1
|
Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer. J Lipid Res 2022; 63:100223. [PMID: 35537528 PMCID: PMC9184569 DOI: 10.1016/j.jlr.2022.100223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/18/2023] Open
Abstract
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.
Collapse
|
2
|
Bowers RR, Temkin AM, Guillette LJ, Baatz JE, Spyropoulos DD. The commonly used nonionic surfactant Span 80 has RXRα transactivation activity, which likely increases the obesogenic potential of oil dispersants and food emulsifiers. Gen Comp Endocrinol 2016; 238:61-68. [PMID: 27131391 DOI: 10.1016/j.ygcen.2016.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/22/2023]
Abstract
Obesity has reached pandemic proportions, and there is mounting evidence that environmental exposures to endocrine disrupting chemicals known as "obesogens" may contribute to obesity and associated medical conditions. The Deepwater Horizon (DWH) oil spill resulted in a massive environmental release of crude oil and remediation efforts applied large quantities of Corexit dispersants to the oil spill. The Corexit-enhanced Water Accommodated Fraction (CWAF) of DWH crude oil contains PPARγ transactivation activity, which is attributed to dioctyl sodium sulfosuccinate (DOSS), a probable obesogen. In addition to its use in oil dispersants, DOSS is commonly used as a stool softener and food additive. Because PPARγ functions as a heterodimer with RXRα to transcriptionally regulate adipogenesis we investigated the potential of CWAF to transactivate RXRα and herein demonstrated that the Corexit component Span 80 has RXRα transactivation activity. Span 80 bound to RXRα in the low micromolar range and promoted adipocyte differentiation of 3T3-L1 preadipocytes. Further, the combination of DOSS and Span 80 increased 3T3-L1 adipocyte differentiation substantially more than treatment with either chemical individually, likely increasing the obesogenic potential of Corexit dispersants. From a public health standpoint, the use of DOSS and Span 80 as food additives heightens concerns regarding their use and mandates further investigations.
Collapse
Affiliation(s)
- Robert R Bowers
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Alexis M Temkin
- Marine Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA
| | - Louis J Guillette
- Marine Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - John E Baatz
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics and Neonatology, Medical University of South Carolina, Charleston, SC, USA
| | - Demetri D Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Marine Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics and Neonatology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Su H, Zhou D, Pan YX, Wang X, Nakamura MT. Compensatory induction of Fads1 gene expression in heterozygous Fads2-null mice and by diet with a high n-6/n-3 PUFA ratio. J Lipid Res 2016; 57:1995-2004. [PMID: 27613800 DOI: 10.1194/jlr.m064956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 01/07/2023] Open
Abstract
In mammals, because they share a single synthetic pathway, n-6/n-3 ratios of dietary PUFAs impact tissue arachidonic acid (ARA) and DHA content. Likewise, SNPs in the human fatty acid desaturase (FADS) gene cluster impact tissue ARA and DHA. Here we tested the feasibility of using heterozygous Fads2-null-mice (HET) as an animal model of human FADS polymorphisms. WT and HET mice were fed diets with linoleate/α-linolenate ratios of 1:1, 7:1, and 44:1 at 7% of diet. In WT liver, ARA and DHA in phospholipids varied >2× among dietary groups, reflecting precursor ratios. Unexpectedly, ARA content was only <10% lower in HET than in WT livers, when fed the 44:1 diet, likely due to increased Fads1 mRNA in response to reduced Fads2 mRNA in HET. Consistent with the RNA data, C20:3n-6, which is elevated in minor FADS haplotypes in humans, was lower in HET than WT. Diet and genotype had little effect on brain PUFAs even though brain Fads2 mRNA was low in HET. No differences in cytokine mRNA were found among groups under unstimulated conditions. In conclusion, differential PUFA profiles between HET mice and human FADS SNPs suggest low expression of both FADS1 and 2 genes in human minor haplotypes.
Collapse
Affiliation(s)
- Hang Su
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.,Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Dan Zhou
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yuan-Xiang Pan
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Manabu T Nakamura
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
4
|
Olufsen M, Cangialosi MV, Arukwe A. Modulation of membrane lipid composition and homeostasis in salmon hepatocytes exposed to hypoxia and perfluorooctane sulfonamide, given singly or in combination. PLoS One 2014; 9:e102485. [PMID: 25047721 PMCID: PMC4105415 DOI: 10.1371/journal.pone.0102485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
The relative importance of environmental hypoxia due to global climate change on organismal ability to adapt to chemical insult and/or mechanisms of these responses is not well understood. Therefore, we have studied the effects of combined exposure to perfluorooctane sulfonamide (PFOSA) and chemically induced hypoxia on membrane lipid profile and homeostasis. Primary salmon hepatocytes were exposed to PFOSA at 0, 25 and 50 µM singly or in combination with either cobalt chloride (CoCl2: 0 and 150 µM) or deferroxamine (DFO: 0 and 100 µM) for 24 and 48 h. CoCl2 and DFO were used to induce cellular hypoxia because these two chemicals have been commonly used in animal experiments for this purpose and have been shown to increase hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) levels. Fatty acid (FA) profiles were determined by GC-MS, while gene expression patterns were determined by quantitative PCR. Hypoxic condition was confirmed with time-related increases of HIF-1α mRNA levels in CoCl2 and DFO exposed cells. In general, significant alterations of genes involved in lipid homeostasis were predominantly observed after 48 h exposure. Gene expression analysis showed that biological responses related to peroxisome proliferation (peroxisome proliferator-activated receptors (PPARs) and acyl coenzyme A (ACOX)) and FA desaturation (Δ5- and Δ6-desaturases: FAD5 and FAD6, respectively) and elongation (FAE) were elevated slightly by single exposure (i.e. either PFOSA, CoCl2 or DFO exposure alone), and these responses were potentiated in combined exposure conditions. Principal component analysis (PCA) showed a clustering of peroxisome proliferation responses at transcript levels and FA desaturation against membrane FAs levels whose changes were explained by PFOSA and chemically induced hypoxia exposures. Overall, our data show that most of the observed responses were stronger in combined stressor exposure conditions, compared to individual stressor exposure. In general, our data show that hypoxia may, singly or in combination with PFOSA produce deleterious health, physiological and developmental consequences through the alteration of membrane lipid profile in organisms.
Collapse
Affiliation(s)
- Marianne Olufsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Maria V. Cangialosi
- Department of Food and Environmental Science “Prof. G. Stagno d’Alcontres”, University of Messina, Messina, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2013; 53:124-44. [PMID: 24362249 DOI: 10.1016/j.plipres.2013.12.001] [Citation(s) in RCA: 500] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Barbara E Yudell
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Juan J Loor
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Devarshi PP, Jangale NM, Ghule AE, Bodhankar SL, Harsulkar AM. Beneficial effects of flaxseed oil and fish oil diet are through modulation of different hepatic genes involved in lipid metabolism in streptozotocin-nicotinamide induced diabetic rats. GENES AND NUTRITION 2012; 8:329-42. [PMID: 23225194 DOI: 10.1007/s12263-012-0326-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/14/2012] [Indexed: 01/06/2023]
Abstract
Dietary omega-3 fatty acids have been demonstrated to have positive physiological effects on lipid metabolism, cardiovascular system and insulin resistance. Type-2 diabetes (T2DM) is known for perturbations in fatty acid metabolism leading to dyslipidemia. Our objective was to investigate beneficial effects of dietary flaxseed oil and fish oil in streptozotocin-nicotinamide induced diabetic rats. Thirty-six adult, male, Wistar rats were divided into six groups: three diabetic and three non-diabetic. Diabetes was induced by an injection of nicotinamide (110 mg/kg) and STZ (65 mg/kg). The animals received either control, flaxseed oil or fish oil (10 % w/w) enriched diets for 35 days. Both diets lowered serum triglycerides and very low-density lipoprotein cholesterol levels and elevated serum high-density lipoprotein cholesterol levels in diabetic rats, while serum total cholesterol and LDL-C levels remained unaffected. Both the diets increased omega-3 levels in plasma and RBCs of diabetic rats. Flaxseed oil diet significantly up-regulated the key transcription factor peroxisome proliferator-activated receptor-α (PPAR-α ) and down-regulated sterol regulatory element-binding protein-1 (SREBP-1) in diabetic rats, which would have increased β-oxidation of fatty acids and concomitantly reduced lipogenesis respectively, thereby reducing TG levels. Fish oil diet, on the contrary lowered serum TG levels without altering PPAR-α while it showed a non-significant reduction in SREBP-1 expression in diabetic rats. Another key finding of the study is the activation of D5 and D6 desaturases in diabetic rats by flaxseed oil diet or fish oil diets, which may have resulted in an improved omega-3 status and comparable effects shown by both diets. The reduced expression of Liver-fatty acid binding protein in diabetic rats was restored by fish oil alone, while both diets showed equal effects on adipocyte fatty acid-binding protein expression. We also observed down-regulation of atherogenic cytokines tumor necrosis factor-α and interleukin-6 by both the diets. In conclusion, dietary flaxseed oil and fish oil have therapeutic potential in preventing lipid abnormalities in T2DM.
Collapse
Affiliation(s)
- Prasad P Devarshi
- Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, 411043, Maharashtra, India
| | | | | | | | | |
Collapse
|
7
|
Wågbø AM, Cangialosi MV, Cicero N, Letcher RJ, Arukwe A. Perfluorooctane Sulfonamide-Mediated Modulation of Hepatocellular Lipid Homeostasis and Oxidative Stress Responses in Atlantic Salmon Hepatocytes. Chem Res Toxicol 2012; 25:1253-64. [DOI: 10.1021/tx300110u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ane Marit Wågbø
- Department
of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Maria V. Cangialosi
- Department of Food and Environmental
Science “Prof. G. Stagno d’Alcontres”, University of Messina, Salita Sperone 31, 98166, S.
Agata, Messina, Italy
| | - Nicola Cicero
- Department of Food and Environmental
Science “Prof. G. Stagno d’Alcontres”, University of Messina, Salita Sperone 31, 98166, S.
Agata, Messina, Italy
| | - Robert J. Letcher
- Ecotoxicology
and Wildlife Health
Division, Environment Canada, National
Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3,
Canada
| | - Augustine Arukwe
- Department
of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
8
|
Giacometti J, Tomljanovic AB, Milin C, Cuk M, Stasic BR. Olive and Corn Oil Enriched Diets Changed the Phospholipid Fatty Acid Composition in Mice Liver after One-Thirds Hepatectomy. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.32035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Lattka E, Eggers S, Moeller G, Heim K, Weber M, Mehta D, Prokisch H, Illig T, Adamski J. A common FADS2 promoter polymorphism increases promoter activity and facilitates binding of transcription factor ELK1. J Lipid Res 2010; 51:182-91. [PMID: 19546342 DOI: 10.1194/jlr.m900289-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fatty acid desaturases (FADS) play an important role in the formation of omega-6 and omega-3 highly unsaturated fatty acids (HUFAs). The composition of HUFAs in the human metabolome is important for membrane fluidity and for the modulation of essential physiological functions such as inflammation processes and brain development. Several recent studies reported significant associations of single nucleotide polymorphisms (SNPs) in the human FADS gene cluster with HUFA levels and composition. The presence of the minor allele correlated with a decrease of desaturase reaction products and an accumulation of substrates. We performed functional studies with two of the associated polymorphisms (rs3834458 and rs968567) and showed an influence of polymorphism rs968567 on FADS2 promoter activity by luciferase reporter gene assays. Electrophoretic mobility shift assays proved allele-dependent DNA-binding ability of at least two protein complexes to the region containing SNP rs968567. One of the proteins binding to this region in an allele-specific manner was shown to be the transcription factor ELK1 (a member of ETS domain transcription factor family). These results indicate that rs968567 influences FADS2 transcription and offer first insights into the modulation of complex regulation mechanisms of FADS2 gene transcription by SNPs.
Collapse
Affiliation(s)
- E Lattka
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fasting and sampling time affect liver gene expression of high-fat diet-fed mice. Animal 2010; 4:709-13. [DOI: 10.1017/s1751731109991583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Guillou H, Zadravec D, Martin PGP, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res 2009; 49:186-99. [PMID: 20018209 DOI: 10.1016/j.plipres.2009.12.002] [Citation(s) in RCA: 569] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 12/31/2022]
Abstract
In mammalian cells, elongases and desaturases play critical roles in regulating the length and degree of unsaturation of fatty acids and thereby their functions and metabolic fates. In the past decade, a great deal has been learnt about these enzymes and the first part of this review summarizes our current knowledge concerning these enzymes. More recently, several transgenic mouse models lacking either an elongase (Elovl3(-/-), Elovl4(-/-), Elovl5(-/-), Elovl6(-/-)) or a desaturase (Scd-1(-/-), Scd-2(-/-), Fads2(-/-)) have been developed and the second part of this review focuses on the insights gained from studies with these mice, as well as from investigations on cell cultures.
Collapse
Affiliation(s)
- Hervé Guillou
- Integrative Toxicology and Metabolism, Pôle de Toxicologie Alimentaire, Laboratoire de Pharmacologie et Toxicologie, Institut National de la Recherche Agronomique INRA UR66, Toulouse Cedex 3, France
| | | | | | | |
Collapse
|
12
|
Koo HY, Miyashita M, Cho BHS, Nakamura MT. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus. Biochem Biophys Res Commun 2009; 390:285-9. [PMID: 19799862 DOI: 10.1016/j.bbrc.2009.09.109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n=6 per group) were meal-fed (4h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P=0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.
Collapse
Affiliation(s)
- Hyun-Young Koo
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
13
|
Harnack K, Andersen G, Somoza V. Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids. Nutr Metab (Lond) 2009; 6:8. [PMID: 19228394 PMCID: PMC2656504 DOI: 10.1186/1743-7075-6-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 02/19/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Conversion of linoleic acid (LA) and alpha-linolenic acid (ALA) to their higher chain homologues in humans depends on the ratio of ingested n6 and n3 fatty acids. DESIGN AND METHODS In order to determine the most effective ratio with regard to the conversion of ALA to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), human hepatoma cells were incubated with varying ratios of [¹³C] labeled linoleic acid ([¹³C]LA)- and alpha-linolenic acid ([¹³C]ALA)-methylesters. Regulative cellular signal transduction pathways involved were studied by determinations of transcript levels of the genes encoding delta-5 desaturase (D5D) and delta-6 desaturase (D6D), peroxisome proliferator-activated receptor alpha (PPARα) and sterol regulatory element binding protein 1c (SREBP-1c). Mitogen-activated protein kinase kinase 1 (MEK1) and mitogen-activated protein kinase kinase kinase 1 (MEKK1) were also examined. RESULTS Maximum conversion was observed in cells incubated with the mixture of [¹³C]LA/[¹³C]ALA at a ratio of 1:1, where 0.7% and 17% of the recovered [¹³C]ALA was converted to DHA and EPA, respectively. Furthermore, differential regulation of enzymes involved in the conversion at the transcript level, dependent on the ratio of administered n6 to n3 fatty acids in human hepatocytes was demonstrated. CONCLUSION Formation of EPA and DHA was highest at an administered LA/ALA ratio of 1:1, although gene expression of PPARα, SREBP-1c and D5D involved in ALA elongation were higher in the presence of ALA solely. Also, our findings suggest that a diet-induced enhancement of the cell membrane content of highly unsaturated fatty acids is only possible up to a certain level.
Collapse
Affiliation(s)
- Kerstin Harnack
- Deutsche Forschungsanstalt für Lebensmittelchemie, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | | | | |
Collapse
|
14
|
Okada T, Sato-Furuhashi N, Iwata F, Mugishima H. The interaction between intestinal fatty acid-binding protein 2 polymorphism and delta-6 desaturase activity in obese children. Am J Clin Nutr 2008; 87:1066-7; author reply 1067. [PMID: 18400734 DOI: 10.1093/ajcn/87.4.1066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Ringseis R, Luci S, Spielmann J, Kluge H, Fischer M, Geissler S, Wen G, Hirche F, Eder K. Clofibrate treatment up-regulates novel organic cation transporter (OCTN)-2 in tissues of pigs as a model of non-proliferating species. Eur J Pharmacol 2008; 583:11-7. [DOI: 10.1016/j.ejphar.2008.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/17/2007] [Accepted: 01/14/2008] [Indexed: 01/09/2023]
|
16
|
Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim Biophys Acta Mol Basis Dis 2008; 1782:341-8. [PMID: 18346472 DOI: 10.1016/j.bbadis.2008.02.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/06/2008] [Accepted: 02/15/2008] [Indexed: 12/17/2022]
Abstract
Dietary fructose has been suspected to contribute to development of metabolic syndrome. However, underlying mechanisms of fructose effects are not well characterized. We investigated metabolic outcomes and hepatic expression of key regulatory genes upon fructose feeding under well defined conditions. Rats were fed a 63% (w/w) glucose or fructose diet for 4 h/day for 2 weeks, and were killed after feeding or 24-hour fasting. Liver glycogen was higher in the fructose-fed rats, indicating robust conversion of fructose to glycogen through gluconeogenesis despite simultaneous induction of genes for de novo lipogenesis and increased liver triglycerides. Fructose feeding increased mRNA of previously unidentified genes involved in macronutrient metabolism including fructokinase, aldolase B, phosphofructokinase-1, fructose-1,6-bisphosphatase and carbohydrate response element binding protein (ChREBP). Activity of glucose-6-phosphate dehydrogenase, a key enzyme for ChREBP activation, remained elevated in both fed and fasted fructose groups. In the fasted liver, the fructose group showed lower non-esterified fatty acids, triglycerides and microsomal triglyceride transfer protein mRNA, suggesting low VLDL synthesis even though plasma VLDL triglycerides were higher. In conclusion, fructose feeding induced a broader range of genes than previously identified with simultaneous increase in glycogen and triglycerides in liver. The induction may be in part mediated by ChREBP.
Collapse
|
17
|
Kawaguchi T, Taniguchi E, Itou M, Sumie S, Oriishi T, Matsuoka H, Nagao Y, Sata M. Branched-chain amino acids improve insulin resistance in patients with hepatitis C virus-related liver disease: report of two cases. Liver Int 2007; 27:1287-92. [PMID: 17919242 DOI: 10.1111/j.1478-3231.2007.01559.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection causes insulin resistance. Because increased insulin resistance is a risk factor for development of hepatocellular carcinoma and reduced long-term survival, insulin resistance is a therapeutic target in patients with HCV infection. Branched-chain amino acids (BCAAs) are not only structural constituents of proteins but they are also considered as regulators of insulin signalling. We first describe two cases suggesting that administration of BCAAs improves insulin resistance associated with HCV-related liver disease. Although there were no changes in body weight, plasma glucose concentration and haemoglobin A1c (HbA1c) value were decreased. Moreover, BCAAs caused a decrease in both fasting insulin concentration and the value of homeostasis model assessment for insulin resistance. Thus, BCAAs are a potential therapeutic agent for improving insulin resistance in patients with HCV-related liver disease.
Collapse
Affiliation(s)
- Takumi Kawaguchi
- Department of Digestive Disease Information & Research, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Portolesi R, Powell BC, Gibson RA. Δ6 Desaturase mRNA Abundance in HepG2 Cells Is Suppressed by Unsaturated Fatty Acids. Lipids 2007; 43:91-5. [DOI: 10.1007/s11745-007-3122-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 09/26/2007] [Indexed: 11/24/2022]
|
19
|
Okada T, Sato NF, Kuromori Y, Miyashita M, Tanigutchi K, Iwata F, Hara M, Ayusawa M, Harada K, Saito E. Characteristics of obese children with low content of arachidonic acid in plasma lipids. Pediatr Int 2007; 49:437-42. [PMID: 17587264 DOI: 10.1111/j.1442-200x.2007.02394.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although there have been many studies on the relationship between obesity and long-chain polyunsaturated fatty acid (LCPUFA), the results and their interpretation are controversial, especially in children. Arachidonic acid (AA), the product of n-6 LCPUFA, is reported to be related to insulin resistance. The purpose of the present paper was to investigate the LCPUFA profile in obese children and mechanisms that contribute to reduced AA content. METHOD An age- and sex-matched control study was performed. The study subjects were 59 obese children (mean age, 11.8 years) and 53 healthy non-obese children (mean age, 12.5 years). The study parameters included anthropometric measurements, serum lipids, leptin and fatty acid composition in plasma. RESULTS Plasma fatty acids in obese children had lower linoleic acid (P < 0.0001) and higher dihomo-gamma-linolenic acid (P = 0.0004) than those in non-obese children. In all subjects combined, delta-6 desaturase (D6D) index (ratios of [C 18:3n-6+C 20:2n-6]/C 20:4n-6 or C 20:4n-6/C 18: 2n-6) correlated with leptin (P < 0.0001). There was no significant difference in AA content between obese and non-obese. However, the AA content was low (<mean - 1SD in controls) in 27.1% of obese children, in whom D6D index was not elevated in spite of high insulin concentration. CONCLUSION Obese children had changes in plasma LCPUFA profile that indicate upregulation of n-6 LCPUFA metabolism, probably caused by activated D6D activity to compensate AA demand. Heterogeneity of AA content in obese children depends on D6D and delta-5-desaturase activity, which may reflect insulin sensitivity.
Collapse
Affiliation(s)
- Tomoo Okada
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luci S, Giemsa B, Kluge H, Eder K. Clofibrate causes an upregulation of PPAR-α target genes but does not alter expression of SREBP target genes in liver and adipose tissue of pigs. Am J Physiol Regul Integr Comp Physiol 2007; 293:R70-7. [PMID: 17363680 DOI: 10.1152/ajpregu.00603.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of clofibrate treatment on expression of target genes of peroxisome proliferator-activated receptor (PPAR)-α and various genes of the lipid metabolism in liver and adipose tissue of pigs. An experiment with 18 pigs was performed in which pigs were fed either a control diet or the same diet supplemented with 5 g clofibrate/kg for 28 days. Pigs treated with clofibrate had heavier livers, moderately increased mRNA concentrations of various PPAR-α target genes in liver and adipose tissue, a higher concentration of 3-hydroxybutyrate, and markedly lower concentrations of triglycerides and cholesterol in plasma and lipoproteins than control pigs ( P < 0.05). mRNA concentrations of sterol regulatory element-binding proteins (SREBP)-1 and -2, insulin-induced genes ( Insig) -1 and Insig-2, and the SREBP target genes acetyl-CoA carboxylase, 3-methyl-3-hydroxyglutaryl-CoA reductase, and low-density lipoprotein receptor in liver and adipose tissue and mRNA concentrations of apolipoproteins A-I, A-II, and C-III in the liver were not different between both groups of pigs. In conclusion, this study shows that clofibrate treatment activates PPAR-α in liver and adipose tissue and has a strong hypotriglyceridemic and hypocholesterolemic effect in pigs. The finding that mRNA concentrations of some proteins responsible for the hypolipidemic action of fibrates in humans were not altered suggests that there were certain differences in the mode of action compared with humans. It is also shown that PPAR-α activation by clofibrate does not affect hepatic expression of SREBP target genes involved in synthesis of triglycerides and cholesterol homeostasis in liver and adipose tissue of pigs.
Collapse
Affiliation(s)
- Sebastian Luci
- Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Emil-Abderhalden-Strasse 26, D-06108 Halle/Saale, Germany
| | | | | | | |
Collapse
|
21
|
Wheelock CE, Goto S, Hammock BD, Newman JW. Clofibrate-induced changes in the liver, heart, brain and white adipose lipid metabolome of Swiss-Webster mice. Metabolomics 2007; 3:137-145. [PMID: 19079556 PMCID: PMC2597807 DOI: 10.1007/s11306-007-0052-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Peroxisome proliferator activated receptor alpha (PPARα) agonists are anti-hyperlipidemic drugs that influence fatty acid combustion, phospholipid biosynthesis and lipoprotein metabolism. To evaluate impacts on other aspects of lipid metabolism, we applied targeted metabolomics to liver, heart, brain and white adipose tissue samples from male Swiss-Webster mice exposed to a 5 day, 500 mg/kg/day regimen of i.p. clofibrate. Tissue concentrations of free fatty acids and the fatty acid content of sphingomyelin, cardiolipin, cholesterol esters, triglycerides and phospholipids were quantified. Responses were tissue-specific, with changes observed in the liver > heart ≫ brain > adipose. These results indicate that liver saturated fatty acid-rich triglycerides feeds clofibrate-induced monounsaturated fatty acid (MUFA) synthesis, which were incorporated into hepatic phospholipids and sphingomyelin. In addition, selective enrichment of docosahexeneoic acid in the phosphatidylserine of liver (1.7-fold), heart (1.6-fold) and brain (1.5-fold) suggests a clofibrate-dependent systemic activation of phosphatidylserine synthetase 2. Furthermore, the observed ~20% decline in cardiac sphingomyelin is consistent with activation of a sphingomeylinase with a substrate preference for polyunsaturate-containing sphingomyelin. Finally, perturbations in the liver, brain, and adipose cholesterol esters were observed, with clofibrate exposure elevating brain cholesterol arachidonyl-esters ~20-fold. Thus, while supporting previous findings, this study has identified novel impacts of PPARα agonist exposure on lipid metabolism that should be further explored.
Collapse
Affiliation(s)
- Craig E. Wheelock
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan 611-0011
| | - Susumu Goto
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan 611-0011
| | - Bruce D. Hammock
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616
| | - John W. Newman
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616
| |
Collapse
|
22
|
Clofibrate treatment in pigs: effects on parameters critical with respect to peroxisome proliferator-induced hepatocarcinogenesis in rodents. BMC Pharmacol 2007; 7:6. [PMID: 17437637 PMCID: PMC1858689 DOI: 10.1186/1471-2210-7-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/16/2007] [Indexed: 11/25/2022] Open
Abstract
Background In rodents treatment with fibrates causes hepatocarcinogenesis, probably as a result of oxidative stress and an impaired balance between apoptosis and cell proliferation in the liver. There is some debate whether fibrates could also induce liver cancer in species not responsive to peroxisome proliferation. In this study the effect of clofibrate treatment on peroxisome proliferation, production of oxidative stress, gene expression of pro- and anti-apoptotic genes and proto-oncogenes was investigated in the liver of pigs, a non-proliferating species. Results Pigs treated with clofibrate had heavier livers (+16%), higher peroxisome counts (+61%), higher mRNA concentration of acyl-CoA oxidase (+66%), a higher activity of catalase (+41%) but lower concentrations of hydrogen peroxide (-32%) in the liver than control pigs (P < 0.05); concentrations of lipid peroxidation products (thiobarbituric acid-reactive substances, conjugated dienes) and total and reduced glutathione in the liver did not differ between both groups. Clofibrate treated pigs also had higher hepatic mRNA concentrations of bax and the proto-oncogenes c-myc and c-jun and a lower mRNA concentration of bcl-XL than control pigs (P < 0.05). Conclusion The data of this study show that clofibrate treatment induces moderate peroxisome proliferation but does not cause oxidative stress in the liver of pigs. Gene expression analysis indicates that clofibrate treatment did not inhibit but rather stimulated apoptosis in the liver of these animals. It is also shown that clofibrate increases the expression of the proto-oncogenes c-myc and c-jun in the liver, an event which could be critical with respect to carcinogenesis. As the extent of peroxisome proliferation by clofibrate was similar to that observed in humans, the pig can be regarded as a useful model for investigating the effects of peroxisome proliferators on liver function and hepatocarcinogenesis.
Collapse
|
23
|
Montanaro MA, González MS, Bernasconi AM, Brenner RR. Role of liver X receptor, insulin and peroxisome proliferator activated receptor alpha on in vivo desaturase modulation of unsaturated fatty acid biosynthesis. Lipids 2007; 42:197-210. [PMID: 17393226 DOI: 10.1007/s11745-006-3006-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 12/03/2006] [Indexed: 11/29/2022]
Abstract
We examined the in vivo contribution of insulin, T090137 (T09), agonist of liver X receptor (LXR), fenofibrate, agonist of peroxisome proliferator activated receptor (PPAR-alpha) and sterol regulatory element binding protein-1c (SREBP-1c) on the unsaturated fatty acid synthesis controlled by Delta6 and Delta5 desaturases, compared with the effects on stearoylcoenzyme A desaturase-1. When possible they were checked at three levels: messenger RNA (mRNA), desaturase protein and enzymatic activity. In control rats, only fenofibrate increased the insulinemia that was maintained by the simultaneous administration of T09, but this increase has no specific effect on desaturase activity. T09 enhanced SREBP-1 in control animals and the mRNAs and activity of the three desaturases in control and type-1 diabetic rats, demonstrating a LXR/SREBP-1-mediated activation independent of insulin. However, simultaneous administration of insulin and T09 to diabetic rats led to a several-fold increase of the mRNAs of the desaturases, suggesting a strong synergic effect between insulin and LXR/retinoic X receptor (RXR). Moreover, this demonstrates the existence of an interaction between unsaturated fatty acids and cholesterol metabolism performed by the insulin/SREBP-1c system and LXR/RXR. PPAR-alpha also increased the expression and activity of the three desaturases independently of the insulinemia since it was equivalently evoked in streptozotocin diabetic rats. Besides, PPAR-alpha increased the palmitoylcoenzyme A elongase, evidencing a dual regulation in the fatty acid biosynthesis at the level of desaturases and elongases. The simultaneous administration of fenofibrate and T09 did not show additive effects on the mRNA expression and activity of the desaturases. Therefore, the results indicate a necessary sophisticated interaction of all these factors to produce the physiological effects.
Collapse
Affiliation(s)
- Mauro A Montanaro
- Instituto de Investigaciones Bioquímicas de La Plata, UNLP-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | |
Collapse
|
24
|
Ringseis R, Muschick A, Eder K. Dietary oxidized fat prevents ethanol-induced triacylglycerol accumulation and increases expression of PPARalpha target genes in rat liver. J Nutr 2007; 137:77-83. [PMID: 17182804 DOI: 10.1093/jn/137.1.77] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alcoholic fatty liver results from an impaired fatty acid catabolism due to blockade of PPARalpha and increased lipogenesis due to activation of sterol regulatory element-binding protein (SREBP)-1c. Because both oxidized fats (OF) and conjugated linoleic acids (CLA) have been demonstrated in rats to activate hepatic PPARalpha, we tested the hypothesis that these fats are able to prevent ethanol-induced triacylglycerol accumulation in the liver by upregulation of PPARalpha-responsive genes. Forty-eight male rats were assigned to 6 groups and fed isocaloric liquid diets containing either sunflower oil (SFO) as a control fat, OF prepared by heating of SFO, or CLA, in the presence and absence of ethanol, for 4 wk. Administration of ethanol lowered mRNA concentrations of PPARalpha and the PPARalpha-responsive genes medium chain acyl-CoA dehydrogenase, long chain acyl-CoA dehydrogenase, acyl-CoA oxidase, carnitine palmitoyl-CoA transferase I, and cytochrome P450 4A1 and increased triacylglycerol concentrations in the liver (P < 0.05). OF increased hepatic mRNA concentrations of PPARalpha-responsive genes and lowered hepatic triacylglycerol concentrations compared with SFO (P < 0.05) whereas CLA did not. Rats fed OF with ethanol had similar mRNA concentrations of PPARalpha-responsive genes and similar triacylglycerol concentrations in the liver as rats fed SFO or CLA without ethanol. In contrast, hepatic mRNA concentrations of SREBP-1c and fatty acid synthase were not altered by OF or CLA compared with SFO. This study shows that OF prevents an alcohol-induced triacylglycerol accumulation in rats possibly by upregulation of hepatic PPARalpha-responsive genes involved in oxidation of fatty acids, whereas CLA does not exert such an effect.
Collapse
Affiliation(s)
- Robert Ringseis
- Institut für Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, D-06108 Halle (Saale), Germany
| | | | | |
Collapse
|
25
|
Luci S, Kluge H, Hirche F, Eder K. Clofibrate Increases Hepatic Triiodothyronine (T3)- and Thyroxine (T4)-Glucuronosyltransferase Activities and Lowers Plasma T3and T4Concentrations in Pigs. Drug Metab Dispos 2006; 34:1887-92. [PMID: 16896063 DOI: 10.1124/dmd.106.011379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rats, clofibrate acts as a microsomal enzyme inducer and disrupts the metabolism of thyroid hormones by increasing hepatic glucuronidation of thyroxine. Whether similar effects occur in the pig has not yet been investigated. This study was performed to investigate the effect of clofibrate treatment on metabolism of thyroid hormones in pigs. To this end, an experiment with 18 pigs, which were assigned to two groups, was performed. One group received a control diet, and the other group was fed the same diet supplemented with 5 g of clofibrate/kg for 28 days. Pigs treated with clofibrate had higher hepatic activities of T(3)- and T(4)-UDP glucuronosyltransferases (UGT) and lower concentrations of total and free T(4) and total T(3) in plasma than control pigs (P < 0.05). Weights and histology of the thyroid gland (epithelial height, follicle lumen diameter) did not differ between the two groups, but pigs treated with clofibrate had higher mRNA concentrations of various genes in the thyroid responsive to thyroid-stimulating hormone (TSH) such as TSH receptor, sodium iodine symporter, thyroid peroxidase, and cathepsin B than control pigs (P < 0.05). Pigs treated with clofibrate also had lower hepatic mRNA concentrations of proteins involved in plasma thyroid hormone transport [thyroxine-binding globulin (P < 0.10), transthyretin (P < 0.05), and albumin (P < 0.05)] and thyroid hormone receptor alpha(1) (P < 0.05) than control pigs. In conclusion, this study shows that clofibrate treatment induces a strong activation of T(3)- and T(4)-UGT in pigs, leading to increased glucuronidation and markedly reduced plasma concentrations of these hormones, accompanied by a moderate stimulation of thyroid function.
Collapse
Affiliation(s)
- Sebastian Luci
- Institut für Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Emil-Abderhalden-Str 26, Halle/S, Germany
| | | | | | | |
Collapse
|
26
|
Li Y, Nara TY, Nakamura MT. Peroxisome proliferator-activated receptor α is required for feedback regulation of highly unsaturated fatty acid synthesis. J Lipid Res 2005; 46:2432-40. [PMID: 16106047 DOI: 10.1194/jlr.m500237-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Delta6 desaturase (D6D), the rate-limiting enzyme for highly unsaturated fatty acid (HUFA) synthesis, is induced by essential fatty acid-deficient diets. Sterol regulatory element-binding protein-1c (SREBP-1c) in part mediates this induction. Paradoxically, D6D is also induced by ligands of peroxisome proliferator-activated receptor alpha (PPARalpha). Here, we report a novel physiological role of PPARalpha in the induction of genes specific for HUFA synthesis by essential fatty acid-deficient diets. D6D mRNA induction by essential fatty acid-deficient diets in wild-type mice was diminished in PPARalpha-null mice. This impaired D6D induction in PPARalpha-null mice was not attributable to feedback suppression by tissue HUFAs because PPARalpha-null mice had lower HUFAs in liver phospholipids than did wild-type mice. Furthermore, PPARalpha-responsive genes were induced in wild-type mice under essential fatty acid deficiency, suggesting the generation of endogenous PPARalpha ligand(s). Contrary to genes for HUFA synthesis, the induction of other lipogenic genes under essential fatty acid deficiency was higher in PPARalpha-null mice than in wild-type mice even though mature SREBP-1c protein did not differ between the genotypes. The expression of PPARgamma was markedly increased in PPARalpha-null mice and might have contributed to the induction of genes for de novo lipogenesis. Our study suggests that PPARalpha, together with SREBP-1c, senses HUFA status and confers pathway-specific induction of HUFA synthesis by essential fatty acid-deficient diets.
Collapse
Affiliation(s)
- Yue Li
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
27
|
Montanaro MA, Bernasconi AM, González MS, Rimoldi OJ, Brenner RR. Effects of fenofibrate and insulin on the biosynthesis of unsaturated fatty acids in streptozotocin diabetic rats. Prostaglandins Leukot Essent Fatty Acids 2005; 73:369-78. [PMID: 16099631 DOI: 10.1016/j.plefa.2005.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 06/18/2005] [Indexed: 10/25/2022]
Abstract
Both insulin and PPAR-alpha up-modulate hepatic Delta9, Delta6 and Delta5 desaturating enzymes involved in the biosynthesis of mono- and polyunsaturated fatty acids. Currently, we have examined for 9 days the independent and simultaneous effects of daily glargine insulin and fenofibrate administration on the insulinemia, glycemia, hepatic acyl-CoA oxidase activity and mRNAs and enzymatic activities of stearoyl-CoA desaturase-1 (SCD-1) and Delta5 desaturase in streptozotocin diabetic rats. Glargine insulin depressed the hyperglycemia of diabetic rats at 4h, but not after 24h of injection. Fenofibrate increased the radioimmunoreactive insulinemia in non-diabetic rats without changing the glycemia. Insulin increased the mRNAs and activities of SCD-1 and Delta5 desaturase depressed in diabetic rats. Fenofibrate increased acyl-CoA oxidase activity, and the mRNAs and activities of both desaturating enzymes in non-diabetic, diabetic and insulin-treated diabetic rats, but was less effective in the mRNAs modification of diabetic animals. Therefore, insulin, and fenofibrate through PPAR-alpha activation, enhance liver mRNAs and activities of SCD-1 and Delta5 desaturases independently and synergistically through different mechanisms. Insulin and fenofibrate independently increased the 18:1/18:0 ratio in liver lipids, increasing the fluidity of the membranes. The 20:4/18:2 ratio was maintained. Fenofibrate increased palmitic acid, but decreased stearic acid percentage in liver lipids.
Collapse
Affiliation(s)
- Mauro A Montanaro
- Facultad de Ciencias Médicas,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, calles 60 y 120, Argentina
| | | | | | | | | |
Collapse
|
28
|
Goyens PLL, Spilker ME, Zock PL, Katan MB, Mensink RP. Compartmental modeling to quantify α-linolenic acid conversion after longer term intake of multiple tracer boluses. J Lipid Res 2005; 46:1474-83. [PMID: 15834128 DOI: 10.1194/jlr.m400514-jlr200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To estimate in vivo alpha-linolenic acid (ALA; C18:3n-3) conversion, 29 healthy subjects consumed for 28 days a diet providing 7% of energy from linoleic acid (C18:2n-6) and 0.4% from ALA. On day 19, subjects received a single bolus of 30 mg of uniformly labeled [(13)C]ALA and for the next 8 days 10 mg twice daily. Fasting plasma phospholipid concentrations of (12)C- and (13)C-labeled ALA, eicosapentaenoic acid (EPA; C20:5n-3), docosapentaenoic acid (DPA; C22:5n-3), and docosahexaenoic acid (DHA; C22:6n-3) were determined on days 19, 21, 23, 26, 27, and 28. To estimate hepatic conversion of n-3 fatty acids, a tracer model was developed based on the averaged (13)C data of the participants. A similar tracee model was solved using the averaged (12)C values, the kinetic parameters derived from the tracer model, and mean ALA consumption. ALA incorporation into plasma phospholipids was estimated by solving both models simultaneously. It was found that nearly 7% of dietary ALA was incorporated into plasma phospholipids. From this pool, 99.8% was converted into EPA and 1% was converted into DPA and subsequently into DHA. The limited incorporation of dietary ALA into the hepatic phospholipid pool contributes to the low hepatic conversion of ALA into EPA. A low conversion of ALA-derived EPA into DPA might be an additional obstacle for DHA synthesis.
Collapse
Affiliation(s)
- Petra L L Goyens
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Cheon Y, Nara TY, Band MR, Beever JE, Wallig MA, Nakamura MT. Induction of overlapping genes by fasting and a peroxisome proliferator in pigs: evidence of functional PPARα in nonproliferating species. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1525-35. [PMID: 15650118 DOI: 10.1152/ajpregu.00751.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα), a key regulator of fatty acid oxidation, is essential for adaptation to fasting in rats and mice. However, physiological functions of PPARα in other species, including humans, are controversial. A group of PPARα ligands called peroxisome proliferators (PPs) causes peroxisome proliferation and hepatocarcinogenesis only in rats and mice. To elucidate the role of PPARα in adaptation to fasting in nonproliferating species, we compared gene expressions in pig liver from fasted and clofibric acid (a PP)-fed groups against a control diet-fed group. As in rats and mice, fasting induced genes involved with mitochondrial fatty acid oxidation and ketogenesis in pigs. Those genes were also induced by clofibric acid feeding, indicating that PPARα mediates the induction of these genes. In contrast to rats and mice, little or no induction of genes for peroxisomal or microsomal fatty acid oxidation was observed in clofibric acid-fed pigs. Histology showed no significant hyperplasia or hepatomegaly in the clofibric acid-fed pigs, whereas it showed a reduction of glycogen by clofibric acid, an effect of PPs also observed in rats. Copy number of PPARα mRNA was higher in pigs than in mice and rats, suggesting that peroxisomal proliferation and hyperresponse of several genes to PPs seen only in rats and mice are unrelated to the abundance of PPARα. In conclusion, PPARα is likely to play a central role in adaptation to fasting in pig liver as in rats and mice.
Collapse
Affiliation(s)
- Yewon Cheon
- Division of Nutritional Sciences, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 South Goodwin Ave., Bevier Hall #439, Urbana, IL, USA
| | | | | | | | | | | |
Collapse
|
30
|
Montanaro MA, Lombardo YB, González MS, Bernasconi AM, Chicco A, Rimoldi OJ, Basabe JC, Brenner RR. Effect of troglitazone on the desaturases in a rat model of insulin-resistance induced by a sucrose-rich diet. Prostaglandins Leukot Essent Fatty Acids 2005; 72:241-50. [PMID: 15763435 DOI: 10.1016/j.plefa.2004.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/18/2004] [Accepted: 11/06/2004] [Indexed: 11/24/2022]
Abstract
A sucrose-rich diet generates time-dependent metabolic disorders similar to those found in diabetes type 2. After 8 month (mo) this diet evoked in the rat an increase of blood glucose, free fatty acids (FFA) and triacylycerides (TG) without insulin modification, an interruption of liver stearoyl-CoA desaturase-1 (SCD-1) mRNA and activity increase found at 6 mo, and an enhacement of Delta6 and Delta5 desaturase mRNA and Delta6 activity. We found that the administration of troglitazone (TRO), a peroxisome-proliferator-activated receptors gamma (PPAR-gamma) agonist, for 2 mo normalized plasma FFA, TG, and glucose without altering the insulinemia. It depressed liver SCD-1 mRNA in both control and sucrose-fed rats, decreasing the 18:1n-9/18:0 ratio in serum and liver lipids, and eliminated the increasing effect on mRNA and activity of Delta6 and Delta5 desaturases. These findings evidence again that desaturases are not affected through an insulin resistant effect evoked by the sucrose-rich diet and TRO recovers the altered metabolic plasma parameters as it corresponds to a PPAR-gamma agonist, but its effect on hepatic desaturases can not be attributed to a direct action on liver by PPAR-gamma, insulin, and even by an insulin sensitizing mechanism, suggesting it would be evoked indirectly through hepatic PPAR-alpha deactivation induced by the FFA decrease.
Collapse
Affiliation(s)
- M A Montanaro
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, calles 60 y 120, 1900-La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Fatty acids (FA) regulate the expression of genes involved in lipid and energy metabolism. In particular, two transcription factors, sterol regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator activated receptor alpha (PPARalpha), have emerged as key mediators of gene regulation by FA. SREBP-1c induces a set of lipogenic enzymes in liver. Polyunsaturated fatty acids (PUFA), but not saturated or monounsaturated FA, suppress the induction of lipogenic genes by inhibiting the expression and processing of SREBP-1c. This unique effect of PUFA suggests that SREBP-1c may regulate the synthesis of unsaturated FA for incorporation into glycerolipids and cholesteryl esters. PPARalpha plays an essential role in metabolic adaptation to fasting by inducing the genes for mitochondrial and peroxisomal FA oxidation as well as those for ketogenesis in mitochondria. FA released from adipose tissue during fasting are considered as ligands of PPARalpha. Dietary PUFA, except for 18:2 n-6, are likely to induce FA oxidation enzymes via PPARalpha as a "feed-forward " mechanism. PPARalpha is also required for regulating the synthesis of highly unsaturated FA, indicating pleiotropic functions of PPARalpha in the regulation of lipid metabolic pathways. It is yet to be determined whether FA regulate other transcription factors such as liver-X receptor, hepatocyte nuclear factor 4, and carbohydrate response element binding protein.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Dietary fat has a dual role in human physiology: a) it functions as a source of energy and structural components for cells; b) it functions as a regulator of gene expression that impacts lipid, carbohydrate, and protein metabolism, as well as cell growth and differentiation. Fatty acid effects on gene expression are cell-specific and influenced by fatty acid structure and metabolism. Fatty acids interact with the genome through several mechanisms. They regulate the activity or nuclear abundance of several transcription factors, including PPAR, LXR, HNF-4, NFkappaB, and SREBP. Fatty acids or their metabolites bind directly to specific transcription factors to regulate gene transcription. Alternatively, fatty acids indirectly act on gene expression through their effects on a) specific enzyme-mediated pathways, such as cyclooxygenase, lipoxygenase, protein kinase C, or sphingomyelinase signal transduction pathways; or b) pathways that involve changes in membrane lipid/lipid raft composition that affect G-protein receptor or tyrosine kinase-linked receptor signaling. Further definition of these fatty acid-regulated pathways will provide insight into the role dietary fat plays in human health and the onset and progression of several chronic diseases, like coronary artery disease and atherosclerosis, dyslipidemia and inflammation, obesity and diabetes, cancer, major depressive disorders, and schizophrenia.
Collapse
Affiliation(s)
- Donald B Jump
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
33
|
Abstract
Fatty acid desaturases introduce a double bond in a specific position of long-chain fatty acids, and are conserved across kingdoms. Degree of unsaturation of fatty acids affects physical properties of membrane phospholipids and stored triglycerides. In addition, metabolites of polyunsaturated fatty acids are used as signaling molecules in many organisms. Three desaturases, Delta9, Delta6, and Delta5, are present in humans. Delta-9 catalyzes synthesis of monounsaturated fatty acids. Oleic acid, a main product of Delta9 desaturase, is the major fatty acid in mammalian adipose triglycerides, and is also used for phospholipid and cholesteryl ester synthesis. Delta-6 and Delta5 desaturases are required for the synthesis of highly unsaturated fatty acids (HUFAs), which are mainly esterified into phospholipids and contribute to maintaining membrane fluidity. While HUFAs may be required for cold tolerance in plants and fish, the primary role of HUFAs in mammals is cell signaling. Arachidonic acid is required as substrates for eicosanoid synthesis, while docosahexaenoic acid is required in visual and neuronal functions. Desaturases in mammals are regulated at the transcriptional level. Reflecting overlapping functions, three desaturases share a common mechanism of a feedback regulation to maintain products in membrane phospholipids. At the same time, regulation of Delta9 desaturase differs from Delta6 and Delta5 desaturases because its products are incorporated into more diverse lipid groups. Combinations of multiple transcription factors achieve this sophisticated differential regulation.
Collapse
Affiliation(s)
- Manabu T Nakamura
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|