnitine), in the elimination of waste products (e.g., trimethylamine and trimethylamine N-oxide), and in the kinetic profile and therapeutic index of several drugs (e.g., metformin and platinum derivatives). As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations, this article critically presents the physio-pathological, pharmacological, and toxicological roles of OCTs in the tissues in which they are primarily expressed.
Collapse
|
4
|
Drosophila SLC22 Orthologs Related to OATs, OCTs, and OCTNs Regulate Development and Responsiveness to Oxidative Stress. Int J Mol Sci 2020; 21:ijms21062002. [PMID: 32183456 PMCID: PMC7139749 DOI: 10.3390/ijms21062002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
The SLC22 family of transporters is widely expressed, evolutionarily conserved, and plays a major role in regulating homeostasis by transporting small organic molecules such as metabolites, signaling molecules, and antioxidants. Analysis of transporters in fruit flies provides a simple yet orthologous platform to study the endogenous function of drug transporters in vivo. Evolutionary analysis of Drosophila melanogaster putative SLC22 orthologs reveals that, while many of the 25 SLC22 fruit fly orthologs do not fall within previously established SLC22 subclades, at least four members appear orthologous to mammalian SLC22 members (SLC22A16:CG6356, SLC22A15:CG7458, CG7442 and SLC22A18:CG3168). We functionally evaluated the role of SLC22 transporters in Drosophila melanogaster by knocking down 14 of these genes. Three putative SLC22 ortholog knockdowns-CG3168, CG6356, and CG7442/SLC22A-did not undergo eclosion and were lethal at the pupa stage, indicating the developmental importance of these genes. Additionally, knocking down four SLC22 members increased resistance to oxidative stress via paraquat testing (CG4630: p < 0.05, CG6006: p < 0.05, CG6126: p < 0.01 and CG16727: p < 0.05). Consistent with recent evidence that SLC22 is central to a Remote Sensing and Signaling Network (RSSN) involved in signaling and metabolism, these phenotypes support a key role for SLC22 in handling reactive oxygen species.
Collapse
|
5
|
Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. Int J Mol Sci 2020; 21:ijms21051791. [PMID: 32150922 PMCID: PMC7084758 DOI: 10.3390/ijms21051791] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The SLC22 family of OATs, OCTs, and OCTNs is emerging as a central hub of endogenous physiology. Despite often being referred to as “drug” transporters, they facilitate the movement of metabolites and key signaling molecules. An in-depth reanalysis supports a reassignment of these proteins into eight functional subgroups, with four new subgroups arising from the previously defined OAT subclade: OATS1 (SLC22A6, SLC22A8, and SLC22A20), OATS2 (SLC22A7), OATS3 (SLC22A11, SLC22A12, and Slc22a22), and OATS4 (SLC22A9, SLC22A10, SLC22A24, and SLC22A25). We propose merging the OCTN (SLC22A4, SLC22A5, and Slc22a21) and OCT-related (SLC22A15 and SLC22A16) subclades into the OCTN/OCTN-related subgroup. Using data from GWAS, in vivo models, and in vitro assays, we developed an SLC22 transporter-metabolite network and similar subgroup networks, which suggest how multiple SLC22 transporters with mono-, oligo-, and multi-specific substrate specificity interact to regulate metabolites. Subgroup associations include: OATS1 with signaling molecules, uremic toxins, and odorants, OATS2 with cyclic nucleotides, OATS3 with uric acid, OATS4 with conjugated sex hormones, particularly etiocholanolone glucuronide, OCT with neurotransmitters, and OCTN/OCTN-related with ergothioneine and carnitine derivatives. Our data suggest that the SLC22 family can work among itself, as well as with other ADME genes, to optimize levels of numerous metabolites and signaling molecules, involved in organ crosstalk and inter-organismal communication, as proposed by the remote sensing and signaling theory.
Collapse
|
6
|
Nigam SK. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu Rev Pharmacol Toxicol 2019; 58:663-687. [PMID: 29309257 DOI: 10.1146/annurev-pharmtox-010617-052713] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The SLC22 transporter family consists of more than two dozen members, which are expressed in the kidney, the liver, and other tissues. Evolutionary analysis indicates that SLC22 transporters fall into at least six subfamilies: OAT (organic anion transporter), OAT-like, OAT-related, OCT (organic cation transporter), OCTN (organic cation/carnitine transporter), and OCT/OCTN-related. Some-including OAT1 [SLC22A6 or NKT (novel kidney transporter)] and OAT3 (SLC22A8), as well as OCT1 (SLC22A1) and OCT2 (SLC22A2)-are widely studied drug transporters. Nevertheless, analyses of knockout mice and other data indicate that SLC22 transporters regulate key metabolic pathways and levels of signaling molecules (e.g., gut microbiome products, bile acids, tricarboxylic acid cycle intermediates, dietary flavonoids and other nutrients, prostaglandins, vitamins, short-chain fatty acids, urate, and ergothioneine), as well as uremic toxins associated with chronic kidney disease. Certain SLC22 transporters-such as URAT1 (SLC22A12) and OCTN2 (SLC22A5)-are mutated in inherited metabolic diseases. A new systems biology view of transporters is emerging. As proposed in the remote sensing and signaling hypothesis, SLC22 transporters, together with other SLC and ABC transporters, have key roles in interorgan and interorganism small-molecule communication and, together with the neuroendocrine, growth factor-cytokine, and other homeostatic systems, regulate local and whole-body homeostasis.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
7
|
Pochini L, Galluccio M, Scalise M, Console L, Indiveri C. OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics. SLAS DISCOVERY 2018; 24:89-110. [PMID: 30523710 DOI: 10.1177/2472555218812821] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OCTN is a small subfamily of membrane transport proteins that belongs to the larger SLC22 family. Two of the three members of the subfamily, namely, OCTN2 and OCTN1, are present in humans. OCTN2 plays a crucial role in the absorption of carnitine from diet and in its distribution to tissues, as demonstrated by the occurrence of severe pathologies caused by malfunctioning or altered expression of this transporter. These findings suggest avoiding a strict vegetarian diet during pregnancy and in childhood. Other roles of OCTN2 are related to the traffic of carnitine derivatives in many tissues. The role of OCTN1 is still unclear, despite the identification of some substrates such as ergothioneine, acetylcholine, and choline. Plausibly, the transporter acts on the control of inflammation and oxidative stress, even though knockout mice do not display phenotypes. A clear role of both transporters has been revealed in drug interaction and delivery. The polyspecificity of the OCTNs is at the base of the interactions with drugs. Interestingly, OCTN2 has been recently exploited in the prodrug approach and in diagnostics. A promising application derives from the localization of OCTN2 in exosomes that represent a noninvasive diagnostic tool.
Collapse
Affiliation(s)
- Lorena Pochini
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,2 CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|
8
|
Yuan H, Hu Y, Zhu Y, Zhang Y, Luo C, Li Z, Wen T, Zhuang W, Zou J, Hong L, Zhang X, Hisatome I, Yamamoto T, Cheng J. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells. Mol Cell Endocrinol 2017; 443:138-145. [PMID: 28042024 DOI: 10.1016/j.mce.2016.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 02/05/2023]
Abstract
Hyperuricemia occurs together with abnormal glucose metabolism and insulin resistance. Skeletal muscle is an important organ of glucose uptake, disposal, and storage. Metformin activates adenosine monophosphate-activated protein kinase (AMPK) to regulate insulin signaling and promote the translocation of glucose transporter type 4 (GLUT4), thereby stimulating glucose uptake to maintain energy balance. Our previous study showed that high uric acid (HUA) induced insulin resistance in skeletal muscle tissue. However, the mechanism of metformin ameliorating UA-induced insulin resistance in muscle cells is unknown and we aimed to determine it. In this study, differentiated C2C12 cells were exposed to UA (15 mg/dl), then reactive oxygen species (ROS) was detected with DCFH-DA and glucose uptake with 2-NBDG. The levels of phospho-insulin receptor substrate 1 (IRS1; Ser307), phospho-AKT (Ser473) and membrane GLUT4 were examined by western blot analysis. The impact of metformin on UA-induced insulin resistance was monitored by adding Compound C, an AMPK inhibitor, and LY294002, a PI3K/AKT inhibitor. Our data indicate that UA can increase ROS production, inhibit IRS1-AKT signaling and insulin-stimulated glucose uptake, and induce insulin resistance in C2C12 cells. Metformin can reverse this process by increasing intracellular glucose uptake and ameliorating UA-induced insulin resistance.
Collapse
Affiliation(s)
- Huier Yuan
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yaqiu Hu
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuzhang Zhu
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yongneng Zhang
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chaohuan Luo
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhi Li
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tengfei Wen
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wanling Zhuang
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jinfang Zou
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Liangli Hong
- Department of Pathology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Zhang
- The Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | - Tetsuya Yamamoto
- Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Jidong Cheng
- Department of Internal Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
9
|
Mihaljevic I, Popovic M, Zaja R, Smital T. Phylogenetic, syntenic, and tissue expression analysis of slc22 genes in zebrafish (Danio rerio). BMC Genomics 2016; 17:626. [PMID: 27519738 PMCID: PMC4982206 DOI: 10.1186/s12864-016-2981-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/29/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND SLC22 protein family is a member of the SLC (Solute carriers) superfamily of polyspecific membrane transporters responsible for uptake of a wide range of organic anions and cations, including numerous endo- and xenobiotics. Due to the lack of knowledge on zebrafish Slc22 family, we performed initial characterization of these transporters using a detailed phylogenetic and conserved synteny analysis followed by the tissue specific expression profiling of slc22 transcripts. RESULTS We identified 20 zebrafish slc22 genes which are organized in the same functional subgroups as human SLC22 members. Orthologies and syntenic relations between zebrafish and other vertebrates revealed consequences of the teleost-specific whole genome duplication as shown through one-to-many orthologies for certain zebrafish slc22 genes. Tissue expression profiles of slc22 transcripts were analyzed using qRT-PCR determinations in nine zebrafish tissues: liver, kidney, intestine, gills, brain, skeletal muscle, eye, heart, and gonads. Our analysis revealed high expression of oct1 in kidney, especially in females, followed by oat3 and oat2c in females, oat2e in males and orctl4 in females. oct1 was also dominant in male liver. oat2d showed the highest expression in intestine with less noticeable gender differences. All slc22 genes showed low expression in gills, and moderate expression in heart and skeletal muscle. Dominant genes in brain were oat1 in females and oct1 in males, while the highest gender differences were determined in gonads, with dominant expression of almost all slc22 genes in testes and the highest expression of oat2a. CONCLUSIONS Our study offers the first insight into the orthology relationships, gene expression and potential role of Slc22 membrane transporters in zebrafish. Clear orthological relationships of zebrafish slc22 and other vertebrate slc22 genes were established. slc22 members are mostly highly conserved, suggesting their physiological and toxicological importance. One-to-many orthologies and differences in tissue expression patterns of zebrafish slc22 genes in comparison to human orthologs were observed. Our expression data point to partial similarity of zebrafish versus human Slc22 members, with possible compensatory roles of certain zebrafish transporters, whereas higher number of some orthologs implies potentially more diverse and specific roles of these proteins in zebrafish.
Collapse
Affiliation(s)
- Ivan Mihaljevic
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Marta Popovic
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.,Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Roko Zaja
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.,Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Tvrtko Smital
- Division for Marine and Environmental Research, Laboratory for Molecular Ecotoxicology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
10
|
Frigeni M, Iacobazzi F, Yin X, Longo N. Wide tolerance to amino acids substitutions in the OCTN1 ergothioneine transporter. Biochim Biophys Acta Gen Subj 2016; 1860:1334-42. [PMID: 26994919 DOI: 10.1016/j.bbagen.2016.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/24/2016] [Accepted: 03/15/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Organic cation transporters transfer solutes with a positive charge across the plasma membrane. The novel organic cation transporter 1 (OCTN1) and 2 (OCTN2) transport ergothioneine and carnitine, respectively. Mutations in the SLC22A5 gene encoding OCTN2 cause primary carnitine deficiency, a recessive disorders resulting in low carnitine levels and defective fatty acid oxidation. Variations in the SLC22A4 gene encoding OCTN1 are associated with rheumatoid arthritis and Crohn disease. METHODS Here we evaluate the functional properties of the OCTN1 transporter using chimeric transporters constructed by fusing different portion of the OCTN1 and OCTN2 cDNAs. Their relative abundance and subcellular distribution was evaluated through western blot analysis and confocal microscopy. RESULTS Substitutions of the C-terminal portion of OCTN1 with the correspondent residues of OCTN2 generated chimeric OCTN transporters more active than wild-type OCTN1 in transporting ergothioneine. Additional single amino acid substitutions introduced in chimeric OCTN transporters further increased ergothioneine transport activity. Kinetic analysis indicated that increased transport activity was due to an increased V(max), with modest changes in K(m) toward ergothioneine. CONCLUSIONS Our results indicate that the OCTN1 transporter is tolerant to extensive amino acid substitutions. This is in sharp contrast to the OCTN2 carnitine transporter that has been selected for high functional activity through evolution, with almost all substitutions reducing carnitine transport activity. GENERAL SIGNIFICANCE The widespread tolerance of OCTN1 to amino acid substitutions suggests that the corresponding SLC22A4 gene may have derived from a recent duplication of the SLC22A5 gene and might not yet have a defined physiological role.
Collapse
Affiliation(s)
- Marta Frigeni
- Division of Medical Genetics, Departments of Pediatrics and Pathology, University of Utah, Salt Lake City, UT 84108, United States
| | - Francesco Iacobazzi
- Division of Medical Genetics, Departments of Pediatrics and Pathology, University of Utah, Salt Lake City, UT 84108, United States; Department of Basic Medical Sciences, University of Bari, Policlinico, I-70124 Bari, Italy
| | - Xue Yin
- Division of Medical Genetics, Departments of Pediatrics and Pathology, University of Utah, Salt Lake City, UT 84108, United States
| | - Nicola Longo
- Division of Medical Genetics, Departments of Pediatrics and Pathology, University of Utah, Salt Lake City, UT 84108, United States.
| |
Collapse
|
11
|
Zhu C, Nigam KB, Date RC, Bush KT, Springer SA, Saier MH, Wu W, Nigam SK. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs. PLoS One 2015; 10:e0140569. [PMID: 26536134 PMCID: PMC4633038 DOI: 10.1371/journal.pone.0140569] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14:29-44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term "Oat-related" (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22.
Collapse
Affiliation(s)
- Christopher Zhu
- Departments of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Kabir B. Nigam
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Rishabh C. Date
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin T. Bush
- Departments of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Stevan A. Springer
- Departments of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Departments of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Wei Wu
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
- * E-mail: (SKN); (WW)
| | - Sanjay K. Nigam
- Departments of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
- Departments of Medicine, University of California at San Diego, La Jolla, California, United States of America
- Departments of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States of America
- * E-mail: (SKN); (WW)
| |
Collapse
|
12
|
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 2015; 95:83-123. [PMID: 25540139 PMCID: PMC4281586 DOI: 10.1152/physrev.00025.2013] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Gleb Martovetsky
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Sun-Young Ahn
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Erin Richard
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Vibha Bhatnagar
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Wu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
13
|
Abstract
Potential drug-drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication ('remote sensing and signalling') between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug-metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
14
|
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014; 20:1422-49. [PMID: 23789948 DOI: 10.2174/13816128113199990463] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from "brute force" approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters.
Collapse
Affiliation(s)
| | | | | | | | - Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050.
| |
Collapse
|
15
|
Drake KA, Torgerson DG, Gignoux CR, Galanter JM, Roth LA, Huntsman S, Eng C, Oh SS, Yee SW, Lin L, Bustamante CD, Moreno-Estrada A, Sandoval K, Davis A, Borrell LN, Farber HJ, Kumar R, Avila PC, Brigino-Buenaventura E, Chapela R, Ford JG, Lenoir MA, Lurmann F, Meade K, Serebrisky D, Thyne S, Rodríguez-Cintrón W, Sen S, Rodríguez-Santana JR, Hernandez RD, Giacomini KM, Burchard EG. A genome-wide association study of bronchodilator response in Latinos implicates rare variants. J Allergy Clin Immunol 2014; 133:370-8. [PMID: 23992748 PMCID: PMC3938989 DOI: 10.1016/j.jaci.2013.06.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/09/2013] [Accepted: 06/18/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND The primary rescue medication to treat acute asthma exacerbation is the short-acting β₂-adrenergic receptor agonist; however, there is variation in how well a patient responds to treatment. Although these differences might be due to environmental factors, there is mounting evidence for a genetic contribution to variability in bronchodilator response (BDR). OBJECTIVE To identify genetic variation associated with bronchodilator drug response in Latino children with asthma. METHODS We performed a genome-wide association study (GWAS) for BDR in 1782 Latino children with asthma using standard linear regression, adjusting for genetic ancestry and ethnicity, and performed replication studies in an additional 531 Latinos. We also performed admixture mapping across the genome by testing for an association between local European, African, and Native American ancestry and BDR, adjusting for genomic ancestry and ethnicity. RESULTS We identified 7 genetic variants associated with BDR at a genome-wide significant threshold (P < 5 × 10(-8)), all of which had frequencies of less than 5%. Furthermore, we observed an excess of small P values driven by rare variants (frequency, <5%) and by variants in the proximity of solute carrier (SLC) genes. Admixture mapping identified 5 significant peaks; fine mapping within these peaks identified 2 rare variants in SLC22A15 as being associated with increased BDR in Mexicans. Quantitative PCR and immunohistochemistry identified SLC22A15 as being expressed in the lung and bronchial epithelial cells. CONCLUSION Our results suggest that rare variation contributes to individual differences in response to albuterol in Latinos, notably in SLC genes that include membrane transport proteins involved in the transport of endogenous metabolites and xenobiotics. Resequencing in larger, multiethnic population samples and additional functional studies are required to further understand the role of rare variation in BDR.
Collapse
Affiliation(s)
- Katherine A Drake
- Department of Medicine, University of California, San Francisco, Calif
| | - Dara G Torgerson
- Department of Medicine, University of California, San Francisco, Calif.
| | | | - Joshua M Galanter
- Department of Medicine, University of California, San Francisco, Calif
| | - Lindsey A Roth
- Department of Medicine, University of California, San Francisco, Calif
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, Calif
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, Calif
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, Calif
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | - Lawrence Lin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | | | | | - Karla Sandoval
- Department of Genetics, Stanford University, Stanford, Calif
| | - Adam Davis
- Children's Hospital and Research Center Oakland, Oakland, Calif
| | - Luisa N Borrell
- Department of Health Sciences, Graduate Program in Public Health, Lehman College, City University of New York, Bronx, New York
| | - Harold J Farber
- Department of Pediatrics, Section of Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, Tex
| | - Rajesh Kumar
- Children's Memorial Hospital, and the Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Pedro C Avila
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | | | - Rocio Chapela
- Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City, Mexico
| | - Jean G Ford
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | | | | | - Kelley Meade
- Children's Hospital and Research Center Oakland, Oakland, Calif
| | - Denise Serebrisky
- Pediatric Pulmonary Division, Jacobi Medical Center, Bronx, New York
| | - Shannon Thyne
- Department of Pediatrics, University of California, San Francisco, Calif
| | | | - Saunak Sen
- Department of Biostatistics, University of California, San Francisco, Calif
| | | | - Ryan D Hernandez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| |
Collapse
|
16
|
Organic anion transporter 5 renal expression and urinary excretion in rats with vascular calcification. BIOMED RESEARCH INTERNATIONAL 2013; 2013:283429. [PMID: 24199190 PMCID: PMC3807842 DOI: 10.1155/2013/283429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/25/2013] [Accepted: 08/29/2013] [Indexed: 01/22/2023]
Abstract
It has been described renal damage in rats with vascular calcification. The organic anion transporter 5 (Oat5) is only expressed in kidney, and its urinary excretion was proposed as potential early biomarker of renal injury. The aim of this study was to evaluate the Oat5 renal expression and its urinary excretion in an experimental model of vascular calcification in comparison with traditional markers of renal injury. Vascular calcification was obtained by the administration of an overdose of vitamin D3 (300,000 IU/kg, b.w., i.m.) to male Wistar rats. Oat5 urinary abundance was evaluated by Western blotting. Traditional markers of renal injury, such as creatinine and urea plasma levels, urinary protein levels, and urinary alkaline phosphatase (AP) activity, were determined using commercial kits. Histology was assessed by hematoxylin/eosin staining. Oat5 renal expression was evaluated by Western blotting and by immunohistochemistry. An increased expression of Oat5 in renal homogenates, in apical membranes, and in its urinary excretion was observed in rats with vascular calcification. The traditional parameters used to evaluate renal function were not modified, with the exception of histology. It is possible to postulate the urinary excretion of Oat5 as a potential noninvasive biomarker of renal injury associated with vascular calcification.
Collapse
|
17
|
Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 2013; 34:413-35. [PMID: 23506881 DOI: 10.1016/j.mam.2012.10.010] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 08/18/2012] [Indexed: 12/14/2022]
Abstract
The SLC22 family contains 13 functionally characterized human plasma membrane proteins each with 12 predicted α-helical transmembrane domains. The family comprises organic cation transporters (OCTs), organic zwitterion/cation transporters (OCTNs), and organic anion transporters (OATs). The transporters operate as (1) uniporters which mediate facilitated diffusion (OCTs, OCTNs), (2) anion exchangers (OATs), and (3) Na(+)/zwitterion cotransporters (OCTNs). They participate in small intestinal absorption and hepatic and renal excretion of drugs, xenobiotics and endogenous compounds and perform homeostatic functions in brain and heart. Important endogeneous substrates include monoamine neurotransmitters, l-carnitine, α-ketoglutarate, cAMP, cGMP, prostaglandins, and urate. It has been shown that mutations of the SLC22 genes encoding these transporters cause specific diseases like primary systemic carnitine deficiency and idiopathic renal hypouricemia and are correlated with diseases such as Crohn's disease and gout. Drug-drug interactions at individual transporters may change pharmacokinetics and toxicities of drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- University of Würzburg, Institute of Anatomy and Cell Biology, Koellikerstr. 6, 97070 Würzburg, Germany.
| |
Collapse
|
18
|
Wu W, Jamshidi N, Eraly SA, Liu HC, Bush KT, Palsson BO, Nigam SK. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. Drug Metab Dispos 2013; 41:1825-34. [PMID: 23920220 DOI: 10.1124/dmd.113.052647] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multispecific drug transporters of the solute carrier and ATP-binding cassette families are highly conserved through evolution, but their true physiologic role remains unclear. Analyses of the organic anion transporter 3 (OAT3; encoded by Slc22a8/Oat3, originally Roct) knockout mouse have confirmed its critical role in the renal handling of common drugs (e.g., antibiotics, antivirals, diuretics) and toxins. Previous targeted metabolomics of the knockout of the closely related Oat1 have demonstrated a central metabolic role, but the same approach with Oat3 failed to reveal a similar set of endogenous substrates. Nevertheless, the Oat3 knockout is the only Oat described so far with a physiologically significant phenotype, suggesting the disturbance of metabolic or signaling pathways. Here we analyzed global gene expression in Oat3 knockout tissue, which implicated OAT3 in phase I and phase II metabolism (drug metabolizing enzymes or DMEs), as well as signaling pathways. Metabolic reconstruction with the recently developed "mouse Recon1" supported the involvement of Oat3 in the aforementioned pathways. Untargeted metabolomics were used to determine whether the predicted metabolic alterations could be confirmed. Many significant changes were observed; several metabolites were tested for direct interaction with mOAT3, whereas others were supported by published data. Oat3 thus appears critical for the handling of phase I (hydroxylation) and phase II (glucuronidation) metabolites. Oat3 also plays a role in bioenergetic pathways (e.g., the tricarboxylic acid cycle), as well as those involving vitamins (e.g., folate), steroids, prostaglandins, gut microbiome products, uremic toxins, cyclic nucleotides, amino acids, glycans, and possibly hyaluronic acid. The data seemingly consistent with the Remote Sensing and Signaling Hypothesis (Ahn and Nigam, 2009; Wu et al., 2011), also suggests that Oat3 is essential for the handling of dietary flavonoids and antioxidants.
Collapse
Affiliation(s)
- Wei Wu
- Departments of Pediatrics (H.C.L., K.T.B., S.K.N.), Medicine, Division of Nephrology and Hypertension (W.W., S.A.E., S.K.N.), Cellular and Molecular Medicine (S.K.N.), and Bioengineering (N.J., B.O.P., S.K.N.), University of California, San Diego, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
19
|
Burckhardt G. Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther 2012; 136:106-30. [PMID: 22841915 DOI: 10.1016/j.pharmthera.2012.07.010] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 02/08/2023]
Abstract
Common to all so far functionally characterized Organic Anion Transporters (OATs) is their broad substrate specificity and their ability to exchange extracellular against intracellular organic anions. Many OATs occur in renal proximal tubules, the site of active drug secretion. Exceptions are murine Oat6 (nasal epithelium), human OAT7 (liver), and rat Oat8 (renal collecting ducts). In human kidneys, OAT1, OAT2, and OAT3 are localized in the basolateral membrane, and OAT4, OAT10, and URAT1 in the apical cell membrane of proximal tubule cells, respectively. In rats and mice, Oat1 and Oat3 are located basolaterally, and Oat2, Oat5, Oat9, Oat10, and Urat1 apically. Several classes of drugs interact with human OAT1-3, including ACE inhibitors, angiotensin II receptor antagonists, diuretics, HMG CoA reductase inhibitors, β-lactam antibiotics, antineoplastic and antiviral drugs, and uricosuric drugs. For most drugs, interaction was demonstrated in vitro by inhibition of OAT-mediated transport of model substrates; for some drugs, transport by OATs was directly proven. Based on IC₅₀ values reported in the literature, OAT1 and OAT3 show comparable affinities for diuretics, cephalosporins, and nonsteroidal anti-inflammatory drugs whereas OAT2 has a lower affinity to most of these compounds. Drug-drug interactions at OAT1 and OAT3 may retard renal drug secretion and cause untoward effects. OAT4, OAT10, and URAT1 in the apical membrane contribute to proximal tubular urate absorption, and OAT10 to nicotinate absorption. OAT4 is in addition able to release drugs, e.g. diuretics, into the tubule lumen.
Collapse
Affiliation(s)
- Gerhard Burckhardt
- Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
20
|
Kobayashi Y, Kawakami K, Ohbayashi M, Kohyama N, Yamamoto T. Ribosomal protein L3 mediated the transport of digoxin in Xenopus laevis oocyte. J Toxicol Sci 2011; 35:827-34. [PMID: 21139332 DOI: 10.2131/jts.35.827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribosomal protein L3 (RPL3) is known to be an indispensable and essential component for the peptidyltransferase center. In the present study, we found a novel function of RPL3 using a Xenopus laevis oocyte expression system. When expressed in X. oocytes, RPL3 mediated the high affinity transport of [(3)H]digoxin (K(m) = 213.3 ± 46.8 nM) in a time-, concentration-, and sodium-dependent manners. The maximum velocity of the transport of [(3)H]digoxin via RPL3 produced at physiological pH. However, we did not observe RPL3-mediated transport of several organic solutes such as [(14)C]androstenedione, [(3)H]dexamethasone, [(3)H]dehydroepiandrosterone sulfate, [(3)H]L-tryptophan, [(14)C]L-ascorbic acid, [(14)C]α-ketoglutarate, [(14)C]glutarate, [(3)H]methotrexate, [(3)H]bumetanide, [(3)H]probenecid, [(14)C]salicylic acid, [(14)C]theophylline and [(3)H]valproate. Our results suggest that RPL3 functions as a drug carrier protein and may be involved in the digoxin toxicity in the human body.
Collapse
Affiliation(s)
- Yasuna Kobayashi
- Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
21
|
Klein K, Jüngst C, Mwinyi J, Stieger B, Krempler F, Patsch W, Eloranta JJ, Kullak-Ublick GA. The human organic anion transporter genes OAT5 and OAT7 are transactivated by hepatocyte nuclear factor-1α (HNF-1α). Mol Pharmacol 2010; 78:1079-87. [PMID: 20829431 DOI: 10.1124/mol.110.065201] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organic anion transporters (OATs) are anion exchangers that transport small hydrophilic anions and diuretics, antibiotics, nonsteroidal anti-inflammatory drugs, antiviral nucleoside analogs, and antitumor drugs across membrane barriers of epithelia of diverse organs. Three OATs are present in human liver: OAT2, OAT5, and OAT7. Given that hepatocyte nuclear factor-1α (HNF-1α) has previously been shown to regulate the expression of several hepatocellular transporter genes, we investigated whether the liver-specific human OAT genes are also regulated by HNF-1α. Short interfering RNAs targeting HNF-1α reduced endogenous expression of OAT5 and OAT7, but not OAT2, in human liver-derived Huh7 cells. Luciferase reporter gene constructs containing the OAT5 (SLC22A10) and OAT7 (SLC22A9) promoter regions were transactivated by HNF-1α in HepG2 cells. Two putative HNF-1α binding elements in the proximal OAT5 promoter, located at nucleotides -68/-56 and -173/-160, and one element in the OAT7 promoter, located at nucleotides -14/-2 relative to the transcription start site, were shown to bind HNF-1α in electromobility shift assays, and these promoter regions also interacted with HNF-1α in chromatin immunoprecipitation assays. A correlation between HNF-1α and OAT5 (r = 0.134, P < 0.05) or OAT7 (r = 0.461, P < 0.001) mRNA expression levels in surgical liver biopsies from 75 patients further supported an important role of HNF-1α in the regulation of OAT gene expression.
Collapse
Affiliation(s)
- Kerstin Klein
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Rämistrasse 100, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
VanWert AL, Gionfriddo MR, Sweet DH. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos 2010; 31:1-71. [PMID: 19953504 DOI: 10.1002/bdd.693] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of the mechanisms behind inter- and intra-patient variability in drug response is inadequate. Advances in the cytochrome P450 drug metabolizing enzyme field have been remarkable, but those in the drug transporter field have trailed behind. Currently, however, interest in carrier-mediated disposition of pharmacotherapeutics is on a substantial uprise. This is exemplified by the 2006 FDA guidance statement directed to the pharmaceutical industry. The guidance recommended that industry ascertain whether novel drug entities interact with transporters. This suggestion likely stems from the observation that several novel cloned transporters contribute significantly to the disposition of various approved drugs. Many drugs bear anionic functional groups, and thus interact with organic anion transporters (OATs). Collectively, these transporters are nearly ubiquitously expressed in barrier epithelia. Moreover, several reports indicate that OATs are subject to diverse forms of regulation, much like drug metabolizing enzymes and receptors. Thus, critical to furthering our understanding of patient- and condition-specific responses to pharmacotherapy is the complete characterization of OAT interactions with drugs and regulatory factors. This review provides the reader with a comprehensive account of the function and substrate profile of cloned OATs. In addition, a major focus of this review is on the regulation of OATs including the impact of transcriptional and epigenetic factors, phosphorylation, hormones and gender.
Collapse
Affiliation(s)
- Adam L VanWert
- Department of Pharmaceutical Sciences, Wilkes University, Wilkes-Barre, PA 18766, USA
| | | | | |
Collapse
|
23
|
Fan J, Ionita-Laza I, McQueen MB, Devlin B, Purcell S, Faraone SV, Allen MH, Bowden CL, Calabrese JR, Fossey MD, Friedman ES, Gyulai L, Hauser P, Ketter TB, Marangell LB, Miklowitz DJ, Nierenberg AA, Patel JK, Sachs GS, Thase ME, Molay FB, Escamilla MA, Nimgaonkar VL, Sklar P, Laird NM, Smoller JW. Linkage disequilibrium mapping of the chromosome 6q21-22.31 bipolar I disorder susceptibility locus. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:29-37. [PMID: 19308960 PMCID: PMC4067321 DOI: 10.1002/ajmg.b.30942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We previously reported genome-wide significant evidence for linkage between chromosome 6q and bipolar I disorder (BPI) by performing a meta-analysis of original genotype data from 11 genome scan linkage studies. We now present follow-up linkage disequilibrium mapping of the linked region utilizing 3,047 single nucleotide polymorphism (SNP) markers in a case-control sample (N = 530 cases, 534 controls) and family-based sample (N = 256 nuclear families, 1,301 individuals). The strongest single SNP result (rs6938431, P = 6.72 x 10(-5)) was observed in the case-control sample, near the solute carrier family 22, member 16 gene (SLC22A16). In a replication study, we genotyped 151 SNPs in an independent sample (N = 622 cases, 1,181 controls) and observed further evidence of association between variants at SLC22A16 and BPI. Although consistent evidence of association with any single variant was not seen across samples, SNP-wise and gene-based test results in the three samples provided convergent evidence for association with SLC22A16, a carnitine transporter, implicating this gene as a novel candidate for BPI risk. Further studies in larger samples are warranted to clarify which, if any, genes in the 6q region confer risk for bipolar disorder.
Collapse
Affiliation(s)
- Jinbo Fan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Boston, Massachusetts
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Matthew B. McQueen
- Department of Psychology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, Colorado
| | - Bernie Devlin
- Department of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shaun Purcell
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Boston, Massachusetts,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen V. Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Michael H. Allen
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado
| | - Charles L. Bowden
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas
| | - Joseph R. Calabrese
- Department of Psychiatry, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Mark D. Fossey
- Department of Psychiatry, University of Oklahoma College of Medicine-Tulsa and Laureate Psychiatric Clinic and Hospital, Tulsa, Oklahoma
| | - Edward S. Friedman
- Department of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laszlo Gyulai
- Department of Psychiatry, University of Pennsylvania Health System, Philadelphia, Pennsylvania
| | | | - Terence B. Ketter
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California
| | - Lauren B. Marangell
- Eli Lilly and Company, Indianapolis, Indiana (work conducted at Baylor College of Medicine and not necessarily reflecting the views of Eli Lilly)
| | | | | | - Jayendra K. Patel
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gary S. Sachs
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael E. Thase
- Department of Psychiatry, University of Pennsylvania Health System, Philadelphia, Pennsylvania
| | - Francine B. Molay
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael A. Escamilla
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas,Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Vishwajit L. Nimgaonkar
- Department of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pamela Sklar
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Boston, Massachusetts,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Nan M. Laird
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Jordan W. Smoller
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Boston, Massachusetts,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts,Correspondence to: Jordan W. Smoller, M.D., Sc.D., Simches Research Building, 185, Cambridge St., 2nd Floor, Boston, MA 02114,
| |
Collapse
|
24
|
Aouida M, Poulin R, Ramotar D. The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5. J Biol Chem 2009; 285:6275-84. [PMID: 20037140 DOI: 10.1074/jbc.m109.046151] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bleomycin is used in combination with other antineoplastic agents to effectively treat lymphomas, testicular carcinomas, and squamous cell carcinomas of the cervix, head, and neck. However, resistance to bleomycin remains a persistent limitation in exploiting the full therapeutic benefit of the drug with other types of cancers. Previously, we documented that the Saccharomyces cerevisiae L-carnitine transporter Agp2 is responsible for the high affinity uptake of polyamines and of the polyamine analogue bleomycin-A5. Herein, we document that the human L-carnitine transporter hCT2 encoded by the SLC22A16 gene is involved in bleomycin-A5 uptake, as well as polyamines. We show that NT2/D1 human testicular cancer cells, which highly express hCT2, are extremely sensitive to bleomycin-A5, whereas HCT116 human colon carcinoma cells devoid of detectable hCT2 expression or MCF-7 human breast cancer cells that only weakly express the permease showed striking resistance to the drug. NT2/D1 cells accumulated fluorescein-labeled bleomycin-A5 to substantially higher levels than HCT116 cells. Moreover, L-carnitine protected NT2/D1 cells from the lethal effects of bleomycin-A5 by preventing its influx, and siRNA targeted to hCT2 induced resistance to bleomycin-A5-dependent genotoxicity. Furthermore, hCT2 overexpression induced by transient transfection of a functional hCT2-GFP fusion protein sensitized HCT116 cells to bleomycin-A5. Collectively, our data strongly suggest that hCT2 can mediate bleomycin-A5 and polyamine uptake, and that the rate of bleomycin-A5 accumulation may account for the differential response to the drug in patients.
Collapse
Affiliation(s)
- Mustapha Aouida
- Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec H1T 2M4, Canada.
| | | | | |
Collapse
|
25
|
Ahn SY, Nigam SK. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol 2009; 76:481-90. [PMID: 19515966 DOI: 10.1124/mol.109.056564] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Organic anion transporters (Oats) are located in the barrier epithelia of diverse organs, where they mediate the absorption and excretion of a wide range of metabolites, signaling molecules, and xenobiotics. Although their interactions with a broad group of substrates have been extensively studied and described, the primary physiological role of Oats remains elusive. The presence of overlapping substrate specificities among the different Oat isoforms, together with recent metabolomic data from the Oat1, Oat3, and renal-specific transporter (RST/URAT1) knockout mice, suggests a possible role in remote signaling wherein substrates excreted through one Oat isoform in one organ are taken up by another Oat isoform located in a different organ, thereby mediating communication between different organ systems, or even between different organisms. Here we further develop this "remote sensing and signaling hypothesis" and suggest how the regulation of SLC22 subfamily members (including those of the organic cation, organic carnitine, and unknown substrate transporter subfamilies) can be better understood by considering the organism's broader need to communicate between epithelial and other tissues by simultaneous regulation of transport of metabolites, signaling molecules, drugs, and toxins. This systems biology perspective of remote signaling (sensing) could help reconcile an enormous array of tissue-specific data for various SLC22 family genes and, possibly, other multispecific transporters, such as those of the organic anion transporting polypeptide (OATP, SLC21) and multidrug resistance-associated protein (MRP) families.
Collapse
Affiliation(s)
- Sun-Young Ahn
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
26
|
Wu W, Baker ME, Eraly SA, Bush KT, Nigam SK. Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiol Genomics 2009; 38:116-24. [PMID: 19417012 DOI: 10.1152/physiolgenomics.90309.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When the organic anion transporter Oat1 was first identified as NKT (Lopez-Nieto CE, You G, Bush KT, Barros EJ, Beier DR, Nigam SK. J Biol Chem 272: 6471-6478, 1997), it was argued that it, together with Oct1, may be part of a larger subfamily (now known as SLC22) involved in organic ion and xenobiotic transport. The least studied among SLC22 transporters are the so-called unknown substrate transporters (USTs). Here, five novel genes located in a cluster on mouse chromosome 19, immediately between Slc22a8 (Oat3)/Slc22a6 (Oat1) and Slc22a19 (Oat5), were identified as homologs of human USTs. These genes display preferential expression in liver and kidney, and one gene, AB056422, has several splicing variants with differential tissue expression and embryonic expression. Along with Slc22a6, Slc22a8, and Slc22a19, these Usts define the largest known cluster of mammalian Slc22 genes. Given the established functions of Oats, these genes may also be involved in organic anion transport. Usts have characteristic motifs and share a signature residue in the possible active site of transmembrane domain 7, a conserved, positively charged, amino acid, Arg356, possibly a site for interaction with organic anions. In certain species, Oat1 and Oat3 appeared to be highly conserved, whereas the Ust part of this cluster appeared to undergo repeated species-specific amplification, suggesting strong environmental selection pressure, and perhaps providing an explanation for copy number variation in the human locus. One Ust amplification in mouse appears to be recent. This cluster may be coordinately regulated and under selective pressure in a species-specific manner.
Collapse
Affiliation(s)
- Wei Wu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093-0693, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Organic anion transporters (OATs) mediate the renal absorption and excretion of a wide range of metabolites and xenobiotics. We discuss the recent advances that have been made in elucidating the binding and transport characteristics of OATs, new insights into their physiological role and regulation by various factors, and pharmacogenetics. RECENT FINDINGS Overlapping substrate specificity among the OATs is well established. However, recent findings have suggested distinct differences in the structural binding determinants among the OATs, which have important implications for understanding drug interactions and drug design. A potential role for OATs in blood pressure regulation and remote sensing has been reported. Meanwhile, factors regulating the expression of OATs continue to be identified and characterized. The effect of renal ischemia on OAT expression and function is currently being explored. Finally, recent studies identifying various OAT polymorphisms may facilitate prediction of individual drug response and toxicity. SUMMARY As progress is made in unveiling the many functional aspects of the OATs, it is becoming clear that their significance is not only limited to a role in drug elimination from the body, but also extends to other vital physiological roles. Further delineation of the function and regulation of the OATs will uncover enormous potential clinical and pharmacological applications.
Collapse
|
28
|
Lal S, Wong ZW, Jada SR, Xiang X, Chen Shu X, Ang PCS, Figg WD, Lee EJ, Chowbay B. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics 2008; 8:567-75. [PMID: 17559346 DOI: 10.2217/14622416.8.6.567] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To identify novel polymorphisms in the solute carrier SLC22A16 gene and determine their influence on the pharmacokinetics of doxorubicin and doxorubicinol in Asian breast cancer patients. METHODS SLC22A16 coding regions were screened in a total of 400 healthy subjects belonging to three distinct Asian ethnic groups (Chinese [n = 100], Malays [n = 100] and Indians [n = 100]) and in the Caucasian population (n = 100). Pharmacokinetic parameters of doxorubicin and doxorubicinol were estimated in Asian breast cancer patients undergoing adjuvant chemotherapy to investigate genotype-phenotype correlations. RESULTS Four novel polymorphisms (c.146A>G [exon 2], c.312T>C, c.755T>C [exon 4] and c.1226T>C [exon 5]) were identified. The genotypic frequency of the homozygous c.146GG polymorphism was approximately twofold higher in the healthy Chinese (13%) & Malay (18%) populations compared with the Indian (7%) and Caucasian (9%) populations. The genotypic frequency of the c.1226T>C polymorphism was observed to be significantly higher among the Caucasian (11%) and Indian (8%) study subjects compared with the Chinese (1%) and Malay (1%) ethnic groups (p < 0.005 in each case). Breast cancer patients harboring the 146GG genotype showed a trend towards higher exposure levels to doxorubicin (AUC(0 negative infinity)/dose/body surface area [BSA] [hm(-5)]: 21.6; range: 18.8-27.7) compared with patients with either the reference genotype (AUC(0 negative infinity)/dose/BSA[hm(-5)]: 17.4; range: 8.2-26.3, p = 0.066) or heterozygotes (AUC(0 negative infinity)/dose/BSA[hm(-5)]: 15.4; range: 6.2-38.0, p = 0.055). The exposure levels of doxorubicinol were also higher in patients harboring the variant 146GG genotype (AUC(0 negative infinity)/dose/BSA[hm(-5)]: 13.3; range: 8.8-21.7) when compared with patients harboring the reference genotype (AUC(0 negative infinity)/dose/BSA[hm(-5)]): 9.8; range: 6.1-24.3, p = 0.137) or heterozygotes (AUC(0 negative infinity)/dose/BSA[hm(-5)]: 8.98; range: 3.7-20.6, p = 0.047). CONCLUSION Among the four novel SLC22A16 polymorphisms identified, the c.146A>G and c.1226T>C polymorphisms exhibited interethnic variations in allele and genotype frequencies. This exploratory study suggests that the c.146A>G variation could contribute to the variations in the pharmacokinetics of doxorubicin and doxorubicinol in Asian cancer patients. Further in vitro studies are required to determine the functional impact of these novel polymorphisms on doxorubicin pharmacokinetics in cancer patients.
Collapse
Affiliation(s)
- Suman Lal
- National Cancer Centre, Division of Medical Sciences, 11 Hospital Drive, 169610 Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nigam SK, Bush KT, Bhatnagar V. Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues. ACTA ACUST UNITED AC 2007; 3:443-8. [PMID: 17653123 DOI: 10.1038/ncpneph0558] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/20/2007] [Indexed: 01/07/2023]
Abstract
Organic anion transporters (OATs) translocate drugs as well as endogenous substances and toxins. The prototype, OAT1 (SLC22A6), first identified as NKT in 1996, is the best-studied member of the OAT subgroup of the SLC22 transporter family, which also includes OCTs (organic cation transporters), OCTNs (organic cation transporters of carnitine) and Flipts (fly-like putative transporters). The SLC22 family is evolutionarily conserved, with members expressed in fly and worm. An unusual feature of many SLC22A genes is a tendency to exist in pairs or clusters in the genome. Much of the early research in the field focused on the role of OATs and other SLC22 family members in renal drug transport. OATs have now been localized to other epithelial tissues, including placenta (OAT4) and mouse olfactory mucosa (Oat6). Although findings from in vivo physiological studies in mice lacking OATs (e.g. Oat1 and Oat3) have generally been consistent with in vitro transport data from Xenopus oocytes and transfected cells, these in vivo data are helping to clarify the relative contributions of individual OATs to the renal excretion of particular organic anions and drugs. Moreover, in mutant mice, certain endogenous anions accumulate, suggesting the physiological roles of the proteins encoded by the mutant genes. It has been proposed that the presence of OATs and other SLC22-family members in multiple tissue compartments might enable a 'remote sensing' mechanism by allowing communication between organs, and possibly individuals, through organic ions. Variability of human drug responses and susceptibility to drug toxicity might, in part, be explained by variations in the coding and promoter regions of these genes. Computational biological studies are likely to not only shed light on molecular mechanisms of transport for compounds of clinical and toxicological interest, but also aid in drug design.
Collapse
Affiliation(s)
- Sanjay K Nigam
- University of California, San Diego, La Jolla, CA 92093-0693, USA.
| | | | | |
Collapse
|
30
|
Kwok B, Yamauchi A, Rajesan R, Chan L, Dhillon U, Gao W, Xu H, Wang B, Takahashi S, Semple J, Tamai I, Nezu JI, Tsuji A, Harper P, Ito S. Carnitine/xenobiotics transporters in the human mammary gland epithelia, MCF12A. Am J Physiol Regul Integr Comp Physiol 2006; 290:R793-802. [PMID: 16195500 DOI: 10.1152/ajpregu.00087.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The barrier function of the human mammary gland collapses if challenged with cationic drugs, causing their accumulation in milk. However, underlying molecular mechanisms are not well understood. To gain insight into the mechanism, we characterized transport of organic cations in the MCF12A human mammary gland epithelial cells, using carnitine and tetraethylammonium (TEA) as representative nutrient and xenobiotics probes, respectively. Our results show that the mammary gland cells express mRNA and proteins of human (h) novel organic cation transporters (OCTN) 1 and hOCTN2 (a Na+-dependent carnitine carrier with Na+-independent xenobiotics transport function), which belong to the solute carrier superfamily (SLC) of transporters. Other SLC OCTs such as hOCT1 and extraneuronal monoamine transporter (EMT)/hOCT3 are also expressed at mRNA levels, but hOCT2 was undetectable. We further showed mRNA expression of ATB0+ (an amino acid transporter with a Na+/Cl−-dependent carnitine transport activity), and Fly-like putative transporter 2/OCT6 (a splice variant of carnitine transporter 2: a testis-specific Na+-dependent carnitine transporter). TEA uptake was pH dependent. Carnitine uptake was dependent on Na+, and partly on Cl−, compatible with hOCTN2 and ATB0+ function. Modeling analyses predicted multiplicity of the uptake mechanisms with the high-affinity systems characterized by Km of 5.1 μM for carnitine and 1.6 mM for TEA, apparently similar to the reported hOCTN2 parameter for carnitine, and that of EMT/hOCT3 for TEA. Verapamil, cimetidine, carbamazepine, quinidine, and desipramine inhibited the carnitine uptake but required supratherapeutic concentrations, suggesting robustness of the carnitine uptake systems against xenobiotic challenge. Our findings suggest functional roles of a network of multiple SLC organic cation/nutrient transporters in human mammary gland drug transfer.
Collapse
Affiliation(s)
- Bruce Kwok
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Research Institute, Hospital for Sick Children, 555 Univ. Ave., Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 2006; 20:452-77. [PMID: 16415531 DOI: 10.2133/dmpk.20.452] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pairs of forward and reverse primers and TaqMan probes specific to each of 46 human ATP-binding cassette (ABC) transporters and 108 human solute carrier (SLC) transporters were prepared. The mRNA expression level of each target transporter was analyzed in total RNA from single and pooled specimens of various human tissues (adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, pancreas, peripheral leukocytes, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thymus, thyroid gland, trachea, and uterus) by real-time reverse transcription PCR using an ABI PRISM 7700 sequence detector system. In contrast to previous methods for analyzing the mRNA expression of single ABC and SLC genes such as Northern blotting, our method allowed us to perform sensitive, semiautomatic, rapid, and complete analysis of ABC and SLC transporters in total RNA samples. Our newly determined expression profiles were then used to study the gene expression in 23 different human tissues, and tissues with high transcriptional activity for human ABC and SLC transporters were identified. These results are expected to be valuable for establishing drug transport-mediated screening systems for new chemical entities in new drug development and for research concerning the clinical diagnosis of disease.
Collapse
Affiliation(s)
- Masuhiro Nishimura
- Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory, Inc., Tokushima, Japan.
| | | |
Collapse
|
32
|
Schömig E, Lazar A, Gründemann D. Extraneuronal monoamine transporter and organic cation transporters 1 and 2: a review of transport efficiency. Handb Exp Pharmacol 2006:151-80. [PMID: 16722235 DOI: 10.1007/3-540-29784-7_8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The extraneuronal monoamine transporter (EMT) corresponds to the classical steroid-sensitive monoamine transport mechanism that was first described as "uptake2" in rat heart with noradrenaline as substrate. The organic cation transporters OCT1 and OCT2 are related to EMT. The three carriers share basic structural and functional characteristics. Hence, EMT, OCT1 and OCT2 constitute a group referred to as non-neuronal monoamine transporters or organic cation transporters. After a brief general introduction, this review focuses on the critical analysis of substrate specificity. We calculate from the available literature and compare consensus transport efficiency (clearance) data for human and rat EMT, OCT1 and OCT2, expressed in transfected cell lines. From the plethora of inhibitors that have been tested, the casual observer likely gets the impression that these carriers indiscriminately transport very many compounds. However, our knowledge about actual substrates is rather limited. 1-Methyl-4-phenylpyridinium (MPP+) is an excellent substrate for all three carriers, with clearances typically in the range of 20-50 microl min(-1) mg protein(-1). The second-best general substrate is tyramine with a transport efficiency (TE) range relative to MPP+ of 20%-70%. The TEs of OCT1 and OCT2 for dopamine, noradrenaline, adrenaline and 5-HT in general are rather low, in the range relative to MPP+ of 5%-15%. This suggests that OCT1 and OCT2 are not primarily dedicated to transport these monoamine transmitters; only EMT may play a significant role in catecholamine inactivation. For many substrates, such as tetraethylammonium, histamine, agmatine, guanidine, cimetidine, creatinine, choline and acetylcholine, the transport efficiencies are markedly different among the carriers.
Collapse
Affiliation(s)
- E Schömig
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | | | | |
Collapse
|
33
|
Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, Barshop BA, Kaler G, Nigam SK. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem 2005; 281:5072-83. [PMID: 16354673 DOI: 10.1074/jbc.m508050200] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The "classical" organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478), has physiological properties consistent with a role in this pathway. However, several other transporters (e.g. OAT2, OAT3, and MRP1) have also been proposed as important PAH transporters on the basis of in vitro studies; therefore, the relative contribution of OAT1 has remained unclear. We have now generated a colony of OAT1 knock-out mice, permitting elucidation of the role of OAT1 in the context of these other potentially functionally redundant transporters. We find that the knock-out mice manifest a profound loss of organic anion transport (e.g. para-aminohippurate) both ex vivo (in isolated renal slices) as well as in vivo (as indicated by loss of renal secretion). In the case of the organic anion, furosemide, loss of renal secretion in the knock-out results in impaired diuretic responsiveness to this drug. These results indicate a critical role for OAT1 in the functioning of the classical pathway. In addition, we have determined the levels of approximately 60 endogenous organic anions in the plasma and urine of wild-type and knock-out mice. This has led to identification of several compounds with significantly higher plasma concentrations and/or lower urinary concentrations in knock-out mice, suggesting the involvement of OAT1 in their renal secretion. We have also demonstrated in xenopus oocytes that some of these compounds interact with OAT1 in vitro. Thus, these latter compounds might represent physiological substrates of OAT1.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Harlfinger S, Fork C, Lazar A, Schömig E, Gründemann D. Are organic cation transporters capable of transporting prostaglandins? Naunyn Schmiedebergs Arch Pharmacol 2005; 372:125-30. [PMID: 16211406 DOI: 10.1007/s00210-005-0011-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/29/2005] [Indexed: 01/11/2023]
Abstract
The non-neuronal monoamine transporters OCT1, OCT2 and EMT (human gene symbols SLC22A1-A3) efficiently transport a number of positively-charged monoamines and some small organic cations across the plasma membrane, and thus are implicated in the inactivation of released monoamine transmitters (e.g. noradrenaline, histamine, agmatine) in vivo. Although prostaglandins are full anions at physiological pH, data from a recent publication suggest efficient transport of the prostaglandins PGE2 and PGF2alpha by OCT1 and OCT2. In the present study we have reexamined transport of PGE2 by OCT2 from human (OCT2h). Uptake of substrate into monolayers of 293 cells, stably transfected to express OCT2h, was compared to uptake into non-transfected control cells. Efficiency of transport of the established substrate 3H-1-methyl-4-phenylpyridinium (MPP+), expressed as clearance, was high at 81 microl min(-1) mg protein(-1) on average. By contrast, uptake of 3H-PGE2 was virtually identical for control cells and OCT2h cells. The efficiency of transport was 0.1+/-0.6, 1.0+/-0.3, and 0.7+/-0.4 microl min(-1) mg protein(-1) for cell lysis with methanol, HClO4, and Triton X-100 respectively. Similar results were obtained with unlabeled MPP+ (192+/-12 microl min(-1) mg protein(-1)) and PGE2 (0.3+/-0.1 microl min(-1) mg protein(-1)) in LC-MS/MS analysis. We conclude that OCT2h is not capable of transporting prostaglandins. The data from the previous report may represent binding rather than transport. Our comparison of transport efficiencies confirms the notion that relevant substrates of OCT1, OCT2, and EMT must carry a positive charge.
Collapse
Affiliation(s)
- Stephanie Harlfinger
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931, Cologne, Germany
| | | | | | | | | |
Collapse
|
35
|
Tenreiro S, Vargas RC, Teixeira MC, Magnani C, Sá-Correia I. The yeast multidrug transporter Qdr3 (Ybr043c): localization and role as a determinant of resistance to quinidine, barban, cisplatin, and bleomycin. Biochem Biophys Res Commun 2005; 327:952-9. [PMID: 15649438 DOI: 10.1016/j.bbrc.2004.12.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Indexed: 12/29/2022]
Abstract
Saccharomyces cerevisiae ORF YBR043c, predicted to code for a transporter of the major facilitator superfamily required for multiple drug resistance, encodes a plasma membrane protein that confers resistance to quinidine and barban, as observed before for its close homologues QDR1 and QDR2. This ORF was, thus, named the QDR3 gene. The increased expression of QDR3, or QDR2, also leads to increased resistance to the anticancer agents cisplatin and bleomycin. However, no evidence for increased QDR3 expression in yeast cells exposed to all these inhibitory compounds was found. Transport assays support the concept that Qdr3 is involved, even if opportunistically, in the active export of quinidine out of yeast cell. A correlation was established between the efficiency of quinidine active export mediated by Qdr3p, Qdr2p or Qdr1p, and the efficacy of the expression of the encoding genes in alleviating the deleterious action of quinidine, as well as of the other compounds (QDR2>QDR3>>>QDR1).
Collapse
Affiliation(s)
- Sandra Tenreiro
- Biological Sciences Research Group, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
36
|
Monte JC, Nagle MA, Eraly SA, Nigam SK. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem Biophys Res Commun 2004; 323:429-36. [PMID: 15369770 DOI: 10.1016/j.bbrc.2004.08.112] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Indexed: 01/08/2023]
Abstract
The organic anion and cation transporters (OATs and OCTs) are a large family (SLC22) of transmembrane proteins that are able to transport a variety of compounds including drugs, environmental toxins, and endogenous metabolites. OATs are expressed in various tissues, primarily kidney and liver, but also in placenta, small intestine, and choroid plexus, which are all epithelial tissues that transport xenobiotics. The upper airway, particularly the nose, is also a site of frequent exposure to environmental toxins. Many drugs are administered intranasally. This raises the possibility that the olfactory epithelium contains OATs and OCTs. Here, we report the identification of a novel putative transporter, mouse OAT6, expressed predominantly in olfactory mucosa but not in kidney or brain. Sequence comparisons and intron phasing analysis indicated that OAT6 is closely related to OAT1 and OAT3. Unlike many other slc22 genes, OAT6 is unpaired in the genome, although it is in proximity to the OAT1/OAT3 gene pair. Expression of OAT6 was also observed in testis. Embryonic expression was observed at day 7, but not later in embryogenesis. This might be due to the need for a key metabolite transported by OAT6. The data raise the possibility that the olfactory mucosa may have a significant transport apparatus which could be important in the design of new therapeutic approaches for direct nose-to-brain transfer of drugs and olfaction. Supporting this possibility, we have demonstrated that OAT1, OCT1-2, and OCTN1-3 are also expressed in olfactory mucosa. Furthermore, e-blot data suggest very different expression of individual OATs, OCTs and OCTNs in kidney, brain, liver, and eye.
Collapse
Affiliation(s)
- Julio C Monte
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA
| | | | | | | |
Collapse
|
37
|
Eraly SA, Monte JC, Nigam SK. Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters. Physiol Genomics 2004; 18:12-24. [PMID: 15054140 DOI: 10.1152/physiolgenomics.00014.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Slc22 family organic anion and cation transporters (OATs, OCTs, and OCTNs) are transmembrane proteins expressed predominantly in kidney and liver. These proteins mediate the uptake or excretion of numerous physiologically (and pharmacologically) important compounds, and accordingly have been the focus of intensive study. Here we investigate the molecular phylogeny of the slc22 transporters, identifying homologs in Drosophila and C. elegans, several of which are developmentally regulated, as well as reporting the cloning of a novel human family member, UST6, expressed exclusively in liver in both embryo and adult. The latter helps define a subfamily within the OATs, which appears to have human- and rodent-specific members, raising potential issues with respect to the use of rodents as models for the transport of organic anions (which include many pharmaceuticals) in humans. Although this phylogenetic inference could not be made on the basis of sequence alignment, analysis of intron phasing suggests that the OAT, OCT, and OCTN lineages of the slc22 family formed after the divergence of vertebrates and invertebrates. Subsequently, these lineages expanded through independent tandem duplications to produce multiple gene pairs. After analyzing over 200 other transporter genes, we find such pairing to be relatively specific to vertebrate organic anion and cation transporters, suggesting selection for gene pairing operating within this family in particular. This might reflect a requirement for redundancy or broader substrate specificity in vertebrates (compared to invertebrates), due to their greater physiological complexity and thus potentially broader exposure to organic ions.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0693, USA
| | | | | |
Collapse
|
38
|
Abstract
Over the last 15 years, a number of transporters that translocate organic cations were characterized functionally and also identified on the molecular level. Organic cations include endogenous compounds such as monoamine neurotransmitters, choline, and coenzymes, but also numerous drugs and xenobiotics. Some of the cloned organic cation transporters accept one main substrate or structurally similar compounds (oligospecific transporters), while others translocate a variety of structurally diverse organic cations (polyspecific transporters). This review provides a survey of cloned organic cation transporters and tentative models that illustrate how different types of organic cation transporters, expressed at specific subcellular sites in hepatocytes and renal proximal tubular cells, are assembled into an integrated functional framework. We briefly describe oligospecific Na(+)- and Cl(-)-dependent monoamine neurotransmitter transporters ( SLC6-family), high-affinity choline transporters ( SLC5-family), and high-affinity thiamine transporters ( SLC19-family), as well as polyspecific transporters that translocate some organic cations next to their preferred, noncationic substrates. The polyspecific cation transporters of the SLC22 family including the subtypes OCT1-3 and OCTN1-2 are presented in detail, covering the current knowledge about distribution, substrate specificity, and recent data on their electrical properties and regulation. Moreover, we discuss artificial and spontaneous mutations of transporters of the SLC22 family that provide novel insight as to the function of specific protein domains. Finally, we discuss the clinical potential of the increasing knowledge about polymorphisms and mutations in polyspecific organic cation transporters.
Collapse
Affiliation(s)
- H Koepsell
- Institut für Anatomie und Zellbiologie, Bayerischen Julius-Maximilians-Universität, Koellikerstr. 6, 97070 Würzburg, Germany.
| | | | | |
Collapse
|
39
|
Youngblood GL, Sweet DH. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol 2004; 287:F236-44. [PMID: 15068970 DOI: 10.1152/ajprenal.00012.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An uncharacterized murine cDNA clone was identified and, through sequence, phylogenetic, and functional analysis, determined to encode the newest member of the organic anion transporter family, organic anion transporter 5 (Oat5; Slc22a19). The Oat5 cDNA clone contained an insert 1,964 bp in length with a predicted open reading frame (from bp 84 to bp 1,739) coding for a peptide 551 amino acids long. Slc22a19 was localized to mouse chromosome 19 near the genes encoding Oat1 (Slc22a6) and Oat3 (Slc22a8). Northern blot analysis revealed Oat5 is highly expressed in the kidney of adult mice and rats. No sexual dimorphism in renal or hepatic expression of Oat5 was observed. Unlike Oat1-3, Oat5 expression was not detected in the choroid plexus of either mice or rats. Murine Oat5-expressing Xenopus laevis oocytes supported increased accumulation of the mycotoxin ochratoxin A, compared with water-injected control oocytes. This uptake was significantly inhibited by probenecid and the organic anions 2,4-dichlorophenoxyacetic acid, salicylate, and estrone sulfate but not by para-aminohippurate or urate. Transport of ochratoxin A by murine Oat5 was saturable, with an estimated K(m) of 2.0 +/- 0.45 microM. Oat5-mediated transport was neither cis-inhibited nor trans-stimulated by the dicarboxylate glutarate. Uptake was also completely unaffected by short-circuiting of the membrane potential. Thus the motive forces behind Oat5 function, which provide insight into its membrane localization, need to be further resolved. These data demonstrate for the first time that this newly identified gene encodes a protein that functions as an organic anion transporter.
Collapse
Affiliation(s)
- Geri L Youngblood
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
40
|
Eraly SA, Bush KT, Sampogna RV, Bhatnagar V, Nigam SK. The molecular pharmacology of organic anion transporters: from DNA to FDA? Mol Pharmacol 2004; 65:479-87. [PMID: 14978224 DOI: 10.1124/mol.65.3.479] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal organic anion secretion has been implicated in numerous clinically significant drug interactions and adverse reactions, indicating the importance of a detailed understanding of this pathway for the development of optimum therapeutics. With the cloning of multiple genes encoding organic anion transporters (OATs), the study of organic anion secretion has entered the molecular age. In this review, we focus on various aspects of the molecular biology and pharmacology of the OATs, including discussion of their structural biology, genomic organization in pairs, developmental regulation, toxicology, and pharmacogenetics. We propose functional, pathophysiological, and evolutionary hypotheses to help explain recent experimental and genomic data.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA
| | | | | | | | | |
Collapse
|
41
|
Sekoguchi E, Sato N, Yasui A, Fukada S, Nimura Y, Aburatani H, Ikeda K, Matsuura A. A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J Biol Chem 2003; 278:38796-802. [PMID: 12882971 DOI: 10.1074/jbc.m306372200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carnitine-dependent transport of long-chain fatty acids is essential for fatty acid catabolism. In this system, the fatty acid moiety of acyl-CoA is transferred enzymatically to carnitine, and the resultant product, acylcarnitine, is imported into the mitochondrial matrix through a transporter named carnitine-acylcarnitine translocase (CACT). Here we report a novel mammalian protein homologous to CACT. The protein, designated as CACL (CACT-like), is localized to the mitochondria and has palmitoylcarnitine transporting activity. The tissue distribution of CACL is similar to that of CACT; both are expressed at a higher level in tissues using fatty acids as fuels, except in the brain, where only CACL is expressed. In addition, CACL is induced by partial hepatectomy or fasting. Thus, CACL may play an important role cooperatively with its homologue CACT in a stress-induced change of lipid metabolism, and may be specialized for the metabolism of a distinct class of fatty acids involved in brain function.
Collapse
Affiliation(s)
- Ei Sekoguchi
- Department of Geriatric Research, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Eraly SA, Blantz RC, Bhatnagar V, Nigam SK. Novel aspects of renal organic anion transporters. Curr Opin Nephrol Hypertens 2003; 12:551-8. [PMID: 12920404 DOI: 10.1097/00041552-200309000-00011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Organic anion transporters, transmembrane proteins present in the renal proximal tubule, are a critical component of the human drug excretion machinery. Recent advances have clarified the function of these transporters, with broad clinical implications for pharmacogenetics, drug interactions and adverse reactions. Here, we discuss these issues in the context of the basic biology of the transporters. RECENT FINDINGS Understanding of organic anion transporter function has proceeded on several fronts. The continued cataloging of organic anion transporter substrates has revealed that the transporters' activity likely underlies many common drug interactions and nephrotoxic adverse reactions. Meanwhile, immunohistochemical and physiological studies suggest their potential involvement in the apical as well as basolateral steps of renal organic anion secretion. In addition, studies of the genomic organization of these transporters reveal that they are found in pairs of similar and similarly expressed genes, suggesting that pair members are coordinately regulated. Finally, we hypothesize here that organic anion transporters might impact renal susceptibility to ischemia and toxic injury, because their uptake of substrates can result in the efflux of Krebs cycle intermediates, an important nutrient source for the proximal tubule. SUMMARY The study of these transporters will likely have a significant impact on renal pharmacology and pharmacogenetics. In this regard, the generation of organic anion transporter gene knockout mice could provide invaluable models for defects in renal drug-handling. Ultimately, detailed knowledge of organic anion transporter function will assist in the choice of optimum pharmacological therapies.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine1, University of California, San Diego, 9500 Gilman Drive, La Jolla, Californian 92093-0693, USA.
| | | | | | | |
Collapse
|
43
|
Li Z, Stuart RO, Eraly SA, Gittes G, Beier DR, Nigam SK. Debt91, a putative zinc finger protein differentially expressed during epithelial morphogenesis. Biochem Biophys Res Commun 2003; 306:623-8. [PMID: 12810064 DOI: 10.1016/s0006-291x(03)00875-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In a differential screen for genes that might be important in the regulation of epithelial morphogenesis, we identified a novel gene, Debt91 (differentially expressed in branching tubulogenesis), which is up-regulated in an in vitro model of renal tubulogenesis and branching. Debt91 appears to encode a 381 amino acid molecule with high Ser and Thr composition and is highly conserved at its N-terminus across species. Sequence analysis suggests that it is a coiled-coil nuclear phosphoprotein with zinc finger motifs at the N-terminal conserved region, which is rich in cysteine and histidine. Debt91 is located on mouse chromosome 6 at a region that has conserved synteny with human chromosome 2p11.2, and appears to express two transcripts in several mouse cell lines and adult tissues. On whole murine embryo blots Debt91 expresses primarily its small transcript and is differentially regulated during development. Analysis of expression in in vitro cell culture models suggests that Debt91 is an immediate early gene up-regulated during growth factor-induced branching tubulogenesis.
Collapse
Affiliation(s)
- Zhixing Li
- Renal Division, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Eraly SA, Hamilton BA, Nigam SK. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun 2003; 300:333-42. [PMID: 12504088 DOI: 10.1016/s0006-291x(02)02853-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Organic anion and cation transporters (OATs, OCTs, OCTNs, and ORCTLs), transmembrane proteins essential to renal xenobiotic excretion, are encoded by a group of related genes. As yet there have been no studies of the transcriptional regulation of this important gene family. While such studies have traditionally been labor-intensive, comparative genomics approaches are now available that have proven reliable guides to critical regulatory elements. We report here the genomic sequencing of murine OAT1 (the cDNA of which was originally cloned by us as NKT) and OAT3 (Roct), and derivation of phylogenetic footprints (evolutionarily conserved non-coding sequences) by comparison to the human genome. We find binding sites within these footprints for several transcription factors implicated in kidney development, including PAX1, PBX, WT1, and HNF1. Additionally, we note that OATs and OCTs occur in the human and mouse genomes as tightly linked pairs (OAT1 and OAT3, UST3 and OAT5, OAT4 and URAT1/RST, OCT1 and 2, OCTN1 and 2, ORCTL3 and 4) that are also close phylogenetic relations, with Flipt1 and 2, and OAT2 the only unpaired family members. Finally, we find that pair-members have similar tissue distributions, suggesting that the pairing might exist to facilitate the co-regulation of the genes within each pair.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0693, USA
| | | | | |
Collapse
|