1
|
Zhang K, Yin X, Huang Y, Liu C, Zhang Q, Liu Q, Wang S, Fei W, Shi Q, Qiu L. A Potent Antibacterial Peptide (P6) from the De Novo Transcriptome of the Microalga Aureococcus anophagefferens. Int J Mol Sci 2024; 25:13736. [PMID: 39769497 PMCID: PMC11676368 DOI: 10.3390/ijms252413736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Marine microalgae are a rich source of natural products, and their amino acid-based antimicrobial agents are usually obtained by enzymatic hydrolysis, which is inefficient and limits the research on antimicrobial peptides (AMPs) from microalgae. In this study, Aureococcus anophagefferens is used as a model to predict antimicrobial peptides through high-throughput methods, and 471 putative peptides are identified based on the de novo transcriptome technique. Among them, three short peptides, P1, P6, and P7 were found to have antimicrobial activity against Escherichia coli, Staphylococcus aureus, Micro1coccus luteus, and yeast Pichia pastoris, and they showed no hemolytic activity even at higher concentrations up to 10 mg/mL. Especially P6, a 12-amino acid peptide with three positive charges, which exhibited the most significant microbicidal effect with the lowest MIC of 31.25 μg/mL against E. coli, and electron microscope observations showed the surface of P6 treated E. coli with granular protrusions and ruptures, suggesting that it likely caused cell death by directly destroying the bacterial cell membrane. This study may enrich the database of microalgal AMPs and demonstrate an efficient process for searching and validating microalgal source AMPs by combining computer analysis with bioactivity experiments.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (K.Z.); (S.W.); (W.F.)
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (X.Y.); (Q.L.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
| | - Xiaoting Yin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (X.Y.); (Q.L.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
| | - Yu Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Qingdao 430072, China;
| | - Chao Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (C.L.); (Q.Z.)
| | - Qingchun Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (C.L.); (Q.Z.)
| | - Qing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (X.Y.); (Q.L.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
| | - Senyu Wang
- School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (K.Z.); (S.W.); (W.F.)
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (X.Y.); (Q.L.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
| | - Wenwu Fei
- School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (K.Z.); (S.W.); (W.F.)
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (X.Y.); (Q.L.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518057, China
| | - Limei Qiu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (X.Y.); (Q.L.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China
| |
Collapse
|
2
|
Gong Y, Xue Q, Li J, Zhang S. Antifungal peptides from living organisms. Front Microbiol 2024; 15:1511461. [PMID: 39741586 PMCID: PMC11685209 DOI: 10.3389/fmicb.2024.1511461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
In the post-COVID-19 era, people are increasingly concerned about microbial infections, including fungal infections that have risen in recent years. However, the currently available antifungal agents are rather limited. Worse still, the widespread use of the antifungal agents has caused the emergence of antifungal resistance in Candida, Cryptococcus, and Aspergillus species. Therefore, the development of novel antifungals is urgently needed. Antimicrobial peptides (AMPs), as components of the first-line defense of the host, are found to exhibit broad antimicrobial activity against bacteria, fungi, parasites, viruses, and protozoa. AMPs with antifungal activity are specifically referred to as antifungal peptides (AFPs). AFPs are currently regarded as the most promising alternative to conventional antifungal agents due to the fact that they are highly selective and less prone to facilitate the selection of drug resistance. In this review, we present an overview of the origin and classification of natural AFPs as well as their modes of action. Additionally, the production of natural, semisynthetic, and synthetic AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of AFPs in clinics and in the food industry.
Collapse
Affiliation(s)
- Yi Gong
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Qunhang Xue
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jun Li
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Shicui Zhang
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Zhang W, Chen B, Zhu H, Hettinga K, Pang X, Zhang S, Li K, Jiang S, Lyu J. Comparative Analysis of Skim Milk and Milk Fat Globule Membrane Proteomes between Human and Farm Animal Milk for Infant Formula Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25367-25378. [PMID: 39475521 DOI: 10.1021/acs.jafc.4c05787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Human and animal milk contain a rich variety of milk proteins that meet the needs of their newborns. In total, 1263 skim milk proteins and 1754 MFGM proteins were identified in human milk and six types of animal milk, respectively. Both similarities and differences were observed among the species. Human milk contained more immunoglobulins involved in the adaptive immune response, playing a crucial role in mucosal defense in newborn babies. In contrast, ruminant milk contained higher amounts of antimicrobial proteins, which protect newborns from bacterial infections. The most dominant difference in MFGM proteins between human and animal milk was related to protein processing in the endoplasmic reticulum. Goat milk and camel milk were more similar to human milk in terms of skim milk and MFGM proteins compared to the other five types of animal milk. Moreover, immunoglobulins and complement and coagulation cascade proteins in goat milk were most similar to those in human milk. A higher content of immunoglobulin A was observed in donkey milk, which could be considered as a source of IgA in infant formula. These results provide more comprehensive and novel insights into protein variation among animal milk, which may support improving dairy products such as infant formula.
Collapse
Affiliation(s)
- Wenyuan Zhang
- State key laboratory of Vegetable Biobreeding, Institute of vegetables and flowers, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Baorong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Huiquan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design Group, Wageningen University and Research, Wageningen 6700EV, Netherlands
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Kaifeng Li
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing 100083, China
| | - Shilong Jiang
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing 100083, China
| | - Jiaping Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| |
Collapse
|
4
|
Efremenko E, Aslanli A, Stepanov N, Senko O, Maslova O. Various Biomimetics, Including Peptides as Antifungals. Biomimetics (Basel) 2023; 8:513. [PMID: 37999154 PMCID: PMC10669293 DOI: 10.3390/biomimetics8070513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetics, which are similar to natural compounds that play an important role in the metabolism, manifestation of functional activity and reproduction of various fungi, have a pronounced attraction in the current search for new effective antifungals. Actual trends in the development of this area of research indicate that unnatural amino acids can be used as such biomimetics, including those containing halogen atoms; compounds similar to nitrogenous bases embedded in the nucleic acids synthesized by fungi; peptides imitating fungal analogs; molecules similar to natural substrates of numerous fungal enzymes and quorum-sensing signaling molecules of fungi and yeast, etc. Most parts of this review are devoted to the analysis of semi-synthetic and synthetic antifungal peptides and their targets of action. This review is aimed at combining and systematizing the current scientific information accumulating in this area of research, developing various antifungals with an assessment of the effectiveness of the created biomimetics and the possibility of combining them with other antimicrobial substances to reduce cell resistance and improve antifungal effects.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
5
|
Sun Q, Zhang X, Ouyang Y, Yu P, Man Y, Guo S, Liu S, Chen Y, Wang Y, Tan X. Appressoria Formation in Phytopathogenic Fungi Suppressed by Antimicrobial Peptides and Hybrid Peptides from Black Soldier Flies. Genes (Basel) 2023; 14:genes14051096. [PMID: 37239456 DOI: 10.3390/genes14051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs) from black solider flies (Hermetia illucens, BSF) exhibiting broad-spectrum antimicrobial activity are the most promising green substitutes for preventing the infection of phytopathogenic fungi; therefore, AMPs have been a focal topic of research. Recently, many studies have focused on the antibacterial activities of BSF AMPs against animal pathogens; however, currently, their antifungal activities against phytopathogenic fungi remain unclear. In this study, 7 AMPs selected from 34 predicted AMPs based on BSF metagenomics were artificially synthesized. When conidia from the hemibiotrophic phytopathogenic fungi Magnaporthe oryzae and Colletotrichum acutatum were treated with the selected AMPs, three selected AMPs-CAD1, CAD5, and CAD7-showed high appressorium formation inhibited by lengthened germ tubes. Additionally, the MIC50 concentrations of the inhibited appressorium formations were 40 μM, 43 μM, and 43 μM for M. oryzae, while 51 μM, 49 μM, and 44 μM were observed for C. acutatum, respectively. A tandem hybrid AMP named CAD-Con comprising CAD1, CAD5, and CAD7 significantly enhanced antifungal activities, and the MIC50 concentrations against M. oryzae and C. acutatum were 15 μM and 22 μM, respectively. In comparison with the wild type, they were both significantly reduced in terms of virulence when infection assays were performed using the treated conidia of M. oryzae or C. acutatum by CAD1, CAD5, CAD7, or CAD-Con. Meanwhile, their expression levels of CAD1, CAD5, and CAD7 could also be activated and significantly increased after the BSF larvae were treated with the conidia of M. oryzae or C. acutatum, respectively. To our knowledge, the antifungal activities of BSF AMPs against plant pathogenic fungi, which help us to seek potential AMPs with antifungal activities, provide proof of the effectiveness of green control strategies for crop production.
Collapse
Affiliation(s)
- Qianlong Sun
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xin Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Ying Ouyang
- College of Plant Science, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China
| | - Pingzhong Yu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yilong Man
- Agricultural Biotechnology Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Sheng Guo
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Sizhen Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yue Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
6
|
Specific Focus on Antifungal Peptides against Azole Resistant Aspergillus fumigatus: Current Status, Challenges, and Future Perspectives. J Fungi (Basel) 2022; 9:jof9010042. [PMID: 36675863 PMCID: PMC9864941 DOI: 10.3390/jof9010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The prevalence of fungal infections is increasing worldwide, especially that of aspergillosis, which previously only affected people with immunosuppression. Aspergillus fumigatus can cause allergic bronchopulmonary aspergillosis and endangers public health due to resistance to azole-type antimycotics such as fluconazole. Antifungal peptides are viable alternatives that combat infection by forming pores in membranes through electrostatic interactions with the phospholipids as well as cell death to peptides that inhibit protein synthesis and inhibit cell replication. Engineering antifungal peptides with nanotechnology can enhance the efficacy of these therapeutics at lower doses and reduce immune responses. This manuscript explains how antifungal peptides combat antifungal-resistant aspergillosis and also how rational peptide design with nanotechnology and artificial intelligence can engineer peptides to be a feasible antifungal alternative.
Collapse
|
7
|
Zhang J, Sun R, Chen Z, Zhou C, Ma C, Zhou M, Chen X, Chen T, Shaw C, Wang L. Evaluation of the Antimicrobial Properties of a Natural Peptide from Vespa mandarinia Venom and Its Synthetic Analogues as a Possible Route to Defeat Drug-Resistant Microbes. BIOLOGY 2022; 11:1263. [PMID: 36138742 PMCID: PMC9495676 DOI: 10.3390/biology11091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides (AMPs) from wasp venom have a good track record and potential for drug development as tools against development of antimicrobial resistance. Herein, the biological function and activity profile of peptide VM, which was discovered in the venom of the wasp, Vespamandarinia, and several of its third-position substituted analogues, were investigated. VM had potent antimicrobial activity against Gram-positive bacteria and biofilm, and all modified peptides achieved the significant enhancement of these capacities. The various physicochemical properties of amino acids substituted in analogues, generated the different mechanisms of action of bacterial membrane disruption. VM-3K showed a maximum 8-fold enhancement of antibacterial activity against Gram-positive bacteria and also presented microbicidal properties against Gram-negative bacteria and fungi. This peptide also exhibited a high killing efficiency at low concentration and had a comparable selectivity index to VM. Furthermore, VM-3K produced a 90% survival of S. aureus-infected waxworms at a concentration of 5.656 mg/kg, at which concentration the natural template peptide only achieved 50% survival. This peptide also lacked short-term resistance generation. Thus, peptide VM-3K could be a promising broad-spectrum antimicrobial candidate for addressing the current antibiotic-resistant infection crisis. It is worth mentioning that this investigation on the relationship between peptide structure and mechanism of action could become an important aspect of drug research on short peptides.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
8
|
Mujwar S, Tripathi A. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. J Mol Model 2022; 28:193. [PMID: 35716240 PMCID: PMC9206073 DOI: 10.1007/s00894-022-05185-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/07/2022] [Indexed: 12/23/2022]
Abstract
Fungal infections in humans are responsible for mild to severe infections resulting in systemic effects that cause a large amount of mortality. Invasive fungal infections are having similar symptomatic effects to those of COVID-19. The COVID-19 patients are immunocompromised in nature and have a high probability of developing severe fungal infections, resulting in the development of further complications. The existing antifungal therapy has associated problems related to the development of drug resistance, being sub-potent in nature, and the presence of undesirable toxic effects. The fungal dihydrofolate reductase is an essential enzyme involved in the absorption of dietary folic acid and its conversion into tetrahydrofolate, which is a coenzyme required for the biosynthesis of the fungal nucleotides. Thus, in the current study, an attempt has been made to identify potential folate inhibitors of Candida albicans by a computational drug repurposing approach. Based upon the molecular docking simulation-based virtual screening followed by the molecular dynamic simulation of the macromolecular complex, benzbromarone has been identified as a potential anti-folate agent for the development of a novel therapy for the treatment of candidiasis.
Collapse
Affiliation(s)
- Somdutt Mujwar
- M.M. College of Pharmacy, Maharishi Markandeshwar University, Mullana-133207 Haryana, India.
| | - Avanish Tripathi
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
9
|
Antifungal Peptides and Proteins to Control Toxigenic Fungi and Mycotoxin Biosynthesis. Int J Mol Sci 2021; 22:ijms222413261. [PMID: 34948059 PMCID: PMC8703302 DOI: 10.3390/ijms222413261] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
The global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides. Interestingly, AMPs also accomplish important biological functions other than antifungal activity, including anti-mycotoxin biosynthesis activity, which opens novel aspects for their future use in agriculture and food industry to fight mycotoxin contamination. AMPs can reach intracellular targets and exert their activity by mechanisms other than membrane permeabilization. The mechanisms through which AMPs affect mycotoxin production are varied and complex, ranging from oxidative stress to specific inhibition of enzymatic components of mycotoxin biosynthetic pathways. This review presents natural and synthetic antifungal AMPs from different origins which are effective against mycotoxin-producing fungi, and aims at summarizing current knowledge concerning their additional effects on mycotoxin biosynthesis. Antifungal AMPs properties and mechanisms of action are also discussed.
Collapse
|
10
|
Song X, Liu P, Liu X, Wang Y, Wei H, Zhang J, Yu L, Yan X, He Z. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112318. [PMID: 34474869 DOI: 10.1016/j.msec.2021.112318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria due to the improper and overuse of antibiotics and the ineffective performance of antibiotics against the difficult-to-treat biofilm-related infections (BRIs) have urgently called for alternative antimicrobial agents and strategies in combating bacterial infections. Antimicrobial peptides (AMPs), owing to their compelling antimicrobial activity against MDR bacteria and BRIs without causing bacteria resistance, have attracted extensive attention in the research field. With the development of nanomaterial-based drug delivery strategies, AMPs-based nano-formulations have significantly improved the therapeutic effects of AMPs by ameliorating their hydrolytic stability, half-life in vivo, and solubility as well as reducing the cytotoxicity and hemolysis, etc. This review has comprehensively summarized the application AMPs-based nano-formulation in various bacterial infections models, including bloodstream infections (specifically sepsis), pulmonary infections, chronic wound infections, gastrointestinal infections, among others. The design of the nanomaterial-based drug delivery systems and the therapeutic effects of the AMPs-based nano-formulations in literature have been categorized and in details discussed. Overall, this review provides insights into the advantages and disadvantages of the current developed AMPs-based nano-formulations in literature for the treatment of bacterial infections, bringing inspirations and suggestions for their future design in the way towards clinical translation.
Collapse
Affiliation(s)
- Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingwen Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
11
|
Manju Devi S, Raj N, Sashidhar RB. Efficacy of short-synthetic antifungal peptides on pathogenic Aspergillus flavus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104810. [PMID: 33838711 DOI: 10.1016/j.pestbp.2021.104810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The efficacies of three short synthetic antifungal peptides were tested for their inhibitory action on pathogenic fungi, Aspergillus flavus. The sequences of the short synthetic peptides are PPD1- FRLHF, 66-10-FRLKFH, 77-3- FRLKFHF, respectively. These test peptides inhibited fungal growth and showed a membranolytic activity. The fungal biomass and ergosterol levels were significantly low in peptides treated samples. Further, the fungal cell wall component chitin was also found to be lower in peptides treated samples. Scanning electron microscopic images also showed highly wrinkled fungal mycelia. Significant membrane permeabilisation as well as potassium ion leakage was also observed in fungal samples treated with peptides. To assess the membrane damage, the uptake of Sytox green dye was employed. At tested concentration, peptides induced fungal membrane damage as evidenced by the green fluorescence. Further, at tested concentration, these peptides induced an oxidative stress in A.flavus as evidenced by an increase in the ROS production, malondialdehyde levels, increase in the antioxidant enzymes - superoxide dismutase, catalase with concomitant decrease in the reduced glutathione content. Additionally, a growth dependent reduction in aflatoxin levels were also observed in peptides treated samples. Docking studies on the interaction of the peptides with a trans-membrane protein calcium ATPase of A. flavus showed that all the peptides were able to bind to the protein with high z rank score. The activity of the calcium ATPase was significantly decreased in peptides treated fungal samples, thereby validating the docking results. Among all the tested peptides, 77-3 peptide exhibited the maximal membrane damage property.
Collapse
Affiliation(s)
- S Manju Devi
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India
| | - Navya Raj
- Department of Health Informatics, College of Health Sciences, Saudi Electronic University, Dammam, Saudi Arabia
| | - R B Sashidhar
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India.
| |
Collapse
|
12
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Bolaamphiphile-based supramolecular gels with drugs eliciting membrane effects. J Colloid Interface Sci 2021; 594:857-863. [PMID: 33794407 DOI: 10.1016/j.jcis.2021.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Abstract
Supramolecular chemistry has garnered important interest in recent years toward improving therapeutic efficacy via drug delivery approaches. Although self-assemblies have been deeply investigated, the design of novel drugs leveraging supramolecular chemistry is less known. In this contribution, we show that a Low Molecular Weight Gel (LMWG) can elicit cancer cell apoptosis. This biological effect results from the unique supramolecular properties of a bolaamphiphile-based gelator, which allow for strong interaction with the lipid membrane. This novel supramolecular-drug paradigm opens up new possibilities for therapeutic applications targeting membrane lipids.
Collapse
|
14
|
Kumar R, Ali SA, Singh SK, Bhushan V, Mathur M, Jamwal S, Mohanty AK, Kaushik JK, Kumar S. Antimicrobial Peptides in Farm Animals: An Updated Review on Its Diversity, Function, Modes of Action and Therapeutic Prospects. Vet Sci 2020; 7:vetsci7040206. [PMID: 33352919 PMCID: PMC7766339 DOI: 10.3390/vetsci7040206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are the arsenals of the innate host defense system, exhibiting evolutionarily conserved characteristics that are present in practically all forms of life. Recent years have witnessed the emergence of antibiotic-resistant bacteria compounded with a slow discovery rate for new antibiotics that have necessitated scientific efforts to search for alternatives to antibiotics. Research on the identification of AMPs has generated very encouraging evidence that they curb infectious pathologies and are also useful as novel biologics to function as immunotherapeutic agents. Being innate, they exhibit the least cytotoxicity to the host and exerts a wide spectrum of biological activity including low resistance among microbes and increased wound healing actions. Notably, in veterinary science, the constant practice of massive doses of antibiotics with inappropriate withdrawal programs led to a high risk of livestock-associated antimicrobial resistance. Therefore, the world faces tremendous pressure for designing and devising strategies to mitigate the use of antibiotics in animals and keep it safe for posterity. In this review, we illustrate the diversity of farm animal-specific AMPs, and their biochemical foundations, mode of action, and prospective application in clinics. Subsequently, we present the data for their systematic classification under the major and minor groups, antipathogenic action, and allied bioactivities in the host. Finally, we address the limitations of their clinical implementation and envision areas for further advancement.
Collapse
|
15
|
Abstract
Invasive fungal infections in humans are generally associated with high mortality, making the choice of antifungal drug crucial for the outcome of the patient. The limited spectrum of antifungals available and the development of drug resistance represent the main concerns for the current antifungal treatments, requiring alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms and used as first-line defenses against microbial infections, have emerged as potential candidates for developing new antifungal therapies, characterized by negligible host toxicity and low resistance rates. Most of the current literature focuses on peptides with antibacterial activity, but there are fewer studies of their antifungal properties. This review focuses on AMPs with antifungal effects, including their in vitro and in vivo activities, with the biological repercussions on the fungal cells, when known. The classification of the peptides is based on their mode of action: although the majority of AMPs exert their activity through the interaction with membranes, other mechanisms have been identified, including cell wall inhibition and nucleic acid binding. In addition, antifungal compounds with unknown modes of action are also described. The elucidation of such mechanisms can be useful to identify novel drug targets and, possibly, to serve as the templates for the synthesis of new antimicrobial compounds with increased activity and reduced host toxicity.
Collapse
|
16
|
Smirnova MP, Kolodkin NI, Kolobov AA, Afonin VG, Afonina IV, Stefanenko LI, Shpen' VM, Shamova OV, Kolobov AA. Indolicidin analogs with broad-spectrum antimicrobial activity and low hemolytic activity. Peptides 2020; 132:170356. [PMID: 32593681 DOI: 10.1016/j.peptides.2020.170356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
To create a broad-spectrum peptide biocide, we synthesized 45 analogs of antimicrobial peptide indolicidin (H-Ile-Leu-Pro-Trp-Lys-Trp-Pro-Trp-Trp-Pro-Trp-Arg-Arg-NH2). Among them the peptides H-Ile-Leu-Pro-(2-Me)Phe-Lys-(2-Me)Phe-Pro-(2-Me)Phe-(2-Me)Phe-Pro-(2-Me)Phe-Arg-Arg-NH2 and HN2-(CH2)10-Ile-Leu-Pro-D-Phe-Lys-D-Phe-Pro-D-Phe-D-Phe-Pro-D-Phe-Arg-Arg-NH2 have the broadest spectrum of antimicrobial activity and the lowest hemolytic activity. They are active against all 11 tested strains of Gram-positive bacteria, Gram-negative bacteria and fungi with MIC50 from 0.9 to 6.1 μg/ml (0.5 to 3.2 μM), being up to 3 times more active than indolicidin, and are at least 1.8 times less hemolytically active than indolicidin (reached the detection limit). These peptides are patented and could be used for further drug development as antimicrobials.
Collapse
Affiliation(s)
- M P Smirnova
- Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Verta Ltd., Saint-Petersburg, Russia
| | - N I Kolodkin
- Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Verta Ltd., Saint-Petersburg, Russia
| | - A A Kolobov
- Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Verta Ltd., Saint-Petersburg, Russia
| | - V G Afonin
- Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Verta Ltd., Saint-Petersburg, Russia
| | - I V Afonina
- Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Verta Ltd., Saint-Petersburg, Russia
| | - L I Stefanenko
- Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Verta Ltd., Saint-Petersburg, Russia
| | - V M Shpen'
- Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Verta Ltd., Saint-Petersburg, Russia
| | - O V Shamova
- Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - A A Kolobov
- Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Verta Ltd., Saint-Petersburg, Russia.
| |
Collapse
|
17
|
Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol 2020; 104:6513-6526. [PMID: 32500268 DOI: 10.1007/s00253-020-10701-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
Many fungal diseases remain poorly addressed by public health authorities, despite posing a substantial threat to humans, animals, and plants. More worryingly, few classes of anti-fungals have been developed to combat fungal infections thus far. These medications also have certain drawbacks in terms of toxicity, spectrum of activity, and pharmacokinetic properties. Hence, there is a dire need for discovery of novel anti-fungal agents. Melittin, the main constituent in the venom of European honeybee Apis mellifera, has attracted considerable attention among researchers owing to its potential therapeutic applications. To our knowledge, there has been no review pertinent to anti-fungal properties of melittin, prompting us to synopsize the results of experimental investigations with a special emphasis upon underlying mechanisms. In this respect, melittin inhibits a broad spectrum of fungal genera including Aspergillus, Botrytis, Candida, Colletotrichum, Fusarium, Malassezia, Neurospora, Penicillium, Saccharomyces, Trichoderma, Trichophyton, and Trichosporon. Melittin hinders fungal growth by several mechanisms such as membrane permeabilization, apoptosis induction by reactive oxygen species-mediated mitochondria/caspase-dependent pathway, inhibition of (1,3)-β-D-glucan synthase, and alterations in fungal gene expression. Overall, melittin will definitely open up new avenues for various biomedical applications, from medicine to agriculture. KEYPOINTS: • Venom-derived peptides have potential for development of anti-microbial agents. • Many fungal pathogens are susceptible to melittin at micromolar concentrations. • Melittin possesses multi-target mechanism of action against fungal cells.
Collapse
|
18
|
|
19
|
Vaňková E, Kašparová P, Dulíčková N, Čeřovský V. Combined effect of lasioglossin LL-III derivative with azoles against Candida albicans virulence factors: biofilm formation, phospholipases, proteases and hemolytic activity. FEMS Yeast Res 2020; 20:5824167. [DOI: 10.1093/femsyr/foaa020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT
Candida albicans has several virulence factors at its disposal, including yeast–hyphal transition associated with biofilm formation, phospholipases, proteases and hemolytic activity, all of which contribute to its pathogenesis. We used synthetic derivative LL-III/43 of antimicrobial peptide lasioglossin LL-III to enhance effect of azoles on attenuation of C. albicans virulence factors. LL-III/43 was able to inhibit initial adhesion or biofilm formation of C. albicans strains at 50 µM. Azoles, however, were ineffective at this concentration. Using fluorescently labeled LL-III/43, we observed that peptide covered C. albicans cells, partially penetrated through their membranes and then accumulated inside cells. LL-III/43 (25 µM) in combination with clotrimazole prevented biofilm formation already at 3.1 µM clotrimazole. Neither LL-III/43 nor azoles were able to significantly inhibit phospholipases, proteases, or hemolytic activity of C. albicans. LL-III/43 (25 µM) and clotrimazole (50 µM) in combination decreased production of these virulence factors, and it completely attenuated its hemolytic activity. Scanning electron microscopy showed that LL-III/43 (50 µM) prevented C. albicans biofilm formation on Ti-6Al-4 V alloy used in orthopedic surgeries and combination of LL-III/43 (25 µM) with clotrimazole (3.1 µM) prevented biofilm formation on urinary catheters. Therefore, mixture of LL-III/43 and clotrimazole is suitable candidate for future pharmaceutical research.
Collapse
Affiliation(s)
- Eva Vaňková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Petra Kašparová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Nikola Dulíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10, Prague, Czech Republic
| |
Collapse
|
20
|
Antibacterial Activity of Indolicidin-Coated Silver Nanoparticles in Oral Disease. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051837] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(1) Background: In dentistry, silver nanoparticles (AgNPs) have progressively earned great interest as antimicrobial drugs and are widely used in several biomedical fields. Recent progress in the analysis of complex bacterial communities has demonstrated the richness of the oral microbiota and the presence of numerous previously unexplained strains. Several efforts have been dedicated to the investigation of antimicrobial peptides (AMPs). Those peptides are a widespread group of small peptides against invading microbes. We report the production of a hybrid molecule composed of AgNPs and indolicidin, a well-known antibacterial peptide. (2) Methods: Spectroscopy and microscopy were used to analyze the optical features and to determine the size of the generated AgNPs. The AgNP antibacterial activity was evaluated versus oral Gram-positive and Gram-negative bacteria. (3) Results: The coated nanoparticles’ antibacterial activity strongly inhibited the growth of microorganisms, with very low minimum inhibitory concentration (MIC) values in the range of 5–12.5 μg/mL. We hypothesize that this effect depended on the specific characteristics of the metal surface coated with indolicidin. The second result was that the coated nanoparticles observed cellular toxicity, was lower with respect to the toxicity of peptide and the naked AgNPs when used individually. (4) New investigations regarding antimicrobial effect of AgNPs coated with AMPs in oral infections are an urgent task.
Collapse
|
21
|
Thery T, Lynch KM, Arendt EK. Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Compr Rev Food Sci Food Saf 2019; 18:1327-1360. [DOI: 10.1111/1541-4337.12480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Ireland
- Microbiome IrelandUniv. College Cork Ireland
| |
Collapse
|
22
|
Devi MS, Sashidhar RB. Antiaflatoxigenic effects of selected antifungal peptides. Peptides 2019; 115:15-26. [PMID: 30776385 DOI: 10.1016/j.peptides.2019.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Aflatoxins are potent carcinogenic mycotoxins produced as secondary metabolites mainly by the fungi Aspergillus flavus and Aspergillus parasiticus. Control measures to curtail the contamination of aflatoxin in food products is still a challenge. Although there are several reports on the antifungal peptides, there is no specific study on the action of antifungal peptides on aflatoxin synthesis. This work details the effect of four antimicrobial peptides (AMPs) - PPD1 (FRLHF), 66-10 (FRLKFH), 77-3 (FRLKFHF) and D4E1 (FKLRAKIKVRLRAKIKL) on the aflatoxin production by A. flavus and A. parasiticus. Results of the investigations suggests that AMPs at near minimum inhibitory concentrations (MIC) were effectively inhibiting aflatoxins, without hindering the growth of the fungi. These AMPs, at concentrations near MIC, induced membrane permeabilisation, without inducing cellular leakage. The involvement of oxidative stress for the aflatoxin synthesis was reversed by the antioxidant nature of the peptides as evidenced by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay, reactive oxygen species production, malondialdehyde and antioxidant enzymes analysis. Quantitative real time polymerase chain reaction (RT-qPCR) analysis of the aflatoxin gene cluster showed that 'aflR' and its downstream genes expressions were significantly down regulated. Conidiation of the fungi were negatively influenced by the peptides as evidenced by scanning electron microscopy analysis and RT-qPCR. mRNA levels of Manganese-superoxide dismutase (Mn-SOD) showed a decrease in the expression in RT-qPCR. The effect of these peptides on aflatoxin inhibition provides insight into their use as novel antiaflatoxigenic molecules.
Collapse
Affiliation(s)
- Manju S Devi
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad-500 007, Telangana State, India
| | - R B Sashidhar
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad-500 007, Telangana State, India.
| |
Collapse
|
23
|
Hu WW, Huang SC, Jin SLC. A novel antimicrobial peptide-derived vehicle for oligodeoxynucleotide delivery to inhibit TNF-α expression. Int J Pharm 2019; 558:63-71. [PMID: 30639220 DOI: 10.1016/j.ijpharm.2018.12.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 11/19/2022]
Abstract
Indolicidin (IL), an antimicrobial peptide, was investigated as a vehicle to promote oligodeoxynucleotides (ODNs) delivery. To increase charge density, IL was dimerized by adding a cysteine to its C or N terminus, which was denoted as ILC or CIL, respectively. In contrast to IL, cytotoxicity of ILC and CIL was significantly reduced because these dimeric peptides were longer than IL, which restricted their insertions to cell membrane. In contrast to ILC, CIL displayed well loading efficiency. These peptides were applied to deliver ODNs against tumor necrosis factor-α (TNF-α) because TNF-α is a pro-inflammatory cytokine which plays an important role in immunological diseases. Although IL/ODN slightly reduced TNF-α expression, the high cytotoxicity restricted its application window. Furthermore, ILC/ODN was incapable of inducing gene silence due to its low encapsulation efficiency and poor endosomal escape. In contrast, CIL exhibited excellent ODN transportation and the internalized CIL/ODN complexes may escape from endosomes. Therefore, TNF-α expression can be specifically reduced by CIL/ODN complexes, and the silence effect was maintained longer than 14 h. This study provides a useful strategy of peptide vehicle design, which may facilitate the delivery of not only ODN but also other oligonucleotides, including siRNA and miRNA, to promote gene silence application.
Collapse
Affiliation(s)
- Wei-Wen Hu
- Department of Chemical and Materials Engineering, National Central University, Zhongli District, Taoyuan City, Taiwan; Center for Biocellular Engineering, National Central University, Zhongli District, Taoyuan City, Taiwan.
| | - Shih-Chun Huang
- Department of Chemical and Materials Engineering, National Central University, Zhongli District, Taoyuan City, Taiwan
| | - Shiow-Lian Catherine Jin
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, Taiwan
| |
Collapse
|
24
|
Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. PHYTOCHEMISTRY 2018; 154:94-105. [PMID: 30031244 DOI: 10.1016/j.phytochem.2018.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 05/20/2023]
Abstract
Antimicrobial peptides (AMPs), the self-defence products of organisms, are extensively distributed in plants. They can be classified into several groups, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich proteins, cyclotides and hevein-type proteins. AMPs can be extracted and isolated from different plants and plant organs such as stems, roots, seeds, flowers and leaves. They perform various physiological defensive mechanisms to eliminate viruses, bacteria, fungi and parasites, and so could be used as therapeutic and preservative agents. Research on AMPs has sought to obtain more detailed and reliable information regarding the selection of suitable plant sources and the use of appropriate isolation and purification techniques, as well as examining the mode of action of these peptides. Well-established AMP purification techniques currently used include salt precipitation methods, absorption-desorption, a combination of ion-exchange and reversed-phase C18 solid phase extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), and the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. Beyond these traditional methods, this review aims to highlight new and different approaches to the selection, characterisation, isolation, purification, mode of action and bioactivity assessment of a range of AMPs collected from plant sources. The information gathered will be helpful in the search for novel AMPs distributed in the plant kingdom, as well as providing future directions for the further investigation of AMPs for possible use on humans.
Collapse
Affiliation(s)
- Swee-Seong Tang
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Zakaria H Prodhan
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Sudhangshu K Biswas
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Cheng-Foh Le
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia.
| | - Shamala D Sekaran
- Faculty of Medicine, MAHSA University, Saujana Putra Campus, 42610, Jenjarum, Selangor, Malaysia.
| |
Collapse
|
25
|
Farzanegan A, Roudbary M, Falahati M, Khoobi M, Gholibegloo E, Farahyar S, Karimi P, Khanmohammadi M. Synthesis, characterization and antifungal activity of a novel formulated nanocomposite containing Indolicidin and Graphene oxide against disseminated candidiasis. J Mycol Med 2018; 28:628-636. [PMID: 30126717 DOI: 10.1016/j.mycmed.2018.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/29/2018] [Accepted: 07/31/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Candidiasis is one of the most opportunistic fungal infections in immunocompromised patients. The emergence of multidrug-resistant Candida species necessitates the development of novel antifungal agents. Seeking to the discovery of natural antifungal agents, this study aimed to synthesize a novel formulated nanocomposite containing Indolicidin (IN), antimicrobial peptide, and Graphene oxide (GO), kind of nanomaterial, against Candida growth using in vitro and in vivo experiments for the first time. METHODS The formulated nanocomposite (GO-IN) synthetized and was characterized using scanning electron microscopy, X-ray power diffraction, and fourier transform infrared method analysis. The in vitro antifungal activity of fluconazole (FLU), GO, IN, and GO-IN was determined against Candida albicans (C. albicans) compared to control groups, cell cytotoxicity assay on human intestinal epithelial cells (IEP) and hemolytic activities were performed. Moreover, in vivo experiments of nanocomposite were assessed in BALB/c mice. RESULTS Our results showed that nanocomposite had the highest inhibitory effect against C. albicans (MIC 3.12μg/mL) compared with flu (MIC 4μg/mL), IN (MIC 12.5μg/mL), and GO (MIC 6.25μg/mL). Viability of human intestinal cell line at the MIC concentration (3.12μg/mL) of nanocomposite (GO-IN) was detected as 60% (P<0.05). The results of hemolytic activity showed that nanocomposite cause 2.73% of red blood cell membrane damage. For in vivo experiments, infected mice were successfully treated with GO-IN once a day within 7 days. GO-IN treated group eliminated the Candida infection in the spleen and liver of BALB/c mice (P=0.001) similar to fluconazole. There was no significant difference in histological manifestations between flu and GO-IN groups. CONCLUSION This study suggests that synergistic combination of GO and IN provide a new option, representing a potential therapeutic efficiency against disseminated candidiasis in an animal model as well as might be used as adjunct therapy in the management of candidiasis. However, further investigation is needed to evaluate the efficacy of the nanocomposite.
Collapse
Affiliation(s)
- A Farzanegan
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| | - M Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran.
| | - M Falahati
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| | - M Khoobi
- Nanobiomaterials group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, 141761411 Tehran, Iran; Department of Organic Chemistry, University of Zanjan, Zanjan, Iran
| | - E Gholibegloo
- Department of Chemistry, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - S Farahyar
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| | - P Karimi
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| | - M Khanmohammadi
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, 14496-14530 Tehran, Iran
| |
Collapse
|
26
|
Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals (Basel) 2018; 11:ph11030068. [PMID: 29996512 PMCID: PMC6161137 DOI: 10.3390/ph11030068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
This review article provides an overview of recent developments in antimicrobial peptides (AMPs), summarizing structural diversity, potential new applications, activity targets and microbial killing responses in general. The use of artificial and natural AMPs as templates for rational design of peptidomimetics are also discussed and some strategies are put forward to curtail cytotoxic effects against eukaryotic cells. Considering the heat-resistant nature, chemical and proteolytic stability of AMPs, we attempt to summarize their molecular targets, examine how these macromolecules may contribute to potential environmental risks vis-à-vis the activities of the peptides. We further point out the evolutional characteristics of the macromolecules and indicate how they can be useful in designing target-specific peptides. Methods are suggested that may help to assess toxic mechanisms of AMPs and possible solutions are discussed to promote the development and application of AMPs in medicine. Even if there is wide exposure to the environment like in the hospital settings, AMPs may instead contribute to prevent healthcare-associated infections so long as ecotoxicological aspects are considered.
Collapse
|
27
|
Tsai CW, Lin ZW, Chang WF, Chen YF, Hu WW. Development of an indolicidin-derived peptide by reducing membrane perturbation to decrease cytotoxicity and maintain gene delivery ability. Colloids Surf B Biointerfaces 2018; 165:18-27. [DOI: 10.1016/j.colsurfb.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 11/28/2022]
|
28
|
Bondaryk M, Staniszewska M, Zielińska P, Urbańczyk-Lipkowska Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. J Fungi (Basel) 2017; 3:E46. [PMID: 29371563 PMCID: PMC5715947 DOI: 10.3390/jof3030046] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are associated with high mortality rates, despite appropriate antifungal therapy. Limited therapeutic options, resistance development and the high mortality of invasive fungal infections brought about more concern triggering the search for new compounds capable of interfering with fungal viability and virulence. In this context, peptides gained attention as promising candidates for the antimycotics development. Variety of structural and functional characteristics identified for various natural antifungal peptides makes them excellent starting points for design novel drug candidates. Current review provides a brief overview of natural and synthetic antifungal peptides.
Collapse
Affiliation(s)
- Małgorzata Bondaryk
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Paulina Zielińska
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | | |
Collapse
|
29
|
Malkapur D, Devi MS, Rupula K, Sashidhar R. Biogenic synthesis, characterisation and antifungal activity of gum kondagogu‐silver nano bio composite construct: assessment of its mode of action. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2017.0043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Dakshayani Malkapur
- Department of BiochemistryUniversity College of Science, Osmania UniversityHyderabad 500 007TelanganaIndia
| | - Manju S. Devi
- Department of BiochemistryUniversity College of Science, Osmania UniversityHyderabad 500 007TelanganaIndia
| | - Karuna Rupula
- Department of BiochemistryUniversity College of Science, Osmania UniversityHyderabad 500 007TelanganaIndia
| | - R.B. Sashidhar
- Department of BiochemistryUniversity College of Science, Osmania UniversityHyderabad 500 007TelanganaIndia
| |
Collapse
|
30
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Theansungnoen T, Maijaroen S, Jangpromma N, Yaraksa N, Daduang S, Temsiripong T, Daduang J, Klaynongsruang S. Cationic Antimicrobial Peptides Derived from Crocodylus siamensis Leukocyte Extract, Revealing Anticancer Activity and Apoptotic Induction on Human Cervical Cancer Cells. Protein J 2016; 35:202-11. [DOI: 10.1007/s10930-016-9662-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Al-Gayyar MM, Abbas A, Hamdan AM. Chemopreventive and hepatoprotective roles of adiponectin (SULF2 inhibitor) in hepatocelluar carcinoma. Biol Chem 2016; 397:257-67. [DOI: 10.1515/hsz-2015-0265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022]
Abstract
Abstract
Sulfatase 2 (SULF2) is an extracellular enzyme that catalyzes the removal of 6-O-sulfate groups from the heparan sulfate (HS). As elevated SULF2 activity has been correlated with hepatocellular carcinoma (HCC), this study was conducted to evaluate the chemoprotective and the hepatoprotective roles of adiponectin, as a SULF2 inhibitor, against hepatocellular carcinoma both in vivo and in vitro. HCC was induced in rats using thioacetamide (200 mg/kg). Treated rats received adiponectin (5 μg/kg) once a week. Moreover, human hepatocellular carcinoma (HepG2) cell line was used as an in-vitro model. In both in-vivo and in-vitro models, adiponectin completely blocked HCC-induced SULF2 elevation. The antitumor activity of adiponectin was confirmed by 80% increased the survival rate, 73% reduction in the average number of nodules per nodule-bearing liver and 46% reduction in serum AFP. In addition, adiponectin ameliorated HCC-induced expression of tumor invasion markers, MMP9, syndecan-1 and FGF-2. Moreover, adiponectin attenuated HCC-induced elevation of nfκb and TNF-α levels. Moreover, treatment of HepG2 cell line with adiponectin showed dose-dependent reduction of HepG2 cell viability and elevation of cellular cytotoxicity. Besides, Adiponectin yielded the same results in HepG2 cells in a dose-dependent manner. Adiponectin achieved both hepatoprotective and chemoprotective effects against HCC through blocking of SULF2.
Collapse
|
33
|
Shah P, Hsiao FSH, Ho YH, Chen CS. The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 2016; 16:1225-37. [PMID: 26648572 DOI: 10.1002/pmic.201500380] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides have been considered well-deserving candidates to fight the battle against microorganisms due to their broad-spectrum antimicrobial activities. Several studies have suggested that membrane disruption is the basic mechanism of AMPs that leads to killing or inhibiting microorganisms. Also, AMPs have been reported to interact with macromolecules inside the microbial cells such as nucleic acids (DNA/RNA), protein synthesis, essential enzymes, membrane septum formation and cell wall synthesis. Proteins are associated with many intracellular mechanisms of cells, thus protein targets may be specifically involved in mechanisms of action of AMPs. AMPs like pyrrhocoricin, drosocin, apidecin and Bac 7 are documented to have protein targets, DnaK and GroEL. Moreover, the intracellular targeting AMPs are reported to influence more than one protein targets inside the cell, suggesting for the multiple modes of actions. This complex mechanism of intracellular targeting AMPs makes them more difficult for the development of resistance. Herein, we have summarized the current status of AMPs in terms of their mode of actions, entry to cytoplasm and inhibition of macromolecules. To reveal the mechanism of action, we have focused on AMPs with intracellular protein targets. We have also included the use of high-throughput proteome microarray to determine the unidentified AMP protein targets in this review.
Collapse
Affiliation(s)
- Pramod Shah
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Felix Shih-Hsiang Hsiao
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Yu-Hsuan Ho
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| |
Collapse
|
34
|
Past, Present, and Future of Antifungal Drug Development. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Tsai CW, Hu WW, Liu CI, Ruaan RC, Tsai BC, Jin SLC, Chang Y, Chen WY. The consideration of indolicidin modification to balance its hemocompatibility and delivery efficiency. Int J Pharm 2015; 494:498-505. [DOI: 10.1016/j.ijpharm.2015.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/24/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023]
|
36
|
Canonico B, Candiracci M, Citterio B, Curci R, Squarzoni S, Mazzoni A, Papa S, Piatti E. Honey flavonoids inhibit Candida albicans morphogenesis by affecting DNA behavior and mitochondrial function. Future Microbiol 2014; 9:445-56. [PMID: 24810344 DOI: 10.2217/fmb.14.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM Candida albicans is a pathogenic yeast, which forms a range of polarized and expanded cell shapes. We aimed to determine the correlation between honey extract (HFE) activity and changes in C. albicans cell cycle, morphology and subcellular organelles. MATERIALS & METHODS HFE anticandidal properties were investigated using flow cytometry and scanning electron microscopy. RESULTS Flow cytometry and scanning electron microscopy analyses indicated that HFE may inhibit the growth of the three phenotypes displayed by C. albicans and reduce infection by affecting membrane integrity. HFE affects hyphal transition by reducing the G0/G1 phase and increasing the G2/M phase. Conversely, yeast and pseudohyphae do not appear to be affected. Modifications of vacuolization and mitochondrial activity, during yeast-hypha transition establish the involvement of vacuole and mitochondria. CONCLUSION HFE improved mitochondrial functionality and reduced the vacuolization, modifying the branching process associated with virulence. It is hypothesized that HFE induces changes in cell cycle progress, membrane integrity, mitochondrial function and biogenesis.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Earth, Life & Environmental Sciences, Urbino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Effect of a synthetic indolicidin analogue on lipid peroxidation in thermal burns. Bull Exp Biol Med 2014; 157:447-9. [PMID: 25110080 DOI: 10.1007/s10517-014-2587-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Indexed: 10/24/2022]
Abstract
Experimental simulation of burn was followed by accumulation of LPO products and suppression of antioxidant enzyme activity in the burn wound. Application of a synthetic analogue of indolicidin led to an increase in MDA and acylhydroperoxide concentrations in the burn wound on experimental day 1. Further application of the peptide in a dose of 100 mg/kg had no significant effect on the studied parameters, while the peptide in a dose of 500 mg/kg was followed by a decrease in the level of LPO products on days 10 and 14. Changes in antioxidant enzyme activities in rats treated with 500 mg/kg indolicidin analogue had a two-phase pattern: an increase on day 4 was followed by a decrease.
Collapse
|
38
|
Joshi KB, Singh P. l-Proline induced self-assembly of indolicidin derived palindromic tripeptide. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Antimicrobial peptides. Pharmaceuticals (Basel) 2013; 6:1543-75. [PMID: 24287494 PMCID: PMC3873676 DOI: 10.3390/ph6121543] [Citation(s) in RCA: 871] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022] Open
Abstract
The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes) and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics).
Collapse
|
40
|
Saravanan R, Li X, Lim K, Mohanram H, Peng L, Mishra B, Basu A, Lee JM, Bhattacharjya S, Leong SSJ. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Biotechnol Bioeng 2013; 111:37-49. [PMID: 23860860 DOI: 10.1002/bit.25003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/30/2013] [Accepted: 07/08/2013] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides (AMPs) kill microbes by non-specific membrane permeabilization, making them ideal templates for designing novel peptide-based antibiotics that can combat multi-drug resistant pathogens. For maximum efficacy in vivo and in vitro, AMPs must be biocompatible, salt-tolerant and possess broad-spectrum antimicrobial activity. These attributes can be obtained by rational design of peptides guided by good understanding of peptide structure-function. Toward this end, this study investigates the influence of charge and hydrophobicity on the activity of tryptophan and arginine rich decamer peptides engineered from a salt resistant human β-defensin-28 variant. Mechanistic investigations of the decamers with detergents mimicking the composition of bacterial and mammalian membrane, reveal a correlation between improved antibacterial activity and the increase in tryptophan and positive residue content, while keeping hemolysis low. The potent antimicrobial activity and high cell membrane selective behavior of the two most active decamers, D5 and D6, are attributed to an optimum peptide charge to hydrophobic ratio bestowed by systematic arginine and tryptophan substitution. D5 and D6 show surface localization behavior with binding constants of 1.86 × 10(8) and 2.6 × 10(8) M(-1) , respectively, as determined by isothermal calorimetry measurements. NMR derived structures of D5 and D6 in SDS detergent micelles revealed proximity of Trp and Arg residues in an extended structural scaffold. Such potential cation-π interactions may be critical in cell permeabilization of the AMPs. The fundamental characterization of the engineered decamers provided in this study improves the understanding of structure-activity relationship of short arginine tryptophan rich AMPs, which will pave the way for future de novo design of potent AMPs for therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Rathi Saravanan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Alfred RL, Palombo EA, Panozzo JF, Bariana H, Bhave M. Stability of puroindoline peptides and effects on wheat rust. World J Microbiol Biotechnol 2013; 29:1409-19. [PMID: 23456858 DOI: 10.1007/s11274-013-1304-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/21/2013] [Indexed: 11/30/2022]
Abstract
Peptides modelled on the tryptophan rich domain of puroindolines and the related grain softness protein-1 have a broad range of antibacterial and antifungal activities. With the aims of further investigating the activities of these antimicrobial peptides we studied their activity against wheat rust diseases and environmental stability. PINA-based peptides were found to have high pH and thermal stability in addition to being stable over long periods at room temperature. These properties could make them excellent candidates as preservatives in food. PuroA, Pina-R39G and PuroB peptides adversely affected the morphology of the stripe rust spores (Puccinia striiformis f. sp. tritici), while PuroA and PuroB showed moderate inhibition of their germination. Additionally, GSP-5D reduced the germination of leaf rust spores (P. triticina). PuroA and PuroB sprayed onto stripe rust infected plants effected a moderate reduction in the number of stripe rust uredinia on wheat seedlings, as did PuroB sprayed onto the seedlings and allowed to coat the leaves for 5 day prior to spore infection. The results suggest that the presence of the PIN-based peptides may lower frequency of initial infection foci.
Collapse
Affiliation(s)
- Rebecca L Alfred
- Faculty of Life and Social Sciences, Environment and Biotechnology Centre, Swinburne University of Technology, PO Box 218, Melbourne, VIC 3122, Australia
| | | | | | | | | |
Collapse
|
42
|
Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 2012; 39:10957-70. [PMID: 23065264 PMCID: PMC3487008 DOI: 10.1007/s11033-012-1997-x] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Abstract
Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.
Collapse
|
43
|
Okorochenkov SA, Zheltukhina GA, Nebol'sin VE. [Antimicrobial peptides: mode of action and perspectives of practical application]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2012; 58:131-43. [PMID: 22724354 DOI: 10.18097/pbmc20125802131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to antimicrobial peptides (AMP's) that demonstrate activity against bacteria, viruses and fungi. It considers structure and mechanism of AMP interaction with lipid membrane and intracellular targets of pathogens. Special attention is paid to modem state and perspectives of AMP practical application and also to approaches that increase efficacy and reduce toxicity of AMP by chemical modification of their structure.
Collapse
|
44
|
The potential of antimicrobial peptides as biocides. Int J Mol Sci 2011; 12:6566-96. [PMID: 22072905 PMCID: PMC3210996 DOI: 10.3390/ijms12106566] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections.
Collapse
|
45
|
Okorochenkov SA, Zheltukhina GA, Nebol’sin VE. Antimicrobial peptides: the mode of action and perspectives of practical application. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Indolicidin action on membrane permeability: Carrier mechanism versus pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:91-7. [DOI: 10.1016/j.bbamem.2010.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/15/2022]
|
47
|
Lomash S, Nagpal S, Salunke DM. An antibody as surrogate receptor reveals determinants of activity of an innate immune peptide antibiotic. J Biol Chem 2010; 285:35750-8. [PMID: 20837490 PMCID: PMC2975199 DOI: 10.1074/jbc.m110.150516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/15/2010] [Indexed: 11/06/2022] Open
Abstract
Drug discovery initiatives often depend critically on knowledge of ligand-receptor interactions. However, the identity or structure of the target receptor may not be known in every instance. The concept of receptor surrogate, a molecular environment mimic of natural receptor, may prove beneficial under such circumstances. Here, we demonstrate the potential of monoclonal antibodies (mAbs) to act as surrogate receptors for a class of innate immune peptide antibiotics, a strategy that can help comprehend their action mechanism and identify chemical entities crucial for activity. A panel of antibody surrogates was raised against indolicidin, a tryptophan-rich cationic broad spectrum antimicrobial peptide of innate immune origin. Employing an elegant combination of thermodynamics, crystallography, and molecular modeling, interactions of the peptide with a high affinity anti-indolicidin monoclonal antibody were analyzed and were used to identify a motif that contained almost the entire antibiotic activity of native indolicidin. The analysis clarified the interaction of the peptide with previously proposed targets such as bacterial cell membrane and DNA and could further be correlated with antimicrobial compounds whose actions involve varied other mechanisms. These features suggest a multipronged assault pathway for indolicidin. Remarkably, the anti-indolicidin mAb surrogate was able to isolate additional independent bactericidal sequences from a random peptide library, providing compelling evidence as to the physiological relevance of surrogate receptor concept and suggesting applications in receptor-based pharmacophore research.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Anti-Infective Agents/immunology
- Anti-Infective Agents/metabolism
- Anti-Infective Agents/pharmacology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antimicrobial Cationic Peptides/immunology
- Antimicrobial Cationic Peptides/metabolism
- Antimicrobial Cationic Peptides/pharmacology
- Crystallography, X-Ray
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Immunity, Innate/immunology
- Immunoglobulin Fragments/chemistry
- Immunoglobulin Fragments/immunology
- Immunoglobulin Fragments/metabolism
- Kinetics
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Peptide Library
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/growth & development
- Thermodynamics
Collapse
Affiliation(s)
- Suvendu Lomash
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Sushma Nagpal
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Dinakar M. Salunke
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
- the Regional Centre for Biotechnology, Gurgaon 122016, India
| |
Collapse
|
48
|
The design and synthesis of alanine-based indolicidin derivatives with identical physicochemical properties and their separation using capillary electrophoresis. Anal Bioanal Chem 2010; 398:3073-9. [PMID: 20924563 DOI: 10.1007/s00216-010-4249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
Four novel alanine-based indolicidin peptide derivatives were designed containing one WPW motif and two alanine residues, resulting in peptides of similar sequence. The separation of these peptides with identical physicochemical properties including molar mass, charge, and secondary structure as characterized by circular dichroism spectroscopy is very difficult; and the separation of peptides with differing physicochemical properties has only previously been reported. Capillary electrophoresis parameters such as separation buffer concentration, separation buffer pH, capillary length, and separation voltage were investigated to optimize the analysis. Using optimized conditions of a background electrolyte containing 5 mM formic acid of pH 2.0, total capillary length of 51 cm and a voltage of 10 kV enabled a baseline separation of the four peptides. The relative standard deviation of the peak areas and migration times for method repeatability (n = 3) were found to be lower than 8% and 3%, respectively. In addition, reasoning for the separation of these peptides is proposed based on the acidity of the formic acid buffer and the hydrophobic grouping of the tryptophan residues in the peptide primary sequence.
Collapse
|
49
|
Podorieszach AP, Huttunen-Hennelly HEK. The effects of tryptophan and hydrophobicity on the structure and bioactivity of novel indolicidin derivatives with promising pharmaceutical potential. Org Biomol Chem 2010; 8:1679-87. [DOI: 10.1039/b921248e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Bourbigot S, Fardy L, Waring AJ, Yeaman MR, Booth V. Structure of chemokine-derived antimicrobial Peptide interleukin-8alpha and interaction with detergent micelles and oriented lipid bilayers. Biochemistry 2009; 48:10509-21. [PMID: 19813761 DOI: 10.1021/bi901311p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interleukin-8alpha (IL-8alpha) is an antimicrobial peptide derived from the chemokine IL-8. Solution NMR was used to determine the atomic-resolution structure of IL-8alpha in SDS micelles. Solid-state NMR and tryptophan fluorescence were used to probe the interaction of IL-8alpha with model membranes. The peptide interacted differently with anionic versus purely zwitterionic micelles or bilayers. Tryptophan fluorescence demonstrated a deeper position of Trp4 in SDS micelles and POPC/POPG bilayers compared to pure POPC bilayers, consistent with (2)H order parameters, which also indicated a deeper position of the peptide in POPC/POPG bilayers compared to POPC bilayers. Paramagnetic probe data showed that IL-8alpha was situated roughly parallel to the SDS micelle surface, with a slight tilt that positioned the N-terminus more deeply in the micelle compared to the C-terminus. (15)N solid-state NMR spectra indicated a similar, nearly parallel position for the peptide in POPC/POPG bilayers. (31)P and (2)H solid-state NMR demonstrated that the peptide did not induce the formation of any nonlamellar phases and did not significantly disrupt bilayer orientation in aligned model membranes composed of POPC or POPC and POPG.
Collapse
Affiliation(s)
- Sarah Bourbigot
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | | | | | | | | |
Collapse
|