1
|
Hunter T, Alexander CB, Cooper JA. Protein phosphorylation and growth control. CIBA FOUNDATION SYMPOSIUM 2008; 116:188-204. [PMID: 3000705 DOI: 10.1002/9780470720974.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many growth factor receptors and retroviral transforming proteins share the property of phosphorylating proteins on tyrosine. Several substrates for both types of protein-tyrosine kinase have been identified. Treatment of quiescent cells with growth factors such as EGF and PDGF, whose receptors have ligand-stimulated protein-tyrosine kinase activities, induces tyrosine phosphorylation of three proteins, p45, p42 and p41. Two phosphorylated forms of p42 are found, the more basic of which is present in some but not all cells transformed by viral protein-tyrosine kinases. p42 is rapidly (as early as 1 min) but transiently (decreased to baseline by 2h) phosphorylated following PGDF or EGF treatment of quiescent fibroblasts. At saturating levels of mitogen the stoichiometry of p42 phosphorylation is greater than 50%. p42 is a highly conserved, rare (0.002% of total cell protein), soluble cytoplasmic protein. IGF I and insulin, whose receptors also have ligand-stimulated protein-tyrosine kinase activity, induce p42 phosphorylation in appropriate cells. In the case of insulin this effect has been observed in cells with large numbers of insulin receptors. p42 is also phosphorylated in response to mitogens whose receptors lack protein-tyrosine kinase activity, for example 12-O-tetradecanoylphorbol-13-acetate (TPA) and thrombin. For TPA there is evidence that this is an indirect effect due to the activation of a protein-serine/threonine kinase. On the basis of the highly conserved nature of this response and its generality, it seems likely that tyrosine phosphorylation of p42 is important for at least early responses to mitogens.
Collapse
|
2
|
Avruch J. MAP kinase pathways: the first twenty years. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1150-60. [PMID: 17229475 PMCID: PMC2043147 DOI: 10.1016/j.bbamcr.2006.11.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/02/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
The MAP kinases, discovered approximately 20 years ago, together with their immediate upstream regulators, are among the most highly studied signal transduction molecules. This body of work has shaped many aspects of our present views of signal transduction by protein kinases. The effort expended in this area reflects the extensive participation of these regulatory modules in the control of cell fate decisions, i.e., proliferation, differentiation and death, across all eukaryotic phylla and in all tissues of metazoans. The discovery of these kinases is reviewed, followed by a discussion of some of the features of this signaling module that account for its broad impact on cell function and its enormous interest to many investigators.
Collapse
Affiliation(s)
- Joseph Avruch
- Department of Molecular Biology and the Diabetes Unit, Medical Services, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, 185 Cambridge St., Boston, MA 02114-2790, USA.
| |
Collapse
|
3
|
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA
| |
Collapse
|
4
|
Gohda E, Nagao T, Yamamoto I. Stimulation of hepatocyte growth factor production in human fibroblasts by the protein phosphatase inhibitor okadaic acid. Biochem Pharmacol 2000; 60:1531-7. [PMID: 11020456 DOI: 10.1016/s0006-2952(00)00464-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined whether the production of hepatocyte growth factor (HGF) in fibroblasts is regulated by protein phosphatase(s). Inhibitors of the enzymes okadaic acid and calyculin A were used for this purpose. Both inhibitors markedly stimulated HGF production in human skin fibroblasts in a dose-dependent manner. The effects of okadaic acid and calyculin A were maximal at 25-37.5 and 1.25 nM, respectively. Highly active HGF production in MRC-5 human embryonic lung fibroblasts was also promoted by both inhibitors. The effect of okadaic acid was accompanied by an up-regulation of HGF gene expression. The stimulating effect of okadaic acid on HGF production was synergistic with that of phorbol 12-myristate 13-acetate (PMA) and epidermal growth factor (EGF), whereas it was additive to the effect of cholera toxin. The protein kinase C (PKC) inhibitor GF 109203X inhibited the effect of PMA, but not of okadaic acid and EGF. The effect of okadaic acid as well as EGF was not inhibited, but rather enhanced in human skin fibroblasts pretreated for 24 hr with a high dose of PMA to deplete PKC, as compared with its effect in untreated cells. PD 98059, an inhibitor of mitogen-activated protein (MAP) kinase kinase, suppressed the effects of okadaic acid and EGF, but not those of cholera toxin and 8-bromo-adenosine 3',5'-cyclic monophosphate (cAMP). These results suggest that HGF production in human skin fibroblasts is down-regulated by protein phosphatase(s) and that HGF production stimulated by okadaic acid is, at least in part, dependent on the activation of the MAP kinase cascade.
Collapse
Affiliation(s)
- E Gohda
- Department of Immunochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka, 700-8530, Okayama, Japan.
| | | | | |
Collapse
|
5
|
Ueda Y, Hirai SI, Osada SI, Suzuki A, Mizuno K, Ohno S. Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 1996; 271:23512-9. [PMID: 8798560 DOI: 10.1074/jbc.271.38.23512] [Citation(s) in RCA: 446] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the involvement of protein kinase C (PKC) in the activation of the mitogen-activated protein (MAP) kinase pathway has been implicated through experiments using 12-O-tetradecanoylphorbol-13-acetate (TPA), there has been no direct demonstration that PKC activates the MAP kinase pathway. A Raf-dependent intact cell assay system for monitoring the activation of MAPK/ERK kinase (MEK) and extracellular signal-related kinase (ERK) permitted us to evaluate the role of PKC isotypes in MAP kinase activation. Treatment of cells with TPA or epidermal growth factor resulted in the activation of MEK and ERK. The activation of the MAP kinase pathway triggered by epidermal growth factor was completely inhibited by dominant-negative Ras (RasN17), whereas the activation triggered by TPA was not, consistent with previous observations. The introduction of an activated point mutant of PKCdelta, but not PKCalpha or PKCepsilon, resulted in the activation of the MAP kinase pathway. The activation of MEK and ERK by an activated form of PKCdelta requires the presence of c-Raf and is independent of RasN17. These results demonstrate that activation of PKCdelta is sufficient for the activation of MEK and ERK and that the pathway operates in a manner dependent on c-Raf and independent of Ras.
Collapse
Affiliation(s)
- Y Ueda
- Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Slack BE, Breu J, Petryniak MA, Srivastava K, Wurtman RJ. Tyrosine phosphorylation-dependent stimulation of amyloid precursor protein secretion by the m3 muscarinic acetylcholine receptor. J Biol Chem 1995; 270:8337-44. [PMID: 7713942 DOI: 10.1074/jbc.270.14.8337] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stimulation of m1 and m3 muscarinic acetylcholine receptors, which are coupled to phosphoinositide hydrolysis and protein kinase C activation, has been shown to increase the release of soluble amyloid precursor protein derivatives (APPs). The effect is mimicked by phorbol esters, which directly activate protein kinase C. Using human embryonic kidney cells expressing individual muscarinic receptor subtypes, we found that stimulation of APPs release by the muscarinic agonist carbachol was only partially reduced by a specific inhibitor of protein kinase C (the bisindolylmaleimide GF 109203X), while the response to phorbol 12-myristate 13-acetate (PMA) was abolished. The increase in APPs release elicited by carbachol and PMA was accompanied by elevated tyrosine phosphorylation of several proteins and reduced by tyrosine kinase inhibitors; GF 109203X significantly reduced the stimulation of tyrosine phosphorylation by carbachol and PMA. Inhibition of protein tyrosine phosphatases by vanadyl hydroperoxide markedly increased cellular tyrosine phosphorylation and enhanced APPs release as effectively as PMA and carbachol. Direct phosphorylation of amyloid precursor protein on tyrosine residues following treatment with carbachol, PMA, or vanadyl hydroperoxide was not observed. The results implicate both tyrosine phosphorylation and protein kinase C-dependent mechanisms in the regulation of APPs release by G protein-coupled receptors, and suggest that carbachol and PMA increase APPs release from human embryonic kidney cells expressing m3 muscarinic receptors via partially divergent pathways that converge at a tyrosine phosphorylation-dependent step.
Collapse
Affiliation(s)
- B E Slack
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
7
|
Chou SY, Baichwal V, Ferrell JE. Inhibition of c-Jun DNA binding by mitogen-activated protein kinase. Mol Biol Cell 1992; 3:1117-30. [PMID: 1421569 PMCID: PMC275676 DOI: 10.1091/mbc.3.10.1117] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Here we demonstrate that partially purified Xenopus p42 mitogen-activated protein (MAP) kinase phosphorylates bacterially expressed human c-Jun at a single site, serine 243. Several lines of evidence argue that this phosphorylation is due to p42 MAP kinase itself rather than some contaminating species. Phosphorylation of serine 243 markedly decreases the binding of c-Jun to oligonucleotides containing the 12-O-tetradecanoylphorbol-13-acetate response element. These findings suggest that MAP kinase may play a role in the down-regulation of c-Jun or in the cycle of transcriptional initiation and elongation.
Collapse
Affiliation(s)
- S Y Chou
- Department of Zoology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
8
|
Lichtner R, Wiedemuth M, Kittmann A, Ullrich A, Schirrmacher V, Khazaie K. Ligand-induced activation of epidermal growth factor receptor in intact rat mammary adenocarcinoma cells without detectable receptor phosphorylation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49779-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase. Mol Cell Biol 1992. [PMID: 1314951 DOI: 10.1128/mcb.12.5.2222] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p42/microtubule-associated protein kinase (p42mapk) is activated by tyrosine and threonine phosphorylation, and its regulatory phosphorylation is likely to be important in signalling pathways involved in growth control, secretion, and differentiation. Here we show that treatment of quiescent 3T3 cells with diverse agonists results in the appearance of an activity capable of causing the in vitro phosphorylation of p42mapk on the regulatory tyrosine and to a lesser extent on the regulatory threonine, resulting in enzymatic activation of the p42mapk. This p42mapk-activating activity is capable of phosphorylating a kinase-defective p42mapk mutant, thus confirming its activity as a kinase.
Collapse
|
10
|
L'Allemain G, Her JH, Wu J, Sturgill TW, Weber MJ. Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase. Mol Cell Biol 1992; 12:2222-9. [PMID: 1314951 PMCID: PMC364394 DOI: 10.1128/mcb.12.5.2222-2229.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
p42/microtubule-associated protein kinase (p42mapk) is activated by tyrosine and threonine phosphorylation, and its regulatory phosphorylation is likely to be important in signalling pathways involved in growth control, secretion, and differentiation. Here we show that treatment of quiescent 3T3 cells with diverse agonists results in the appearance of an activity capable of causing the in vitro phosphorylation of p42mapk on the regulatory tyrosine and to a lesser extent on the regulatory threonine, resulting in enzymatic activation of the p42mapk. This p42mapk-activating activity is capable of phosphorylating a kinase-defective p42mapk mutant, thus confirming its activity as a kinase.
Collapse
Affiliation(s)
- G L'Allemain
- Department of Microbiology, University of Virginia, Charlottesville 22908
| | | | | | | | | |
Collapse
|
11
|
Anderson NG. MAP kinases--ubiquitous signal transducers and potentially important components of the cell cycling machinery in eukaryotes. Cell Signal 1992; 4:239-46. [PMID: 1324700 DOI: 10.1016/0898-6568(92)90063-e] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- N G Anderson
- Department of Biochemistry and Molecular Biology, Hannah Research Institute, Ayr, Scotland, U.K
| |
Collapse
|
12
|
Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 1992; 68:1031-40. [PMID: 1312392 DOI: 10.1016/0092-8674(92)90075-n] [Citation(s) in RCA: 577] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Treatment of PC12 cells with nerve growth factor (NGF) induces a rapid increase in tyrosine phosphorylation of multiple cellular proteins. Expression of a dominant inhibitory Ras mutant specifically blocked NGF- and TPA-induced tyrosine phosphorylation of two proteins of approximately 42 and 44 kd. Conversely, expression of an oncogenic variant of Ras induced tyrosine phosphorylation of the same 42 and 44 kd proteins. The 44 kd protein was immunoprecipitated with an antibody directed against extracellular signal-regulated kinase 1/mitogen-activated protein kinase (MAPK) and the 42 kd protein comigrated with a 42 kd MAPK, indicating that at least one and probably both Ras-regulated phosphoproteins are MAPKs. In addition, MAPK activation, as measured by in vitro phosphorylation of myelin basic protein, was also regulated by Ras. Ras was not required for NGF-induced activation of Trk or tyrosine phosphorylation of PLC-gamma 1. Thus, NGF-induced tyrosine phosphorylation occurs both prior to and following Ras action, and Ras plays a critical role in the NGF- and TPA-induced tyrosine phosphorylation of MAPKs.
Collapse
Affiliation(s)
- S M Thomas
- Howard Hughes Medical Institute, Department of Microbiology, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- C G Proud
- Department of Biochemistry, School of Medical Sciences, University of Bristol, England
| |
Collapse
|
14
|
Biochemical characterization of a family of serine/threonine protein kinases regulated by tyrosine and serine/threonine phosphorylations. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54918-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 1991; 253:401-6. [PMID: 1650499 DOI: 10.1126/science.1650499] [Citation(s) in RCA: 746] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein tyrosine phosphatases (PTPs) represent a diverse family of enzymes that exist as integral membrane and nonreceptor forms. The PTPs, with specific activities in vitro 10 to 1000 times greater than those of the protein tyrosine kinases would be expected to effectively control the amount of phosphotyrosine in the cell. They dephosphorylate tyrosyl residues in vivo and take part in signal transduction and cell cycle regulation. Most of the transmembrane forms, such as the leukocyte common antigen (CD45), contain two conserved intracellular catalytic domains; but their external segments are highly variable. The structural features of the transmembrane forms suggest that these receptor-linked PTPs are capable of transducing external signals; however, the ligands remain unidentified. A hypothesis is proposed explaining how phosphatases might act synergistically with the kinases to elicit a full physiological response, without regard to the state of phosphorylation of the target proteins.
Collapse
Affiliation(s)
- E H Fischer
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | |
Collapse
|
16
|
|
17
|
Sturgill TW, Wu J. Recent progress in characterization of protein kinase cascades for phosphorylation of ribosomal protein S6. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1092:350-7. [PMID: 1646641 DOI: 10.1016/s0167-4889(97)90012-4] [Citation(s) in RCA: 350] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ribosomal protein S6 is phosphorylated in response to mitogens by activation of one or more protein kinase cascades. Phosphorylation of S6 in vivo is catalyzed by (at least) two distinct mitogen-activated S6 kinase families distinguishable by size, the 70 kDa and 90 kDa S6 kinases. Both S6 kinases are activated by serine/threonine phosphorylation. Members of each family have been cloned. The 90 kDa S6 kinases are activated more rapidly than the 70 kDa S6 kinase, and may have other intracellular targets. The 70 kDa S6 kinase is relatively specific for 40 S ribosomal subunits. No kinase capable of activating the 70 kDa S6 kinase has been identified. Members of the 90 kDa S6 kinases are activated in vitro by 42 kDa and 44 kDa MAP kinases, which are in turn activated by mitogen-dependent activators. The pathways for mitogen-stimulated S6 phosphorylation are discussed.
Collapse
Affiliation(s)
- T W Sturgill
- Department of Medicine, University of Virginia, Charlottesville
| | | |
Collapse
|
18
|
Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol 1991. [PMID: 2005892 DOI: 10.1128/mcb.11.4.1965] [Citation(s) in RCA: 232] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.
Collapse
|
19
|
Ferrell JE, Wu M, Gerhart JC, Martin GS. Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol 1991; 11:1965-71. [PMID: 2005892 PMCID: PMC359881 DOI: 10.1128/mcb.11.4.1965-1971.1991] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.
Collapse
Affiliation(s)
- J E Ferrell
- Department of Zoology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
20
|
Miyasaka T, Sternberg DW, Miyasaka J, Sherline P, Saltiel AR. Nerve growth factor stimulates protein tyrosine phosphorylation in PC-12 pheochromocytoma cells. Proc Natl Acad Sci U S A 1991; 88:2653-7. [PMID: 1849270 PMCID: PMC51296 DOI: 10.1073/pnas.88.7.2653] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cellular actions of nerve growth factor (NGF) and epidermal growth factor (EGF) may be mediated by changes in protein phosphorylation. The tyrosine phosphorylation of two predominant proteins of molecular mass 40 and 42 kDa is seen in PC-12 cells treated with NGF or EGF, correlating with activation of a previously identified serine/threonine protein kinase that phosphorylates microtubule-associated protein (MAP). Stimulation of phosphoprotein (pp) 40 and 42 phosphorylation and MAP kinase activity by NGF but not EGF is selectively attenuated by staurosporine and K-252A. Moreover, the time courses of pp40/42 phosphorylation and MAP kinase activation produced by NGF or EGF are identical. Chromatography of lysates from growth factor-treated cells on ion-exchange or hydrophobic-interaction HPLC resolves MAP kinase into two peaks, neither of which precisely coelutes with pp40 or pp42. One of these peaks (II) exhibits no detectable phosphotyrosine. The other peak (I) has some overlap with pp40. However, the activity residing in both peaks is almost completely inhibited after treatment with alkaline phosphatase, suggesting that, at least, serine/threonine phosphorylation is required for the activity of these enzymes. These data indicate that while tyrosine phosphorylation appears to be a critical early event in NGF action, the role of this modification in activation of MAP kinases remains unclear.
Collapse
Affiliation(s)
- T Miyasaka
- Laboratory of Molecular Oncology, Rockefeller University, New York, NY 10021
| | | | | | | | | |
Collapse
|
21
|
Defective regulation of mitogen-activated protein kinase activity in a 3T3 cell variant mitogenically nonresponsive to tetradecanoyl phorbol acetate. Mol Cell Biol 1991. [PMID: 1990261 DOI: 10.1128/mcb.11.2.1002] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase is a serine/threonine-specific protein kinase which is activated in response to various mitogenic agonists (e.g., epidermal growth factor, insulin, and the tumor promoter tetradecanoyl phorbol acetate [TPA]) and requires both threonine and tyrosine phosphorylation for activity. This enzyme has recently been shown to be identical or closely related to pp42, a protein which becomes tyrosine phosphorylated in response to mitogenic stimulation. Neither the kinases which regulate MAP kinase/pp42 nor the in vivo substrates for this enzyme are known. Because MAP MAP kinase is activated and phosphorylated in response both to agents which stimulate tyrosine kinase receptors and to agents which stimulate protein kinase C, a serine/threonine kinase, we have examined the regulation and phosphorylation of this enzyme in 3T3-TNR9 cells, a variant cell line partially defective in protein kinase C-mediated signalling. In this communication, we show that in the 3T3-TNR9 variant cell line, TPA does not cause the characteristically rapid phosphorylation of pp42 or the activation and phosphorylation of MAP kinase. This defective response is not due to the absence of the MAP kinase/pp42 protein itself because both tyrosine phosphorylation of MAP kinase/pp42 and its enzymatic activation could be induced by platelet-derived growth factor in the 3T3-TNR9 cells. Thus, the defect in these variant cells apparently resides in some aspect of the regulation of MAP kinase phosphorylation. Since the 3T3-TNR9 cells are also defective with respect to the TPA-induced increase in ribosomal protein S6 kinase, these in vivo results reinforce the earlier in vitro finding that MAP kinase can regulate S6 kinase activity. These findings suggest a key role for MAP kinase in a kinase cascade cascade involved in the control of cell proliferation.
Collapse
|
22
|
Defective regulation of mitogen-activated protein kinase activity in a 3T3 cell variant mitogenically nonresponsive to tetradecanoyl phorbol acetate. Mol Cell Biol 1991; 11:1002-8. [PMID: 1990261 PMCID: PMC359767 DOI: 10.1128/mcb.11.2.1002-1008.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase is a serine/threonine-specific protein kinase which is activated in response to various mitogenic agonists (e.g., epidermal growth factor, insulin, and the tumor promoter tetradecanoyl phorbol acetate [TPA]) and requires both threonine and tyrosine phosphorylation for activity. This enzyme has recently been shown to be identical or closely related to pp42, a protein which becomes tyrosine phosphorylated in response to mitogenic stimulation. Neither the kinases which regulate MAP kinase/pp42 nor the in vivo substrates for this enzyme are known. Because MAP MAP kinase is activated and phosphorylated in response both to agents which stimulate tyrosine kinase receptors and to agents which stimulate protein kinase C, a serine/threonine kinase, we have examined the regulation and phosphorylation of this enzyme in 3T3-TNR9 cells, a variant cell line partially defective in protein kinase C-mediated signalling. In this communication, we show that in the 3T3-TNR9 variant cell line, TPA does not cause the characteristically rapid phosphorylation of pp42 or the activation and phosphorylation of MAP kinase. This defective response is not due to the absence of the MAP kinase/pp42 protein itself because both tyrosine phosphorylation of MAP kinase/pp42 and its enzymatic activation could be induced by platelet-derived growth factor in the 3T3-TNR9 cells. Thus, the defect in these variant cells apparently resides in some aspect of the regulation of MAP kinase phosphorylation. Since the 3T3-TNR9 cells are also defective with respect to the TPA-induced increase in ribosomal protein S6 kinase, these in vivo results reinforce the earlier in vitro finding that MAP kinase can regulate S6 kinase activity. These findings suggest a key role for MAP kinase in a kinase cascade cascade involved in the control of cell proliferation.
Collapse
|
23
|
Meier KE, Licciardi KA, Haystead TA, Krebs EG. Activation of messenger-independent protein kinases in wild-type and phorbol ester-resistant EL4 thymoma cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52380-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Haystead TA, Weiel JE, Litchfield DW, Tsukitani Y, Fischer EH, Krebs EG. Okadaic acid mimics the action of insulin in stimulating protein kinase activity in isolated adipocytes. The role of protein phosphatase 2a in attenuation of the signal. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46261-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
A Swiss 3T3 variant cell line resistant to the effects of tumor promoters cannot be transformed by src. Mol Cell Biol 1990. [PMID: 2115120 DOI: 10.1128/mcb.10.8.4155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To study the relationship between oncogenesis by v-src and normal cellular signalling pathways, we determined the effects of v-src on 3T3-TNR9 cells, a Swiss 3T3 variant which does not respond mitogenically to tumor promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We found that src was unable to transform these variant cells, whether the oncogene was introduced by infection with a murine retrovirus vector or by transfection with plasmid DNA. 3T3-TNR9 cells were not inherently resistant to transformation, since infection with similar recombinant retroviruses containing either v-ras or v-abl did induce transformation. Further analysis of Swiss 3T3 and 3T3-TNR9 cell populations infected with the v-src-containing retrovirus revealed that although the amount of v-src DNA in each was approximately the same, the level of the v-src message and protein and the overall level of phosphotyrosine expressed in the infected variants was much less than in infected parental cells. Cotransfection experiments using separate v-src and neo plasmids revealed a decrease in the number of G418-resistant colonies when transfections of TNR9 cells occurred in the presence of the src-containing plasmid, suggesting a growth inhibitory effect of v-src on 3T3-TNR9 cells, as has also been found for TPA itself. Since v-src cannot transform this variant cell line, which does not respond mitogenically to the protein kinase C agonist TPA, we suggest that src makes use of the protein kinase C pathway as part of its signalling activities.
Collapse
|
26
|
Nori M, Shawver LK, Weber MJ. A Swiss 3T3 variant cell line resistant to the effects of tumor promoters cannot be transformed by src. Mol Cell Biol 1990; 10:4155-62. [PMID: 2115120 PMCID: PMC360942 DOI: 10.1128/mcb.10.8.4155-4162.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To study the relationship between oncogenesis by v-src and normal cellular signalling pathways, we determined the effects of v-src on 3T3-TNR9 cells, a Swiss 3T3 variant which does not respond mitogenically to tumor promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We found that src was unable to transform these variant cells, whether the oncogene was introduced by infection with a murine retrovirus vector or by transfection with plasmid DNA. 3T3-TNR9 cells were not inherently resistant to transformation, since infection with similar recombinant retroviruses containing either v-ras or v-abl did induce transformation. Further analysis of Swiss 3T3 and 3T3-TNR9 cell populations infected with the v-src-containing retrovirus revealed that although the amount of v-src DNA in each was approximately the same, the level of the v-src message and protein and the overall level of phosphotyrosine expressed in the infected variants was much less than in infected parental cells. Cotransfection experiments using separate v-src and neo plasmids revealed a decrease in the number of G418-resistant colonies when transfections of TNR9 cells occurred in the presence of the src-containing plasmid, suggesting a growth inhibitory effect of v-src on 3T3-TNR9 cells, as has also been found for TPA itself. Since v-src cannot transform this variant cell line, which does not respond mitogenically to the protein kinase C agonist TPA, we suggest that src makes use of the protein kinase C pathway as part of its signalling activities.
Collapse
Affiliation(s)
- M Nori
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|
27
|
Identification of a 42-kilodalton phosphotyrosyl protein as a serine(threonine) protein kinase by renaturation. Mol Cell Biol 1990. [PMID: 1692963 DOI: 10.1128/mcb.10.6.3020] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have surveyed fibroblast lysates for protein kinases that might be involved in mitogenesis. The assay we have used exploits the ability of blotted, sodium dodecyl sulfate-denatured proteins to regain enzymatic activity after guanidine treatment. About 20 electrophoretically distinct protein kinases could be detected by this method in lysates from NIH 3T3 cells. One of the kinases, a 42-kilodalton serine(threonine) kinase (PK42), was found to possess two- to fourfold-higher in vitro activity when isolated from serum-stimulated cells than when isolated from serum-starved cells. This kinase comigrated on sodium dodecyl sulfate-gels with a protein (p42) whose phosphotyrosine content increased in response to serum stimulation. The time courses of p42 tyrosine phosphorylation and PK42 activation were similar, reaching maximal levels within 10 min and returning to basal levels within 5 h. Both p42 tyrosine phosphorylation and PK42 activation were stimulated by low concentrations of phorbol esters, and the responses of p42 and PK42 to TPA were abolished by chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. Chronic TPA treatment had less effect on serum-induced p42 tyrosine phosphorylation and PK42 activation. PK42 and p42 bound to DEAE-cellulose, and both eluted at a salt concentration of 250 mM. Thus, PK42 and p42 comigrate and cochromatograph, and the kinase activity of PK42 correlates with the tyrosine phosphorylation of p42. These findings suggest that PK42 and p42 are related or identical, that PK42 is activated by tyrosine phosphorylation, and that this tyrosine phosphorylation can be regulated by protein kinase C.
Collapse
|
28
|
Ferrell JE, Martin GS. Identification of a 42-kilodalton phosphotyrosyl protein as a serine(threonine) protein kinase by renaturation. Mol Cell Biol 1990; 10:3020-6. [PMID: 1692963 PMCID: PMC360666 DOI: 10.1128/mcb.10.6.3020-3026.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have surveyed fibroblast lysates for protein kinases that might be involved in mitogenesis. The assay we have used exploits the ability of blotted, sodium dodecyl sulfate-denatured proteins to regain enzymatic activity after guanidine treatment. About 20 electrophoretically distinct protein kinases could be detected by this method in lysates from NIH 3T3 cells. One of the kinases, a 42-kilodalton serine(threonine) kinase (PK42), was found to possess two- to fourfold-higher in vitro activity when isolated from serum-stimulated cells than when isolated from serum-starved cells. This kinase comigrated on sodium dodecyl sulfate-gels with a protein (p42) whose phosphotyrosine content increased in response to serum stimulation. The time courses of p42 tyrosine phosphorylation and PK42 activation were similar, reaching maximal levels within 10 min and returning to basal levels within 5 h. Both p42 tyrosine phosphorylation and PK42 activation were stimulated by low concentrations of phorbol esters, and the responses of p42 and PK42 to TPA were abolished by chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. Chronic TPA treatment had less effect on serum-induced p42 tyrosine phosphorylation and PK42 activation. PK42 and p42 bound to DEAE-cellulose, and both eluted at a salt concentration of 250 mM. Thus, PK42 and p42 comigrate and cochromatograph, and the kinase activity of PK42 correlates with the tyrosine phosphorylation of p42. These findings suggest that PK42 and p42 are related or identical, that PK42 is activated by tyrosine phosphorylation, and that this tyrosine phosphorylation can be regulated by protein kinase C.
Collapse
Affiliation(s)
- J E Ferrell
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
29
|
Hisanaga K, Sagar SM, Hicks KJ, Swanson RA, Sharp FR. c-fos proto-oncogene expression in astrocytes associated with differentiation or proliferation but not depolarization. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1990; 8:69-75. [PMID: 2166202 DOI: 10.1016/0169-328x(90)90011-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expression of the c-fos proto-oncogene in rat neocortical astrocytes in culture was examined using Northern blotting and immunocytochemistry. Marked induction of c-fos mRNA in astrocytes was observed after treatment with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), dibutyryl cyclic AMP (db-cAMP), and phorbol diester (TPA; 12-O-tetra-decanoylphorbol 13-acetate), which are known to induce the proliferation or differentiation of astrocytes. Increase of c-fos protein immunoreactivity (IR) was obtained after treatment with fetal calf serum, EGF, bFGF, db-cAMP and TPA. High concentrations of calcium ionophore A23187, which were lethal to cultured astrocytes, also increased c-fos protein-IR. Treatment with lower concentrations of calcium ionophore (which slightly increase Ca2+ uptake), high K+ and nerve growth factor had no detectable effect on c-fos expression. These results show that depolarization does not induce c-fos in astrocytes and suggest that c-fos may play a role in differentiation and proliferation of astrocytes.
Collapse
Affiliation(s)
- K Hisanaga
- Department of Neurology, University of California, San Francisco
| | | | | | | | | |
Collapse
|
30
|
Ely CM, Oddie KM, Litz JS, Rossomando AJ, Kanner SB, Sturgill TW, Parsons SJ. A 42-kD tyrosine kinase substrate linked to chromaffin cell secretion exhibits an associated MAP kinase activity and is highly related to a 42-kD mitogen-stimulated protein in fibroblasts. J Cell Biol 1990; 110:731-42. [PMID: 1689732 PMCID: PMC2116043 DOI: 10.1083/jcb.110.3.731] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The localization of the protein tyrosine kinase pp60c-src to the plasma membrane and to the membrane of secretory vesicles in neurally derived bovine chromaffin cells has suggested that tyrosine phosphorylations may be associated with the process of secretion. In the present study we have identified two cytosolic proteins of approximately 42 and 45 kD that become phosphorylated on tyrosine in response to secretagogue treatment. Phosphorylation of these proteins reached a maximum (3 min after stimulation) before maximum catecholamine release was observed (5-10 min after stimulation). Both secretion and tyrosine phosphorylation of p42 and p45 required extracellular Ca2+. Tyrosine-phosphorylated proteins of similar Mr have previously been identified in 3T3-L1 adipocytes stimulated with insulin (MAP kinase; Ray, L. B., and T. W. Sturgill. 1987. Proc. Natl. Acad. Sci. USA. 84:1502-1506) and in avian and rodent fibroblasts stimulated with a variety of mitogenic agents (Cooper, J. A., D. F. Bowen-Pope, E. Raines, R. Ross, and T. Hunter. 1982. Cell. 31:263-273; Nakamura, K. D., R. Martinez, and M. J. Weber. 1983. Mol. Cell. Biol. 3:380-390). Comparisons of the secretion-associated 42-kD protein of chromaffin cells with the 42-kD protein of Swiss 3T3 fibroblasts and 3T3-L1 adipocytes provide evidence that these three proteins are highly related. This evidence includes comigration during one-dimensional SDS-PAGE, cochromatography using ion exchange and hydrophobic matrices, similar isoelectric points, identical cyanogen-bromide peptide maps, and cochromatography of MAP kinase activity with the tyrosine-phosphorylated form of pp42. This protein(s), which appears to be activated in a variety of cell types, may serve a common function, perhaps in signal transduction involving a cascade of kinases.
Collapse
Affiliation(s)
- C M Ely
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | | | | | |
Collapse
|
31
|
Grunberger G, Levy J. Diacylglycerols modulate phosphorylation of the insulin receptor from human mononuclear cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 187:191-8. [PMID: 2404758 DOI: 10.1111/j.1432-1033.1990.tb15294.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been found that 1,2- but not 1,3-diacylglycerols stimulated phosphorylation of the insulin receptor of cultured human monocyte-like (U-937) and lymphoblastoid (IM-9) cells both in the intact- and broken-cell systems. The stimulation of the receptor's beta-subunit phosphorylation was dose-dependent, with optimal effect at 100 micrograms/ml of diacylglycerol. The effects of insulin and 1,2-diacylglycerols on the phosphorylation of partially purified insulin receptors were additive. Phosphoamino acid analysis showed a major effect of diacylglycerols on phosphorylation of tyrosine residues. The diacylglycerols also stimulated tyrosine kinase activity of the partially purified U-937 and IM-9 insulin receptors 2.5-3.5-fold when measured by phosphorylation of an exogenous substrate, poly(Glu80Tyr20) in the absence of any added insulin, calcium or phospholipid. Since this diacylglycerol effect could not be reproduced under conditions optimal for protein kinase C activation and the purified protein kinase C did not stimulate phosphorylation of the beta-subunit of the insulin receptor in this system, it is unlikely that the diacylglycerol effect was mediated by protein kinase C. Since these exogenous 1,2-diacylglycerols at the same high concentration also inhibited 125I-insulin binding to the insulin receptor of the intact U-937 and IM-9 cells, diacylglycerols could modulate the function of the insulin receptor and insulin action in human mononuclear cells.
Collapse
Affiliation(s)
- G Grunberger
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit
| | | |
Collapse
|
32
|
Related proteins are phosphorylated at tyrosine in response to mitogenic stimuli and at meiosis. Mol Cell Biol 1989. [PMID: 2779558 DOI: 10.1128/mcb.9.7.3143] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forty-two-kilodalton proteins that contain phosphotyrosine in metaphase-arrested Xenopus laevis eggs are closely related to p42, a protein that is phosphorylated at tyrosine when somatic cells are exposed to mitogenic stimuli.
Collapse
|
33
|
Abstract
The role of protein tyrosine phosphorylation in the response of PC12 cells to NGF was investigated by using a variety of agents which affect NGF-induced neurite outgrowth. K-252a, a kinase inhibitor, was previously found to selectively inhibit many of the actions of NGF on PC12 cells. In the present study, it was shown to inhibit NGF-induced protein tyrosine phosphorylation. However, sphingosine, an inhibitor of protein kinase C and NGF-induced differentiation of PC 12 cells, did not alter the phosphorylation of proteins on tyrosine stimulated by NGF. Disruption of either actin microfilaments or microtubules also had no effect on NGF-induced protein tyrosine phosphorylation in PC12 cells. The effect of vanadate, an inhibitor of phosphotyrosyl phosphatases, on the differentiation of PC12 cells was also examined. Vanadate did not promote neurite outgrowth but did stimulate protein tyrosine phosphorylation. Taken together, these results suggest that protein tyrosine phosphorylation is one of the first events in the NGF pathway in PC12 cells but alone is not sufficient to induce morphological differentiation. Finally, the distribution of phosphotyrosine-containing proteins in untreated and NGF-treated cells was examined by immunofluorescence microscopy. The distribution of these proteins was altered by treatment of the cells with NGF and appeared to correlate with the distribution of actin filaments, particularly in growth cones.
Collapse
Affiliation(s)
- P A Maher
- Whittier Institute for Diabetes and Endocrinology, La Jolla, California
| |
Collapse
|
34
|
Rossomando AJ, Payne DM, Weber MJ, Sturgill TW. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci U S A 1989; 86:6940-3. [PMID: 2550926 PMCID: PMC297966 DOI: 10.1073/pnas.86.18.6940] [Citation(s) in RCA: 339] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
pp42, a low-abundance 42-kDa protein, becomes transiently phosphorylated on tyrosine after stimulation of fibroblasts by a variety of mitogens, including epidermal growth factor, platelet-derived growth factor, phorbol 12-myristate 13-acetate, thrombin, and insulin-like growth factor II. The induction of pp42 phosphorylation on tyrosine by such diverse mitogenic agents suggests an important role for pp42 in the cascade of events necessary for cell transition from G0 into the cell cycle. However, as with most proteins identified on the basis of their tyrosine phosphorylation, the function of pp42 in cellular regulation is unknown. In this manuscript we report evidence that suggests that pp42 is a serine/threonine-specific protein kinase. Stimulation of 3T3-L1 cells with insulin has been shown to activate a cytosolic serine/threonine kinase capable of phosphorylating microtubule-associated protein 2 (MAP-2) and ribosomal protein S6 kinase II. This cytosolic serine/threonine protein kinase, which itself is phosphorylated on tyrosine, has been termed "MAP kinase". We now report that pp42 phosphorylation and MAP kinase activation occur in fibroblasts in response to similar mitogens, that the two proteins comigrate on one- and two-dimensional polyacrylamide gels, and that the two proteins copurify chromatographically. The major peptides generated from purified MAP kinase by V8 protease digestion are present as a subset of the peptides in digests of pp42 excised from two-dimensional gels. Thus, the results suggest that MAP kinase is tyrosine-phosphorylated pp42.
Collapse
Affiliation(s)
- A J Rossomando
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | |
Collapse
|
35
|
Cooper JA. Related proteins are phosphorylated at tyrosine in response to mitogenic stimuli and at meiosis. Mol Cell Biol 1989; 9:3143-7. [PMID: 2779558 PMCID: PMC362790 DOI: 10.1128/mcb.9.7.3143-3147.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Forty-two-kilodalton proteins that contain phosphotyrosine in metaphase-arrested Xenopus laevis eggs are closely related to p42, a protein that is phosphorylated at tyrosine when somatic cells are exposed to mitogenic stimuli.
Collapse
Affiliation(s)
- J A Cooper
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| |
Collapse
|
36
|
Stratton KR, Worley PF, Huganir RL, Baraban JM. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices. Proc Natl Acad Sci U S A 1989; 86:2498-501. [PMID: 2928346 PMCID: PMC286940 DOI: 10.1073/pnas.86.7.2498] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation.
Collapse
Affiliation(s)
- K R Stratton
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | |
Collapse
|
37
|
Platelet-derived growth factor induces multisite phosphorylation of pp60c-src and increases its protein-tyrosine kinase activity. Mol Cell Biol 1989. [PMID: 2463476 DOI: 10.1128/mcb.8.8.3345] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that pp60c-src is a substrate for protein kinase C in vivo and that the target of protein kinase C phosphorylation in mammalian pp60c-src is serine 12. We now demonstrate that in addition to tumor promoters, all activators of phosphatidylinositol turnover that we have tested in fibroblasts (platelet-derived growth factor, fibroblast growth factor, serum, vasopressin, sodium orthovanadate, and prostaglandin F2 alpha) lead to the phosphorylation of pp60c-src at serine 12. In addition to stimulating serine 12 phosphorylation in pp60c-src, platelet-derived growth factor treatment of quiescent fibroblasts induces phosphorylation of one or two additional serine residues and one tyrosine residue within the N-terminal 16 kilodaltons of the enzyme and activates its immune complex protein-tyrosine kinase activity.
Collapse
|
38
|
Ballotti R, Scimeca JC, Kowalski A, Van Obberghen E. Antiphosphotyrosine antibodies modulate insulin receptor kinase activity and insulin action. Cell Signal 1989; 1:195-204. [PMID: 2484434 DOI: 10.1016/0898-6568(89)90010-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insulin elicits the autophosphorylation of the beta-subunit of its receptor on tyrosine residues: this effect appears to be the earliest post-binding event involved in insulin action. In the present study we have raised highly specific antibodies to phosphotyrosine residues, and we have taken advantage of these antibodies to further evaluate the role of the insulin receptor tyrosine kinase in the generation of insulin's biological responses. Using a cell-free phosphorylation assay, we show here that these antibodies increase the tyrosine kinase activity of the receptor, and its phosphorylation on tyrosine residues. In contrast, the antibodies do not interfere with dephosphorylation of the insulin receptor. Introduction of the same antibodies in living Fao hepatoma cells enhances the effect of insulin on both glucose transport and aminoacid uptake. As a whole our data indicate that the insulin receptor kinase is involved in the generation of an early (glucose transport) and late (aminoacid uptake) response to insulin. Further, conformational changes in phosphotyrosine containing domains of the insulin receptor appear to modulate insulin's biological effects. Finally, the injection of antibodies in intact cells provides us with a novel and promising tool to search for cellular substrates for the insulin receptor tyrosine kinase.
Collapse
Affiliation(s)
- R Ballotti
- Institut National de la Santé et de la Recherche Médicale U 145, Faculté de Médecine, Nice, France
| | | | | | | |
Collapse
|
39
|
Gould KL, Hunter T. Platelet-derived growth factor induces multisite phosphorylation of pp60c-src and increases its protein-tyrosine kinase activity. Mol Cell Biol 1988; 8:3345-56. [PMID: 2463476 PMCID: PMC363570 DOI: 10.1128/mcb.8.8.3345-3356.1988] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have shown previously that pp60c-src is a substrate for protein kinase C in vivo and that the target of protein kinase C phosphorylation in mammalian pp60c-src is serine 12. We now demonstrate that in addition to tumor promoters, all activators of phosphatidylinositol turnover that we have tested in fibroblasts (platelet-derived growth factor, fibroblast growth factor, serum, vasopressin, sodium orthovanadate, and prostaglandin F2 alpha) lead to the phosphorylation of pp60c-src at serine 12. In addition to stimulating serine 12 phosphorylation in pp60c-src, platelet-derived growth factor treatment of quiescent fibroblasts induces phosphorylation of one or two additional serine residues and one tyrosine residue within the N-terminal 16 kilodaltons of the enzyme and activates its immune complex protein-tyrosine kinase activity.
Collapse
Affiliation(s)
- K L Gould
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92138
| | | |
Collapse
|
40
|
Linder ME, Burr JG. Immunological characterization of proteins detected by phosphotyrosine antibodies in cells transformed by Rous sarcoma virus. J Virol 1988; 62:2665-73. [PMID: 2455815 PMCID: PMC253698 DOI: 10.1128/jvi.62.8.2665-2673.1988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphotyrosine antibodies were used to identify tyrosine-phosphorylated proteins in Rous sarcoma virus (RSV)-transformed chicken embryo fibroblasts. A large number of tyrosine phosphoproteins were detected. A similar set of proteins was observed in RSV-transformed murine cells. An 85,000-dalton protein, however, was present in transformed avian cells but missing in transformed murine cells. Neither the 85,000-dalton protein nor any of the other tyrosine phosphoproteins appeared to be viral structural proteins. Use of RSV mutants encoding partially deleted src gene products enabled us to identify a 60,000-dalton cellular tyrosine phosphoprotein that comigrated with wild-type pp60v-src. With the exception of calpactin I, the major tyrosine phosphoproteins detected in immunoblots appeared to be different from several previously characterized substrates of pp60v-src with similar molecular masses (ezrin, vinculin, and the fibronectin receptor).
Collapse
Affiliation(s)
- M E Linder
- Program in Molecular Biology, University of Texas, Dallas, Richardson 75083-0688
| | | |
Collapse
|
41
|
Saltzman EM, Thom RR, Casnellie JE. Activation of a tyrosine protein kinase is an early event in the stimulation of T lymphocytes by interleukin-2. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68588-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Vila J, Weber MJ. Mitogen-stimulated tyrosine phosphorylation of a 42-kD cellular protein: evidence for a protein kinase-C requirement. J Cell Physiol 1988; 135:285-92. [PMID: 3259583 DOI: 10.1002/jcp.1041350216] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of a 42-kD, cytosolic protein is a rapid consequence when quiescent cells are stimulated with any one of a diverse group of mitogenic agents. Among the inducers of this tyrosine phosphorylation are activators of protein kinase C, raising the possibility that this serine/threonine-specific protein kinase plays a role in mitogen-induced tyrosine phosphorylation. Using fibroblastic cells depleted of protein kinase C by chronic treatment with the tumor promoter tetradecanoyl phorbol acetate (TPA), we now show that protein kinase C is required for the tyrosine phosphorylation of the 42-kD protein, even when epidermal growth factor (EGF), whose receptor is a tyrosine-specific protein kinase, provides the initial stimulus. EGF is able to induce other cellular phosphorylations independent of protein kinase C, whereas thrombin appears to require the protein kinase C-dependent pathway. These findings suggest that phosphorylation of the 42-kD protein is part of a protein kinase C-dependent kinase cascade involved in intracellular signalling.
Collapse
Affiliation(s)
- J Vila
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | |
Collapse
|
43
|
Kazlauskas A, Cooper JA. Protein kinase C mediates platelet-derived growth factor-induced tyrosine phosphorylation of p42. J Biophys Biochem Cytol 1988; 106:1395-402. [PMID: 2452172 PMCID: PMC2115007 DOI: 10.1083/jcb.106.4.1395] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One of the early events after stimulation of Swiss 3T3 cells with either platelet-derived growth factor (PDGF), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), diacylglycerol, or several other mitogens is the near stoichiometric phosphorylation at tyrosine and serine of a scarce cytoplasmic protein (p42). TPA and diacylglycerol are known to directly stimulate the activity of a protein-serine/threonine kinase, protein kinase C (PKC). PDGF and several other mitogens stimulate tyrosine kinases directly and PKC indirectly. We have therefore examined the involvement of PKC in p42 tyrosine phosphorylation in Swiss 3T3 cells. Firstly, six agents which stimulated phosphorylation of p42 also stimulated phosphorylation of a known PKC substrate, an 80,000-Mr protein (p80). Secondly, in PKC-deficient cells (cells in which PKC activity was reduced to undetectable levels by prolonged exposure to TPA), PDGF-induced p42 phosphorylation was reduced three- to fourfold. Phosphoamino acid analysis of phosphorylated p42 from PDGF-stimulated PKC-deficient cells revealed primarily phosphoserine and only a trace of phosphotyrosine, suggesting that the reduction in PDGF-stimulated tyrosine phosphorylation of p42 resulting from PKC deficiency is greater than three- to fourfold. Finally, comparison of antiphosphotyrosine immunoprecipitates of PKC-deficient versus naive cells revealed that most other PDGF-induced tyrosine phosphorylation events were quite similar. These data suggest that mitogens such as PDGF, which directly stimulate phosphorylation of some proteins at tyrosine, induce p42 tyrosine phosphorylation via a cascade of events involving PKC.
Collapse
Affiliation(s)
- A Kazlauskas
- Department of Cell Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
44
|
Normal cellular and transformation-associated abl proteins share common sites for protein kinase C phosphorylation. Mol Cell Biol 1988. [PMID: 3125421 DOI: 10.1128/mcb.7.12.4280] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral transduction and chromosomal translocations of the c-abl gene result in the synthesis of abl proteins with structurally altered amino termini. These altered forms of the abl protein, but not the c-abl proteins, are detectably phosphorylated on tyrosine in vivo. In contrast, all forms of the abl protein are phosphorylated on serine following in vivo labeling with Pi. Treatment of NIH-3T3 cells with protein kinase C activators resulted in a four- to eightfold increase in the phosphorylation of murine c-abl due to modification of two serines on the c-abl protein. Purified protein kinase C phosphorylated all abl proteins at the same two sites. Both sites are precisely conserved in murine and human abl proteins. The sites on the abl proteins were found near the carboxy terminus. In contrast, for the epidermal growth factor receptor (T. Hunter, N. Ling, and J. A. Cooper, Nature [London] 311:480-483, 1984) and pp60src (K. L. Gould, J. R. Woodgett, J. A. Cooper, J. E. Buss, D. Shalloway, and T. Hunter, Cell 42:849-857, 1985), the sites of protein kinase C phosphorylation are amino-terminal to the kinase domain. The abl carboxy-terminal region is not necessary for the tyrosine kinase activity or transformation potential of the viral abl protein and may represent a regulatory domain. Using an in vitro immune complex kinase assay, we were not able to correlate reproducible changes in c-abl activity with phosphorylation by protein kinase C. However, the high degree of conservation of the phosphorylation sites for protein kinase C between human and mouse abl proteins suggests an important functional role.
Collapse
|
45
|
Montesano R, Pepper MS, Belin D, Vassalli JD, Orci L. Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol 1988; 134:460-6. [PMID: 2450879 DOI: 10.1002/jcp.1041340318] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously shown that capillary endothelial cells grown on the surface of three-dimensional collagen gels can be induced to invade the underlying fibrillar matrix and to form capillary-like tubular structures in response to tumor-promoting phorbol esters or the angiogenic agent fibroblast growth factor (FGF). Since both phorbol esters and FGF stimulate phosphorylation of tyrosine residues, we treated endothelial cells with vanadate, an inhibitor of phosphotyrosine-specific phosphatases, to determine whether this agent could induce the expression of an angiogenic phenotype in these cells. We show here that vanadate stimulates endothelial cells to invade collagen matrices and to organize into characteristic tubules resembling those induced by FGF or phorbol esters. We have further observed that vanadate concomitantly stimulates endothelial cells to produce plasminogen activators (PAs), proteolytic enzymes which are induced by phorbol esters and FGF, and which have been implicated in the neovascular response; this stimulation can be accounted for by an increase in the levels of urokinase-type PA and tissue type PA mRNA. These results suggest a role for tyrosine phosphorylation in the regulation of the angiogenic phenotype in capillary endothelial cells.
Collapse
Affiliation(s)
- R Montesano
- Institute of Histology and Embryology, University of Geneva Medical Center, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Bijleveld C, Geelen MJ, Houweling M, Vaartjes WJ. Dissimilar effects of 1-oleoyl-2-acetylglycerol and phorbol 12-myristate 13-acetate on fatty acid synthesis in isolated rat-liver cells. Biochem Biophys Res Commun 1988; 151:193-200. [PMID: 2894828 DOI: 10.1016/0006-291x(88)90578-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exogenous 1-oleoyl-2-acetylglycerol (OAG) is known to mimic the action of tumour-promoting phorbol esters in various cell types. However, in isolated rat hepatocytes OAG depressed the rate of de novo fatty acid synthesis and the activity of the key enzyme acetyl-CoA carboxylase (EC 6.4.1.2), in contrast to the pronounced stimulation of both parameters by phorbol 12-myristate 13-acetate (PMA). The inhibition by OAG appeared to be dose- and time-dependent. On the other hand, medium-chain 1,2-diacylglycerols like 1,2-dioctanoyl-sn-glycerol did mimic the stimulatory action of PMA. The anomalous effect of OAG may well be explained by its metabolic breakdown leading to liberation of oleate and subsequent inhibition of acetyl-CoA carboxylase activity by endogenously formed oleoyl-CoA. The stimulatory effects of both PMA and medium-chain diacylglycerols are likely to be mediated by protein kinase C.
Collapse
Affiliation(s)
- C Bijleveld
- Laboratory of Veterinary Biochemistry, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
47
|
Sobue K, Fujio Y, Kanda K. Tumor promoter induces reorganization of actin filaments and calspectin (fodrin or nonerythroid spectrin) in 3T3 cells. Proc Natl Acad Sci U S A 1988; 85:482-6. [PMID: 3277176 PMCID: PMC279574 DOI: 10.1073/pnas.85.2.482] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have used immunofluorescence, differential-interference-contrast, and interference-reflection microscopy to examine the translocation of actin filaments and calspectin (fodrin or nonerythroid spectrin) in 3T3 cells induced by phorbol 12-myristate 13-acetate (PMA). The two cytoskeletal proteins were observed to localize in dot structures that corresponded to the cell-substratum contact sites (focal contact) of the cytoplasmic surface of the plasma membrane. The induction of these cytoskeletal changes was specific for tumor promoters. High-resolution microscopy revealed that calspectin was intensely concentrated in ring-like structures surrounding actin dots. It was also located within the areas of actin dots, but to a lesser extent. Trifluoperazine and other phenothiazine derivatives inhibited the formation of those dot structures that appeared after the addition of PMA. Some serine protease inhibitors were also demonstrated to influence cytoskeletal changes by PMA. Our results provide evidence that calspectin is closely associated with actin filaments in dot structures induced by PMA. Possible mechanisms for these cytoskeletal changes produced by PMA are discussed.
Collapse
Affiliation(s)
- K Sobue
- Department of Neurochemistry and Neuropharmacology, Osaka University Medical School, Japan
| | | | | |
Collapse
|
48
|
Pendergast AM, Traugh JA, Witte ON. Normal cellular and transformation-associated abl proteins share common sites for protein kinase C phosphorylation. Mol Cell Biol 1987; 7:4280-9. [PMID: 3125421 PMCID: PMC368110 DOI: 10.1128/mcb.7.12.4280-4289.1987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Viral transduction and chromosomal translocations of the c-abl gene result in the synthesis of abl proteins with structurally altered amino termini. These altered forms of the abl protein, but not the c-abl proteins, are detectably phosphorylated on tyrosine in vivo. In contrast, all forms of the abl protein are phosphorylated on serine following in vivo labeling with Pi. Treatment of NIH-3T3 cells with protein kinase C activators resulted in a four- to eightfold increase in the phosphorylation of murine c-abl due to modification of two serines on the c-abl protein. Purified protein kinase C phosphorylated all abl proteins at the same two sites. Both sites are precisely conserved in murine and human abl proteins. The sites on the abl proteins were found near the carboxy terminus. In contrast, for the epidermal growth factor receptor (T. Hunter, N. Ling, and J. A. Cooper, Nature [London] 311:480-483, 1984) and pp60src (K. L. Gould, J. R. Woodgett, J. A. Cooper, J. E. Buss, D. Shalloway, and T. Hunter, Cell 42:849-857, 1985), the sites of protein kinase C phosphorylation are amino-terminal to the kinase domain. The abl carboxy-terminal region is not necessary for the tyrosine kinase activity or transformation potential of the viral abl protein and may represent a regulatory domain. Using an in vitro immune complex kinase assay, we were not able to correlate reproducible changes in c-abl activity with phosphorylation by protein kinase C. However, the high degree of conservation of the phosphorylation sites for protein kinase C between human and mouse abl proteins suggests an important functional role.
Collapse
Affiliation(s)
- A M Pendergast
- Department of Microbiology, University of California, Los Angeles 90024
| | | | | |
Collapse
|
49
|
Blenis J, Kuo CJ, Erikson RL. Identification of a ribosomal protein S6 kinase regulated by transformation and growth-promoting stimuli. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47802-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Degradation and biosynthesis of the glucose transporter protein in chicken embryo fibroblasts transformed by the src oncogene. Mol Cell Biol 1987. [PMID: 2439902 DOI: 10.1128/mcb.7.6.2112] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The rate of glucose transport in cultured fibroblasts is regulated to a number of physiological variables, including malignant transformation by src, glucose starvation, and stimulation with mitogens. Much of this transport regulation can be accounted for by variations in the amount of transporter protein in the cells. To determine the mechanisms by which levels of the transporter are regulated, we measured the rates of synthesis and degradation of the transporter by pulse-chase experiments and immunoprecipitation of the transporter. We found that transformation by the src oncogene results in a large decrease in the rate at which the transporter protein is degraded but that it does not appreciably increase the rate of transporter biosynthesis. On the other hand, glucose starvation and mitogen stimulation increase the rate of transporter biosynthesis, although a role for control of degradation is possible in these circumstances also. Variations in the rate of glucose transport or the amount of the transporter are not associated with phosphorylation of the transporter protein.
Collapse
|