1
|
Pang Y, Zhang X, Yuan J, Zhang X, Xiang J, Li F. Characterization and Expression Analysis of Insulin Growth Factor Binding Proteins (IGFBPs) in Pacific White Shrimp Litopenaeus vannamei. Int J Mol Sci 2021; 22:ijms22031056. [PMID: 33494370 PMCID: PMC7866140 DOI: 10.3390/ijms22031056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
The insulin signaling (IIS) pathway plays an important role in the metabolism, growth, development, reproduction, and longevity of an organism. As a key member of the IIS pathway, insulin-like growth factor binding proteins (IGFBPs) are widely distributed a family in invertebrates and vertebrates that are critical in various aspects of physiology. As an important mariculture species, the growth of Pacific white shrimp, Litopenaeus vannamei, is one of the most concerning characteristics in this area of study. In this study, we identified three IGFBP genes in the genome of L. vannamei and analyzed their gene structures, phylogenetics, and expression profiles. LvIGFBP1 was found to contain three domains (the insulin growth factor binding (IB) domain, the Kazal-type serine proteinase inhibitor (Kazal) domain, and the immunoglobulin C-2 (IGc2) domain), while LvIGFBP2 and LvIGFBP3 only contained a single IB domain. LvIGFBP1 exhibited high expression in most tissues and different developmental stages, while LvIGFBP2 and LvIGFBP3 were only slightly expressed in hemocytes. The RNA interference of LvIGFBP1 resulted in a significantly smaller increment of body weight than that of control groups. These results will improve our understanding of the conservative structure and function of IGFBPs and show potential applications for the growth of shrimp.
Collapse
Affiliation(s)
- Ying Pang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence:
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoxi Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.P.); (J.Y.); (X.Z.); (J.X.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
IGFBP2: integrative hub of developmental and oncogenic signaling network. Oncogene 2020; 39:2243-2257. [PMID: 31925333 DOI: 10.1038/s41388-020-1154-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) was discovered and identified as an IGF system regulator, controlling the distribution, function, and activity of IGFs in the pericellular space. IGFBP2 is a developmentally regulated gene that is highly expressed in embryonic and fetal tissues and markedly decreases after birth. Studies over the last decades have shown that in solid tumors, IGFBP2 is upregulated and promotes several key oncogenic processes, such as epithelial-to-mesenchymal transition, cellular migration, invasion, angiogenesis, stemness, transcriptional activation, and epigenetic programming via signaling that is often independent of IGFs. Growing evidence indicates that aberrant expression of IGFBP2 in cancer acts as a hub of an oncogenic network, integrating multiple cancer signaling pathways and serving as a potential therapeutic target for cancer treatment.
Collapse
|
3
|
Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS. Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Biochimie 2011; 94:608-16. [PMID: 21951978 DOI: 10.1016/j.biochi.2011.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
Abstract
The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to -6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In addition to regulating IGF actions, IGFBPs have IGF-independent functions. IGFBP-2, the largest member of this family, is over-expressed in many cancers and has been proposed as a possible target for the development of novel anti-cancer therapeutics. The IGFBPs have a common architecture consisting of conserved N- and C-terminal domains joined by a variable linker domain. The solution structure and dynamics of the C-terminal domain of human IGFBP-2 have been reported (Kuang Z. et al. J. Mol. Biol. 364, 690-704, 2006) but neither the N-domain (N-BP-2) nor the linker domain have been characterised. Here we present NMR resonance assignments for human N-BP-2, achieved by recording spectra at low protein concentration using non-uniform sampling and maximum entropy reconstruction. Analysis of secondary chemical shifts shows that N-BP-2 possesses a secondary structure similar to that of other IGFBPs. Although aggregation hampered determination of the solution structure for N-BP-2, a homology model was generated based on the high degree of sequence and structure homology exhibited by the IGFBPs. This model was consistent with experimental NMR and SAXS data and displayed some unique features such as a Pro/Ala-rich non-polar insert, which formed a flexible solvent-exposed loop on the surface of the protein opposite to the IGF-binding interface. NMR data indicated that this loop could adopt either of two alternate conformations in solution - an entirely flexible conformation and one containing nascent helical structure. This loop and an adjacent poly-proline sequence may comprise a potential SH3 domain interaction site for binding to other proteins.
Collapse
Affiliation(s)
- Charles A Galea
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Miyamoto S, Nakamura M, Yano K, Ishii G, Hasebe T, Endoh Y, Sangai T, Maeda H, Shi-Chuang Z, Chiba T, Ochiai A. Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci 2007; 98:685-91. [PMID: 17359288 PMCID: PMC11158237 DOI: 10.1111/j.1349-7006.2007.00448.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many growth factors and cytokines are immobilized on the extracellular matrix (ECM) by binding to glycosaminoglycans and are stored in an inactive form in the cellular microenvironment. However, the mechanisms of ECM-bound growth factor or cytokine activation have not been well documented. We showed that the insulin-like growth factor type-1 receptor (IGF-1R) was rapidly phosphorylated after the addition of matrix metalloproteinase (MMP)-7 to a serum-starved human colon cancer cell line (HT29) and that phosphorylation was completely inhibited by an IGF-II neutralizing antibody. In the ECM of this cell line, IGF-II and IGF binding protein (BP)-2 coexisted, but IGFBP-2 disappeared from the ECM fraction after treatment with MMP-7 or heparinase III. On the other hand, in a cell line in which IGF-1R was overexpressed, IGF-1R was phosphorylated by supernatant from the MMP-7-treated ECM fraction of HT29 but not by that from a heparinase-III-treated ECM fraction. We also demonstrated that MMP-7 degrades IGFBP-2 in vitro at three cleavage sites (peptide bonds E(151)-L(152), G(175)-L(176) and K(181)-L(182)), which have not been documented previously. Taken together, these results demonstrate that MMP-7 generates bioactive IGF-II by degrading the IGF-II/IGFBP-2 complex binding to heparan sulfate proteoglycan in the ECM, resulting in IGF-II-induced signal transduction. This evidence indicates that some ECM-associated growth factors enhance their ability to bind to their receptors by some proteases in the tumor microenvironment. This mechanism of action ('protease-triggered matricrine') represents an attractive model for understanding ECM-tumor interactions.
Collapse
Affiliation(s)
- Shin'ichi Miyamoto
- Pathology Division, National Cancer Center Research Institute East, Chiba 277-8577, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Allan GJ, Tonner E, Szymanowska M, Shand JH, Kelly SM, Phillips K, Clegg RA, Gow IF, Beattie J, Flint DJ. Cumulative mutagenesis of the basic residues in the 201-218 region of insulin-like growth factor (IGF)-binding protein-5 results in progressive loss of both IGF-I binding and inhibition of IGF-I biological action. Endocrinology 2006; 147:338-49. [PMID: 16195401 DOI: 10.1210/en.2005-0582] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have reported previously that mutation of two conserved nonbasic amino acids (G203 and Q209) within the highly basic 201-218 region in the C-terminal domain of IGF-binding protein-5 (IGFBP-5) decreases binding to IGFs. This study reveals that cumulative mutagenesis of the 10 basic residues in this region, to create the C-Term series of mutants, ultimately results in a 15-fold decrease in the affinity for IGF-I and a major loss in heparin binding. We examined the ability of mutants to inhibit IGF-mediated survival of MCF-7 cells and were able to demonstrate that this depended not only upon the affinity for IGF-I, but also the kinetics of this interaction, because IGFBP-5 mutants with similar affinity constants (K(D)) values, but with different association (Ka) and dissociation (Kd) rate values, had markedly different inhibitory properties. In contrast, the affinity for IGF-I provided no predictive value in terms of the ability of these mutants to enhance IGF action when bound to the substratum. Instead, these C-Term mutants appeared to enhance the actions of IGF-I by a combination of increased dissociation of IGF-IGFBP complexes from the substratum, together with dissociation of IGF-I from IGFBP-5 bound to the substratum. These effects of the IGFBPs were dependent upon binding to IGF-I, because a non-IGF binding mutant (N-Term) was unable to inhibit or enhance the actions of IGF-I. These results emphasize the importance of the kinetics of association/dissociation in determining the enhancing or inhibiting effects of IGFBP-5 and demonstrate the ability to generate an IGFBP-5 mutant with exclusively IGF-enhancing activity.
Collapse
Affiliation(s)
- Gordon J Allan
- Hannah Research Institute, Ayr KA6 5HL, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kibbey MM, Jameson MJ, Eaton EM, Rosenzweig SA. Insulin-like growth factor binding protein-2: contributions of the C-terminal domain to insulin-like growth factor-1 binding. Mol Pharmacol 2005; 69:833-45. [PMID: 16306230 DOI: 10.1124/mol.105.016998] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Signaling by the insulin-like growth factor (IGF)-1 receptor (IGF-1R) has been implicated in the promotion and aggressiveness of breast, prostate, colorectal, and lung cancers. The IGF binding proteins (IGFBPs) represent a class of natural IGF antagonists that bind to and sequester IGF-1/2 from the IGF-1R, making them attractive candidates as therapeutics for cancer prevention and control. Recombinant human IGFBP-2 significantly attenuated IGF-1-stimulated MCF-7 cell proliferation with coaddition of 20 or 100 nM IGFBP-2 (50 or 80% inhibition, respectively). We previously identified IGF-1 contact sites both upstream and downstream of the CWCV motif (residues 247-250) in human IGFBP-2 (J Biol Chem 276:2880-2889, 2001). To further test their contributions to IGFBP-2 function, the single tryptophan in human IGFBP-2, Trp-248, was selectively cleaved with 2-(2'nitrophenylsulfenyl)-3-methyl-3 bromoindolenine (BNPS-skatole) and the BNPS-skatole products IGFBP-2(1-248) and IGFBP-2(249-289) as well as IGFBP-2(1-190) were expressed as glutathione S-transferase-fusion proteins and purified. Based on competition binding analysis, deletion of residues 249 to 289 caused an approximately 20-fold decrease in IGF-1 binding affinity (IGFBP-2 EC50 = 0.35 nM and IGFBP-2(1-248) = 7 nM). Removal of the remainder of the C-terminal domain had no further effect on affinity (IGFBP-2(1-190) EC50 = 9.2 nM). In kinetic assays, IGFBP-2(1-248) and IGFBP-2(1-190) exhibited more rapid association and dissociation rates than full-length IGFBP-2. These results confirm that regions upstream and downstream of the CWCV motif participate in IGF-1 binding. They further support the development of full-length IGFBP-2 as a cancer therapeutic.
Collapse
Affiliation(s)
- Megan M Kibbey
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
7
|
Ghosh M, Shanker S, Siwanowicz I, Mann K, Machleidt W, Holak TA. Proteolysis of insulin-like growth factor binding proteins (IGFBPs) by calpain. Biol Chem 2005; 386:85-93. [PMID: 15843151 DOI: 10.1515/bc.2005.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calpains are non-lysosomal, Ca 2+ -dependent cysteine proteases, which are ubiquitously distributed across cell types and vertebrate species. The rules that govern calpain specificity have not yet been determined. To elucidate the cleavage pattern of calpains, we carried out calpain-induced proteolytic studies on the insulin-like growth factor binding proteins IGFBP-4 and -5. Proteolysis of IGFBPs is well characterized in numerous reports. Our results show that calpain cleavage sites are in the non-conserved unstructured regions of the IGFBPs. Compilation of the calpain-induced proteolytic cleavage sites in several proteins reported in the literature, together with our present study, has not revealed clear preferences for amino acid sequences. We therefore conclude that calpains seem not to recognize amino acid sequences, but instead cleave with low sequence specificity at unstructured or solvent-exposed fragments that connect folded, stable domains of target proteins.
Collapse
Affiliation(s)
- Madhumita Ghosh
- Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Siwanowicz I, Popowicz GM, Wisniewska M, Huber R, Kuenkele KP, Lang K, Engh RA, Holak TA. Structural basis for the regulation of insulin-like growth factors by IGF binding proteins. Structure 2005; 13:155-67. [PMID: 15642270 DOI: 10.1016/j.str.2004.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/21/2004] [Accepted: 11/08/2004] [Indexed: 01/24/2023]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) control the extracellular distribution, function, and activity of IGFs. Here, we report an X-ray structure of the binary complex of IGF-I and the N-terminal domain of IGFBP-4 (NBP-4, residues 3-82) and a model of the ternary complex of IGF-I, NBP-4, and the C-terminal domain (CBP-4, residues 151-232) derived from diffraction data with weak definition of the C-terminal domain. These structures show how the IGFBPs regulate IGF signaling. Key features of the structures include (1) a disulphide bond ladder that binds to IGF and partially masks the IGF residues responsible for type 1 IGF receptor (IGF-IR) binding, (2) the high-affinity IGF-I interaction site formed by residues 39-82 in a globular fold, and (3) CBP-4 interactions. Although CBP-4 does not bind individually to either IGF-I or NBP-4, in the ternary complex, CBP-4 contacts both and also blocks the IGF-IR binding region of IGF-I.
Collapse
Affiliation(s)
- Igor Siwanowicz
- Max Planck Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Since their initial discovery over 25 years ago as IGF carrier proteins, the insulin-like growth factor binding protein (IGFBP) family has grown to six members, ranging in size from 216 to 289 amino acids. The assumption over the years has been that this family of proteins, having higher affinities for IGF-I and IGF-II than does the IGF-IR, serves to block access of these ligands to the receptor. Although the need for such regulatory proteins is consistent with the constitutive secretion of IGFs from many cell types, it is not surprising that additional functions have begun to be uncovered for these proteins. This review will examine new and old actions of the IGFBPs from a biochemical and cell biological perspective.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29403, USA.
| |
Collapse
|
10
|
Ständker L, Kübler B, Obendorf M, Braulke T, Forssmann WG, Mark S. In vivo processed fragments of IGF binding protein-2 copurified with bioactive IGF-II. Biochem Biophys Res Commun 2003; 304:708-13. [PMID: 12727212 DOI: 10.1016/s0006-291x(03)00658-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Proteolysis of insulin-like growth factor binding proteins (IGFBPs), the major carrier of insulin-like growth factors (IGFs) in the circulation, is an essential mechanism to regulate the bioavailability and half-live of IGFs. Screening for peptides in human hemofiltrate, stimulating the survival of PC-12 cells, resulted in the isolation of C-terminal IGFBP-2 fragments and intact IGF-II co-eluting during the chromatographic purification procedure. The IGFBP-2 fragments exhibited molecular masses of 12.7 and 12.9kDa and started with Gly169 and Gly167, respectively. The fragments were able to bind both IGFs. The stimulatory effect of the purified fraction on the survival of the PC-12 cells could be assigned exclusively to IGF-II, since it was abolished by the addition of neutralizing IGF-II antibodies. We suggest that in the circulation IGF-II is not only complexed with intact IGFBP but also with processed IGFBP-2 fragments not impairing the biological activity of IGF-II.
Collapse
Affiliation(s)
- Ludger Ständker
- IPF PharmaCeuticals GmbH(IPF), Feodor Lynen Strasse 31, Hannover D-30625, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Shand JH, Beattie J, Song H, Phillips K, Kelly SM, Flint DJ, Allan GJ. Specific amino acid substitutions determine the differential contribution of the N- and C-terminal domains of insulin-like growth factor (IGF)-binding protein-5 in binding IGF-I. J Biol Chem 2003; 278:17859-66. [PMID: 12626499 DOI: 10.1074/jbc.m300526200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that two highly conserved amino acids in the C-terminal domain of rat insulin-like growth factor-binding protein (IGFBP)-5, Gly(203) and Gln(209), are involved in binding to insulin-like growth factor (IGF)-1. Here we report that mutagenesis of both amino acids simultaneously (C-Term mutant) results in a cumulative effect and an even greater reduction in IGF-I binding: 30-fold measured by solution phase IGF binding assay and 10-fold by biosensor analysis. We compared these reductions in ligand binding to the effects of specific mutations of five amino acids in the N-terminal domain (N-Term mutant), which had previously been shown by others to cause a very large reduction in IGF-I binding (). Our results confirm this as the major IGF-binding site. To prove that the mutations in either N- or C-Term were specific for IGF-I binding, we carried out CD spectroscopy and showed that these alterations did not lead to gross conformational changes in protein structure for either mutant. Combining these mutations in both domains (N+C-Term mutant) has a cumulative effect and leads to a 126-fold reduction in IGF-I binding as measured by biosensor. Furthermore, the equivalent mutations in the C terminus of rat IGFBP-2 (C-Term 2) also results in a significant reduction in IGF-I binding, suggesting that the highly conserved Gly and Gln residues have a conserved IGF-I binding function in all six IGFBPs. Finally, although these residues lie within a major heparin-binding site in IGFBP-5 and -3, we also show that the mutations in C-Term have no effect on heparin binding.
Collapse
Affiliation(s)
- John H Shand
- Hannah Research Institute, Ayr KA6 5HL, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
In addition to their roles in IGF transport, the six IGF-binding proteins (IGFBPs) regulate cell activity in various ways. By sequestering IGFs away from the type I IGF receptor, they may inhibit mitogenesis, differentiation, survival, and other IGF-stimulated events. IGFBP proteolysis can reverse this inhibition or generate IGFBP fragments with novel bioactivity. Alternatively, IGFBP interaction with cell or matrix components may concentrate IGFs near their receptor, enhancing IGF activity. IGF receptor-independent IGFBP actions are also increasingly recognized. IGFBP-1 interacts with alpha(5)beta(1) integrin, influencing cell adhesion and migration. IGFBP-2, -3, -5, and -6 have heparin-binding domains and can bind glycosaminoglycans. IGFBP-3 and -5 have carboxyl-terminal basic motifs incorporating heparin-binding and additional basic residues that interact with the cell surface and matrix, the nuclear transporter importin-beta, and other proteins. Serine/threonine kinase receptors are proposed for IGFBP-3 and -5, but their signaling functions are poorly understood. Other cell surface IGFBP-interacting proteins are uncharacterized as functional receptors. However, IGFBP-3 binds and modulates the retinoid X receptor-alpha, interacts with TGFbeta signaling through Smad proteins, and influences other signaling pathways. These interactions can modulate cell cycle and apoptosis. Because IGFBPs regulate cell functions by diverse mechanisms, manipulation of IGFBP-regulated pathways is speculated to offer therapeutic opportunities in cancer and other diseases.
Collapse
Affiliation(s)
- Sue M Firth
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | | |
Collapse
|
13
|
Abstract
The IGF-binding proteins (IGFBPs) are multifunctional proteins that modulate IGF actions. To determine whether specific domains within these proteins account for specific functions, we and other laboratories have used in vitro mutagenesis. Prior experiments that used a variety of techniques had identified discrete regions within each protein that were proposed to account for specific functions. Alterations of these regions by substituting charged residues with neutral residues or hydrophobic residues with nonhydrophobic residues as well as domain swapping, i.e., substituting a domain from one specific form of IGFBP for the homologous domain in another form, has resulted in the elucidation of the functions of many of these specific sequences. Because the areas of protein sequence that are altered involve a limited number of amino acids, they generally do not alter the conformation of the entire protein; therefore, these specific substitutions can often be correlated with the functional changes that occur after mutagenesis. Mutants have been particularly useful for performing functional analyses in which the purified mutant protein is added to a biological test system. In some cases it has been possible to overexpress the mutagenized protein and determine whether the constitutively synthesized, mutant form of IGFBP has altered functional activity. These results have revealed that discrete regions of IGFBP sequence can mediate important and specific functional properties of these proteins.
Collapse
Affiliation(s)
- D R Clemmons
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7170, USA.
| |
Collapse
|
14
|
Carrick FE, Forbes BE, Wallace JC. BIAcore analysis of bovine insulin-like growth factor (IGF)-binding protein-2 identifies major IGF binding site determinants in both the amino- and carboxyl-terminal domains. J Biol Chem 2001; 276:27120-8. [PMID: 11356837 DOI: 10.1074/jbc.m101317200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the absence of a complete tertiary structure to define the molecular basis of the high affinity binding interaction between insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs), we have investigated binding of IGFs by discrete amino-terminal domains (amino acid residues 1-93, 1-104, 1-132, and 1-185) and carboxyl-terminal domains (amino acid residues 96-279, 136-279, and 182-284) of bovine IGFBP-2 (bIGFBP-2). Both halves of bIGFBP-2 bound IGF-I and IGF-II in BIAcore studies, albeit with different affinities ((1-132)IGFBP-2, K(D) = 36.3 and 51.8 nm; (136-279)IGFBP-2HIS, K(D) = 23.8 and 16.3 nm, respectively). The amino-terminal half appears to contain components responsible for fast association. In contrast, IGF binding by the carboxyl-terminal fragment results in a more stable complex as reflected by its K(D). Furthermore, des(1-3)IGF-I and des(1-6)IGF-II exhibited reduced binding affinity to (1-279)IGFBP-2HIS, (1-132)IGFBP-2, and (136-279)IGFBP-2HIS biosensor surfaces compared with wild-type IGF. A charge reversal at positions 3 and 6 of IGF-I and IGF-II, respectively, affects binding interactions with the amino-terminal fragment and full-length bIGFBP-2 but not the carboxyl-terminal fragment.
Collapse
Affiliation(s)
- F E Carrick
- Cooperative Research Centre for Tissue Growth and Repair, Department of Molecular Biosciences, Adelaide University, North Terrace, Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|
15
|
The interaction of Insulin-like Growth Factors (IGFs) with Insulin-like Growth Factor Binding Proteins (IGFBPs): a review. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf02446511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Horney MJ, Evangelista CA, Rosenzweig SA. Synthesis and characterization of insulin-like growth factor (IGF)-1 photoprobes selective for the IGF-binding proteins (IGFBPS). photoaffinity labeling of the IGF-binding domain on IGFBP-2. J Biol Chem 2001; 276:2880-9. [PMID: 11063745 DOI: 10.1074/jbc.m007526200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Elevated insulin-like growth factor (IGF)-1 levels are prognostic for the development of prostate and breast cancers and exacerbate the complications of diabetes. In each case, perturbation of the balance between IGF-1/2, the IGF-1 receptor, and the IGF-binding proteins (IGFBPs) leads to elevated IGF-1 sensitivity. Blockade of IGF action in these diseases would be clinically significant. Unfortunately, effective IGF antagonists are currently unavailable. The IGFBPs exhibit high affinity and specificity for the IGFs and serve as natural IGF antagonists, limiting their mitogenic/anti-apoptotic effects. As an initial step in designing IGFBP-based agents that antagonize IGF action, we have begun to analyze the structure of the IGF-binding site on IGFBP-2. To this end, two IGF-1 photoprobes, N(alphaGly1)-(4-azidobenzoyl)-IGF-1 (abG(1)IGF-1) and N(alphaGly1)-([2-6-(biotinamido)-2(p-azidobenzamido)hexanoamido]ethyl-1,3'-dithiopropionoyl)-IGF-1 (bedG(1)IGF-1), selective for the IGFBPs were synthesized by derivatization of the alpha-amino group of Gly(1), known to be part of the IGFBP-binding domain. Mass spectrometric analysis of the reduced, alkylated, and trypsin-digested abG(1)IGF-1.recombinant human IGFBP-2 (rhIGFBP-2) complex indicated photoincorporation near the carboxyl terminus of rhIGFBP-2, between residues 266 and 287. Mass spectrometric analysis of avidin-purified tryptic peptides of the bedG(1)IGF-1.rhIGFBP-2 complex revealed photoincorporation within residues 212-227. Taken together, these data indicate that the IGFBP-binding domain on IGF-1 contacts the distal third of IGFBP-2, providing evidence that the IGF-1-binding domain is located within the C terminus of IGFBP-2.
Collapse
Affiliation(s)
- M J Horney
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|
17
|
Imai Y, Moralez A, Andag U, Clarke JB, Busby WH, Clemmons DR. Substitutions for hydrophobic amino acids in the N-terminal domains of IGFBP-3 and -5 markedly reduce IGF-I binding and alter their biologic actions. J Biol Chem 2000; 275:18188-94. [PMID: 10766744 DOI: 10.1074/jbc.m000070200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-binding protein-3 and -5 (IGFBP-3 and -5) have been shown to bind insulin-like growth factor-I and -II (IGF-I and -II) with high affinity. Previous studies have proposed that the N-terminal region of IGFBP-5 contains a hydrophobic patch between residues 49 and 74 that is required for high affinity binding. These studies were undertaken to determine if mutagenesis of several of these residues resulted in a reduction of the affinity of IGFBP-3 and -5 for IGF-I. Substitutions for residues 68, 69, 70, 73, and 74 in IGFBP-5 (changing one charged residue, Lys(68), to a neutral one and the four hydrophobic residues to nonhydrophobic residues) resulted in an approximately 1000-fold reduction in the affinity of IGFBP-5 for IGF-I. Substitutions for homologous residues in IGFBP-3 also resulted in a >1000-fold reduction in affinity. The physiologic consequence of this reduction was that IGFBP-3 and -5 became very weak inhibitors of IGF-I-stimulated cell migration and DNA synthesis. Likewise, the ability of IGFBP-5 to inhibit IGF-I-stimulated receptor phosphorylation was attenuated. These changes did not appear to be because of alterations in protein folding induced by mutagenesis, because the IGFBP-5 mutant was fully susceptible to proteolytic cleavage by a specific IGFBP-5 protease. In summary, residues 68, 69, 70, 73, and 74 in IGFBP-5 appear to be critical for high affinity binding to IGF-I. Homologous residues in IGFBP-3 are also required, suggesting that they form a similar binding pocket and that for both proteins these residues form an important component of the core binding site. The availability of these mutants will make it possible to determine if there are direct, non-IGF-I-dependent effects of IGFBP-3 and -5 on cellular physiologic processes in cell types that secrete IGF-I.
Collapse
Affiliation(s)
- Y Imai
- Division of Endocrinology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7170, USA
| | | | | | | | | | | |
Collapse
|
18
|
Baxter RC. Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab 2000; 278:E967-76. [PMID: 10826997 DOI: 10.1152/ajpendo.2000.278.6.e967] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The insulin-like growth factor (IGF)-binding proteins (IGFBPs) are a family of six homologous proteins with high binding affinity for IGF-I and IGF-II. Information from NMR and mutagenesis studies is advancing knowledge of the key residues involved in these interactions. IGF binding may be modulated by IGFBP modifications, such as phosphorylation and proteolysis, and by cell or matrix association of the IGFBPs. All six IGFBPs have been shown to inhibit IGF action, but stimulatory effects have also been established for IGFBP-1, -3, and -5. These generally involve a decrease in IGFBP affinity and may require cell association of the IGFBP, but precise mechanisms are unknown. The same three IGFBPs have well established effects that are independent of type I IGF receptor signaling. IGFBP-1 exerts these effects by signaling through alpha(5)beta(1)-integrin, whereas IGFBP-3 and -5 may have specific cell-surface receptors with serine kinase activity. The regulation of cell sensitivity to inhibitory IGFBP signaling may play a role in the growth control of malignant cells.
Collapse
Affiliation(s)
- R C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, New South Wales 2065, Australia.
| |
Collapse
|
19
|
Abstract
Over the last decade, the concept of an IGFBP family has been well accepted, based on structural similarities and on functional abilities to bind IGFs with high affinities. The existence of other potential IGFBPs was left open. The discovery of proteins with N-terminal domains bearing striking structural similarities to the N terminus of the IGFBPs, and with reduced, but demonstrable, affinity for IGFs, raised the question of whether these proteins were "new" IGFBPs (22, 23, 217). The N-terminal domain had been uniquely associated with the IGFBPs and has long been considered to be critical for IGF binding. No other function has been confirmed for this domain to date. Thus, the presence of this important IGFBP domain in the N terminus of other proteins must be considered significant. Although these other proteins appear capable of binding IGF, their relatively low affinity and the fact that their major biological actions are likely to not directly involve the IGF peptides suggest that they probably should not be classified within the IGFBP family as provisionally proposed (22, 23). The conservation of this single domain, so critical to high-affinity binding of IGF by the six IGFBPs, in all of the IGFBP-rPs, as well, speaks to its biological importance. Historically, and perhaps, functionally, this has led to the designation of an "IGFBP superfamily". The classification and nomenclature for the IGFBP superfamily, are, of course, arbitrary; what is ultimately relevant is the underlying biology, much of which still remains to be deciphered. The nomenclature for the IGFBP related proteins was derived from a consensus of researchers working in the IGFBP field (52). Obviously, a more general consensus on nomenclature, involving all groups working on each IGFBP-rP, has yet to be reached. Further understanding of the biological functions of each protein should help resolve the nomenclature dilemma. For the present, redesignating these proteins IGFBP-rPs simplifies the multiple names already associated with each IGFBP related protein, and reinforces the concept of a relationship with the IGFBPs. Beyond the N-terminal domain, there is a lack of structural similarity between the IGFBP-rPs and IGFBPs. The C-terminal domains do share similarities to other internal domains found in numerous other proteins. For example, the similarity of the IGFBP C terminus to the thyroglobulin type-I domain shows that the IGFBPs are also structurally related to numerous other proteins carrying the same domain (87). Interestingly, the functions of the different C-terminal domains in members of the IGFBP superfamily include interactions with the cell surface or ECM, suggesting that, even if they share little sequence similarities, the C-terminal domains may be functionally related. The evolutionary conservation of the N-terminal domain and functional studies support the notion that IGFBPs and IGFBP-rPs together form an IGFBP superfamily. A superfamily delineates between closely related (classified as a family) and distantly related proteins. The IGFBP superfamily is therefore composed of distantly related families. The modular nature of the constituents of the IGFBP superfamily, particularly their preservation of an highly conserved N-terminal domain, seems best explained by the process of exon shuffling of an ancestral gene encoding this domain. Over the course of evolution, some members evolved into high-affinity IGF binders and others into low-affinity IGF binders, thereby conferring on the IGFBP superfamily the ability to influence cell growth by both IGF-dependent and IGF-independent means (Fig. 10). A final word, from Stephen Jay Gould (218): "But classifications are not passive ordering devices in a world objectively divided into obvious categories. Taxonomies are human decisions imposed upon nature--theories about the causes of nature's order. The chronicle of historical changes in classification provides our finest insight into conceptual revolutions
Collapse
Affiliation(s)
- V Hwa
- Department of Pediatrics, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
20
|
Neumann GM, Bach LA. The N-terminal disulfide linkages of human insulin-like growth factor-binding protein-6 (hIGFBP-6) and hIGFBP-1 are different as determined by mass spectrometry. J Biol Chem 1999; 274:14587-94. [PMID: 10329650 DOI: 10.1074/jbc.274.21.14587] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actions of insulin-like growth factors (IGFs) are modulated by a family of six high affinity binding proteins (IGFBPs 1-6). IGFBP-6 differs from other IGFBPs in having the highest affinity for IGF-II and in binding IGF-I with 20-100-fold lower affinity. IGFBPs 1-5 contain 18 conserved cysteines, but human IGFBP-6 lacks 2 of the 12 N-terminal cysteines. The complete disulfide linkages of IGFBP-6 were determined using electrospray ionization mass spectrometry of purified tryptic peptide complexes digested with combinations of chymotrypsin, thermolysin, and endoproteinase Glu-C. Numbering IGFBP-6 cysteines sequentially from the N terminus, the first three disulfide linkages are Cys1-Cys2, Cys3-Cys4, and Cys5-Cys6. The next two linkages are Cys7-Cys9 and Cys8-Cys10, which are analogous to those previously determined for IGFBP-3 and IGFBP-5. The C-terminal linkages are Cys11-Cys12, Cys13-Cys14, and Cys15-Cys16, analogous to those previously determined for IGFBP-2. Disulfide linkages of IGFBP-1 were partially determined and show that Cys1 is not linked to Cys2 and Cys3 is not linked to Cys4. Analogous with IGFBP-3, IGFBP-5, and IGFBP-6, Cys9-Cys11 and Cys10-Cys12 of IGFBP-1 are also disulfide-linked. The N-terminal linkages of IGFBP-6 differ significantly from those of IGFBP-1 (and, by implication, the other IGFBPs), which could contribute to the distinctive IGF binding properties of IGFBP-6.
Collapse
Affiliation(s)
- G M Neumann
- Department of Biochemistry, Latrobe University, Bundoora, Victoria 3083, Australia
| | | |
Collapse
|
21
|
Kalus W, Zweckstetter M, Renner C, Sanchez Y, Georgescu J, Grol M, Demuth D, Schumacher R, Dony C, Lang K, Holak TA. Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions. EMBO J 1998; 17:6558-72. [PMID: 9822601 PMCID: PMC1171003 DOI: 10.1093/emboj/17.22.6558] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Binding proteins for insulin-like growth factors (IGFs) IGF-I and IGF-II, known as IGFBPs, control the distribution, function and activity of IGFs in various cell tissues and body fluids. Insulin-like growth factor-binding protein-5 (IGFBP-5) is known to modulate the stimulatory effects of IGFs and is the major IGF-binding protein in bone tissue. We have expressed two N-terminal fragments of IGFBP-5 in Escherichia coli; the first encodes the N-terminal domain of the protein (residues 1-104) and the second, mini-IGFBP-5, comprises residues Ala40 to Ile92. We show that the entire IGFBP-5 protein contains only one high-affinity binding site for IGFs, located in mini-IGFBP-5. The solution structure of mini-IGFBP-5, determined by nuclear magnetic resonance spectroscopy, discloses a rigid, globular structure that consists of a centrally located three-stranded anti-parallel beta-sheet. Its scaffold is stabilized further by two inside packed disulfide bridges. The binding to IGFs, which is in the nanomolar range, involves conserved Leu and Val residues localized in a hydrophobic patch on the surface of the IGFBP-5 protein. Remarkably, the IGF-I receptor binding assays of IGFBP-5 showed that IGFBP-5 inhibits the binding of IGFs to the IGF-I receptor, resulting in reduction of receptor stimulation and autophosphorylation. Compared with the full-length IGFBP-5, the smaller N-terminal fragments were less efficient inhibitors of the IGF-I receptor binding of IGFs.
Collapse
Affiliation(s)
- W Kalus
- Max Planck Institute for Biochemistry, D-82152 Martinsried
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Qin X, Strong DD, Baylink DJ, Mohan S. Structure-function analysis of the human insulin-like growth factor binding protein-4. J Biol Chem 1998; 273:23509-16. [PMID: 9722589 DOI: 10.1074/jbc.273.36.23509] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify the molecular mechanism by which insulin-like growth factor binding protein-4 (IGFBP-4) exerts its inhibitory effects on insulin-like growth factor (IGF) actions, we localized and determined the role of the IGF binding domain in modulating IGF actions in human osteoblasts. Deletion analysis using IGFBP-4 expressed in bacteria revealed that the N-terminal sequence Leu72-Ser91 was essential for IGF binding. The C-terminal fragments (His121-Glu237 or Arg142-Glu237) did not bind to IGF but loss of these regions decreased IGF binding activity. Detailed deletion analysis identified the residues Cys205-Val214 as the motif to facilitate IGF binding. Mitogenic studies revealed that an IGFBP-4 mutant (His74 replaced by Pro74) and an N-terminal peptide (N terminus to Thr71) with little IGF binding activity failed to inhibit IGF-II-induced human osteoblast proliferation. An N-terminal peptide (N terminus to Asn182) with reduced IGF binding activity inhibited IGF action but with lower potency. In contrast, an IGFBP-4 mutant (His74 replaced with Ala74) exhibited similar IGF binding activity and potency in inhibiting the activity of IGF-II compared with the wild type. Therefore, the N-terminal sequence (Leu72-Ser91) and the C-terminal sequence (Cys205-Val214) are necessary to form the high affinity IGF binding domain, which is the major structural determinant of the IGFBP-4 function.
Collapse
Affiliation(s)
- X Qin
- Department of Mineral Metabolism, J. L. Pettis Memorial Veterans Medical Center, Loma Linda, California 92357, USA
| | | | | | | |
Collapse
|
23
|
Hobba GD, Löthgren A, Holmberg E, Forbes BE, Francis GL, Wallace JC. Alanine screening mutagenesis establishes tyrosine 60 of bovine insulin-like growth factor binding protein-2 as a determinant of insulin-like growth factor binding. J Biol Chem 1998; 273:19691-8. [PMID: 9677398 DOI: 10.1074/jbc.273.31.19691] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The determinants of insulin-like growth factor (IGF) binding to its binding proteins (IGFBPs) are poorly characterized in terms of important residues in the IGFBP molecule. We have previously used tyrosine iodination to implicate Tyr-60 in the IGF-binding site of bovine IGFBP-2 (Hobba, G. D., Forbes, B. E., Parkinson, E. J., Francis, G. L., and Wallace, J. C. (1996) J. Biol. Chem. 271, 30529-30536). In this report, we show that the mutagenic replacement of Tyr-60 with either Ala or Phe reduced the affinity of bIGFBP-2 for IGF-I (4.0- and 8.4-fold, respectively) and for IGF-II (3.5- and 4.0-fold, respectively). Although adjacent residues Val-59, Thr-61, Pro-62, and Arg-63 are well conserved in IGFBP family members, Ala substitution for these residues did not reduce the IGF affinity of bIGFBP-2. Kinetic analysis of the bIGFBP-2 mutants on IGF biosensor chips in the BIAcore instrument revealed that Tyr-60 --> Phe bIGFBP-2 bound to the IGF-I surface 3.0-fold more slowly than bIGFBP-2 and was released 2.6-fold more rapidly than bIGFBP-2. We therefore propose that the hydroxyl group of Tyr-60 participates in a hydrogen bond that is important for the initial complex formation with IGF-I and the stabilization of this complex. In contrast, Tyr-60 --> Ala bIGFBP-2 associated with the IGF-I surface 5.0-fold more rapidly than bIGFBP-2 but exhibited an 18.4-fold more rapid release from this surface compared with bIGFBP-2. Thus both the aromatic nature and the hydrogen bonding potential of the tyrosyl side chain of Tyr-60 are important structural determinants of the IGF-binding site of bIGFBP-2.
Collapse
Affiliation(s)
- G D Hobba
- Cooperative Research Centre for Tissue Growth and Repair, P. O. Box 10065, Gouger Street, Adelaide, South Australia 5005
| | | | | | | | | | | |
Collapse
|
24
|
Lucic MR, Forbes BE, Grosvenor SE, Carr JM, Wallace JC, Forsberg G. Secretion in Escherichia coli and phage-display of recombinant insulin-like growth factor binding protein-2. J Biotechnol 1998; 61:95-108. [PMID: 9654743 DOI: 10.1016/s0168-1656(98)00012-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factors (IGFs) promote cell growth and differentiation. Their actions are regulated by six different, but related, binding proteins (IGFBPs). To investigate the molecular interactions between IGFs and IGFBPs, an Escherichia coli based production method and a phage display system has been developed. The cDNA for bovine IGFBP-2 was inserted between regions coding for the pelB signal sequence and geneIII product, g3p, of bacteriophage fd in a phagemid vector to generate pGF14. The coding sequences of IGFBP-2 and g3p were separated by an amber stop codon and a flexible linker containing the cleavage recognition site for H64A subtilisin. Using this system in BL21, a non-supE strain lacking ompT, most product, approximately 4 mg 1(-1) of IGFBP-2, was obtained in the growth medium. The bacterially derived IGFBP-2 had a correct N-terminal sequence, molecular mass on SDS-PAGE and the same affinity for IGF-1 and IGF-II as IGFBP-2 from mammalian cells. In a supE strain of E. coli, IGFBP-2 was produced as an IGF-binding fusion to g3p. Procedures for display and approximately 10000 fold enrichment of IGFBP-2 bearing phage using adsorption to IGF-II coated microtitre plates were developed. Thus IGFBP-2 can be secreted in E. coli and displayed on filamentous phage. These can be selectively enriched by binding to immobilised IGF-II.
Collapse
Affiliation(s)
- M R Lucic
- Department of Biochemistry, University of Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Forbes BE, Turner D, Hodge SJ, McNeil KA, Forsberg G, Wallace JC. Localization of an insulin-like growth factor (IGF) binding site of bovine IGF binding protein-2 using disulfide mapping and deletion mutation analysis of the C-terminal domain. J Biol Chem 1998; 273:4647-52. [PMID: 9468524 DOI: 10.1074/jbc.273.8.4647] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have investigated which region(s) of bovine insulin-like growth factor binding protein-2 (bIGFBP-2) interact with insulin-like growth factors (IGFs) using C-terminally truncated forms of bIGFBP-2. Initially to aid in mutant design, we defined the disulfide bonding pattern of bIGFBP-2 C-terminal region using enzymatic digestion. The pattern is Cys186-Cys220, Cys231-Cys242, and Cys244-Cys265. In addition, cyanogen bromide cleavage of bIGFBP-2 revealed that the N- and C-terminal cysteine-rich domains were not linked by disulfide bonds. Taking the disulfide bonding pattern into consideration, C-terminal truncation mutants were designed and expressed in COS-1 mammalian cells. Following IGF binding assays, a region between residues 222 and 236 was identified as important in IGF binding. Specifically, mutants truncated by 14, 36, and 48 residues from the C terminus bound IGFs to the same extent as wild type (WT) bIGFBP-2. Removal of 63 residues resulted in a greatly reduced (up to 80-fold) ability to bind IGF compared with WT bIGFBP-2. Interestingly this mutant lacked the IGF-II binding preference of WT bIGFBP-2. Residues 236-270 also appeared to play a role in determining IGF binding specificity as their removal resulted in mutants with higher IGF-II binding affinity.
Collapse
Affiliation(s)
- B E Forbes
- Cooperative Research Centre for Tissue Growth and Repair, P. O. Box 10065, Gouger St., Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Firth SM, Ganeshprasad U, Baxter RC. Structural determinants of ligand and cell surface binding of insulin-like growth factor-binding protein-3. J Biol Chem 1998; 273:2631-8. [PMID: 9446566 DOI: 10.1074/jbc.273.5.2631] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Among the well defined insulin-like growth factor (IGF)-binding proteins (IGFBPs), IGFBP-3 is characterized by its interaction with an acid-labile glycoprotein (ALS) in the presence of IGFs. To identify the structural determinants on IGFBP-3 required for ligand binding and cell association, five recombinant human IGFBP-3 variants were expressed in Chinese hamster ovary cells: deletions of amino acids 89-264, 89-184, and 185-264, and site-specific mutations 228KGRKR --> MDGEA and 253KED --> RGD. The basic carboxyl-terminal region of IGFBP-3 was required for binding to heparin. The deletion variants had greatly decreased IGF binding ability as assessed by ligand blotting and solution binding assays; affinity cross-linking indicated at least a 20-fold decrease in IGF affinity. The RGD mutant had a 4-6-fold reduced affinity for both IGFs, but the MDGEA mutant bound IGF-I with near normal affinity and IGF-II with a 3-fold reduction in affinity. The three deletion variants were incapable of binding ALS; but of the site-specific variants, the MDGEA mutant bound ALS with 90% lower affinity (Ka = 2.5 +/- 0.9 liters/nmol) than seen for rhIGFBP-3 (Ka = 24.3 +/- 5.2 liters/nmol), whereas the RGD mutation had no effect on ALS affinity (Ka = 21.7 +/- 4.5 liters/nmol). The ability of IGFBP-3 to associate with the cell surface was lost in variants lacking residues 185-264 and in the 228KGRKR --> MDGEA mutant. We conclude that residues 228-232 of IGFBP-3 are essential for cell association and are required for normal ALS binding affinity.
Collapse
Affiliation(s)
- S M Firth
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | | | | |
Collapse
|
27
|
Abstract
Truncated forms of insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2) have been purified from human milk and shown to retain partial IGF-binding activity. By affinity chromatography on agarose-IGF-I and HPLC, truncated IGFBP-2 of apparent Mr 14,000-16,000 resolved into two peaks. Both peaks bound radioiodinated IGF-II on ligand blotting. Within both peaks, two sequences were identified, starting at Gly169 and Lys181 of hIGFBP-2 (predicted Mr, 13,786 and 12,502, respectively, if both extend to Gln289). Mass spectrometry of a fraction predominantly containing Gly169 peptides yielded two major species, 13,840 and 13,425 Mr. Prolonged incubation of radioiodinated recombinant human (rh) IGFBP-2 with human milk failed to reveal any degradation, suggesting the formation of the fragments within the mammary gland. By solution binding assay, truncated IGFBP-2 showed less than 10% binding of [125I]IGF-I and 25% binding of [125I]IGF-II at pH 7.0 compared with rhIGFBP-2. No binding activity was seen at pH 4.0, in contrast to intact IGFBP-2, which showed peak binding from pH 4.0 to at least pH 9.0. The IGF-II association constant for truncated IGFBP-2 (6.5 nM(-1)) was 10-fold lower than that for intact IGFBP-2 (58 nM(-1)). Des(1-6)-IGF-II was totally inactive in displacing IGF-II tracer from the IGFBP-2 fragment, but displaced tracer from rhIGFBP-2 with 10% the activity of IGF-II. Thus, the amino-terminal hexapeptide of IGF-II is required for interaction with the carboxy-terminal domain of IGFBP-2. The presence of active IGFBP-2 fragments in milk suggests a role for milk IGFBP-2 in modifying IGF activity in the neonatal gut.
Collapse
Affiliation(s)
- P J Ho
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | | |
Collapse
|
28
|
Hobba GD, Forbes BE, Parkinson EJ, Francis GL, Wallace JC. The insulin-like growth factor (IGF) binding site of bovine insulin-like growth factor binding protein-2 (bIGFBP-2) probed by iodination. J Biol Chem 1996; 271:30529-36. [PMID: 8940022 DOI: 10.1074/jbc.271.48.30529] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The insulin-like growth factor (IGF) binding site of bovine insulin-like growth factor binding protein 2 (bIGFBP-2) has been probed by chemical iodination. Tyrosyl residues of bIGFBP-2 were reacted by chloramine T-mediated iodination. The modification patterns of free bIGFBP-2 and bIGFBP-2 associated with insulin-like growth factor II (IGF-II) were compared by tryptic mapping using electrospray mass spectrometry and N-terminal sequencing. The presence of bound IGF-II resulted in protection of tyrosine at position 60 from iodination measured by the relative loss of tyrosine specific fluorescence and the incorporation of the radioisotope 125I. In addition, the pattern of iodine incorporation of bIGFBP-2 was not different whether IGF-I or IGF-II was the protective ligand. bIGFBP-2, when iodinated alone sustained a 8-fold loss of binding affinity for IGF-I and a 4-fold loss in binding affinity for IGF-II. In contrast, bIGFBP-2 iodinated while complexed with either IGF-I or IGF-II retained the same binding affinity for IGF-I or IGF-II as non-iodinated bIGFBP-2. We conclude that tyrosine 60 lies either in a region of bIGFBP-2 which directly interacts with both IGF-I and IGF-II or lies in a region of bIGFBP-2 which undergoes a conformational change that is important for IGF binding. Furthermore, iodination of tyrosine residues at positions 71, 98, 213, 226, and 269 has no detectable impact on binding of bIGFBP-2 to the IGFs.
Collapse
Affiliation(s)
- G D Hobba
- Cooperative Research Centre for Tissue Growth and Repair, P. O. Box 10065, Gouger Street, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
29
|
Gosiewska A, Peterkofsky B. Insulin-like growth factor (IGF) binding proteins and their mRNAs in connective tissues of fasted guinea-pigs. Endocrine 1995; 3:889-97. [PMID: 21153217 DOI: 10.1007/bf02738894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/1995] [Accepted: 09/11/1995] [Indexed: 11/25/2022]
Abstract
Fasting (with vitamin C-supplementation) and vitamin C-deficiency in guinea-pigs are associated with decreased collagen gene expression in connective tissues. Recently we presented evidence that circulating insulin-like growth factor binding protein (IGFBP)-1 and-2 that are induced during both nutritional deficiencies may be responsible for this inhibition by interfering with IGF-I action. The present objective was to determine whether circulating IGFBPs are accumulated in bone, skin and cartilage during fasting, which would support an endocrine role for them. IGFBP-1 mRNA was not detected in any of the connective tissues. The protein, as measured by ligand blotting, was not present in tissues of normal animals but accumulated early during fasting in all of the tissues. Bone and cartilage from normal animals contained IGFBP-2 and its mRNA, but only in bone did their levels increase during fasting. IGFBP-3 mRNA was not detected in connective tissues from normal or fasted guinea-pigs. Little or no IGFBP-3 was detected in normal tissue extracts, but protein accumulated during fasting and presumably was derived from the circulation. IGF-I and-II mRNAs were expressed in bone and cartilage but in skin, only IGF-II mRNA was detected. Affinity cross-linking revealed that in skin, IGFBP-3 contained relatively few unoccupied IGF-I binding sites compared to IGFBP-1 while in bone and cartilage, only IGFBP-1 contained unoccupied binding sites. IGFBP-1, acting by endocrine action, is probably the major factor responsible for inhibition of IGF-I-dependent collagen gene expression during fasting.
Collapse
Affiliation(s)
- A Gosiewska
- Laboratory of Biochemistry, National Cancer Institute, 20892-4255, Bethesda, Maryland, USA
| | | |
Collapse
|
30
|
Conover CA, Durham SK, Zapf J, Masiarz FR, Kiefer MC. Cleavage analysis of insulin-like growth factor (IGF)-dependent IGF-binding protein-4 proteolysis and expression of protease-resistant IGF-binding protein-4 mutants. J Biol Chem 1995; 270:4395-400. [PMID: 7533161 DOI: 10.1074/jbc.270.9.4395] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cultured human fibroblasts and osteoblast-like cells secrete an insulin-like growth factor (IGF)-dependent protease that cleaves IGF-binding protein-4 (IGFBP-4) into two fragments of approximately 18 and 14 kDa. Edman degradation of the isolated proteins established the amino termini of the reaction products. Sequence analysis of the 14-kDa carboxyl-terminal half of IGFBP-4 suggested cleavage after methionine at position 135 of the mature protein. Four variant IGFBP-4 molecules with single amino acid substitutions around this cleavage site were constructed and expressed. Wild-type and mutant IG-FBPs-4 bound IGF-I and IGF-II with equivalent affinities and, in the intact state, were equally effective inhibitors of IGF-I action. However, the IGFBP-4 mutants were relatively resistant to IGF-dependent proteolysis. A 5-6-h incubation in human fibroblast conditioned medium in the presence of IGF-II was sufficient for near total hydrolysis of wild-type IGFBP-4, whereas the mutant IGFBPs-4 were only minimally affected at this time. After a 24-h incubation with IGF-II, all mutant IGFBPs-4 showed extensive proteolysis, generating 18- and 14-kDa fragments. Pre-exposure of human fibroblasts in serum-free conditioned medium to IGF-II for 5 h potentiated subsequent IGF-I stimulation of DNA synthesis. When added with IGF-II, the protease-resistant mutant IG-FBPs-4, but not wild-type IGFBP-4, suppressed IGF-II enhancement of IGF-I-stimulated DNA synthesis. These biological studies suggest that the IGFBP-4/IGFBP-4 protease system may play a role modulating local cellular response to IGF-I.
Collapse
Affiliation(s)
- C A Conover
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905
| | | | | | | | | |
Collapse
|
31
|
Abstract
Insulinlike growth factors (IGFs) express anabolic and mitogenic activity on wide variety of cells. Besides endocrine effects, IGFs have major autocrine and paracrine effects on many cellular functions. Two factors that significantly affect the extent of cellular response to IGFs include the membrane receptors for IGFs and the soluble binding proteins (BPs), which modulate the action of IGFs at the receptor level. IGFs, IGF receptors, and IGFs and their BPs (IGF-BPs) thus constitute three components of the IGF system. A role of IGFs in the transformation and proliferation of cancer cells has become increasingly evident in the past few years. Studies from several laboratories show that all three components of the IGF system may play an important role in the proliferation of colon cancers. It was recently shown that the relative expression of IGFs and IGF/BPs may critically control the metastatic potential of colon cancers. The purpose of this article is to summarize our current knowledge of the IGF system and to present support for a significant role of IGFs in the initiation and growth of colon cancers. The expression and structural aspects of IGFs, their receptors, and BPs are outlined first, followed by a discussion of the role of IGFs in gastrointestinal functions and in colon cancers.
Collapse
Affiliation(s)
- P Singh
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston
| | | |
Collapse
|
32
|
Characterization of recombinant human insulin-like growth factor binding proteins 4, 5, and 6 produced in yeast. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42332-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Brinkman A, Kortleve DJ, Schuller AG, Zwarthoff EC, Drop SL. Site-directed mutagenesis of the N-terminal region of IGF binding protein 1; analysis of IGF binding capability. FEBS Lett 1991; 291:264-8. [PMID: 1718783 DOI: 10.1016/0014-5793(91)81298-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To define domains involved in IGF binding 60 N-terminal amino acid residues of IGFBP-1 were deleted. This deletion resulted in loss of IGF binding suggesting that the N-terminus may enclose an IGF binding domain. However, most point mutations introduced in this region did not affect IGF binding. In contrast to Cys-34, only substitution of Cys-38 for a tyrosine residue abolished IGF binding. With the determination that all 18 cysteine residues are involved in disulphide bond formation our data suggest that, although not all cysteines contribute to the same extent, the ligand binding site may be spatially organized.
Collapse
Affiliation(s)
- A Brinkman
- Department of Pediatrics, Erasmus University/Sophia Childrens Hospital, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Umezawa T, Ohsawa Y, Miura Y, Kato H, Noguchi T. Effect of protein deprivation on insulin-like growth factor-binding proteins in rats. Br J Nutr 1991; 66:105-16. [PMID: 1718411 DOI: 10.1079/bjn19910014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of protein deprivation on plasma concentration of insulin-like growth factor-binding proteins (IGFBP) was studied in rats. A significant decrease in the concentration of IGFBP of molecular weight (mass) approximately 40 kDa was observed in protein-deprived rats. There was no prominent effect of protein deprivation on the concentration of IGFBP with molecular weights of about 30 kDa or 22-24 kDa. The binding capacity to plasma IGFBP of exogenously-added 125I-labelled insulin-like growth factor-1 (125I-IGF-1) was also studied. IGFBP of molecular weight about 30 and 22-24 kDa (the native form of this protein is presumed to be 29 kDa) in protein-deprived rat plasma bound more 125I-IGF-1 than those in protein-fed rat plasma. This suggested that these IGFBP in protein-deprived rat plasma are relatively unsaturated by endogenous IGF-1. The response of IGFBP to protein deprivation which was elucidated in the present investigations add further evidence to our previous assumption that IGFBP play an important role in protein nutrition.
Collapse
Affiliation(s)
- T Umezawa
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- S C Bell
- Department of Obstetrics & Gynaecology, Medical School, University of Leicester, England
| |
Collapse
|
36
|
Shimasaki S, Ling N. Identification and molecular characterization of insulin-like growth factor binding proteins (IGFBP-1, -2, -3, -4, -5 and -6). PROGRESS IN GROWTH FACTOR RESEARCH 1991; 3:243-66. [PMID: 1725860 DOI: 10.1016/0955-2235(91)90003-m] [Citation(s) in RCA: 417] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Six different insulin-like growth factor binding proteins (IGFBPs) have been identified by molecular cloning of their cDNAs from rat and human tissues and designated as IGFBP-1, -2, -3, -4, -5 and -6. The total number of amino acid residues for the mature rat BPs ranges from 201 for IGFBP-6 to 270 for IGFBP-2, while the human homologs range from 216 for IGFBP-6 to 289 for IGFBP-2. Except for IGFBP-6, all rat and human IGFBPs contain 18 homologous cysteines; twelve are located at the N-terminal and span approximately one-third of the total amino acid sequence, while the remaining six are distributed at the C-terminal and span the last one-third of the protein sequence. Both rat and human IGFBP-4 possess two extra cysteines at the mid-region of the molecule. By contrast, rat and human IGFBP-6 contain only 14 and 16 cysteines, respectively. Absence of the two and four cysteines in the N-terminal region in the human and rat IGFBP-6 resulted in the deletion of the invariant Gly-Cys-Gly-Cys-Cys sequence which is present in all the other five IGFBPs. Both rat and human IGFBP-3 possess multiple N-linked glycosylation sites at the mid-region of the molecule, which accounts for their apparent molecular size being larger than the calculated molecular weight, based on the amino acid sequence. One potential N-linked glycosylation site is located at the mid-region of rat and human IGFBP-4, whereas only human but not rat IGFBP-6 possesses one N-linked glycosylation site at the extreme C-terminal of the molecule. An RGD sequence is found in the C-terminal of IGFBP-1 and -2. In this short review, updated information on the structural identification and molecular cloning of the six IGFBPs will be presented. In addition, the potential regulation of the BPs at the transcriptional and translational levels will be discussed.
Collapse
Affiliation(s)
- S Shimasaki
- Department of Molecular Endocrinology, Whittier Institute for Diabetes and Endocrinology, La Jolla, CA 92037
| | | |
Collapse
|
37
|
Zapf J, Kiefer M, Merryweather J, Musiarz F, Bauer D, Born W, Fischer J, Froesch E. Isolation from adult human serum of four insulin-like growth factor (IGF) binding proteins and molecular cloning of one of them that is increased by IGF I administration and in extrapancreatic tumor hypoglycemia. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77200-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Affiliation(s)
- G T Ooi
- Growth and Development Section, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
39
|
Nucleotide Sequence and Expression of a cDNA Clone Encoding a Fetal Rat Binding Protein for Insulin-like Growth Factors. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83711-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|