1
|
Richard AMT, Webb DL, Goodman JM, Schultz V, Flanagan JN, Getty-Kaushik L, Deeney JT, Yaney GC, Dunaway GA, Berggren PO, Tornheim K. Tissue-dependent loss of phosphofructokinase-M in mice with interrupted activity of the distal promoter: impairment in insulin secretion. Am J Physiol Endocrinol Metab 2007; 293:E794-801. [PMID: 17595219 DOI: 10.1152/ajpendo.00168.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphofructokinase is a key enzyme of glycolysis that exists as homo- and heterotetramers of three subunit isoforms: muscle, liver, and C type. Mice with a disrupting tag inserted near the distal promoter of the phosphofructokinase-M gene showed tissue-dependent differences in loss of that isoform: 99% in brain and 95-98% in islets, but only 50-75% in skeletal muscle and little if any loss in heart. This correlated with the continued presence of proximal transcripts specifically in muscle tissues. These data strongly support the proposed two-promoter system of the gene, with ubiquitous use of the distal promoter and additional use of the proximal promoter selectively in muscle. Interestingly, the mice were glucose intolerant and had somewhat elevated fasting and fed blood glucose levels; however, they did not have an abnormal insulin tolerance test, consistent with the less pronounced loss of phosphofructokinase-M in muscle. Isolated perifused islets showed about 50% decreased glucose-stimulated insulin secretion and reduced amplitude and regularity of secretory oscillations. Oscillations in cytoplasmic free Ca(2+) and the rise in the ATP/ADP ratio appeared normal. Secretory oscillations still occurred in the presence of diazoxide and high KCl, indicating an oscillation mechanism not requiring dynamic Ca(2+) changes. The results suggest the importance of phosphofructokinase-M for insulin secretion, although glucokinase is the overall rate-limiting glucose sensor. Whether the Ca(2+) oscillations and residual insulin oscillations in this mouse model are due to the residual 2-5% phosphofructokinase-M or to other phosphofructokinase isoforms present in islets or involve another metabolic oscillator remains to be determined.
Collapse
Affiliation(s)
- Ann-Marie T Richard
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Seki Y, Sato K, Kono T, Akiba Y. Two types of phosphofructokinase-1 differentially regulate the glycolytic pathway in insulin-stimulated chicken skeletal muscle. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:344-50. [PMID: 16413217 DOI: 10.1016/j.cbpb.2005.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 12/04/2005] [Accepted: 12/05/2005] [Indexed: 11/21/2022]
Abstract
To elucidate the precise regulation of glucose homeostasis in chicken skeletal muscle, expression of muscle- and liver-type phosphofructokinase-1 (EC:2.7.1.11, PFK-M, PFK-L) was characterized in the insulin-stimulated state by Real-Time PCR. Firstly, chicken PFK-M and PFK-L full-length cDNA sequences were identified. The deduced amino acid sequences were 81.6% and 86.5% identical with human PFK-M and PFK-L, respectively. In pectoralis superficialis (PS) muscle and extensor digitorum longus (EDL), PFK-M mRNA levels were unchanged following insulin stimulation. Surprisingly, although mammalian PFK-L has been reported to be expressed in liver, kidney and brain, chicken PFK-L was not detected in liver and kidney, however, strong expression was detected in skeletal muscle and brain by Northern blot analysis. However, using PCR, PFK-L mRNA was detected in liver. Taken together, chicken PFK-L mRNA expression was at a very low level, below the detection limit of Northern blot analysis. Chicken PFK-L mRNA levels were increased 200% in PS muscle but decreased by 40% in EDL following insulin stimulation. These results suggest that two types of PFK regulate the glycolytic pathway in the insulin-stimulated state and, therefore, that glucose metabolism in chicken skeletal muscle may be regulated in a very different manner compared to mammals.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chickens/metabolism
- Cloning, Molecular
- Gene Expression
- Glucose/metabolism
- Glycolysis/genetics
- Insulin/pharmacology
- Liver/chemistry
- Molecular Sequence Data
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Phosphofructokinase-1, Liver Type/genetics
- Phosphofructokinase-1, Liver Type/metabolism
- Phosphofructokinase-1, Muscle Type/genetics
- Phosphofructokinase-1, Muscle Type/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Yoshinori Seki
- Animal Nutrition, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | | | | | | |
Collapse
|
3
|
Su Y, Zhou A, Al-Lamki RS, Karet FE. The a-subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans. J Biol Chem 2003; 278:20013-8. [PMID: 12649290 DOI: 10.1074/jbc.m210077200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-type or H+-ATPases are a family of ATP-dependent proton pumps that move protons across the plasma membrane at specialized sites such as kidney epithelial cells and osteoclasts as well as acidifying intracellular compartments. The 100-kDa polytopic a-subunit of this group of ATPases is suggested to play an important role in coupling the two functions of the pump, ATP hydrolysis and proton transport. In man, different a-subunit isoforms are encoded by four genes. ATP6V0A4 encodes a4, which is expressed apically in alpha-intercalated cells in both human and mouse kidney. We sought binding partners for the C terminus of a4 in order to address its potential role in the H+-ATPase complex. Random peptide phage display analysis revealed a consensus motif (WLELRP) with almost complete homology to part of the enzyme phosphofructokinase 1 (PFK-1). Activity of this enzyme is the rate-limiting step in glycolysis. Specificity of a4 binding to this peptide was confirmed by enzyme-linked immunosorbent assay. Protein-protein interaction was further demonstrated by co-immunoprecipitation of a4 with PFK-1 from solubilized human kidney membrane proteins. An in vitro bead-bound PFK-1 pull-down assay showed that this interaction was also true for the ubiquitously expressed a1 subunit. Finally, PFK-1 co-immunolocalized with a4 in alpha-intercalated cells in the collecting ducts of human kidney. These findings indicate a direct link between V-type H+-ATPases and glycolysis via the C-terminal region of the a-subunit of the pump and suggest a novel regulatory mechanism between H+-ATPase function and energy supply. This interaction between the a-subunit and PFK-1 also provides new evidence that the C terminus of this subunit lies cytoplasmically in vivo.
Collapse
Affiliation(s)
- Ya Su
- Department of Medical Genetics, Cambridge University, United Kingdom
| | | | | | | |
Collapse
|
4
|
Mhaskar Y, Armour G, Dunaway G. Alteration of the levels of the M-type 6-phosphofructo-1-kinase mRNA isoforms during neonatal maturation of heart, brain and muscle. Mol Cell Biochem 2000; 214:81-7. [PMID: 11195794 DOI: 10.1023/a:1007195017569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During muscle, heart, and brain neonatal maturation, the capacity to utilize glucose in energy metabolism is directly related to the extent of accumulation of the 6-phosphofructo-1-kinase (PFK) M-type subunit. Neonatal development of other organs, such as liver and kidney, which are not characterized by large increases in the capacity to use glucose do not exhibit large increases in the M-type subunit protein. The presence of the M-type subunit in a PFK isozyme pool fosters a higher affinity utilization of carbohydrate and increased responsiveness to the levels of regulatory metabolites. To better appreciate this phenomenon, which is vital for normal development, the different isoforms of the M-type subunit mRNA's and alteration of their levels during maturation have been examined. Further, the potential promoter regions, i.e., the regions upstream from the sites of initiation of transcription, which are involved in expression of the different M-type subunit mRNA isoforms have been isolated, sequenced, and examined for possible transcription factor interaction sites. Using cDNA libraries produced from adult rat brain or skeletal muscle RNA, two primary forms of rat M-type subunit cDNA's were detected. Although the translated regions of these mRNA's were essentially identical, the 5'-untranslated region (5'-UTR) exhibited different lengths (90 or 59 bp) and sequences. Each M-type subunit cDNA had 10 common nucleotides immediately upstream from the initiator ATG, and the remaining 5'-UTR's had insignificant identity. A genomic fragment which interacted with probes complimentary to the sequences of the 5'-UTR of each M-type subunit mRNA isoform was isolated and sequenced by primer walking. It was discovered that the 5'-UTR of one of the mRNA's (proximal mRNA) was located immediately upstream from exon I and was apparently transcribed without splicing. Subsequently, the initial bp in the sequence of the other mRNA isoform (distal mRNA) was located 4010 bp upstream from the ATG in exon 1. Employing Reverse Transcription-Polymerase Chain Reaction using total RNA and scanning densitometry, the relative levels of the proximal and distal mRNA's during neonatal maturation of brain, heart, and muscle were measured. In these tissues, both forms of M-type subunit mRNA's were present, and during maturation tissue-specific differences were noted.
Collapse
Affiliation(s)
- Y Mhaskar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794-9629, USA
| | | | | |
Collapse
|
5
|
Abstract
The metabolic myopathies are distinguished by extensive clinical and genetic heterogeneity within and between individual disorders. There are a number of explanations for the variability observed that go beyond single gene mutations or degrees of heteroplasmy in the case of mitochondrial DNA mutations. Some of the contributing factors include protein subunit interactions, tissue-specificity, modifying genetic factors, and environmental triggers. Advances in the molecular analysis of metabolic myopathies during the last decade have not only improved the diagnosis of individual disorders but also helped to characterize the contributing factors that make these disorders so complex.
Collapse
Affiliation(s)
- G D Vladutiu
- Associate Professor, Departments of Pediatrics, Neurology, and Pathology, Division of Genetics, School of Medicine and Biomedical Studies, State University of New York at Buffalo, 14209, USA.
| |
Collapse
|
6
|
Martinuzzi A, Schievano G, Nascimbeni A, Fanin M. McArdle's disease. The unsolved mystery of the reappearing enzyme. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1893-7. [PMID: 10362816 PMCID: PMC1866615 DOI: 10.1016/s0002-9440(10)65447-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We assessed the frequency of muscle fibers showing histochemical phosphorylase activity in 27 muscle biopsies from 25 unrelated patients with McArdle's disease and studied by immunohistochemistry and in situ hybridization whether the muscle-specific isoform was expressed. Positive phosphorylase fibers were observed in 19% of our series of biopsies. We show that the enzyme isoform expressed in regenerating fibers differs according to the genotype of patients: the muscle-specific isoform is transcribed and translated in patients with none of the described mutations in at least one allele of the myophosphorylase gene, whereas it is neither transcribed nor translated in patients with identified mutations in both alleles.
Collapse
Affiliation(s)
- A Martinuzzi
- Scientific Institute "Eugenio Medea", Conegliano Research Centre, Conegliano, Italy.
| | | | | | | |
Collapse
|
7
|
Abstract
The primary presentations of neuromuscular disease in the newborn period are hypotonia and weakness. Although metabolic myopathies are inherited disorders that present from birth and may present with subtle to marked neonatal hypotonia, a number of these defects are diagnosed classically in childhood, adolescence, or adulthood. Disorders of glycogen, lipid, or mitochondrial metabolism may cause three main clinical syndromes in muscle, namely, (1) progressive weakness with hypotonia (e.g., acid maltase, debrancher enzyme, and brancher enzyme deficiencies among the glycogenoses; carnitine uptake and carnitine acylcarnitine translocase defects among the fatty acid oxidation (FAO) defects; and cytochrome oxidase deficiency among the mitochondrial disorders) or (2) acute, recurrent, reversible muscle dysfunction with exercise intolerance and acute muscle breakdown or myoglobinuria (with or without cramps), e.g., phosphorylase, phosphofructokinase, and phosphoglycerate kinase among the glycogenoses and carnitine palmitoyltransferase II deficiency among the disorders of FAO or (3) both (e.g., long-chain or very long-chain acyl coenzyme A (CoA) dehydrogenase, short-chain L-3-hydroxyacyl-CoA dehydrogenase, and trifunctional protein deficiencies among the FAO defects). Episodes of exercise-induced myoglobinuria tend to present in later childhood or adolescence; however, myoglobinuria in the first year of life may occur in FAO disorders during catabolic crises precipitated by fasting or infection. The following is a survey of genetic disorders of glycogen and lipid metabolism resulting in myopathy, focusing primarily on those defects, to date, that have presented in the neonatal or early infancy period. Disorders of mitochondrial metabolism are discussed in another chapter.
Collapse
Affiliation(s)
- I Tein
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Ontario, Canada
| |
Collapse
|
8
|
Kuromitsu J, Yamashita H, Kataoka H, Takahara T, Muramatsu M, Sekine T, Okamoto N, Furuichi Y, Hayashizaki Y. A unique downregulation of h2-calponin gene expression in Down syndrome: a possible attenuation mechanism for fetal survival by methylation at the CpG island in the trisomic chromosome 21. Mol Cell Biol 1997; 17:707-12. [PMID: 9001224 PMCID: PMC231796 DOI: 10.1128/mcb.17.2.707] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To understand the effect of trisomic chromosome 21 on the cause of Down syndrome (DS), DNA methylation in the CpG island, which regulates the expression of adjacent genes, was investigated with the DNAs of chromosome 21 isolated from DS patients and their parents. A methylation-sensitive enzyme, BssHII, was used to digest DNAs of chromosome 21, and the resulting DNA fragments were subjected to RLGS (restriction landmark genomic scanning). Surprisingly, the CpG island of the h2-calponin gene was shown to be specifically methylated by comparative studies with RLGS and Southern blot analysis. In association with this methylation, h2-calponin gene expression was attenuated to the normal level, although other genes in the DS region of chromosome 21 were expressed dose dependently at 1.5 times the normal level. These results and the high miscarriage rate associated with trisomy 21 embryos imply that the altered in vivo methylation that attenuates downstream gene expression, which is otherwise lethal, permits the generation of DS neonates. The h2-calponin gene detected by the RLGS procedure may be one such gene that is attenuated.
Collapse
Affiliation(s)
- J Kuromitsu
- Genome Science Laboratory, RIKEN Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vorgerd M, Karitzky J, Ristow M, Van Schaftingen E, Tegenthoff M, Jerusalem F, Malin JP. Muscle phosphofructokinase deficiency in two generations. J Neurol Sci 1996; 141:95-9. [PMID: 8880699 DOI: 10.1016/0022-510x(96)00131-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphofructokinase (PFK) is the key regulatory enzyme of glycolysis. Patients lacking the muscular isoform of PFK typically present with myopathy and compensated hemolysis (glycogenosis type VII or Tarui's disease). Since 1965 about 30 cases of muscular PFK deficiency have been reported. In most cases family history suggests a recessive inherited trait. We describe a family of Ashkenazi Jewish origin with two members in subsequent generations suffering from muscular PFK deficiency. The propositus, a 19-year-old male patient presented with weakness, myalgias and exercise intolerance since early infancy. His father also had early fatigue on exercise with myalgias; the mother and a 12-year-old brother were asymptomatic. Muscle biopsy of both the propositus and his father showed increased glycogen storage and absent histochemical stain for PFK. Biochemical studies of muscle revealed a markedly decreased PFK activity and DNA analysis of the muscle PFK gene revealed compound heterozygosity in both cases. This is the first description of proven muscle PFK deficiency (glycogenosis type VII) in two subsequent generations.
Collapse
Affiliation(s)
- M Vorgerd
- Department of Neurology, Ruhr University Bochum, BG-Kliniken Bergmannsheil, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Ma Z, Ramanadham S, Kempe K, Hu Z, Ladenson J, Turk J. Characterization of expression of phosphofructokinase isoforms in isolated rat pancreatic islets and purified beta cells and cloning and expression of the rat phosphofructokinase-A isoform. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1308:151-63. [PMID: 8764833 DOI: 10.1016/0167-4781(96)00088-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphofructokinase (PFK) plays a key role in regulating glycolytic flux, and the mammalian enzyme is a tetramer. Three monomeric isoforms are encoded by separate genes, are differentially expressed in specific tissues, and are designated by tissues in which they are most abundant (A, muscle; B, liver; and C, brain). Glucose-induced insulin secretion from pancreatic islets requires glucose transport into islet beta-cells and glycolytic metabolism. Little is known about islet PFK isozymes, but the possibility that PFK-A is expressed in beta-cells is of interest because that isoform is thought to govern glycolytic oscillations and to interact with a metabolically activated beta-cell phospholipase A2 enzyme. Using as probe a PCR product generated from rat islet RNA with primers designed from the human PFK-A sequence, we have cloned a full-length PFK-A cDNA from a rat islet cDNA library. The rat PFK-A deduced amino-acid sequence is 96% identical to that of human PFK-A, and all residues thought to participate in substrate or allosteric effector binding are conserved between the two sequences. The rat PFK-A amino-acid sequence is 69% and 68% identical to those for rat PFK-B and rat PFK-C, respectively, and differences in residues involved in binding of allosteric effectors were observed among the three isoforms. Rat PFK-A expressed as a glutathione-S-transferase fusion protein was recognized by antibodies raised against a peptide in the PFK-A sequence. Expression of PFK isoform mRNA species was examined by RT-PCR in rat islets, in purified populations of beta-cells prepared by fluorescence-activated cell sorting (FACS), and in RIN-m5F insulinoma cells, all of which expressed mRNA species for PFK-A, -B, and -C isoforms. PFK-A mRNA was expressed at much lower levels in an islet alpha-cell-enriched population. Interleukin-1 impairs islet glucose metabolism and insulin secretion and was found to induce a specific decline in islet expression of PFK-A mRNA. These findings establish the sequence of rat PFK-A, demonstrate that it is expressed in FACS-purified islet beta-cells, and suggest that its expression is regulated by a cytokine which influences insulin secretion.
Collapse
Affiliation(s)
- Z Ma
- Division of Endocrinology, Diabetes and Metabolism, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Disorders of glycogen, lipid or mitochondrial metabolism may cause two main clinical syndromes, namely (1) progressive weakness (eg, acid maltase, debrancher enzyme, and brancher enzyme deficiencies among the glycogenoses; long- and very-long-chain acyl-CoA dehydrogenase (LCAD, VLCAD), and trifunctional enzyme deficiencies among the fatty acid oxidation (FAO) defects; and mitochondrial enzyme deficiencies) or (2) acute, recurrent, reversible muscle dysfunction with exercise intolerance and acute muscle breakdown or myoglobinuria (with or without cramps) (eg, phosphorylase (PPL), phosphorylase b kinase (PBK), phosphofructokinase (PFK), phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGAM), and lactate dehydrogenase (LDH) among the glycogenoses and carnitine palmitoyltransferase II (CPT II) deficiency among the disorders of FAO or (3) both (eg, PPL, PBK, PFK among the glycogenoses; LCAD, VLCAD, short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD), and trifunctional enzyme deficiencies among the FAO defects; and multiple mitochondrial DNA (mtDNA) deletions). Myoadenylate deaminase deficiency, a purine nucleotide cycle defect, is somewhat controversial and is characterized by exercise-related cramps leading rarely to myoglobinuria.
Collapse
Affiliation(s)
- I Tein
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Hotta K, Kuwajima M, Ono A, Nakajima H, Horikawa Y, Miyagawa J, Namba M, Hanafusa T, Horiuchi M, Nikaido H, Hayakawa J, Saheki T, Kono N, Noguchi T, Matsuzawa Y. Disordered expression of glycolytic and gluconeogenic liver enzymes of juvenile visceral steatosis mice with systemic carnitine deficiency. Diabetes Res Clin Pract 1996; 32:117-23. [PMID: 8858199 DOI: 10.1016/0168-8227(96)01247-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A quantitative study of the effect of carnitine deficiency on expression of glycolytic and gluconeogenic enzymes was performed using juvenile visceral steatosis mice which are systemically deficient in carnitine. The amounts of glucokinase and L-type pyruvate kinase mRNA were reduced in homozygotes, compared to heterozygotes and normal controls at 2 and 8 weeks. Liver-type phosphofructokinase, however, did not differ significantly. The abundance of fructose 1,6-bisphosphatase mRNA was unchanged at 2 and 8 weeks. The level of phosphoenolpyruvate carboxykinase mRNA was increased slightly at 2 weeks, but not at 8 weeks. A part of these changes could not be explained by the plasma glucose or insulin level. Carnitine administration restored the mRNA of these enzymes to normal levels. These results suggest that carnitine deficiency affects the expression of these liver enzymes.
Collapse
Affiliation(s)
- K Hotta
- Second Department of Internal Medicine, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hotta K, Kuwajima M, Ono A, Nakajima H, Shingu R, Miyagawa J, Namba M, Hanafusa T, Noguchi T, Kono N, Matsuzawa Y. Disordered expression of hepatic glycolytic and gluconeogenic enzymes in Otsuka Long-Evans Tokushima fatty rats with spontanteous long-term hyperglycemia. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1289:145-9. [PMID: 8605225 DOI: 10.1016/0304-4165(95)00148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Expression of key regulatory enzymes involved in glucose metabolism was studied in the livers of Otsuka Long-Evans Tokushima fatty (OLETF) rats, a model of non-insulin dependent diabetes mellitus. The activity and mRNA levels of glucokinase and L-type pyruvate kinase was increased in the liver of OLETF rats compared with control rats. There was no such remarkable change in liver-type phosphofructokinase. The activities of glucose-6-phosphatase and fructose-1,6-biphosphatase also increase despite high plasma levels of glucose and insulin. The activity of phosphoenolpyruvate carboxykinase did not show any significant change. The mRNA levels for fructose-1,6-biphosphatase, and phosphoenolpyruvate carboxykinase exhibited no marked changes. These results suggest that the expression of glucose-6-phosphatase and fructose-1,6-biphosphatase is disordered in OLETF rats.
Collapse
Affiliation(s)
- K Hotta
- Second Department of Internal Medicine, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakajima H, Hamaguchi T, Yamasaki T, Tarui S. Phosphofructokinase deficiency: recent advances in molecular biology. Muscle Nerve 1995; 3:S28-34. [PMID: 7603524 DOI: 10.1002/mus.880181408] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Phosphofructokinase (PFK) plays a major role in glycolysis. Deficiency of PFK-M is characterized by muscle weakness due to fuel crisis in exercising muscles. To elucidate the gene defect of PFK-deficient patients, we have cloned and determined the complete structure and transcription mechanism of human PFK-M mRNA and gene. Molecular defects were investigated in three unrelated Japanese family cases. The first case was characterized by a point mutation at the donor site of intron 15 of the PFK-M gene. Cryptic splicing resulted in a 25 amino acid truncation in the patient's PFK-M. The second case possessed a point mutation at the donor site of intron 19, resulting in the skipping of exon 19 and the truncation of 55 amino acids. In the third case, a missense mutation was identified in the coding region. The review of an updated mutation repertoire indicates the heterogeneity of the molecular mechanism of the disease.
Collapse
Affiliation(s)
- H Nakajima
- Second Department of Internal Medicine, Osaka University Medical School, Japan
| | | | | | | |
Collapse
|
15
|
Tarui S. Glycolytic defects in muscle: aspects of collaboration between basic science and clinical medicine. Muscle Nerve 1995; 3:S2-9. [PMID: 7603522 DOI: 10.1002/mus.880181404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular heterogeneities of enzyme abnormality have been identified successfully since 1990 for major clinical entities of glycogenolytic and glycolytic defects in skeletal muscle. The interchange between clinical medicine and basic science, which enabled these achievements, has a long history. This review introduces several important examples of this interchange, which has borne much fruit in the comprehensive understanding of glycogenolysis-glycolysis in skeletal muscle and the related defects that cause various metabolic diseases. For instance, the presence of "glycogen synthase" was mainly suggested by the pathophysiology of McArdle's disease. Clinical manifestations of muscle phosphofructokinase (PFK) deficiency have indicated that there could be PFK isozymes under separate genetic control. Although glycolysis is a unidirectional pathway, enzyme defects at each step do not necessarily cause similar manifestations. Glycogen accumulation is mostly associated with enzyme defects in glycogenolysis and in the first stage of glycolysis. Since the original report of phosphoglycerate mutase deficiency in 1981, no newly recognized glycolytic defects have been presented. Glycolytic steps for which no enzyme deficiency has been identified seem to provide another important impetus for further study of "fail-safe" mechanisms in regard to monogenic disorders.
Collapse
Affiliation(s)
- S Tarui
- Department of Internal Medicine, Otemae Hospital, Osaka, Japan
| |
Collapse
|
16
|
Abstract
Mutations in the muscle phosphofructokinase gene (PFK-M) result in a metabolic myopathy characterized by exercise intolerance and compensated hemolysis. PFK deficiency, glycogenosis type VII (Tarui disease) is a rare, autosomal, recessively inherited disorder. Multiple mutations, including splicing defects, frameshifts, and missense mutations, have recently been identified in patients from six different ethnic backgrounds establishing genetic heterogeneity of the disease. There is no obvious correlation between the genotype and phenotypic expression of the disease. PFK-M deficiency appears to be prevalent among people of Ashkenazi Jewish descent. Molecular diagnosis is now feasible for Ashkenazi patients who share two common mutations in the gene; the more frequent is an exon 5 splicing defect, which accounts for approximately 68% of mutant alleles in this population.
Collapse
Affiliation(s)
- N Raben
- Arthritis and Rheumatism Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
Johnson JL, McLachlan A. Novel clustering of Sp1 transcription factor binding sites at the transcription initiation site of the human muscle phosphofructokinase P1 promoter. Nucleic Acids Res 1994; 22:5085-92. [PMID: 7800504 PMCID: PMC523782 DOI: 10.1093/nar/22.23.5085] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The regulatory sequence elements of the human muscle phosphofructokinase (HPFKM) p1 promoter from -655 to +78 were cloned and characterized. In the human cervical carcinoma cell line, HeLa S3, the HPFKM type C RNA initiated from a single predominant transcription initiation site and the HPFKM p1 promoter displayed transcriptional activity in transient transfection assays. The HPFKM p1 promoter region was shown to possess eight binding sites for the Sp1 transcription factor by DNase I footprinting and gel retardation analysis. The functional importance of these interactions was examined by transient transfection analysis in Drosophila SL2 and HeLa S3 cells. This analysis demonstrated that the HPFKM p1 promoter sequence between +12 and +78 retained Sp1-dependent transcriptional activity in Drosophila SL2 cells and retained promoter activity in HeLa S3 cells. These results suggest that the Sp1 binding site (site 8 between +12 and +21) immediately adjacent to the transcription initiation site represents an important regulatory element of this promoter at least in the context of the minimal HPFKM p1 promoter. However mutagenesis of the Sp1 site 8 demonstrated that, in the context of a larger HPFKM p1 promoter region containing Sp1 sites 1 to 7, it now contributed very little to the total promoter activity. Therefore it appears the Sp1 sites in the HPFKM p1 promoter display functional redundancy.
Collapse
Affiliation(s)
- J L Johnson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
18
|
Nakajima H, Noguchi T, Hamaguchi T, Tomita K, Hanafusa T, Kono N, Tanaka T, Kuwajima M, Matsuzawa Y. Expression of mouse phosphofructokinase-M gene alternative transcripts: evidence for the conserved two-promoter system. Biochem J 1994; 303 ( Pt 2):449-53. [PMID: 7980403 PMCID: PMC1137348 DOI: 10.1042/bj3030449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular cloning of the 5' part of mouse phosphofructokinase-M cDNA was performed. In the 46 cDNA clones isolated, there were two classes of 5' untranslated sequences. One had an EcoRI site within its 5' untranslated sequence. This showed 83.0% similarity with human type B mRNA for phosphofructokinase-M. The other lacked an EcoRI site, showing 92.9% similarity with human type C mRNA. Using the reverse-transcription PCR technique, we found that the transcript with an EcoRI site was exclusively expressed in cardiac and skeletal muscles, while that without an EcoRI site was expressed in all the mouse tissues examined. The results suggested that the mouse phosphofructokinase-M gene was transcribed through alternative splicing by the multiple promoters. This transcription mechanism was considered to be evolutionarily conserved. The level of phosphofructokinase-M gene expression in mouse cardiac and skeletal muscles decreased in the ketotic diabetic state. Although the regulatory mechanism and the physiological significance are not fully known, this would indicate that phosphofructokinase-M gene transcripts are affected during the diabetic state.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Conserved Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Gene Expression Regulation, Enzymologic/genetics
- Humans
- Male
- Mice
- Mice, Inbred ICR
- Molecular Sequence Data
- Muscles/enzymology
- Myocardium/enzymology
- Nucleic Acid Hybridization
- Phosphofructokinase-1/genetics
- Polymerase Chain Reaction
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rabbits
- Rats
- Sequence Alignment
- Sequence Homology, Amino Acid
- Specific Pathogen-Free Organisms
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- H Nakajima
- Second Department of Internal Medicine, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vaisanen PA, Reddy GR, Sharma PM, Kohani R, Johnson JL, Raney AK, Babior BM, McLachlan A. Cloning and characterization of the human muscle phosphofructokinase gene. DNA Cell Biol 1992; 11:461-70. [PMID: 1388024 DOI: 10.1089/dna.1992.11.461] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A 35-kbp region of genomic DNA encoding the human muscle phosphofructokinase (HPFK-M) gene including all of the coding exons (1-22) plus 2.2-kbp of 5'-flanking sequence has been cloned. The exon boundaries are the same as has been observed for the rabbit muscle phosphofructokinase (RPFK-M), the human liver phosphofructokinase (HPFK-L), and the mouse liver phosphofructokinase (MPFK-L) genes. Characterization of the structure of the HPFK-M gene and its transcript in Epstein-Barr virus transformed B-cell lines derived from patients with glycogen storage disease type VII (GSDVII or Tarui's disease) demonstrated that this single-copy gene encodes a normal sized 3.0-kb transcript in the four cases examined. This suggests the lesion in these cases represents either a point mutation or possibly a small insertion or deletion resulting in the synthesis of a defective HPFK-M protein. Analysis of the 5'-flanking region demonstrated the presence of a functional promoter located within 114 nucleotides of a proposed transcription initiation site. This promoter was active in the human cervical carcinoma cell line, HeLa S3, the dedifferentiated human hepatoma cell line, HepG2.1, and the mouse myoblast cell line, C2C12, suggesting this promoter has a broad cell-type specificity. In addition, from the known HPFK-M cDNA sequences, this observation indicates that the HPFK-M gene has a second promoter located upstream from the genomic region isolated in this study.
Collapse
Affiliation(s)
- P A Vaisanen
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hotta K, Nakajima H, Yamasaki T, Hamaguchi T, Kuwajima M, Noguchi T, Tanaka T, Kono N, Tarui S. Rat-liver-type phosphofructokinase mRNA. Structure, tissue distribution and regulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:293-8. [PMID: 1836995 DOI: 10.1111/j.1432-1033.1991.tb16375.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have cloned a full-length cDNA for rat-liver-type phosphofructokinase. The similarities of the rat liver-type phosphofructokinase mRNA to the human and mouse counterparts were 94% and 99% in their amino acid sequences and 88% and 94% in the nucleotide sequences of their coding regions, respectively. Rat liver-type phosphofructokinase mRNA was expressed in all tissues examined, but its level was regulated tissue-specifically. The nutritional and hormonal regulations of the mRNA in the liver were examined in comparison with those of two other key glycolytic enzymes, glucokinase and L-type pyruvate kinase. The level of liver-type phosphofructokinase mRNA was essentially unchanged by starvation (72 h) or diabetes. The mRNA level also did not change significantly on refeeding starved rats on a high carbohydrate diet, or treating diabetic ones with insulin. These results suggested that rat liver-type phosphofructokinase mRNA in the liver was not under control of diet or insulin, in contrast to glucokinase and L-type pyruvate kinase.
Collapse
Affiliation(s)
- K Hotta
- Second Department of Internal Medicine, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yamasaki T, Nakajima H, Kono N, Hotta K, Yamada K, Imai E, Kuwajima M, Noguchi T, Tanaka T, Tarui S. Structure of the entire human muscle phosphofructokinase-encoding gene: a two-promoter system. Gene 1991; 104:277-82. [PMID: 1833270 DOI: 10.1016/0378-1119(91)90262-a] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have recently shown that three types (A,B, and C) of mRNA species are transcribed from a single gene encoding human muscle phosphofructokinase (hPFK-M) through alternative splicing [Nakajima et al., Biochem. Biophys. Res. Commun. 166 (1990) 637-641]. To determine its complete structure and elucidate the mechanism of alternative RNA splicing, we isolated the hPFK-M gene, which spans about 30 kb, and contains 24 exons. Transcription start points were observed for both exon 1 and exon 2 by S1 nuclease protection assay and primer extension. Motifs of an Sp1-binding site were observed in the upstream region of exon 1 (promoter 1). A TATA-box-like sequence and a CAAT-box-like sequence were identified in the upstream region of exon 2 (promoter 2). Reporter assay revealed that the promoter 1 region was functional both in HeLa cells and myoblastic clonal cells, and that the promoter 2 region was active only in myoblastic cells. Motifs of M-CAT known as a muscle-specific enhancer, were observed in the promoter 2 region. These results indicated that the hPFK-M gene contains at least two promoter regions, facilitating the expression of the heterogeneous gene transcripts in a cell-type-specific manner.
Collapse
Affiliation(s)
- T Yamasaki
- Second Department of Internal Medicine, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakajima H, Kono N, Yamasaki T, Hotta K, Kawachi M, Hamaguchi T, Nishimura T, Mineo I, Kuwajima M, Noguchi T. A genetic defect in muscle phosphofructokinase deficiency, a typical clinical entity presenting myogenic hyperuricemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 309B:141-4. [PMID: 1838230 DOI: 10.1007/978-1-4615-7703-4_32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|