1
|
Gomez-Zepeda D, Perrière N, Glacial F, Taghi M, Chhuon C, Scherrmann JM, Sergent P, Moreau A, Denizot C, Parmentier Y, Cisternino S, Decleves X, Menet MC. Functional and targeted proteomics characterization of a human primary endothelial cell model of the blood-brain barrier (BBB) for drug permeability studies. Toxicol Appl Pharmacol 2023; 465:116456. [PMID: 36918128 DOI: 10.1016/j.taap.2023.116456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
The blood-brain barrier (BBB) protects the brain from toxins but hinders the penetration of neurotherapeutic drugs. Therefore, the blood-to-brain permeability of chemotherapeutics must be carefully evaluated. Here, we aimed to establish a workflow to generate primary cultures of human brain microvascular endothelial cells (BMVECs) to study drug brain permeability and bioavailability. Furthermore, we characterized and validated this BBB model in terms of quantitative expression of junction and drug-transport proteins, and drug permeability. We isolated brain microvessels (MVs) and cultured BMVECs from glioma patient biopsies. Then, we employed targeted LC-MS proteomics for absolute protein quantification and immunostaining to characterize protein localization and radiolabeled drugs to predict drug behavior at the Human BBB. The abundance levels of ABC transporters, junction proteins, and cell markers in the cultured BMVECs were similar to the MVs and correctly localized to the cell membrane. Permeability values (entrance and exit) and efflux ratios tested in vitro using the primary BMVECs were within the expected in vivo values. They correctly reflected the transport mechanism for 20 drugs (carbamazepine, diazepam, imipramine, ketoprofen, paracetamol, propranolol, sulfasalazine, terbutaline, warfarin, cimetidine, ciprofloxacin, digoxin, indinavir, methotrexate, ofloxacin, azidothymidine (AZT), indomethacin, verapamil, quinidine, and prazosin). We established a human primary in vitro model suitable for studying blood-to-brain drug permeability with a characterized quantitative abundance of transport and junction proteins, and drug permeability profiles, mimicking the human BBB. Our results indicate that this approach could be employed to generate patient-specific BMVEC cultures to evaluate BBB drug permeability and develop personalized therapeutic strategies.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France; German Cancer Research Center (DKFZ), Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Immunoproteomics unit (D191), Mainz, Germany.
| | - Nicolas Perrière
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Fabienne Glacial
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Meryam Taghi
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Cérina Chhuon
- Université de Paris, Structure Fédérative de Recherche Necker, Proteomics Platform Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Jean-Michel Scherrmann
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Philippe Sergent
- Technologie Servier, Département de recherche biopharmaceutique, Orléans, France
| | - Amélie Moreau
- Technologie Servier, Département de recherche biopharmaceutique, Orléans, France
| | - Claire Denizot
- Technologie Servier, Département de recherche biopharmaceutique, Orléans, France
| | - Yannick Parmentier
- Technologie Servier, Département de recherche biopharmaceutique, Orléans, France
| | - Salvatore Cisternino
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants Malades, Service Pharmacie, Paris, France
| | - Xavier Decleves
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, UF Biologie du médicament et toxicologie, Paris, France
| | - Marie-Claude Menet
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France; Institut de Chimie Physique, CNRS 8000, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
2
|
Dadwal UC, de Andrade Staut C, Tewari NP, Awosanya OD, Mendenhall SK, Valuch CR, Nagaraj RU, Blosser RJ, Li J, Kacena MA. Effects of diet, BMP-2 treatment, and femoral skeletal injury on endothelial cells derived from the ipsilateral and contralateral limbs. J Orthop Res 2022; 40:439-448. [PMID: 33713476 PMCID: PMC8435543 DOI: 10.1002/jor.25033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Type 2 diabetes (T2D) results in physiological and structural changes in bone, contributing to poor fracture healing. T2D compromises microvascular performance, which can negatively impact bone regeneration as angiogenesis is required for new bone formation. We examined the effects of bone morphogenetic protein-2 (BMP-2) administered locally at the time of femoral segmental bone defect (SBD) surgery, and its angiogenic impacts on endothelial cells (ECs) isolated from the ipsilateral or contralateral tibia in T2D mice. Male C57BL/6 mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) starting at 8 weeks. After 12 weeks, the T2D phenotype in HFD mice was confirmed via glucose and insulin tolerance testing and echoMRI, and all mice underwent SBD surgery. Mice were treated with BMP-2 (5 µg) or saline at the time of surgery. Three weeks postsurgery, bone marrow ECs were isolated from ipsilateral and contralateral tibias, and proliferation, angiogenic potential, and gene expression of the cells was analyzed. BMP-2 treatment increased EC proliferation by two fold compared with saline in LFD contralateral tibia ECs, but no changes were seen in surgical tibia EC proliferation. BMP-2 treatment enhanced vessel-like structure formation in HFD mice whereas, the opposite was observed in LFD mice. Still, in BMP-2 treated LFD mice, ipsilateral tibia ECs increased expression of CD31, FLT-1, ANGPT1, and ANGPT2. These data suggest that the modulating effects of T2D and BMP-2 on the microenvironment of bone marrow ECs may differentially influence angiogenic properties at the fractured limb versus the contralateral limb.
Collapse
Affiliation(s)
- Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA
| | | | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | | | | | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Melissa Ann Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA,Corresponding Author: Melissa A. Kacena, Ph.D., Director of Basic and Translational Research, Professor of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN 46202, (317) 278-3482 – office, (317) 278-9568 – fax,
| |
Collapse
|
3
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
4
|
Gliemann L, Rytter N, Piil P, Nilton J, Lind T, Nyberg M, Cocks M, Hellsten Y. The Endothelial Mechanotransduction Protein Platelet Endothelial Cell Adhesion Molecule-1 Is Influenced by Aging and Exercise Training in Human Skeletal Muscle. Front Physiol 2018; 9:1807. [PMID: 30618819 PMCID: PMC6305393 DOI: 10.3389/fphys.2018.01807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Aim: The aim was to determine the role of aging and exercise training on endothelial mechanosensor proteins and the hyperemic response to shear stress by passive leg movement. Methods: We examined the expression of mechanosensor proteins and vascular function in young (n = 14, 25 ± 3 years) and old (n = 14, 72 ± 5 years) healthy male subjects with eight weeks of aerobic exercise training. Before and after training, the hyperaemic response to passive leg movement was determined and a thigh muscle biopsy was obtained before and after passive leg movement to assess the acute effect of increased shear stress. Biopsies were analyzed for protein amount and phosphorylation of mechanosensor proteins; Platelet endothelial cell adhesion molecule-1 (PECAM-1), Vascular endothelial cadherin, Vascular endothelial growth factor receptor-2 and endothelial nitric oxide synthase (eNOS). Results: Before training, the old group presented a lower hyperaemic response to passive leg movement and a 35% lower (P < 0.05) relative basal phosphorylation level of PECAM-1 whereas there was no difference for the other mechanosensor proteins. After training, the eNOS protein amount, the amount of PECAM-1 protein and the passive leg movement-induced phosphorylation of PECAM-1 were higher in both groups. The hyperaemic response to passive leg movement was higher after training in the young group only. Conclusion: Aged individuals have a lower hyperaemic response to passive leg movement and a lower relative basal phosphorylation of PECAM-1 than young. The higher PECAM-1 phosphorylation despite a similar hyperemic level in the aged observed after training, suggests that training improved shear stress responsiveness of this mechanotransduction protein.
Collapse
Affiliation(s)
- Lasse Gliemann
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Rytter
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Nilton
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lind
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Cocks
- Exercise Metabolism Research Group, School of Sport and Exercise Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Liao D, Mei H, Hu Y, Newman DK, Newman PJ. CRISPR-mediated deletion of the PECAM-1 cytoplasmic domain increases receptor lateral mobility and strengthens endothelial cell junctional integrity. Life Sci 2018; 193:186-193. [PMID: 29122551 DOI: 10.1016/j.lfs.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 11/04/2017] [Indexed: 10/18/2022]
Abstract
AIMS PECAM-1 is an abundant endothelial cell surface receptor that becomes highly enriched at endothelial cell-cell junctions, where it functions to mediate leukocyte transendothelial migration, sense changes in shear and flow, and maintain the vascular permeability barrier. Homophilic interactions mediated by the PECAM-1 extracellular domain are known to be required for PECAM-1 to perform these functions; however, much less is understood about the role of its cytoplasmic domain in these processes. MAIN METHODS CRISPR/Cas9 gene editing technology was employed to generate human endothelial cell lines that either lack PECAM-1 entirely, or express mutated PECAM-1 missing the majority of its cytoplasmic domain (∆CD-PECAM-1). The endothelial barrier function was evaluated by Electric Cell-substrate Impedance Sensing, and molecular mobility was assessed by fluorescence recovery after photobleaching. KEY FINDINGS We found that ∆CD-PECAM-1 concentrates normally at endothelial cell junctions, but has the unexpected property of conferring increased baseline barrier resistance, as well as a more rapid rate of recovery of vascular integrity following thrombin-induced disruption of the endothelial barrier. Fluorescence recovery after photobleaching analysis revealed that ∆CD-PECAM-1 exhibits increased mobility within the plane of the plasma membrane, thus allowing it to redistribute more rapidly back to endothelial cell-cell borders to reform the vascular permeability barrier. SIGNIFICANCE The PECAM-1 cytoplasmic domain plays a novel role in regulating the rate and extent of vascular permeability following thrombotic or inflammatory challenge.
Collapse
Affiliation(s)
- Danying Liao
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States; Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Debra K Newman
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States; Department of Pharmacology, Medical College of Wisconsin, Milwaukee, United States; Department of Microbiology, Medical College of Wisconsin, Milwaukee, United States; The Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
| | - Peter J Newman
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, United States; Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Department of Pharmacology, Medical College of Wisconsin, Milwaukee, United States; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States; The Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States.
| |
Collapse
|
6
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Fu Y, Sun W, Xu C, Gu S, Li Y, Liu Z, Chen J. Genetic variants inKDRtranscriptional regulatory region affect promoter activity and intramuscular fat deposition inErhualianpigs. Anim Genet 2014; 45:373-80. [DOI: 10.1111/age.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Y. Fu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - W. Sun
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - C. Xu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - S. Gu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Y. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Z. Liu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - J. Chen
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
8
|
Tsuneki M, Madri JA. CD44 regulation of endothelial cell proliferation and apoptosis via modulation of CD31 and VE-cadherin expression. J Biol Chem 2014; 289:5357-70. [PMID: 24425872 DOI: 10.1074/jbc.m113.529313] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD44 has been implicated in a diverse array of cell behaviors and in a diverse range of signaling pathway activations under physiological and pathophysiological conditions. We have documented a role for CD44 in mediating vascular barrier integrity via regulation of PECAM-1 (CD31) expression. We now report our findings on the roles of CD44 in modulating proliferation and apoptosis of microvascular endothelial cells via its modulation of CD31 and VE-cadherin expression and the Hippo pathway. In this report, we demonstrate persistent increased proliferation and reduced activations of both effector and initiator caspases in high cell density, postconfluent CD44 knock-out (CD44KO), and CD31KO cultures. We found that reconstitution with murine CD44 or CD31 restored the proliferative and caspase activation rates to WT levels. Moreover, we have confirmed that the CD31 ecto-domain plays a key role in specific caspase cascades as well as cell adhesion-mediated cell growth and found that CD31 deficiency results in a reduction in VE-cadherin expression. Last, we have shown that both CD44KO and CD31KO endothelial cells exhibit a reduced VE-cadherin expression correlating with increased survivin expression and YAP nuclear localization, consistent with inactivation of the Hippo pathway, resulting in increased proliferation and decreased apoptosis. These findings support the concept that CD44 mediates several of its effects on endothelia through modulation of adhesion protein expression, which, in addition to its known modulation of junctional integrity, matrix metalloproteinase levels and activation, interactions with cortical membrane proteins, and selected signaling pathways, plays a key role as a critical regulator of vascular function.
Collapse
Affiliation(s)
- Masayuki Tsuneki
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520
| | | |
Collapse
|
9
|
Maruotti N, Corrado A, Neve A, Cantatore FP. Systemic effects of Wnt signaling. J Cell Physiol 2013; 228:1428-32. [PMID: 23359342 DOI: 10.1002/jcp.24326] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/14/2013] [Indexed: 12/15/2022]
Abstract
Wnt signaling plays a key role in several physiological and pathological aspects. Even if Wnt signal was first described more than 20 years ago, its role in systemic effects, such as angiogenesis and vascular disorders, bone biology, autoimmune diseases, neurological diseases, and neoplastic disorders, was only recently emerged through the use of animal and in vitro models. Moreover, Wnt signaling inhibitors, such as DKK-1, may be advantageously considered targets for the treatment of several diseases, including osteoporosis, vascular diseases, inflammatory diseases, neurological diseases, and cancer. Nevertheless, further studies are required to provide a complete understanding of this complex signaling pathway, and especially of its role in human diseases, considering the possible advantageous effects of Wnt signaling inhibitors on the progression of disease conditions.
Collapse
Affiliation(s)
- Nicola Maruotti
- Department of Rheumatology, University of Foggia Medical School, Foggia, Italy
| | | | | | | |
Collapse
|
10
|
Kemeny SF, Figueroa DS, Clyne AM. Hypo- and hyperglycemia impair endothelial cell actin alignment and nitric oxide synthase activation in response to shear stress. PLoS One 2013; 8:e66176. [PMID: 23776627 PMCID: PMC3680428 DOI: 10.1371/journal.pone.0066176] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/07/2013] [Indexed: 12/25/2022] Open
Abstract
Uncontrolled blood glucose in people with diabetes correlates with endothelial cell dysfunction, which contributes to accelerated atherosclerosis and subsequent myocardial infarction, stroke, and peripheral vascular disease. In vitro, both low and high glucose induce endothelial cell dysfunction; however the effect of altered glucose on endothelial cell fluid flow response has not been studied. This is critical to understanding diabetic cardiovascular disease, since endothelial cell cytoskeletal alignment and nitric oxide release in response to shear stress from flowing blood are atheroprotective. In this study, porcine aortic endothelial cells were cultured in 1, 5.55, and 33 mM D-glucose medium (low, normal, and high glucose) and exposed to 20 dynes/cm2 shear stress for up to 24 hours in a parallel plate flow chamber. Actin alignment and endothelial nitric oxide synthase phosphorylation increased with shear stress for cells in normal glucose, but not cells in low and high glucose. Both low and high glucose elevated protein kinase C (PKC) levels; however PKC blockade only restored actin alignment in high glucose cells. Cells in low glucose instead released vascular endothelial growth factor (VEGF), which translocated β-catenin away from the cell membrane and disabled the mechanosensory complex. Blocking VEGF in low glucose restored cell actin alignment in response to shear stress. These data suggest that low and high glucose alter endothelial cell alignment and nitric oxide production in response to shear stress through different mechanisms.
Collapse
Affiliation(s)
- Steven Frank Kemeny
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Dannielle Solomon Figueroa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Alisa Morss Clyne
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Fang C, Wen G, Zhang L, Lin L, Moore A, Wu S, Ye S, Xiao Q. An important role of matrix metalloproteinase-8 in angiogenesis in vitro and in vivo. Cardiovasc Res 2013; 99:146-55. [PMID: 23512982 DOI: 10.1093/cvr/cvt060] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Growing evidence suggests a close association of plaque angiogenesis with atherosclerotic plaque formation and progression, and an important role of matrix metalloproteinase (MMP) in angiogenesis and atherosclerosis. We attempted to investigate the functional involvements of MMP8 in angiogenesis. METHODS AND RESULTS Knockdown of MMP8 in human umbilical vein endothelial cells (HuVECs) with MMP-8 shRNA lentivirus resulted in a decrease in in vitro capillary-like network formation, cell proliferation and migration, and impaired its capacity of in vivo angiogenesis. Less nuclear accumulation of β-catenin and lower β-catenin target gene expression levels was observed in the HuVECs expressing lower levels of endogenous MMP8. Knockdown of endogenous MMP8 in HuVECs down-regulated platelet/endothelial cell adhesion molecule-1 (PECAM-1) expression by converting less angiotensin I to II, which is an inducer for PECAM-1 gene expression. Aortic rings isolated from MMP8(-/-)/apoE(-/-) mice had less endothelial cell sprouting, and endothelial cells in MMP8(-/-)/apoE(-/-) mice had a lower ability to migrate into Matrigel plugs and less capacity of proliferation and angiogenesis. Moreover, immunohistochemical analyses revealed that MMP8 was expressed in microvessels within human atherosclerotic plaques and aneurysm. Finally, analyses of MMP8(-/-)/apoE(-/-) and MMP8(+/+)/apoE(-/-) mice fed a Western diet for 12 weeks showed that MMP8-deficient mice had small lesion size and less endothelial cells within atherosclerotic lesions. CONCLUSION We demonstrated for the first time that MMP8 plays an important role in angiogenesis in vitro and in vivo. Our findings provide new insights into the molecular mechanisms of plaque angiogenesis and suggest that MMP8 is a potential therapeutic target of cardiovascular diseases.
Collapse
Affiliation(s)
- Changcun Fang
- Department of Cardiovascular Surgery, Qilu Hospital, School of Medicine, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gelfand BD, Meller J, Pryor AW, Kahn M, Bortz PDS, Wamhoff BR, Blackman BR. Hemodynamic activation of beta-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression. Arterioscler Thromb Vasc Biol 2011; 31:1625-33. [PMID: 21527747 DOI: 10.1161/atvbaha.111.227827] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The goal of this study was to assess the activity of β-catenin/T-cell-specific transcription factor (TCF) signaling in atherosclerosis development and its regulation of fibronectin in vascular endothelium. METHODS AND RESULTS Histological staining identified preferential nuclear localization of β-catenin in the endothelium of atheroprone aorta before and during lesion development. Transgenic reporter studies revealed that increased levels of TCF transcriptional activity in endothelium correlated anatomically with β-catenin nuclear localization and fibronectin deposition. Exposure of endothelial cells to human-derived atheroprone shear stress induced nuclear localization of β-catenin, transcriptional activation of TCF, and expression of fibronectin. Activation of fibronectin expression required β-catenin, TCF, and the transcriptional coactivator CRBP-binding protein. Finally, we identified platelet endothelial cell adhesion molecule-1 as a critical regulator of constitutive β-catenin and glycogen synthase kinase-3β activities. CONCLUSIONS These data reveal novel constitutive activation of the endothelial β-catenin/TCF signaling pathway in atherosclerosis and regulation of fibronectin through hemodynamic shear stress.
Collapse
Affiliation(s)
- Bradley D Gelfand
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Privratsky JR, Newman DK, Newman PJ. PECAM-1: conflicts of interest in inflammation. Life Sci 2010; 87:69-82. [PMID: 20541560 DOI: 10.1016/j.lfs.2010.06.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/21/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a cell adhesion and signaling receptor that is expressed on hematopoietic and endothelial cells. PECAM-1 is vital to the regulation of inflammatory responses, as it has been shown to serve a variety of pro-inflammatory and anti-inflammatory functions. Pro-inflammatory functions of PECAM-1 include the facilitation of leukocyte transendothelial migration and the transduction of mechanical signals in endothelial cells emanating from fluid shear stress. Anti-inflammatory functions include the dampening of leukocyte activation, suppression of pro-inflammatory cytokine production, and the maintenance of vascular barrier integrity. Although PECAM-1 has been well-characterized and studied, the mechanisms through which PECAM-1 regulates these seemingly opposing functions, and how they influence each other, are still not completely understood. The purpose of this review, therefore, is to provide an overview of the pro- and anti-inflammatory functions of PECAM-1 with special attention paid to mechanistic insights that have thus far been revealed in the literature in hopes of gaining a clearer picture of how these opposing functions might be integrated in a temporal and spatial manner on the whole organism level. A better understanding of how inflammatory responses are regulated should enable the development of new therapeutics that can be used in the treatment of acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201, USA.
| | | | | |
Collapse
|
14
|
Han W, Wang W, Mohammed KA, Su Y. Alpha-defensins increase lung fibroblast proliferation and collagen synthesis via the beta-catenin signaling pathway. FEBS J 2009; 276:6603-14. [PMID: 19814765 PMCID: PMC2879066 DOI: 10.1111/j.1742-4658.2009.07370.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alpha-defensins are released from granules of leukocytes and are implicated in inflammatory and fibrotic lung diseases. In the present study, the effects of alpha-defensins on the proliferation and collagen synthesis of lung fibroblasts were examined. We found that alpha-defensin-1 and alpha-defensin-2 induced dose-dependent increases in the incorporation of 5-bromo-2'-deoxy-uridine into newly synthesized DNA in two lines of human lung fibroblasts (HFL-1 and LL-86), suggesting that alpha-defensin-1 and alpha-defensin-2 stimulate the proliferation of lung fibroblasts. alpha-defensin-1 and alpha-defensin-2 also increased collagen-I mRNA (COL1A1) levels and protein contents of collagen-I and active/dephosphorylated beta-catenin without changes in total beta-catenin protein content in lung fibroblasts (HFL-1 and LL-86). Inhibition of the beta-catenin signaling pathway using quercetin prevented increases in cell proliferation and the protein content of collagen-I and active/dephosphorylated beta-catenin in lung fibroblasts, and in COL1A1 mRNA levels and collagen release into culture medium induced by alpha-defensin-1 and alpha-defensin-2. Knocking-down beta-catenin using small interfering RNA technology also prevented alpha-defensin-induced increases in cell proliferation and the protein content of collagen-I and active/dephosphorylated beta-catenin in lung fibroblasts, and in COL1A1 mRNA levels. Moreover, increases in the phosphorylation of glycogen synthase kinase 3beta, accumulation/activation of beta-catenin, and collagen synthesis induced by alpha-defensin-1 and alpha-defensin-2 were prevented by p38 mitogen-activated protein kinase inhibitor SB203580 and phosphoinositide 3-kinase inhibitor LY294002. These results indicate that alpha-defensin-1 and alpha-defensin-2 stimulate proliferation and collagen synthesis of lung fibroblasts. The beta-catenin signaling pathway mediates alpha-defensin-induced increases in cell proliferation and collagen synthesis of lung fibroblasts. alpha-defensin-induced activation of beta-catenin in lung fibroblasts might be caused by phosphorylation/inactivation of glycogen synthase kinase 3beta as a result of the activation of the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase/Akt pathways.
Collapse
Affiliation(s)
- Weihong Han
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
15
|
Klein D, Demory A, Peyre F, Kroll J, Géraud C, Ohnesorge N, Schledzewski K, Arnold B, Goerdt S. Wnt2 acts as an angiogenic growth factor for non-sinusoidal endothelial cells and inhibits expression of stanniocalcin-1. Angiogenesis 2009; 12:251-65. [PMID: 19444628 DOI: 10.1007/s10456-009-9145-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Recently, we have shown that Wnt2 is an autocrine growth and differentiation factor for hepatic sinusoidal endothelial cells. As Wnt signaling has become increasingly important in vascular development and cancer, we analyzed Wnt signaling in non-sinusoidal endothelial cells of different vascular origin (HUVEC, HUAEC, HMVEC-LLy). Upon screening the multiple components of the Wnt pathway, we demonstrated lack of Wnt2 expression, but presence of Frizzled-4, one of its receptors, in cultured non-sinusoidal endothelial cells. Treatment of these cells by exogenous Wnt2 induced endothelial proliferation and sprouting angiogenesis in vitro. Upon analysis of Wnt2 tissue expression as a basis for paracrine Wnt2 effects on non-sinusoidal endothelial cells in vivo, Wnt2 was found to be expressed in densely vascularized murine malignant tumors and in wound healing tissues in close proximity to CD31+ endothelial cells. By gene profiling, stanniocalcin-1 (STC1), a known regulator of angiogenesis, was identified as a target gene of Wnt2 signaling in HUVEC down-regulated by Wnt2 treatment. Tumor-conditioned media counter-acted Wnt2 and up-regulated STC1 expression in HUVEC. In conclusion, we provide evidence that Wnt2 acts as an angiogenic factor for non-sinusoidal endothelium in vitro and in vivo whose target genes undergo complex regulation by the tissue microenvironment.
Collapse
Affiliation(s)
- Diana Klein
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University Heidelberg, Mannheim, Germany. Diana.Klein.@haut.ma.uni-heidelberg.de
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gu A, Tsark W, Holmes KV, Shively JE. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture. Exp Cell Res 2009; 315:1668-82. [PMID: 19285068 DOI: 10.1016/j.yexcr.2009.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 02/11/2009] [Accepted: 02/25/2009] [Indexed: 01/12/2023]
Abstract
CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (-8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as -5 to -3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased over time. QRT-PCR analysis of the anti-CEACAM1 treated ES cells revealed a significant decrease in the expression of Ceacam1, Pecam1, Tie-1, and Flk-1, while VE-Cad and Tie-2 expression were unaffected. These results suggest that the expression and signaling of CEACAM1 may affect the expression of other factors known to play critical roles in vasculogenesis. Furthermore this 3D model of vasculogenesis in an environment of extracellular matrix may be a useful model for comparison to existing models of angiogenesis.
Collapse
Affiliation(s)
- Angel Gu
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
17
|
Seidman MA, Chew TW, Schenkel AR, Muller WA. PECAM-independent thioglycollate peritonitis is associated with a locus on murine chromosome 2. PLoS One 2009; 4:e4316. [PMID: 19180231 PMCID: PMC2628736 DOI: 10.1371/journal.pone.0004316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 01/05/2009] [Indexed: 01/13/2023] Open
Abstract
Background Previous studies have demonstrated that knockout or inhibition of Platelet/Endothelial Cell Adhesion Molecule (PECAM, CD31) in a number of murine strains results in impaired inflammatory responses, but that no such phenotype is seen in the C57BL/6 (B6) murine background. Methodology/Principal Findings We have undertaken a quantitative trait locus (QTL) mapping effort between FVB/n (FVB) and B6 mice deficient for PECAM to identify the gene or genes responsible for this unique feature of B6 mice. We have identified a locus on murine chromosome 2 at approximately 35.8 Mb that is strongly associated (LOD score = 9.0) with inflammatory responses in the absence of PECAM. Conclusions/Significance These data potentiate further study of the diapedesis machinery, as well as potential identification of new components of this machinery. As such, this study is an important step to better understanding the processes of inflammation.
Collapse
Affiliation(s)
- Michael A. Seidman
- Department of Pathology, Weill Cornell Medical College, New York, New York, United States of America
| | - Tina W. Chew
- Department of Pathology, Weill Cornell Medical College, New York, New York, United States of America
| | - Alan R. Schenkel
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biological Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - William A. Muller
- Department of Pathology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Although progress has been made in understanding the role of growth factors and their receptors in angiogenesis, little is known about how the Wnt family of growth factors function in the vasculature. Wnts are multifunctional factors that act through the frizzled receptors to regulate proliferation, apoptosis, branching morphogenesis, inductive processes, and cell polarity. All of these processes must occur as developing vascular structures are formed and maintained. Recent evidence has linked the Wnt/Frizzled signaling pathway to proper vascular growth in murine and human retina. Here we review the literature describing the angiogenic functions for Wnt signaling and focus on a newly discovered angiogenic factor, Norrin, which acts through the Wnt receptor, Frizzled4.
Collapse
Affiliation(s)
- Nancy L Parmalee
- Department of Genetics and Development, Irving Research Center, NY, NY 10032, USA
| | | |
Collapse
|
19
|
Abstract
The roles of growth factors such as angiopoietin (Ang) and vascular endothelial growth factor (VEGF) in angiogenesis have been known for some time, yet we have just an incipient appreciation for the contribution of Wnts to this process. Cellular proliferation and polarity, apoptosis, branching morphogenesis, inductive processes, and the maintenance of stem cells in an undifferentiated, proliferative state are all regulated by Wnt signaling. The development and maintenance of vascular structures are dependent on all these processes, and their orchestration has, to some extent, been revealed in studies of VEGF and Ang receptors. Recent evidence links the Wnt/Frizzled signaling pathway to proper vascular growth in mammals but our knowledge of Wnt function in the vasculature is rudimentary. Further insight into vascular development and the process of angiogenesis depends on evaluating the function of novel endothelial regulatory pathways such as Wnt/Frizzled signaling.
Collapse
|
20
|
Miragliotta V, Ipiña Z, Lefebvre-Lavoie J, Lussier JG, Theoret CL. Equine CTNNB1 and PECAM1 nucleotide structure and expression analyses in an experimental model of normal and pathological wound repair. BMC PHYSIOLOGY 2008; 8:1. [PMID: 18237399 PMCID: PMC2268708 DOI: 10.1186/1472-6793-8-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 01/31/2008] [Indexed: 12/03/2022]
Abstract
BACKGROUND Wound healing in horses is fraught with complications. Specifically, wounds on horse limbs often develop exuberant granulation tissue which behaves clinically like a benign tumor and resembles the human keloid in that the evolving scar is trapped in the proliferative phase of repair, leading to fibrosis. Clues gained from the study of over-scarring in horses should eventually lead to new insights into how to prevent unwanted scar formation in humans. cDNA fragments corresponding to CTNNB1 (coding for beta-catenin) and PECAM1, genes potentially contributing to the proliferative phase of repair, were previously identified in a mRNA expression study as being up-regulated in 7 day wound biopsies from horses. The aim of the present study was to clone full-length equine CTNNB1 and PECAM1 cDNAs and to study the spatio-temporal expression of mRNAs and corresponding proteins during repair of body and limb wounds in a horse model. RESULTS The temporal pattern of the two genes was similar; except for CTNNB1 in limb wounds, wounding caused up-regulation of mRNA which did not return to baseline by the end of the study. Relative over-expression of both CTNNB1 and PECAM1 mRNA was noted in body wounds compared to limb wounds. Immunostaining for both beta-catenin and PECAM1 was principally observed in endothelial cells and fibroblasts and was especially pronounced in wounds having developed exuberant granulation tissue. CONCLUSION This study is the first to characterize equine cDNA for CTNNB1 and PECAM1 and to document that these genes are expressed during wound repair in horses. It appears that beta-catenin may be regulated in a post-transcriptional manner while PECAM1 might help thoracic wounds mount an efficient inflammatory response in contrast to what is observed in limb wounds. Furthermore, data from this study suggest that beta-catenin and PECAM1 might interact to modulate endothelial cell and fibroblast proliferation during wound repair in the horse.
Collapse
Affiliation(s)
- Vincenzo Miragliotta
- Department of veterinary anatomy, biochemistry and physiology, University of Pisa, Viale delle Piagge 2 56100 Pisa, Italy
| | - Zoë Ipiña
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Josiane Lefebvre-Lavoie
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Jacques G Lussier
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Christine L Theoret
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|
21
|
DiMaio TA, Sheibani N. PECAM-1 isoform-specific functions in PECAM-1-deficient brain microvascular endothelial cells. Microvasc Res 2007; 75:188-201. [PMID: 18029285 DOI: 10.1016/j.mvr.2007.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/25/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is alternatively spliced generating eight isoforms that only differ in the length of their cytoplasmic domain. Multiple isoforms of PECAM-1 are present in the endothelium and their expression levels are regulated during vascular development and angiogenesis. However, the functional significance of PECAM-1 isoforms during these processes remains largely unknown. We recently showed that mouse brain endothelial (bEND) cells prepared from PECAM-1-deficient (PECAM-1-/-) mice differ in their cell adhesive and migratory properties compared to PECAM-1+/+ bEND cells. Here we demonstrate that the restoration of PECAM-1 expression in these cells affects their adhesive and migratory properties in an isoform-specific manner. Expression of Delta14&15 PECAM-1, the predominant isoform present in the mouse endothelium, in PECAM-1-/- bEND cells activated MAPK/ERKs, disrupted adherens junctions, and enhanced cell migration and capillary morphogenesis in Matrigel. In contrast, expression of Delta15 PECAM-1 in PECAM-1-/- bEND cells had minimal effects on their activation of MAPK/ERKs, migration, and capillary morphogenesis. The effects of PECAM-1 on cell adhesive and migratory properties were mediated in an isoform-specific manner, at least in part, through its interactions with intracellular signaling proteins, including SHP-2 and Src. These results suggest that the impact of PECAM-1 on EC adhesion, migration, and capillary morphogenesis is modulated by alternative splicing of its cytoplasmic domain.
Collapse
Affiliation(s)
- Terri A DiMaio
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792-4673, USA
| | | |
Collapse
|
22
|
Nimmagadda S, Geetha-Loganathan P, Scaal M, Christ B, Huang R. FGFs, Wnts and BMPs mediate induction of VEGFR-2 (Quek-1) expression during avian somite development. Dev Biol 2007; 305:421-9. [PMID: 17425953 DOI: 10.1016/j.ydbio.2007.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 11/28/2022]
Abstract
Regulation of VEGFR-2 (Quek1) is an important mechanism during blood vessel formation. In the paraxial mesoderm, Quek1 expression is restricted to the lateral portion of the somite and later to sclerotomal cells surrounding the neural tube. By implanting FGF 8b/8c or SU 5402 beads into the paraxial mesoderm, we show that FGF8 in addition to BMP4 from the intermediate mesoderm (IM) is a positive regulator of VEGFR-2 (Quek1) expression in the quail embryo. The expression of Quek1 in the medial somite half is normally repressed by the notochord and Sfrps-expression in the neural tube. Over-expression of Wnt 1/3a also results in an up-regulation of Quek1 expression in the somites. We also show that up-regulation of FGF8/Wnt 1/3a leads to an increase in the number of endothelial cells, whereas inhibition of FGF and Wnt signaling by SU 5402 and Sfrp-2 results in a loss of endothelial cells. Our results demonstrate that the regulation of Quek1 expression in the somites is mediated by the cooperative actions of BMP4, FGF8 and Wnt-signaling pathways.
Collapse
Affiliation(s)
- Suresh Nimmagadda
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Masckauchán TNH, Kitajewski J. Wnt/Frizzled signaling in the vasculature: new angiogenic factors in sight. Physiology (Bethesda) 2007; 21:181-8. [PMID: 16714476 DOI: 10.1152/physiol.00058.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt growth factors function via Frizzled receptors to affect cellular proliferation, differentiation, apoptosis, and migration. Wnt/Frizzled signaling is now linked to human hereditary disorders with retinal vascular defects, implicating Wnts as angiogenic factors. Here, we discuss Wnts and a novel Frizzled ligand, Norrin, in physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- T Néstor H Masckauchán
- Department of Pathology, OB/GYN and Institute of Cancer Genetics, Columbia University Medical Center, New York, New York, USA
| | | |
Collapse
|
24
|
Neria F, Caramelo C, Peinado H, González-Pacheco FR, Deudero JJP, de Solis AJ, Fernández-Sánchez R, Peñate S, Cano A, Castilla MA. Mechanisms of endothelial cell protection by blockade of the JAK2 pathway. Am J Physiol Cell Physiol 2006; 292:C1123-31. [PMID: 17035297 DOI: 10.1152/ajpcell.00548.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of the JAK2/STAT pathway has been implicated recently in cytoprotective mechanisms in both vascular smooth muscle cells and astrocytes. The advent of JAK2-specific inhibitors provides a practical tool for the study of this pathway in different cellular types. An interest in finding methods to improve endothelial cell (EC) resistance to injury led us to examine the effect of JAK2/STAT inhibition on EC protection. Furthermore, the signaling pathways involved in JAK2/STAT inhibition-related actions were examined. Our results reveal, for the first time, that blockade of JAK2 with the tyrosine kinase inhibitor AG490 strongly protects cultured EC against cell detachment-dependent death and serum deprivation and increases reseeding efficiency. Confirmation of the specificity of the effects of JAK2 inhibition was attained by finding protective effects on transfection with a dominant negative JAK2. Furthermore, AG490 blocked serum deprivation-induced phosphorylation of JAK2. In terms of mechanism, treatment with AG490 induces several relevant responses, both in monolayer and detached cells. These mechanisms include the following: 1) Increase and nuclear translocation of the active, dephosphorylated form of beta-catenin. In functional terms, this translocation is transcriptionally active, and its protective effect is further supported by the stimulation of EC cytoprotection by transfectionally induced excess of beta-catenin. 2) Increase of platelet endothelial cell adhesion molecule (PECAM)/CD31 levels. 3) Increase in total and phosphorylated AKT. 4) Increase in phosphorylated glycogen synthase kinase (GSK)3alpha/beta. The present findings imply potential practical applications of JAK2 inhibition on EC. These applications affect not only EC in the monolayer but also circulating detached cells and involve mechanistic interactions not previously described.
Collapse
Affiliation(s)
- Fernando Neria
- Laboratorio de Nefrología-Hipertensión, Fundación Jiménez Díaz, Universidad Autónoma, Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bentz GL, Jarquin-Pardo M, Chan G, Smith MS, Sinzger C, Yurochko AD. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J Virol 2006; 80:11539-55. [PMID: 16987970 PMCID: PMC1642592 DOI: 10.1128/jvi.01016-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) pathogenesis is dependent on the hematogenous spread of the virus to host tissue. While data suggest that infected monocytes are required for viral dissemination from the blood to the host organs, infected endothelial cells are also thought to contribute to this key step in viral pathogenesis. We show here that HCMV infection of endothelial cells increased the recruitment and transendothelial migration of monocytes. Infection of endothelial cells promoted the increased surface expression of cell adhesion molecules (intercellular cell adhesion molecule 1, vascular cell adhesion molecule 1, E-selectin, and platelet endothelial cell adhesion molecule 1), which were necessary for the recruitment of naïve monocytes to the apical surface of the endothelium and for the migration of these monocytes through the endothelial cell layer. As a mechanism to account for the increased monocyte migration, we showed that HCMV infection of endothelial cells increased the permeability of the endothelium. The cellular changes contributing to the increased permeability and increased naïve monocyte transendothelial migration include the disruption of actin stress fiber formation and the decreased expression of lateral junction proteins (occludin and vascular endothelial cadherin). Finally, we showed that the migrating monocytes were productively infected with the virus, documenting that the virus was transferred to the migrating monocyte during passage through the lateral junctions. Together, our results provide evidence for an active role of the infected endothelium in HCMV dissemination and pathogenesis.
Collapse
Affiliation(s)
- Gretchen L Bentz
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
26
|
Biswas P, Canosa S, Schoenfeld D, Schoenfeld J, Li P, Cheas LC, Zhang J, Cordova A, Sumpio B, Madri JA. PECAM-1 affects GSK-3beta-mediated beta-catenin phosphorylation and degradation. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:314-24. [PMID: 16816383 PMCID: PMC1698776 DOI: 10.2353/ajpath.2006.051112] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) regulates a variety of endothelial and immune cell biological responses. PECAM-1-null mice exhibit prolonged and increased permeability after inflammatory insults. We observed that in PECAM-1-null endothelial cells (ECs), beta-catenin remained tyrosine phosphorylated, coinciding with a sustained increase in permeability. Src homology 2 domain containing phosphatase 2 (SHP-2) association with beta-catenin was diminished in PECAM-1-null ECs, suggesting that lack of PECAM-1 inhibits the ability of this adherens junction component to become dephosphorylated, promoting a sustained increase in permeability. beta-Catenin/Glycogen synthase kinase 3 (GSK-3beta) association and beta-catenin serine phosphorylation levels were increased and beta-catenin expression levels were reduced in PECAM-1-null ECs. Glycogen synthase kinase 3 (GSK-3beta) serine phosphorylation (inactivation) was blunted in PECAM-1-null ECs after histamine treatment or shear stress. Our data suggest that PECAM-1 serves as a critical dynamic regulator of endothelial barrier permeability. On stimulation by a vasoactive substance or shear stress, PECAM-1 became tyrosine phosphorylated, enabling recruitment of SHP-2 and tyrosine-phosphorylated beta-catenin to its cytoplasmic domain, facilitating dephosphorylation of beta-catenin, and allowing reconstitution of adherens junctions. In addition, PECAM-1 modulated the levels of beta-catenin by regulating the activity of GSK-3beta, which in turn affected the serine phosphorylation of beta-catenin and its proteosomal degradation, affecting the ability of the cell to reform adherens junctions in a timely fashion.
Collapse
Affiliation(s)
- Purba Biswas
- Department of Pathology, Yale University School of Medicine, 310 Cedar St., Lauder Hall, Rm. L115, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Masckauchán TNH, Shawber CJ, Funahashi Y, Li CM, Kitajewski J. Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 2005; 8:43-51. [PMID: 16132617 DOI: 10.1007/s10456-005-5612-9] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 03/23/2005] [Indexed: 01/23/2023]
Abstract
Wnts are secreted signaling proteins able to control diverse biological processes such as cell differentiation and proliferation. Many Wnts act through a canonical, beta-catenin signaling pathway. Here, we report that Wnt receptors and transcriptional effectors are expressed in primary human endothelial cells and that Wnt/beta-catenin signaling promotes angiogenesis. Human umbilical vein and microvascular endothelial cells express Wnt receptors, Frizzled-4, -5, -6, and beta-catenin-associated transcription factors, Tcf-1, -3, -4 and Lef-1. In endothelial cells, ectopic expression of Wnt-1 stabilized cytosolic beta-catenin, demonstrating activation of the Wnt/beta-catenin canonical signaling pathway. Expression of Wnt-1 or a stabilized and active form of beta-catenin, beta-cateninS37A, promoted endothelial cell proliferation. Proliferation induced by Wnt/beta-catenin signaling was optimal in the presence of bFGF. beta-cateninS37A expression in endothelial cells promoted survival after growth factor deprivation. Using matrigel assays, Wnt-1 or beta-cateninS37A expression promoted the formation of capillary-like networks. To help define the effectors of Wnt angiogenic function, microarray analysis was used to compare endothelial cells expressing Wnt-1 to control cells. Interleukin-8, a known angiogenic factor, was identified as a transcriptional target of Wnt/beta-catenin signaling in endothelial cells. Expression of either Wnt-1 or beta-cateninS37A induced Interleukin-8 transcripts and secreted protein. We thus conclude that Wnt/beta-catenin signaling promotes angiogenesis possibly via the induction of known angiogenic regulators such as Interleukin-8.
Collapse
|
28
|
Scheurer SB, Rybak JN, Roesli C, Brunisholz RA, Potthast F, Schlapbach R, Neri D, Elia G. Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 2005; 5:2718-28. [PMID: 15986331 DOI: 10.1002/pmic.200401163] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Membrane proteins play a central role in biological processes, but their separation and quantification using two-dimensional gel electrophoresis is often limited by their poor solubility and relatively low abundance. We now present a method for the simultaneous recovery, separation, identification, and relative quantification of membrane proteins, following their selective covalent modification with a cleavable biotin derivative. After cell lysis, biotinylated proteins are purified on streptavidin-coated resin and proteolytically digested. The resulting peptides are analyzed by high-pressure liquid chromatography and mass spectrometry, thus yielding a two-dimensional peptide map. Matrix assisted laser desorption/ionization-time of flight signal intensity of peptides, in the presence of internal standards, is used to quantify the relative abundance of membrane proteins from cells treated in different experimental conditions. As experimental examples, we present (i) an analysis of a BSA-spiked human embryonic kidney membrane protein extract, and (ii) an analysis of membrane proteins of human umbilical vein endothelial cells cultured in normoxic and hypoxic conditions. This last study allowed the recovery of the vascular endothelial-cadherin/actin/catenin complex, revealing an increased accumulation of beta-catenin at 2% O(2) concentration.
Collapse
MESH Headings
- Biotinylation/methods
- Blotting, Western
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Electrophoresis, Gel, Two-Dimensional
- Endothelial Cells/chemistry
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Humans
- Hypoxia
- Kidney/chemistry
- Kidney/embryology
- Membrane Proteins/isolation & purification
- Membrane Proteins/metabolism
- Peptide Mapping/methods
- Serum Albumin, Bovine
- Software
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Simone B Scheurer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, ETH-Hönggerberg, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Biswas P, Zhang J, Schoenfeld JD, Schoenfeld D, Gratzinger D, Canosa S, Madri JA. Identification of the regions of PECAM-1 involved in β- and γ-catenin associations. Biochem Biophys Res Commun 2005; 329:1225-33. [PMID: 15766557 DOI: 10.1016/j.bbrc.2005.02.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Indexed: 02/03/2023]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) binds tyrosine-phosphorylated beta-catenin and modulates beta-catenin localization and sequestration. The biological significance of this interaction, while still unclear, it has been postulated to be involved in modulating adherens junction dynamics in response to perturbants [J. Clin. Invest. 109 (2002) 383]. Here we demonstrate that tyrosine-phosphorylated beta-catenin, and to a lesser extent unphosphorylated beta-catenin, interact with a portion of the cytoplasmic domain of PECAM-1 encoded by exon 15. Using RT-PCR, we obtained products representing alternatively spliced PECAM-1 isoforms from mouse kidney total mRNA and generated PECAM-1-GST constructs expressing full length and naturally occurring alternatively spliced PECAM-1 variants. Co-precipitation assays revealed that the protein sequence encoded by exon 15 is necessary for beta-catenin binding. Transfections using deletion mutants confirmed the importance of the exon 15 sequence in this interaction. In contrast, gamma-catenin-PECAM-1 interactions are thought to be modulated by an as yet undefined PECAM-1 serine phosphorylation and appear to mediate dynamic PECAM-1 intermediate filament cytoskeletal interactions [J. Biol. Chem. 275 (2000) 21435]. Here we demonstrate that the PECAM-1-gamma-catenin interaction occurs via an exon 13-mediated process. GST-pull-down assays illustrated the importance of the exon 13 sequence in this interaction. Further, using site-directed mutagenesis of S(673) to C and D and S(669 and 670) to C, we confirmed the importance of S(673) and its phosphorylation state as a mediator of gamma-catenin-PECAM-1 binding. Our studies define the exons of the PECAM-1 cytoplasmic domain that is involved in mediating these PECAM-1-catenin family member interactions and will allow investigators to better define the biological functions resulting from these interactions.
Collapse
Affiliation(s)
- Purba Biswas
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Carrithers M, Tandon S, Canosa S, Michaud M, Graesser D, Madri JA. Enhanced susceptibility to endotoxic shock and impaired STAT3 signaling in CD31-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:185-96. [PMID: 15632011 PMCID: PMC1602311 DOI: 10.1016/s0002-9440(10)62243-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31), an adhesion molecule expressed on hematopoietic and endothelial cells, mediates apoptosis, cell proliferation, and migration and maintains endothelial integrity in addition to its roles as a modulator of lymphocyte and platelet signaling and facilitator of neutrophil transmigration. Recent data suggest that CD31 functions as a scaffolding protein to regulate phosphorylation of the signal transducers and activators of transcription (STAT) family of signaling molecules, particularly STAT3 and STAT5. STAT3 regulates the acute phase response to innate immune stimuli such as lipopolysaccharide (LPS) and promotes recovery from LPS-induced septic shock. Here we demonstrate that CD31-deficient mice have reduced survival during endotoxic LPS-induced shock. As compared to wild-type controls, CD31-deficient mice showed enhanced vascular permeability; increased apoptotic cell death in liver, kidney, and spleen; and elevated levels of serum tumor necrosis factor alpha (TNF-alpha), interferon gamma (IFNgamma), MCP-1, MCP-5, sTNRF, and IL-6. In response to LPS in vivo and in vitro, splenocytes and endothelial cells from knockout mice had reduced levels of phosphorylated STAT3. These results suggest that CD31 is necessary for maintenance of endothelial integrity and prevention of apoptosis during septic shock and for STAT3-mediated acute phase responses that promote survival during septic shock.
Collapse
Affiliation(s)
- Michael Carrithers
- Department of Neurology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
31
|
Rothermel TA, Engelhardt B, Sheibani N. Polyoma virus middle-T-transformed PECAM-1 deficient mouse brain endothelial cells proliferate rapidly in culture and form hemangiomas in mice. J Cell Physiol 2005; 202:230-9. [PMID: 15389523 DOI: 10.1002/jcp.20114] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wild-type mouse brain endothelial (bEND) cells transformed with the polyoma virus middle-T proliferate rapidly in culture and form hemangiomas in mice. These cells express high levels of platelet/endothelial cell adhesion molecule-1 (PECAM-1), a molecule shown to be important during hemangioma formation. In this study, we have examined the ability of polyoma virus middle-T-transformed mouse bEND cells prepared from PECAM-1-/- mice to proliferate in culture and form hemangiomas in mice. We show that these cells express a number of endothelial cell markers and share a similar morphology with PECAM-1+/+ bEND cells. PECAM-1-/- bEND cells exhibit a limited ability to form tubes in Matrigel and rapidly form hemangioma when injected into nude mice, very similar to PECAM-1+/+ bEND cells. These cells, however, have increased proliferation, slower migration, altered endothelial cell adhesion molecule expression, and are less adherent when compared to PECAM-1+/+ bEND cells. Therefore, lack of PECAM-1 expression impacts polyoma middle-T-transformed endothelial cell proliferative, adhesive, and migratory properties without impacting their ability to rapidly form hemangiomas in mice or poorly organize to capillary-like structures in Matrigel.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/metabolism
- Biomarkers
- Cadherins/metabolism
- Cell Adhesion/genetics
- Cell Line, Transformed
- Cell Movement/genetics
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Viral/genetics
- Collagen
- Drug Combinations
- Endothelial Cells/metabolism
- Endothelial Cells/virology
- Extracellular Matrix Proteins/metabolism
- Hemangioma/genetics
- Hemangioma/metabolism
- Hemangioma/virology
- Laminin
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Myosin Heavy Chains
- Neoplasm Transplantation
- Neovascularization, Pathologic/genetics
- Nonmuscle Myosin Type IIB
- Platelet Endothelial Cell Adhesion Molecule-1/genetics
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Polyomavirus/metabolism
- Proteoglycans
- Vascular Cell Adhesion Molecule-1/metabolism
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Terri A Rothermel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin 53792-4673, USA
| | | | | |
Collapse
|
32
|
Leach L, Gray C, Staton S, Babawale MO, Gruchy A, Foster C, Mayhew TM, James DK. Vascular endothelial cadherin and beta-catenin in human fetoplacental vessels of pregnancies complicated by Type 1 diabetes: associations with angiogenesis and perturbed barrier function. Diabetologia 2004; 47:695-709. [PMID: 15298347 DOI: 10.1007/s00125-004-1341-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Increased angiogenesis of fetoplacental vessels is a feature of pregnancies complicated by Type 1 diabetes mellitus, but the underlying molecular mechanisms are unknown. This investigation tests whether the diabetic maternal environment alters the phenotypic expression of placental vascular endothelial cadherin and beta-catenin, which have been implicated as key molecules in barrier formation and angiogenesis in the endothelium. METHODS Term placental microvessels from normal pregnancies (n=8) and from those complicated by Type 1 diabetes (n=8) were perfused with 76-Mr dextran tracers (1 mg/ml) and subjected to immunocytochemistry, immunoblotting and microscopy. Junctional integrity, localisation and phosphorylation were investigated along with total protein levels of vascular endothelial cadherin, beta-catenin and vascular endothelial growth factor. Stereological sampling and estimation tools were used to quantify aspects of angiogenesis and endothelial proliferation. RESULTS In the Type 1 diabetic placentae, junctional localisations of vascular endothelial cadherin and beta-catenin altered significantly, with more than 50% of microvessels showing complete loss of immunoreactivity and with no overall loss of total protein. Tracer leakage was associated with these vessels. There was a two- to three-fold increase in vessels showing junctional phospho-tyrosine immunoreactivity and hyperphosphorylated beta-catenin. Vascular endothelial growth factor levels were higher in these placentae. A four-fold increase in endothelial proliferation was observed, along with an increase in total length of capillaries without any change in luminal diameter. CONCLUSIONS/INTERPRETATION Molecular perturbations of vascular endothelial cadherin and beta-catenin occur in fetoplacental vessels of pregnancies complicated by Type 1 diabetes. Phosphorylation and loss of these molecules from the adherens junctional domains may be influenced in part by the elevated levels of vascular endothelial growth factor in the placenta. Perturbations of the junctional proteins may explain the observed breach in barrier integrity and may contribute to the mechanisms that drive proliferation and increases in capillary length.
Collapse
MESH Headings
- Adult
- Blood Glucose/metabolism
- Blotting, Western
- Cadherins/metabolism
- Capillary Permeability/physiology
- Cytoskeletal Proteins/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/pathology
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Female
- Fetus/blood supply
- Fluorescent Antibody Technique, Direct
- Humans
- Infant, Newborn
- Microscopy, Confocal
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Phosphorylation
- Placenta/blood supply
- Placenta/metabolism
- Placenta/physiopathology
- Pregnancy
- Pregnancy Outcome
- Pregnancy in Diabetics/metabolism
- Pregnancy in Diabetics/pathology
- Pregnancy in Diabetics/physiopathology
- Regional Blood Flow/physiology
- Trans-Activators/metabolism
- beta Catenin
Collapse
Affiliation(s)
- L Leach
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, University of Nottingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Payne GW, Madri JA, Sessa WC, Segal SS. Histamine inhibits conducted vasodilation through endothelium‐derived NO production in arterioles of mouse skeletal muscle. FASEB J 2004; 18:280-6. [PMID: 14769822 DOI: 10.1096/fj.03-0752com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Conducted vasodilation along arterioles manifests the spread of hyperpolarization through gap junction channels along endothelium. Whereas histamine increases the permeability of capillary and venular endothelium, its effect on the integrity of arteriolar endothelium is unknown. We tested whether histamine could inhibit conducted vasodilation. In second-order arterioles (2A) supplying the cremaster muscle of C57BL6, PECAM-1-/-, and eNOS-/- mice (8-12 wk), neither resting (16+/-2 microm) nor maximal (38+/-2 microm) diameters were different. Acetylcholine (ACh) microiontophoresis (1 microA, 500 ms pulse) triggered vasodilation that was conducted >1400 microm along arterioles. Neither local (14+/-2 microm) nor conducted vasodilation (10+/-2 microm) was different among mice. Histamine (5 microM) had no effect on resting diameter or local vasodilation to ACh yet inhibited conduction by >50% in C57BL6 and PECAM-1-/- mice (P<0.05); this effect was abolished after blockade of NO synthase or of soluble guanylate cyclase. Washout of histamine restored conduction, though recovery was longer (P<0.05) in PECAM-1-/- mice vs. C57BL6 mice. Remarkably, conducted vasodilation in eNOS-/- mice was insensitive to histamine. These findings indicate that histamine inhibits cell-to-cell coupling through an NO-dependent mechanism and suggests a dynamic interaction among intercellular adhesion molecules and gap junction channels along arteriolar endothelium.
Collapse
Affiliation(s)
- Geoffrey W Payne
- The John B. Pierce Laboratory, Yale University School of Medicine,New Haven, Connecticut 06519, USA
| | | | | | | |
Collapse
|
34
|
Ilan N, Tucker A, Madri JA. Vascular endothelial growth factor expression, beta-catenin tyrosine phosphorylation, and endothelial proliferative behavior: a pathway for transformation? J Transl Med 2003; 83:1105-15. [PMID: 12920240 DOI: 10.1097/01.lab.0000083531.84403.8b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The hypothesis that tumor growth is angiogenesis dependent has been documented by a considerable body of direct and indirect experimental data and has generated intense basic and pharmaceutical-related interest. In contrast, the study of endothelial cell tumors has been modest by comparison. Hemangioma is the most common tumor of any kind seen in infancy and also, perhaps, the least understood. We compared a mouse hemangioma-derived cell line (EOMA) and primary human endothelial cells (HUVEC) for their proliferative behavior and molecular alterations. EOMA cells intrinsically expressed vascular endothelial growth factor (VEGF), which acts in an autocrine manner, resulting in an increase in CD1 expression and cell proliferation, both of which were inhibited by anti-VEGF neutralizing antibodies. Such an autocrine loop is supported by constitutive VEGF receptor (Flk-1) tyrosine phosphorylation, Flk-1 and Flt-1 nuclear localization, and mitogen-activated protein kinase activation. beta-catenin was also found to exhibit significant nuclear localization and constitutively associate with Flk-1 and Flt-1 in EOMA cells but much less so in HUVEC, and immunoprecipitated Flk-1 was able to phosphorylate purified beta-catenin in an immune complex kinase assay. EOMA cells were also noted to express reduced levels of N-cadherin and gamma-catenin compared with HUVEC. Interestingly, sequestration of endogenous VEGF in EOMA cultures resulted in a dramatic decrease in nuclear beta-catenin and a reduction in CD1 levels, whereas addition of exogenous VEGF elicited increased nuclear beta-catenin localization and increased CD1 levels in HUVEC. The possible contributions of VEGF signaling pathways, cell junction component expression levels, and phosphorylation states to endothelial cell transformation and proliferation are discussed.
Collapse
Affiliation(s)
- Neta Ilan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|