1
|
Seol SI, Kang IS, Lee JS, Lee JK, Kim C. Taurine Chloramine-Mediated Nrf2 Activation and HO-1 Induction Confer Protective Effects in Astrocytes. Antioxidants (Basel) 2024; 13:169. [PMID: 38397767 PMCID: PMC10886344 DOI: 10.3390/antiox13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Taurine is ubiquitously distributed in mammalian tissues, with the highest levels in the brain, heart, and leukocytes. Taurine reacts with hypochlorous acid (HOCl) to produce taurine chloramine (Tau-Cl) via the myeloperoxidase (MPO) system. In this study, we elucidated the antioxidative and protective effects of Tau-Cl in astrocytes. Tau-Cl increased the expression and nuclear translocation of nuclear factor E2-related factor (Nrf2) and the expression of Nrf2-regulated antioxidant genes, including heme oxygenase 1 (HO-1). Nrf2 activity is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1). Tau-Cl decreased the level of the reduced thiol groups of Keap1, resulting in the disruption of the Keap1-Nrf2 complex. Consequently, Tau-Cl rescued the H2O2-induced cell death by enhancing HO-1 expression and suppressing reactive oxygen species. In conclusion, Tau-Cl confers protective effects in astrocytes by disrupting the Keap1-Nrf2 complex, thereby promoting Nrf2 translocation to the nucleus, wherein it binds to the antioxidant response element (ARE) and accelerates the transcription of antioxidant genes. Therefore, in astrocytes, the activation of the Keap1-Nrf2-ARE pathway by Tau-Cl may increase antioxidants and anti-inflammatory mediators as well as other cytoprotective proteins, conferring protection against brain infection and injury.
Collapse
Affiliation(s)
- Song-I Seol
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea;
| | - In Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea; (I.S.K.); (J.S.L.)
| | - Ji Seok Lee
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea; (I.S.K.); (J.S.L.)
- BK21, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Republic of Korea;
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea; (I.S.K.); (J.S.L.)
- BK21, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
2
|
Oxidative Stress and Intracranial Hypertension after Aneurysmal Subarachnoid Hemorrhage. Antioxidants (Basel) 2022; 11:antiox11122423. [PMID: 36552631 PMCID: PMC9774559 DOI: 10.3390/antiox11122423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Intracranial hypertension is a common phenomenon in patients with aneurysmal subarachnoid hemorrhage (aSAH). Elevated intracranial pressure (ICP) plays an important role in early brain injuries and is associated with unfavorable outcomes. Despite advances in the management of aSAH, there is no consensus about the mechanisms involved in ICP increases after aSAH. Recently, a growing body of evidence suggests that oxidative stress (OS) may play a crucial role in physio-pathological changes following aSAH, which may also contribute to increased ICP. Herein, we discuss a potential relation between increased ICP and OS, and resultantly propose antioxidant mechanisms as a potential therapeutic strategy for the treatment of ICP elevation following aSAH.
Collapse
|
3
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
4
|
Therapeutic Effect of Gypenosides on Antioxidant Stress Injury in Orbital Fibroblasts of Graves’ Orbitopathy. J Immunol Res 2022; 2022:4432584. [PMID: 36157877 PMCID: PMC9499793 DOI: 10.1155/2022/4432584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose To examine the impact of gypenosides (Gyps) on oxidative stress damage of orbital fibroblasts (OFs) from Graves' ophthalmopathy (GO) patients. Methods The relationship between Gyps and GO oxidative stress was understood by bioinformatics analysis. Orbital connective tissues of GO and non-GO patients were obtained for primary OF culture. The proliferation level of OFs was measured by Cell Counting Kit-8 method, and the appropriate intervention concentration of Gyps and H2O2 was obtained. The expression of apoptosis-related protein mRNA was analyzed by RT-qPCR technique. ROS and SOD test suites were employed to detect the oxidative stress level in OFs. Flow cytometry apoptosis detection, TUNEL detection, and lactate dehydrogenase detection were used to analyze the level of apoptosis. Western blotting detection was utilized to examine the regulatory pathway of oxidative stress, apoptosis, and autophagy-related proteins. The changes of cell morphology, autophagosome, and autophagy lysosome were observed by transmission electron microscope. Results The suitable intervention concentration of Gyps is 100 μg/mL, and the suitable intervention concentration of high concentration H2O2 is 350 μM. In comparison with the blank control group, the H2O2 intervention group enhanced the expression of apoptosis-related mRNA, the expression of ROS and SOD, the apoptosis rate, the expression of autophagy activation-related protein and Nrf2/ERK/HO-1 protein, and the number of autophagosomes and autophagy lysosomes. Compared with H2O2 intervention group, the expression of apoptosis-related mRNA decreased, ROS expression decreased, SOD expression increased, apoptosis rate decreased, autophagy activation-related protein expression decreased, Nrf2/ERK/HO-1 protein expression increased, and the quantity of autophagosomes and autophagy lysosomes decreased in H2O2 + Gyps intervention group. Conclusion Gyps can decrease the oxidative stress level of OFs generated by H2O2, reduce cell autophagy, and reduce apoptosis. Gyps may regulate the oxidative stress response of OFs in GO patients via the Nrf2/ERK/HO-1 signaling pathway.
Collapse
|
5
|
Richard D, Muthuirulan P, Aguiar J, Doxey AC, Banerjee A, Mossman K, Hirota J, Capellini TD. Intronic regulation of SARS-CoV-2 receptor (ACE2) expression mediated by immune signaling and oxidative stress pathways. iScience 2022; 25:104614. [PMID: 35756893 PMCID: PMC9213013 DOI: 10.1016/j.isci.2022.104614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/19/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) protein is a key catalytic regulator of the renin-angiotensin system (RAS), involved in fluid homeostasis and blood pressure modulation. ACE2 also serves as a cell-surface receptor for some coronaviruses such as SARS-CoV and SARS-CoV-2. Improved characterization of ACE2 regulation may help us understand the effects of pre-existing conditions on COVID-19 incidence, as well as pathogenic dysregulation following viral infection. Here, we perform bioinformatic analyses to hypothesize on ACE2 gene regulation in two different physiological contexts, identifying putative regulatory elements of ACE2 expression. We perform functional validation of our computational predictions via targeted CRISPR-Cas9 deletions of these elements in vitro, finding them responsive to immune signaling and oxidative-stress pathways. This contributes to our understanding of ACE2 gene regulation at baseline and immune challenge. Our work supports pursuit of these putative mechanisms in our understanding of infection/disease caused by current, and future, SARS-related viruses such as SARS-CoV-2. Lung expression patterns suggest ACE2 regulation by immune and oxidative signaling CRISPR deletion of intronic regulatory elements (REs) alters ACE2 expression Effects of RE deletion are modified by immune stimulation and oxidative stress Propose two mechanisms for regulating ACE2 at baseline and after immune challenge
Collapse
Affiliation(s)
- Daniel Richard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138 USA
| | | | - Jennifer Aguiar
- Department of Biology, University of Waterloo, Waterloo, ON, N2L3G1 Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, N2L3G1 Canada
| | - Arinjay Banerjee
- Department of Biology, University of Waterloo, Waterloo, ON, N2L3G1 Canada.,Vaccine and Infectious Disease Organization, University of Saskatchewan; Saskatoon, SK, S7N 5E3 Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan; Saskatoon, SK, S7N5B4 Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, ON, L8N 3Z5 Canada
| | - Jeremy Hirota
- Department of Biology, University of Waterloo, Waterloo, ON, N2L3G1 Canada.,Department of Medicine, McMaster University, Hamilton, ON, L8N 3Z5 Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9 Canada
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138 USA.,Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
| |
Collapse
|
6
|
Mohseni M, Sahebkar A, Askari G, Johnston TP, Alikiaii B, Bagherniya M. The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials. Phytother Res 2021; 35:6862-6882. [PMID: 34528307 DOI: 10.1002/ptr.7273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
Neuroprotective effects of curcumin have been shown in previous studies. This updated systematic review of clinical trials aimed to investigate the effect of curcumin on neurological disorders. Databases including PubMed, Scopus, Web of Science, and Google Scholar were systematically searched to identify clinical trials investigating the effects of curcumin/turmeric supplements alone, or in combination with other ingredients, on neurological diseases. Nineteen studies comprising 1,130 patients met the inclusion criteria. Generally, intervention and study outcomes were heterogeneous. In most of the studies, curcumin had a favorable effect on oxidative stress and inflammation. However, with the exception of AD, curcumin supplementation either alone, or in combination with other ingredients, had beneficial effects on clinical outcomes for the other aforementioned neurodegenerative diseases. For example, the frequency, severity, and duration of migraine attacks, scores on the revised ALS functional rating scale, and the occurrence of motor complications in PD were all significantly improved with curcumin supplementation either alone or in combination with other ingredients. However, in three studies, several adverse side effects (mostly gastrointestinal in nature) were reported. Curcumin supplementation may have favorable effects on inflammatory status and clinical outcomes of patients with neurological disease, although the results were not consistent.
Collapse
Affiliation(s)
- Maryam Mohseni
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Ergosta-7,9(11),22-trien-3β-ol Attenuates Inflammatory Responses via Inhibiting MAPK/AP-1 Induced IL-6/JAK/STAT Pathways and Activating Nrf2/HO-1 Signaling in LPS-Stimulated Macrophage-like Cells. Antioxidants (Basel) 2021; 10:antiox10091430. [PMID: 34573062 PMCID: PMC8464970 DOI: 10.3390/antiox10091430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation induces autoimmune disorders and chronic diseases. Several natural products activate nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, attenuating inflammatory responses. Ergosta-7,9(11),22-trien-3β-ol (EK100) isolated from Cordyceps militaris showed anti-inflammatory and antioxidative activity, but those mechanisms are still unclear. This study is the first to investigate EK100 on antioxidant Nrf2 relative genes expression in LPS-stimulated macrophage-like cell lines. The results showed that EK100 reduced IL-6 (interleukin-6) and tumor necrosis factor-α production. EK100 also attenuated a mitogen-activated protein kinase/activator protein-1 (MAPK/AP-1) pathway and interleukin-6/Janus kinase/signal transducer and activator of transcription (IL-6/JAK/STAT) pathway in LPS-stimulated cells. Toll-like receptor 4 (TLR4) inhibitor CLI-095 and MAPK inhibitors can synergize the anti-inflammatory response of EK100 in LPS-stimulated cells. Moreover, EK100 activated Nrf2/HO-1 (heme oxygenase-1) signaling in LPS-stimulated murine macrophage-like RAW 264.7 cells, murine microglial BV2 cells, and human monocytic leukemia THP-1 cells. However, Nrf2 small interfering RNA (Nrf2 siRNA) reversed EK100-induced antioxidative proteins expressions. In conclusion, EK100 showed anti-inflammatory responses via activating the antioxidative Nrf2/HO-1 signaling and inhibiting TLR4 related MAPK/AP-1 induced IL-6/JAK/STAT pathways in the LPS-stimulated cells in vitro. The results suggest EK100 acts as a novel antioxidant with multiple therapeutic targets that can potentially be developed to treat chronic inflammation-related diseases.
Collapse
|
8
|
Che J, Yang J, Zhao B, Shang P. HO-1: A new potential therapeutic target to combat osteoporosis. Eur J Pharmacol 2021; 906:174219. [PMID: 34081904 DOI: 10.1016/j.ejphar.2021.174219] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Heme oxygenase-1 (HO-1) exerts a protective effect against cell damage and induces the activity of many enzymes involved in the treatment of many human diseases, including osteoporosis. The increasing prevalence of osteoporosis and the limitations of the current treatments available led to a continuous occurrence of bone loss and osteoporotic fractures, highlighting the need of a better understanding of the mechanism and function of HO-1. Many factors cause osteoporosis, including lack of estrogen, aging, and iron overload, and they either cause the increase in inflammatory factors or the increase in reactive oxygen species to break bone reconstruction balance. Therefore, regulating the production of inflammatory factors and reactive oxygen species may become a strategy for the treatment of osteoporosis. Solid evidence showed that the overexpression of HO-1 compensates high oxidation levels by increasing intracellular antioxidant levels and reduces inflammation by suppressing pro-inflammatory factors. Some extracts can target HO-1 and ameliorate osteoporosis. However, no systematic report is available on therapies targeting HO-1 to combat osteoporosis. Therefore, this review summarizes the biological characteristics of HO-1, and the relationship between inflammatory response and reactive oxygen species production regulated by HO-1 and osteoporosis. The understanding of the role of HO-1 in osteoporosis may provide ideas for a potential clinical treatment and new drugs targeting HO-1.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China.
| | - Bin Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
9
|
Hossain KFB, Akter M, Rahman MM, Sikder MT, Rahaman MS, Yamasaki S, Kimura G, Tomihara T, Kurasaki M, Saito T. Amelioration of Metal-Induced Cellular Stress by α-Lipoic Acid and Dihydrolipoic Acid through Antioxidative Effects in PC12 Cells and Caco-2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042126. [PMID: 33671655 PMCID: PMC7926869 DOI: 10.3390/ijerph18042126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
α-Lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are endogenous dithiol compounds with significant antioxidant properties, both of which have the potential to detoxify cells. In this study, ALA (250 μM) and DHLA (50 μM) were applied to reduce metal (As, Cd, and Pb)-induced toxicity in PC12 and Caco-2 cells as simultaneous exposure. Both significantly decreased Cd (5 μM)-, As (5 μM)-, and Pb (5 μM)-induced cell death. Subsequently, both ALA and DHLA restored cell membrane integrity and intracellular glutathione (GSH) levels, which were affected by metal-induced toxicity. In addition, DHLA protected PC12 cells from metal-induced DNA damage upon co-exposure to metals. Furthermore, ALA and DHLA upregulated the expression of survival-related proteins mTOR (mammalian target of rapamycin), Akt (protein kinase B), and Nrf2 (nuclear factor erythroid 2-related factor 2) in PC12 cells, which were previously downregulated by metal exposure. In contrast, in Caco-2 cells, upon co-exposure to metals and ALA, Nrf2 was upregulated and cleaved PARP-1 (poly (ADP-ribose) polymerase-1) was downregulated. These findings suggest that ALA and DHLA can counterbalance the toxic effects of metals. The protection of ALA or DHLA against metal toxicity may be largely due to an enhancement of antioxidant defense along with reduced glutathione level, which ultimately reduces the cellular oxidative stress.
Collapse
Affiliation(s)
- Kaniz Fatima Binte Hossain
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; (K.F.B.H.); (M.A.); (M.S.R.); (M.K.)
| | - Mahmuda Akter
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; (K.F.B.H.); (M.A.); (M.S.R.); (M.K.)
| | - Md. Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Savar 1342, Bangladesh
- Correspondence: (M.M.R.); (M.T.S.); Tel.: +88-02-7791045-51 (M.M.R. & M.T.S.); Fax: +88-02-7791052 (M.M.R. & M.T.S.)
| | - Md. Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Savar 1342, Bangladesh
- Correspondence: (M.M.R.); (M.T.S.); Tel.: +88-02-7791045-51 (M.M.R. & M.T.S.); Fax: +88-02-7791052 (M.M.R. & M.T.S.)
| | - Md. Shiblur Rahaman
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; (K.F.B.H.); (M.A.); (M.S.R.); (M.K.)
| | - Shojiro Yamasaki
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0810, Japan; (S.Y.); (G.K.); (T.T.); (T.S.)
| | - Goh Kimura
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0810, Japan; (S.Y.); (G.K.); (T.T.); (T.S.)
| | - Tomomi Tomihara
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0810, Japan; (S.Y.); (G.K.); (T.T.); (T.S.)
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; (K.F.B.H.); (M.A.); (M.S.R.); (M.K.)
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0810, Japan; (S.Y.); (G.K.); (T.T.); (T.S.)
| |
Collapse
|
10
|
Can-Terzi B, Ficici M, Tecer LH, Sofuoglu SC. Fine and coarse particulate matter, trace element content, and associated health risks considering respiratory deposition for Ergene Basin, Thrace. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142026. [PMID: 33254949 DOI: 10.1016/j.scitotenv.2020.142026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 05/21/2023]
Abstract
Ergene Basin is located in Thrace, Turkey, where industries are densely populated. This study aimed to determine exposure of people living in Ergene Basin (Çorlu and Çerkezköy) to fine and coarse PM, and its potentially toxic element (PTE) content by considering variation in respiratory airway deposition rates with daily activities and PM particle size by employing deposition models of International Commission on Radiological Protection and Multiple Path Particle Dosimetry. Fine and coarse PM samples were collected daily for a year at points in Çorlu and Çerkezköy representing urban and industrial settings, respectively. A questionnaire survey was conducted in the study area to obtain time-activity budgets, and associated variation was included in the health risk assessment by considering time-activity-dependent inhalation rates. The studied PTEs were Al, As, Ba, Cd, Cr, Co, Mn, Ni, Pb, and Se. The mean fine and coarse PM concentrations were measured as 23 and 14 μg/m3 in Çorlu, and 22 and 12 μg/m3 in Çerkezköy, respectively. The only PTE that exceeded acceptable risk in terms of total carcinogenic risk was Cr. Non-carcinogenic risks of all the PTEs including Cr were below the threshold. The use of deposition fractions in the health risk assessment (HRA) calculations was found to prevent overestimation of health risks by at least 91% and 87% for fine and coarse PM, respectively, compared to the regular HRA. Minor differences in risk between Çorlu and Çerkezköy suggest that urban pollution sources could be at least as influential on human health as industrial sources.
Collapse
Affiliation(s)
- Begum Can-Terzi
- Dept. of Environmental Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Merve Ficici
- Dept. of Environmental Engineering, Namık Kemal University, Corlu, Tekirdag, Turkey
| | - Lokman Hakan Tecer
- Dept. of Environmental Engineering, Namık Kemal University, Corlu, Tekirdag, Turkey.
| | - Sait C Sofuoglu
- Dept. of Environmental Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|
11
|
Wang Q, Li A, Zheng Y, Zhang S, Wang P. Glutathione ethyl ester supplementation prevents airway hyper-responsiveness in mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1519. [PMID: 33313264 PMCID: PMC7729341 DOI: 10.21037/atm-20-7114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Oxidative stress plays an important role in the pathogenesis of asthma. Glutathione (GSH) is considered to be one of the most important antioxidants. Our study systematically investigated the effect of the GSH alternative, glutathione ethyl ester (GSH-EE), on airway hyper-responsiveness (AHR) in mice. Methods Sixty-three male specific pathogen-free mice were used. Asthma was induced using a single dose of ovalbumin (OVA). The normal group (n=15) received vehicle only [Al(OH)3 in saline]. Then, 48 mice were divided into two groups, including a control group who received sodium phosphate buffer (pH =7.4), and the GSH-EE group who received 0.1% GSH-EE. AHR was measured 2, 6, and 12 hours after exposure to nebulized OVA (0.01%). The animals were then sacrificed, and lung tissue and the bronchi-alveolar lavage fluid (BALF) were harvested. Factors involved in the antioxidant response to asthma were then measured in these tissues, including thiol content (from GSH and protein), γ-glutamylcysteine synthetase (γ-GCS) activity and expression, and nuclear factor-erythroid-2-related factor (Nrf2) expression. Results The GSH-EE group showed a significant attenuation of AHR (P<0.01) 2 hours after OVA challenge, and significantly enhanced thiol contents by approximately 45% (P<0.05) at 2 and 6 hours after the last OVA challenge, compared to the control group. γ-GCS activity was also higher in the GSH-EE group compared to the control group at different time points (P<0.01). γ-GCSh and Nrf2 protein expression increased in the GSH-EE group and the control group compared with the normal group, but there was no statistically significant difference (P>0.05) between the GSH-EE group and the control group. Conclusions GSH-EE supplementation can prevent AHR in asthmatic mice during the early stages. It may function by serving as a precursor for GSH biosynthesis and by protecting sulfhydryl groups from oxidation.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Aimin Li
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi province, China
| | | | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ping Wang
- Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Pathogenic Mechanisms of Myeloma Bone Disease and Possible Roles for NRF2. Int J Mol Sci 2020; 21:ijms21186723. [PMID: 32937821 PMCID: PMC7555756 DOI: 10.3390/ijms21186723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
Osteolytic bone lesions are one of the central features of multiple myeloma (MM) and lead to bone pain, fractures, decreased quality of life, and decreased survival. Dysfunction of the osteoclast (OC)/osteoblast (OB) axis plays a key role in the development of myeloma-associated osteolytic lesions. Many signaling pathways and factors are associated with myeloma bone diseases (MBDs), including the RANKL/OPG and NF-κB pathways. NRF2, a master regulator of inflammatory signaling, might play a role in the regulation of bone metabolism via anti-inflammatory signaling and decreased reactive oxygen species (ROS) levels. The loss of NRF2 expression in OCs reduced bone mass via the RANK/RANKL pathway and other downstream signaling pathways that affect osteoclastogenesis. The NRF2 level in OBs could interfere with interleukin (IL)-6 expression, which is associated with bone metabolism and myeloma cells. In addition to direct impact on OCs and OBs, the activity of NRF2 on myeloma cells and mesenchymal stromal cells influences the inflammatory stress/ROS level in these cells, which has an impact on OCs, OBs, and osteocytes. The interaction between these cells and OCs affects the osteoclastogenesis of myeloma bone lesions associated with NRF2. Therefore, we have reviewed the effects of NRF2 on OCs and OBs in MBDs.
Collapse
|
13
|
Niu T, Fu G, Zhou J, Han H, Chen J, Wu W, Chen H. Floridoside Exhibits Antioxidant Properties by Activating HO-1 Expression via p38/ERK MAPK Pathway. Mar Drugs 2020; 18:md18020105. [PMID: 32050604 PMCID: PMC7074132 DOI: 10.3390/md18020105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/02/2022] Open
Abstract
Floridoside is a low-molecular-weight organic compound, which can be accumulated by red algae under stressful conditions to protect cells via its excellent antioxidant properties. In the present study, we investigated the antioxidant mechanism of floridoside toward human hepatocyte L-02 cells. We found that floridoside had no toxicity to L-02 cells, and no reactive oxidative species were induced by it either. However, the expression of hemoxygenase-1 (HO-1) protein was up-regulated upon exposure to floridoside, and two antioxidant enzymes, superoxide dismutase (SOD) and GSH-Px, were activated by floridoside. Moreover, we investigated the pathway involved in the production of these antioxidants, p38/extracellular signal-regulated kinase (ERK) MAPK-nuclear factor-erythroid-2-related factor 2 (Nrf2) pathway. ERK1/2 and p38 phosphorylation, nuclear translocation of Nrf2, and activation of ARE luciferase activity were observed upon exposure to floridoside. siRNA interference and inhibitor treatment suppressed the HO-1 expression and the phosphorylation of ERK1/2 and p38, respectively. These results indicated that floridoside exerted its antioxidant activity by activating HO-1 expression via p38/ERK MAPK-Nrf2 pathway in human hepatocyte L-02 cells.
Collapse
|
14
|
Abstract
The basic leucine zipper transcription factor Nrf2 is the primary regulator of cellular oxidative stress. Activation of Nrf2 is regarded as a potential preventive and therapeutic strategy. However, aberrant hyperactivation of Nrf2 is found in a variety of cancers and promotes cancer progression and metastasis. Moreover, constitutive activation of Nrf2 confers cancer cells resistance to chemo- and radio-therapy. Thus, inhibiting Nrf2 could be a new therapeutic strategy for cancer. With the aim of accelerating the discovery and development of novel Nrf2 inhibitors, we summarize the biological and pathological functions of Nrf2 in cancer. Furthermore, the recent studies of small molecular Nrf2 inhibitors and potential Nrf2 inhibitory mechanisms are also summarized in this review.
Collapse
|
15
|
New Insights into the Nrf-2/HO-1 Signaling Axis and Its Application in Pediatric Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3214196. [PMID: 31827672 PMCID: PMC6885770 DOI: 10.1155/2019/3214196] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/19/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
Abstract
Respiratory diseases are one of the most common pediatric diseases in clinical practice. Their pathogenesis, diagnosis, and treatment are thus worthy of further investigation. The nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling axis is a multiple organ protection chain that protects against oxidative stress injury. This signaling axis regulates anti-inflammation and antioxidation by regulating calcium ions, mitochondrial oxidative stress, autophagy, ferroptosis, pyroptosis, apoptosis, alkaliptosis, and clockophagy. This review presents an overview of the role of the Nrf2/HO-1 signaling axis in the pathogenesis of pediatric respiratory diseases and the latest research progress on this subject. Overall, the Nrf2/HO-1 signaling axis has an important clinical value in pediatric respiratory diseases, and its protective effect needs further exploration.
Collapse
|
16
|
Papadi G, Wesseling S, Troganis AN, Vervoort J, Rietjens IMCM. Induction of EpRE-mediated gene expression by a series of mediterranean botanicals and their constituents. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111940. [PMID: 31071423 DOI: 10.1016/j.jep.2019.111940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/04/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A variety of Mediterranean plant species, traditionally used for the prevention and treatment of several health conditions, contain ingredients with potential biological activity of which many remain unexplored. Among the beneficial health effects of bioactive phytochemicals is the activation of cellular defense mechanisms involving the activation of EpRE (electrophile responsive element) - mediated changes in gene expression. AIM OF THE STUDY The present study aimed to identify botanicals and their active constituents able to activate the EpRE mediated gene expression within a series of Mediterranean plant species known for their hepatoprotective and/or cardioprotective properties. MATERIALS AND METHODS Methanolic extracts of 18 botanicals were prepared and tested for their ability to induce gene expression in EpRE-LUX reporter cells. Subsequently, LC-MS (Liquid Chromatography Mass Spectrometry) analysis combined with MAGMa (MS Annotation based on in silico Generated Metabolites) software for automated compound annotation was used to facilitate tentative identification of the active constituents within two of the active extracts. Selected annotated compounds were tested in the EpRE-LUX reporter gene assay followed by definite identification of the most active ones. RESULTS It appeared that 9 of the 18 extracts were able to activate EpRE-mediated gene expression. Many active ingredients of the methanolic extracts from Juglans regia and Rhamnus frangula were revealed. Among them, chrysophanol and aloe-emodin were confirmed to be active EpRE inducing ingredients and were definitely identified in the Rhamnus Frangula extract. CONCLUSIONS The protective effect of half of the tested botanical varieties via the activation of EpRE-mediated gene expression was confirmed. The study also provided an example of how in vitro bioassays can be combined with LC-MS and the automated chemical annotation software MAGMa, to identify biologically active constituents in complex botanical extracts.
Collapse
Affiliation(s)
- Georgia Papadi
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands; Department of Biological Applications & Technology, University of Ioannina, 45110, Ioannina, Greece.
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| | - Anastassios N Troganis
- Department of Biological Applications & Technology, University of Ioannina, 45110, Ioannina, Greece.
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Mertl E, Riegel E, Glück N, Ettenberger-Bornberg G, Lin G, Auer S, Haller M, Wlodarczyk A, Steurer C, Kirchnawy C, Czerny T. A dual luciferase assay for evaluation of skin sensitizing potential of medical devices. Mol Biol Rep 2019; 46:5089-5102. [DOI: 10.1007/s11033-019-04964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
|
18
|
Mimura J, Inose-Maruyama A, Taniuchi S, Kosaka K, Yoshida H, Yamazaki H, Kasai S, Harada N, Kaufman RJ, Oyadomari S, Itoh K. Concomitant Nrf2- and ATF4-activation by Carnosic Acid Cooperatively Induces Expression of Cytoprotective Genes. Int J Mol Sci 2019; 20:E1706. [PMID: 30959808 PMCID: PMC6480217 DOI: 10.3390/ijms20071706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022] Open
Abstract
: Carnosic acid (CA) is a phytochemical found in some dietary herbs, such as Rosmarinus officinalis L., and possesses antioxidative and anti-microbial properties. We previously demonstrated that CA functions as an activator of nuclear factor, erythroid 2 (NF-E2)-related factor 2 (Nrf2), an oxidative stress-responsive transcription factor in human and rodent cells. CA enhances the expression of nerve growth factor (NGF) and antioxidant genes, such as HO-1 in an Nrf2-dependent manner in U373MG human astrocytoma cells. However, CA also induces NGF gene expression in an Nrf2-independent manner, since 50 μM of CA administration showed striking NGF gene induction compared with the classical Nrf2 inducer tert-butylhydroquinone (tBHQ) in U373MG cells. By comparative transcriptome analysis, we found that CA activates activating transcription factor 4 (ATF4) in addition to Nrf2 at high doses. CA activated ATF4 in phospho-eIF2α- and heme-regulated inhibitor kinase (HRI)-dependent manners, indicating that CA activates ATF4 through the integrated stress response (ISR) pathway. Furthermore, CA activated Nrf2 and ATF4 cooperatively enhanced the expression of NGF and many antioxidant genes while acting independently to certain client genes. Taken together, these results represent a novel mechanism of CA-mediated gene regulation evoked by Nrf2 and ATF4 cooperation.
Collapse
Affiliation(s)
- Junsei Mimura
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Atsushi Inose-Maruyama
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Department of Microbiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
| | - Shusuke Taniuchi
- Division of Molecular Biology, Institute of Advanced Medical Sciences, The University of Tokushima, Tokushima 770-8503, Japan.
| | - Kunio Kosaka
- Research and Development Center, Nagase & Co. Ltd., Kobe 651-2241, Japan.
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Nobuhiko Harada
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Randal J Kaufman
- Degenerative Diseases Research Program, Sanford Burnham Prebys Medical Discovery Research Institute, La Jolla, CA 92037, USA.
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute of Advanced Medical Sciences, The University of Tokushima, Tokushima 770-8503, Japan.
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| |
Collapse
|
19
|
Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis. Redox Biol 2018; 21:101050. [PMID: 30654300 PMCID: PMC6348771 DOI: 10.1016/j.redox.2018.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
Cells evolved robust homeostatic mechanisms to protect against oxidation or alkylation by electrophilic species. Glutathione (GSH) is the most abundant intracellular thiol, protects cellular components from oxidation and is maintained in a reduced state by glutathione reductase (GR). Nitro oleic acid (NO2-OA) is an electrophilic fatty acid formed under digestive and inflammatory conditions that both reacts with GSH and induces its synthesis upon activation of Nrf2 signaling. The effects of NO2-OA on intracellular GSH homeostasis were evaluated. In addition to upregulation of GSH biosynthesis, we observed that NO2-OA increased intracellular GSSG in an oxidative stress-independent manner. NO2-OA directly inhibited GR in vitro by covalent modification of the catalytic Cys61, with kon of (3.45 ± 0.04) × 103 M−1 s−1, koff of (4.4 ± 0.4) × 10−4 s−1, and Keq of (1.3 ± 0.1) × 10−7 M. Akin to NO2-OA, the electrophilic Nrf2 activators bardoxolone-imidazole (CDDO-Im), bardoxolone-methyl (CDDO-Me) and dimethyl fumarate (DMF) also upregulated GSH biosynthesis while promoting GSSG accumulation, but without directly inhibiting GR activity. In vitro assays in which GR was treated with increasing GSH concentrations and GSH depletion experiments in cells revealed that GR activity is finely regulated via product inhibition, an observation further supported by theoretical (kinetic modeling of cellular GSSG:GSH levels) approaches. Together, these results describe two independent mechanisms by which electrophiles modulate the GSH/GSSG couple, and provide a novel conceptual framework to interpret experimentally determined values of GSH and GSSG.
Collapse
|
20
|
Zhu YP, Wang M, Xiang Y, Qiu L, Hu S, Zhang Z, Mattjus P, Zhu X, Zhang Y. Nach Is a Novel Subgroup at an Early Evolutionary Stage of the CNC-bZIP Subfamily Transcription Factors from the Marine Bacteria to Humans. Int J Mol Sci 2018; 19:ijms19102927. [PMID: 30261635 PMCID: PMC6213907 DOI: 10.3390/ijms19102927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 02/07/2023] Open
Abstract
Normal growth and development, as well as adaptive responses to various intracellular and environmental stresses, are tightly controlled by transcriptional networks. The evolutionarily conserved genomic sequences across species highlights the architecture of such certain regulatory elements. Among them, one of the most conserved transcription factors is the basic-region leucine zipper (bZIP) family. Herein, we have performed phylogenetic analysis of these bZIP proteins and found, to our surprise, that there exist a few homologous proteins of the family members Jun, Fos, ATF2, BATF, C/EBP and CNC (cap’n’collar) in either viruses or bacteria, albeit expansion and diversification of this bZIP superfamily have occurred in vertebrates from metazoan. Interestingly, a specific group of bZIP proteins is identified, designated Nach (Nrf and CNC homology), because of their strong conservation with all the known CNC and NF-E2 p45 subunit-related factors Nrf1 and Nrf2. Further experimental evidence has also been provided, revealing that Nach1 and Nach2 from the marine bacteria exert distinctive functions, when compared with human Nrf1 and Nrf2, in the transcriptional regulation of antioxidant response element (ARE)-battery genes. Collectively, further insights into these Nach/CNC-bZIP subfamily transcription factors provide a novel better understanding of distinct biological functions of these factors expressed in distinct species from the marine bacteria to humans.
Collapse
Affiliation(s)
- Yu-Ping Zhu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Yuancai Xiang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Zhengwen Zhang
- Institute of Neuroscience and Psychology, School of Life Sciences, University of Glasgow, 42 Western Common Road, Glasgow G22 5PQ, Scotland, UK.
| | - Peter Mattjus
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, FI-20520 Turku, Finland.
| | - Xiaomei Zhu
- Shanghai Center for Quantitative Life Science and Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
21
|
Kavian N, Mehlal S, Jeljeli M, Saidu NEB, Nicco C, Cerles O, Chouzenoux S, Cauvet A, Camus C, Ait-Djoudi M, Chéreau C, Kerdine-Römer S, Allanore Y, Batteux F. The Nrf2-Antioxidant Response Element Signaling Pathway Controls Fibrosis and Autoimmunity in Scleroderma. Front Immunol 2018; 9:1896. [PMID: 30177933 PMCID: PMC6109691 DOI: 10.3389/fimmu.2018.01896] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with fibrosis of the skin and internal organs and vascular alterations. Dysregulations in the oxidant/antioxidant balance are known to be a major factor in the pathogenesis of the disease. Indeed, reactive oxygen species (ROS) trigger neoepitopes leading to a breach of immune tolerance and autoimmune responses, activate fibroblasts to proliferate and to produce excess of type I collagen. ROS also alter endothelial cells leading to vascular dysfunction. Glutathione (GSH) is the most potent antioxidant system in eukaryotic cells. Numerous studies have reported a defect in GSH in SSc animal models and humans, but the origin of this defect remains unknown. The transcription factor NRF2 is a key player in the antioxidant defense, as it can induce the transcription of antioxidant and cytoprotective genes, including GSH, through its interaction with the antioxidant response elements. In this work, we investigated whether NRF2 could be implicated in the pathogenesis of SSc, and if this pathway could represent a new therapeutic target in this orphan disease with no curative medicine. Skin biopsies from 11 patients and 10 controls were harvested, and skin fibroblasts were extracted. Experimental SSc was induced both in BALB/c and in nrf2-/- mice by daily intradermal injections of hypochloric acid. In addition, diseased BALB/c mice were treated with an nrf2 agonist, dimethyl fumarate, or placebo. A drop in nrf2 and target genes mRNA levels was observed in skin fibroblasts of SSc patients compared to controls. Moreover, the nrf2 pathway is also downregulated in skins and lungs of SSc mice. In addition, we observed that nrf2-/- mice have a more severe form of SSc with increased fibrosis and inflammation compared to wild-type SSc mice. Diseased mice treated with the nrf2 agonist dimethyl fumarate (DMF) exhibited reduced fibrosis and immune activation compared to untreated mice. The ex vivo treatment of skin fibroblasts from SSc mice with DMF restores GSH intracellular content, decreases ROS production and cell proliferation. These results suggest that the nrf2 pathway is highly dysregulated in human and SSc mice with deleterious consequences on fibrosis and inflammation and that Nrf2 modulation represents a therapeutic target in SSc.
Collapse
Affiliation(s)
- Niloufar Kavian
- Laboratoire d'Immunologie, Hôpital Cochin, Paris, France.,INSERM U1016, Institut Cochin, Paris, France
| | - Souad Mehlal
- Laboratoire d'Immunologie, Hôpital Cochin, Paris, France.,INSERM U1016, Institut Cochin, Paris, France
| | - Mohamed Jeljeli
- Laboratoire d'Immunologie, Hôpital Cochin, Paris, France.,INSERM U1016, Institut Cochin, Paris, France
| | | | | | | | | | - Anne Cauvet
- INSERM U1016, Institut Cochin, Paris, France
| | | | | | | | - Saadia Kerdine-Römer
- UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Yannick Allanore
- INSERM U1016, Institut Cochin, Paris, France.,Service de Rhumatologie, Hôpital Cochin, Paris, France
| | - Frederic Batteux
- Laboratoire d'Immunologie, Hôpital Cochin, Paris, France.,INSERM U1016, Institut Cochin, Paris, France
| |
Collapse
|
22
|
Kouka P, Chatzieffraimidi GA, Raftis G, Stagos D, Angelis A, Stathopoulos P, Xynos N, Skaltsounis AL, Tsatsakis AM, Kouretas D. Antioxidant effects of an olive oil total polyphenolic fraction from a Greek Olea europaea variety in different cell cultures. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:135-142. [PMID: 30166098 DOI: 10.1016/j.phymed.2018.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/20/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Numerous studies have been carried out concerning the advantageous health effects, especially the antioxidant effects, of olive oil's (OO) individual biophenolic compounds, but none until now for its total phenolic fraction (TPF). Plenty of evidence, in research about nutrition and healthiness, points out that it is the complex mixture of nutritional polyphenols, more than each compound separate, which can synergistically act towards a health result. PURPOSE The aim of the present study was to examine the antioxidant properties of an extra virgin olive oil (EVOO) total polyphenolic fraction, from a Greek endemic variety of Olea europaea in cell lines. METHODS EVOO from a Greek endemic variety was used for the extraction of a total polyphenolic fraction, using a green CPE‑based method. The redox status [in terms of ROS, GSH, TBARS, protein carbonyls] was assessed at a cellular level, particularly in EA.hy926 endothelial, HeLa, HepG2 hepatic cells and C2C12 myoblasts. Moreover, the levels of glutamate-cysteine ligase catalytic subunit (γ-GCLc) of GSH, one of the most important antioxidant enzymes, were assessed by western blot. RESULTS According to the results, TPF improves the redox profile of all cell lines, mainly by increasing GSH and its catalytic subunit, while at low, not cytotoxic TPF concentrations there was a decrease in TBARS and carbonyls. Regarding ROS levels a reduction was observed only in the HepG2 cell line, contrary to the other cell lines, that there is no statistically significant difference. CONCLUSION The TPF appeared to protect cells from oxidative stress due to the strong antioxidant activity of its polyphenols. This could have interesting implications in development of new products based on this olive oil to provide protection and treatment against harmful effects of free radicals.
Collapse
Affiliation(s)
- Paraskevi Kouka
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | | | - Grigorios Raftis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece
| | - Panagiotis Stathopoulos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece
| | | | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, 15771 Athens, Greece
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece.
| |
Collapse
|
23
|
Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 2018; 17:297-314. [PMID: 29775961 PMCID: PMC6007815 DOI: 10.1016/j.redox.2018.05.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/05/2018] [Indexed: 12/20/2022] Open
Abstract
Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia
| | - Jinsong Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore
| | - Alan P Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore, Singapore.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
24
|
Zhang H, Liu H, Zhou L, Yuen J, Forman HJ. Temporal changes in glutathione biosynthesis during the lipopolysaccharide-induced inflammatory response of THP-1 macrophages. Free Radic Biol Med 2017; 113:304-310. [PMID: 28993271 PMCID: PMC5699958 DOI: 10.1016/j.freeradbiomed.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/11/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
Abstract
How macrophages maintain redox homeostasis in the inflammatory process, in which a large amount of oxidants are produced, remains elusive. In this study, we investigated the temporal changes in the intracellular glutathione (GSH), the master antioxidant, and the expression of glutamate cysteine ligase (GCL), the rate-limiting enzyme for GSH biosynthesis, in the inflammatory response of human macrophages (THP1 cells) to lipopolysaccharide. Intracellular GSH concentration was decreased significantly in the early phase (~6h) of LPS exposure, and then gradually went back to the basal level in the late phase (9-24h). The expression level of the catalytic subunit of GCL (GCLC) followed a similar pattern of change as GSH: its mRNA and protein levels were reduced in the early phase and then back to basal level in the late phase. In contrast, the expression of the modifier subunit of GCL (GCLM) was significantly increased in the phase of LPS exposure. Activation Nrf2, the transcription factor involved in the induction of both GCLC and GCLM, occurred at as early as 3h after LPS exposure; whereas the activation of NF-κB occurred at as early as 30min. Inhibition of NF-κB signaling with SN50 prevented the decrease of GCLC and inhibited Nrf2 activation in response to LPS. These data demonstrate time-dependent changes in the expression of GCL and Nrf2 signaling during the inflammatory response, and that the regulation of GCLC and GCLM might be through different pathways in this process.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, GER306B, Los Angeles, CA 90089-0191, USA.
| | - Honglei Liu
- Children's Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Lulu Zhou
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, GER306B, Los Angeles, CA 90089-0191, USA
| | - Jenay Yuen
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, GER306B, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, GER306B, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
25
|
A hypermorphic antioxidant response element is associated with increased MS4A6A expression and Alzheimer's disease. Redox Biol 2017; 14:686-693. [PMID: 29179108 PMCID: PMC5705802 DOI: 10.1016/j.redox.2017.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Late onset Alzheimer's disease (AD) is a multifactorial disorder, with AD risk influenced by both environmental and genetic factors. Recent genome-wide association studies (GWAS) have identified genetic loci associated with increased risk of developing AD. The MS4A (membrane-spanning 4-domains subfamily A) gene cluster is one of the most significant loci associated with AD risk, and MS4A6A expression is correlated with AD pathology. We identified a single nucleotide polymorphism, rs667897, at the MS4A locus that creates an antioxidant response element and links MS4A6A expression to the stress responsive Cap-n-Collar (CNC) transcription factors NRF1 (encoded by NFE2L1) and NRF2 (encoded by NFE2L2). The risk allele of rs667897 generates a strong CNC binding sequence that is activated by proteostatic stress in an NRF1-dependent manner, and is associated with increased expression of the gene MS4A6A. Together, these findings suggest that the cytoprotective CNC regulatory network aberrantly activates MS4A6A expression and increases AD risk in a subset of the population.
Collapse
|
26
|
Marcellin L, Santulli P, Chouzenoux S, Cerles O, Nicco C, Dousset B, Pallardy M, Kerdine-Römer S, Just PA, Chapron C, Batteux F. Alteration of Nrf2 and Glutamate Cysteine Ligase expression contribute to lesions growth and fibrogenesis in ectopic endometriosis. Free Radic Biol Med 2017; 110:1-10. [PMID: 28457937 DOI: 10.1016/j.freeradbiomed.2017.04.362] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 01/24/2023]
Abstract
The redox-sensitive nuclear factor erythroid-derived 2-like 2 (NRF2) controls endogenous antioxidant enzymes' transcription and protects against oxidative damage which is triggered by inflammation and known to favor progression of endometriosis. Glutamate Cysteine Ligase (GCL), a target gene of NRF2, is the first enzyme in the synthesis cascade of glutathione, an important endogenous antioxidant. Sixty-one patients, with thorough surgical examination of the abdominopelvic cavity, were recruited for the study: 31 with histologically-proven endometriosis and 30 disease-free women taken as controls. Expressions of NRF2 and GCL were investigated by quantitative RT-PCR and immunohistochemistry in eutopic and ectopic endometria from endometriosis-affected women and in endometrium of disease-free women. Ex vivo stromal and epithelial cells were extracted and purified from endometrial and endometriotic biopsies to explore expression of NRF2 and GCL in both stromal and epithelial compartments by western blot. Finally, in order to strengthen the role of NRF2 in endometriosis pathogenesis, we evaluated the drop of NRF2 expression in a mouse model of endometriosis using NRF2 knockout (NRF2-/-) mice. The mRNA levels of NRF2 and GCL were significantly lower in ectopic endometria of endometriosis-affected women compared to eutopic endometria of disease-free women. The immunohistochemical analysis confirmed the decreased expression of both NRF2 and GCL in ectopic endometriotic tissues compared to eutopic endometria of endometriosis-affected and disease-free women. Immunoblotting revealed a significant decreased of NRF2 and GCL expression in epithelial and stroma cells from ectopic lesions of endometriosis-affected women compared to eutopic endometria from controls. Using a murine model of endometriosis, NRF2-/- implants were more fibrotic compared to wild-type with an increased weight and volume. These findings indicate that expression of the transcription factor NRF2 and its effector GCL are both profoundly deregulated in endometriotic lesions towards increased growth and fibrogenetic processes.
Collapse
Affiliation(s)
- L Marcellin
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, 75679 Paris, France.
| | - P Santulli
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, 75679 Paris, France
| | - S Chouzenoux
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Laboratoire d'Immunologie, 75679 Paris, France
| | - O Cerles
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Laboratoire d'Immunologie, 75679 Paris, France
| | - C Nicco
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Laboratoire d'Immunologie, 75679 Paris, France
| | - B Dousset
- Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Service de Chirurgie Digestive, 75679 Paris, France
| | - M Pallardy
- UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France; Université Paris Sud, INSERM UMR 996, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - S Kerdine-Römer
- UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France; Université Paris Sud, INSERM UMR 996, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92290, France
| | - P A Just
- Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Service de pathologie, CAncer Research for PErsonalized Medicine (CARPEM), Paris, France
| | - C Chapron
- Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, 75679 Paris, France
| | - F Batteux
- Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Inserm Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), 75679 Paris, France; Sorbonne Paris Cité, Université Paris Descartes, Faculté de Médecine, Hôpitaux Universitaires Paris Centre (AP-HP), Hôpital Cochin, Laboratoire d'Immunologie, 75679 Paris, France
| |
Collapse
|
27
|
Lee KM, Kwon TY, Kang U, Seo EK, Yun JH, Nho CW, Kim YS. Tussilagonone-induced Nrf2 pathway activation protects HepG2 cells from oxidative injury. Food Chem Toxicol 2017; 108:120-127. [PMID: 28733231 DOI: 10.1016/j.fct.2017.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/14/2023]
Abstract
Tussilagonone is a compound derived from the medicinal plant Tussilago farfara L., which is used as a traditional medicine for respiratory diseases, including asthma and pneumonia. Recent reports suggest that tussilagonone exhibits anti-inflammatory effects; however, the scope of protective functions has not been elucidated yet. In this study, we demonstrate that tussilagonone enhances cellular detoxification by increasing quinone reductase activity in Hepa1c1c7 cells. In addition, tussilagonone decreased tert-butyl hydroperoxide(t-BHP)-induced ROS production and cell death, suggesting that it also acts as a potent antioxidant. To verify the molecular mechanism underlying tussilagonone activity, we examined the expression of nuclear factor erythroid 2-related factor 2(Nrf2)-a transcription factor that regulates antioxidant protein expression-in HepG2 cells. Significantly, these results showed that tussilagonone induces Nrf2 activation and nuclear accumulation, resulting in the upregulation of the detoxifying enzymes NAD(P)H quinone dehydrogenase 1(NQO1) and heme oxygenase-1(HO-1) that protect cells from oxidative stress. Further molecular analyses revealed that tussilagonone-induced Nrf2 activation was mediated by ERK1/2 in HepG2 cells. Collectively, these data indicate that tussilagonone attenuates t-BHP-induced ROS and activates quinone reductase activity via Nrf2 pathway activation and target gene expression, and thereby acts as an antioxidant that protects HepG2 cells from oxidative stress and associated damage.
Collapse
Affiliation(s)
- Kyung-Mi Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Tae Yeon Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Unwoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences (Ewha Global Top 5 Program), Ewha Womans University, Seoul 03760, South Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences (Ewha Global Top 5 Program), Ewha Womans University, Seoul 03760, South Korea
| | - Ji Ho Yun
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung 25451, South Korea
| | - Chu Won Nho
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology, Gangneung 25451, South Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
28
|
Zhang H, Zhou L, Yuen J, Birkner N, Leppert V, O'Day PA, Forman HJ. Delayed Nrf2-regulated antioxidant gene induction in response to silica nanoparticles. Free Radic Biol Med 2017; 108:311-319. [PMID: 28389405 PMCID: PMC5480609 DOI: 10.1016/j.freeradbiomed.2017.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022]
Abstract
Silica nanoparticles with iron on their surface cause the production of oxidants and stimulate an inflammatory response in macrophages. Nuclear factor erythroid-derived 2 - like factor 2 (Nrf2) signaling and its regulated antioxidant genes play critical roles in maintaining redox homeostasis. In this study we investigated the regulation of four representative Nrf2-regulated antioxidant genes; i.e., glutamate cysteine ligase (GCL) catalytic subunit (GCLC), GCL modifier subunit (GCLM), heme oxygenase 1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO-1), by iron-coated silica nanoparticles (SiO2-Fe) in human THP-1 macrophages. We found that the expression of these four antioxidant genes was modified by SiO2-Fe in a time-dependent manner. At 6h, their expression was unchanged except for GCLC, which was reduced compared with controls. At 18h, the expression of these antioxidant genes was significantly increased compared with controls. In contrast, the Nrf2 activator sulforaphane induced all antioxidant genes at as early as 3h. The nuclear translocation of Nrf2 occurred later than that for NF-κB p65 protein and the induction of proinflammatory cytokines (TNFα and IL-1β). NF-κB inhibitor SN50 prevented the reduction of GCLC at 6h and abolished the induction of antioxidant genes at 18h by SiO2-Fe, but did not affect the basal and sulforaphane-induced expression of antioxidant genes, suggesting that NF-κB signaling plays a key role in the induction of Nrf2-mediated genes in response to SiO2-Fe. Consistently, SN50 inhibited the nuclear translocation of Nrf2 caused by SiO2-Fe. In addition, Nrf2 silencing decreased the basal and SiO2-induced expression of the four reprehensive antioxidant genes. Taken together, these data indicated that SiO2-Fe induced a delayed response of Nrf2-regulated antioxidant genes, likely through NF-κB-Nrf2 interactions.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States.
| | - Lulu Zhou
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Jenay Yuen
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Nancy Birkner
- School of Natural Sciences and Sierra Nevada Research Institute, University of California at Merced, Merced, CA 95343, United States
| | - Valerie Leppert
- School of Engineering, University of California at Merced, Merced, CA 95343, United States
| | - Peggy A O'Day
- School of Natural Sciences and Sierra Nevada Research Institute, University of California at Merced, Merced, CA 95343, United States
| | - Henry Jay Forman
- Leonard Davies School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
29
|
Anti-oxidative effects of 4-hydroxybenzyl alcohol in astrocytes confer protective effects in autocrine and paracrine manners. PLoS One 2017; 12:e0177322. [PMID: 28489907 PMCID: PMC5425201 DOI: 10.1371/journal.pone.0177322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/25/2017] [Indexed: 12/26/2022] Open
Abstract
4-Hydroxybenzyl alcohol (4-HBA) is an important phenolic constituent of Gastrodia elata Blume (GEB), a traditional herbal medicine used in East Asia. Many activities have been reported to underlie the beneficial effects of 4-HBA in the brain, and in particular, its anti-inflammatory, anti-oxidative, and anti-zinc-toxic effects have been implicated in the postischemic brain. Here, the authors investigated the anti-oxidative effect of 4-HBA on astrocytes and sought to identify the underlying molecular mechanisms involved. 4-HBA dose-dependently suppressed H2O2-induced astrocyte cell death. More specifically, pre-incubation of C6 cells (an astrocyte cell line) with 100 μM 4-HBA for 6 hrs increased survival when cells were treated with H2O2 (100 μM, 1 hr) from 54.2±0.7% to 85.9±1.5%. In addition, 4-HBA was found to up-regulate and activate Nrf2, and subsequently, to induce the expressions of several anti-oxidative genes, such as, HO-1, NQO1, and GCLM. Notably, HO-1 was induced by 3.4-fold in 4-HBA-treated C6 cells, and siRNA-mediated HO-1 knockdown demonstrated that Nrf2 activation and HO-1 induction were responsible for the observed cytoprotective effect of 4-HBA. ERK and Akt signaling pathways were activated by 4-HBA in C6 cells, suggesting their involvements in protective effect of 4-HBA. In addition, 4-HBA-conditioned astrocyte culture medium was found to have neuroprotective effects on primary neuronal cultures or fresh C6 cells exposed to oxidative stress, and these effects seemed to be mediated by glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), which both accumulated in 4-HBA-treated astrocyte culture media. Thus, the 4-HBA-mediated activation of Nrf2 and induction of HO-1 in astrocytes were found to act via autocrine and paracrine mechanisms to confer protective effects. Furthermore, given the pleiotropic effects of 4-HBA with respect to its targeting of various brain cell types and functions, it would appear that 4-HBA has therapeutic potential for the prevention and amelioration of various brain diseases.
Collapse
|
30
|
Zhao H, Eguchi S, Alam A, Ma D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 312:L155-L162. [PMID: 27864288 DOI: 10.1152/ajplung.00449.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that upregulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. Activation of Nrf2 has been shown to be protective against lung injury. In the lung, diverse stimuli including environmental oxidants, medicinal agents, and pathogens can activate Nrf2. Nrf2 translocates to the nucleus and binds to an ARE. Through transcriptional induction of ARE-bearing genes encoding antioxidant-detoxifying proteins, Nrf2 induces cellular rescue pathways against oxidative pulmonary injury, abnormal inflammatory and immune responses, and apoptosis. The Nrf2-antioxidant pathway has been shown to be important in the protection against various lung injuries including acute lung injury/acute respiratory distress syndrome and bronchopulmonary dysplasia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, and allergy and was widely examined for new therapeutic targets. The present review explores the protective role of Nrf-2 against lung injury and the therapeutic potential in targeting Nrf-2.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Shiori Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| |
Collapse
|
31
|
Wolf B, Goebel G, Hackl H, Fiegl H. Reduced mRNA expression levels of NFE2L2 are associated with poor outcome in breast cancer patients. BMC Cancer 2016; 16:821. [PMID: 27770790 PMCID: PMC5075160 DOI: 10.1186/s12885-016-2840-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 10/05/2016] [Indexed: 12/30/2022] Open
Abstract
Background The transcription factor nuclear factor erythroid 2-related factor 2 (NFE2L2; previously known as NRF2) is a crucial regulator of the intracellular antioxidant response. It controls the expression of genes involved in the detoxification and elimination of reactive oxidants and electrophilic agents. The role of NFE2L2 in cancer is subject of controversial discussion, as it has been reported to have both pro-and anti-tumourigenic functions. To shed some light on this paradox, we analysed the NFE2L2 mRNA expression levels in breast cancer and its association with clinicopathological features and survival. Methods We retrospectively evaluated the NFE2L2 mRNA expression levels in tumour tissue of two independent breast cancer patient cohorts. In the training set we analysed data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). In the test set we measured the NFE2L2 mRNA expression levels in 176 breast tumour tissues by quantitative real-time reverse transcription PCR (qRT-PCR). Group differences were analysed using Mann–Whitney U-test, and associations between NFE2L2 mRNA expression levels and clinicopathological features were examined by means of univariate and multivariate survival analyses. Furthermore, we compared NFE2L2 mRNA expression levels between tumour and normal breast tissue samples by means of 108 paired samples from the The Cancer Genome Atlas (TCGA) dataset. Results In the training set we identified an independent predictive value for high NFE2L2 mRNA expression levels [HRdisease specific death 0.8 (0.6–1.0), P = 0.041; HRdeath 0.8 (0.6–1.0), P = 0.023] especially in the subgroup of oestrogen receptor (ER) positive tumours [HRdisease specific death 0.6 (0.4–0.9), P = 0.008; HRdeath 0.6 (0.4–0.8), P = 0.001]. Similarly, we found this association also in the test set [HRrelapse 0.4 (0.2–0.9), P = 0.031] and again, more pronounced in patients with ER positive tumours [HRrelapse 0.2 (0.1–0.7), P = 0.012]. In addition, we observed generally lower NFE2L2 expression levels in tumour tissues than in normal breast tissues. Conclusion We concluded that reduced NFE2L2 mRNA expression in tumour tissues is an independent predictor of shortened survival in breast cancer patients.
Collapse
Affiliation(s)
- Barbara Wolf
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
| | - Georg Goebel
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Heidi Fiegl
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria.
| |
Collapse
|
32
|
Shi C, Zhou X, Zhang J, Wang J, Xie H, Wu Z. α-Lipoic acid protects against the cytotoxicity and oxidative stress induced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:274-281. [PMID: 27343752 DOI: 10.1016/j.etap.2016.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/14/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
α-Lipoic acid (α-LA) is a potent natural antioxidant, which is capable of regenerating glutathione (GSH). However, the mechanisms by which α-LA regenerates reduced glutathione (rGSH) via the reduction of oxidized glutathione (GSSG) by glutathione reductase (GR) are still not well understood. In the present study, we investigated if α-LA replenished rGSH by GR via Nrf2/ARE signaling pathway in cadmium-treated HepG2 cells. We found that α-LA antagonized the oxidative damage and alleviated the cytotoxicity in cadmium-induced HepG2 cells by regeneration of rGSH. α-LA regenerated rGSH by activating Nrf2 signaling pathway via promoting the nuclear translocation of Nrf2, which upregulates the transcription of GR, and thus increased the activity of GR. Our results indicated that α-LA was an effective agent to antagonize the oxidative stress and alleviate the cytotoxicity in cadmium-treated HepG2 cells by regenerating rGSH through activating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Chunli Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jiayu Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jiachun Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Hong Xie
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Zhigang Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
33
|
Koo YC, Pyo MC, Nam MH, Hong CO, Yang SY, Lee KW. Chebulic acid prevents hepatic fibrosis induced by advanced glycation end-products in LX-2 cell by modulating Nrf2 translocation via ERK pathway. Toxicol In Vitro 2016; 34:8-15. [PMID: 27021876 DOI: 10.1016/j.tiv.2016.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/30/2022]
Abstract
Advanced glycation end-products (AGEs) are formed during normal aging, and at an accelerated rate in metabolic syndrome patients. Nonalcoholic steatohepatitis (NASH) can be caused by the AGEs in plasma, while glyceraldehyde-derived AGEs (glycer-AGEs) are significantly higher in the serum of NASH patients. In this study, we investigated the molecular mechanisms of chebulic acid, isolated from Terminalia chebula Retz., in the inhibition of glycer-AGEs induced production of reactive oxygen species (ROS) and collagen accumulation using the LX-2 cell line. Chebulic acid significantly inhibited the induction of ROS and accumulation of collagen proteins by glycer-AGEs. ERK phosphorylation and total nuclear factor E2-related factor 2 (Nrf2) protein expression were induced by chebulic acid in a dose-dependent manner. Chebulic acid was also found to induce translocation of Nrf2 into the nucleus, which was attenuated by inhibition of ERK phosphorylation through treatment with PD98059. Following translocation of Nrf2, chebulic acid induced the protein expressions of catalytic subunit of γ-glutamylcysteine synthetase and glutathione synthesis. Collagen accumulation was also significantly reduced by chebulic acid treatment. The observed effects of chebulic acid were all inhibited by PD98059 treatment. Taken together, these results suggest that chebulic acid prevents the glycer-AGEs-induced ROS formation of LX-2 cells and collagen accumulation by ERK-phosphorylation-mediated Nrf2 nuclear translocation, which causes upregulation of antioxidant protein production.
Collapse
Affiliation(s)
- Yun-Chang Koo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Mi-Hyun Nam
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Chung-Oui Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Sung-Yong Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
34
|
Raman R, Allen SP, Goodall EF, Kramer S, Ponger LL, Heath PR, Milo M, Hollinger HC, Walsh T, Highley JR, Olpin S, McDermott CJ, Shaw PJ, Kirby J. Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and RNA processing functions. Neuropathol Appl Neurobiol 2015; 41:201-26. [PMID: 24750211 PMCID: PMC4329387 DOI: 10.1111/nan.12147] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
Aims Amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are two syndromic variants within the motor neurone disease spectrum. As PLS and most ALS cases are sporadic (SALS), this limits the availability of cellular models for investigating pathogenic mechanisms and therapeutic targets. The aim of this study was to use gene expression profiling to evaluate fibroblasts as cellular models for SALS and PLS, to establish whether dysregulated biological processes recapitulate those seen in the central nervous system and to elucidate pathways that distinguish the clinically defined variants of SALS and PLS. Methods Microarray analysis was performed on fibroblast RNA and differentially expressed genes identified. Genes in enriched biological pathways were validated by quantitative PCR and functional assays performed to establish the effect of altered RNA levels on the cellular processes. Results Gene expression profiling demonstrated that whilst there were many differentially expressed genes in common between SALS and PLS fibroblasts, there were many more expressed specifically in the SALS fibroblasts, including those involved in RNA processing and the stress response. Functional analysis of the fibroblasts confirmed a significant decrease in miRNA production and a reduced response to hypoxia in SALS fibroblasts. Furthermore, metabolic gene changes seen in SALS, many of which were also evident in PLS fibroblasts, resulted in dysfunctional cellular respiration. Conclusions The data demonstrate that fibroblasts can act as cellular models for ALS and PLS, by establishing the transcriptional changes in known pathogenic pathways that confer subsequent functional effects and potentially highlight targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rohini Raman
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chuang JI, Huang JY, Tsai SJ, Sun HS, Yang SH, Chuang PC, Huang BM, Ching CH. FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation. Free Radic Biol Med 2015; 89:274-86. [PMID: 26424114 DOI: 10.1016/j.freeradbiomed.2015.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/19/2023]
Abstract
Our previous studies demonstrated that fibroblast growth factor 9 (FGF9) protects cortical and dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative insult by upregulation of γ-glutamylcysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1). However, the mechanisms responsible for FGF9-induced γ-GCS and HO-1 upregulation remain uncharacterized. In the present study, we demonstrate the signaling pathways by which FGF9 upregulates HO-1 and γ-GCS expression. We found that FGF9-induced HO-1 and γ-GCS expression was prevented by PD173014, an inhibitor of the FGF receptor (FGFR). FGF9 treatment induced the phosphorylation of FGFR downstream signals of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT in a dose- and time-dependent manner. The inhibition of MEK/ERK1/2 or PI3K/AKT activity by U0126 or wortmannin, but not the inhibition of phospholipase Cγ by U73122, prevented FGF9-induced γ-GCS and HO-1 upregulation, changes in cellular redox status, and neuroprotection against MPP(+) toxicity in primary cortical and dopaminergic neurons. Furthermore, FGF9 treatment enhanced the promoter activity of the cAMP-response element binding protein (CREB) and nuclear factor erythroid-derived 2-like 2 (Nrf2), and this phenomenon was blocked by PD173014 or U0126 or wortmannin. Knockdown of CREB and Nrf2 by shRNA blocked FGF9-induced γ-GCS and HO-1 upregulation, but not ERK and AKT phosphorylation. An in vivo study consistently showed that FGF9 overexpression using a lentivirus delivery system induced ERK1/2 phosphorylation and HO-1 upregulation and protected dopaminergic neurons against MPP(+) toxicity in rat substantia nigra. These results indicate that FGF9-induced HO-1 and γ-GCS upregulation is mediated by binding to FGFR and activation of two parallel downstream signaling pathways, ERK and AKT, which reconverge to induce CREB and Nrf2 transcriptional activity.
Collapse
Affiliation(s)
- Jih-Ing Chuang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jui-Yen Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - H Sunny Sun
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Insititute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Hsin Ching
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
36
|
Kabaria S, Choi DC, Chaudhuri AD, Jain MR, Li H, Junn E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic Biol Med 2015; 89:548-56. [PMID: 26453926 PMCID: PMC4684759 DOI: 10.1016/j.freeradbiomed.2015.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a key transcription factor that regulates the expression of a number of antioxidant and detoxifying genes that provide cellular protection against various stressors including reactive oxygen species (ROS). Nrf2 activity is tightly regulated by a cytoplasmic inhibitory protein called Kelch-like ECH-associated protein 1 (Keap1). The mechanism that controls Keap1 expression, however, remains poorly understood. In the present study, we demonstrate that microRNA-7 (miR-7), which is highly expressed in the brain, represses Keap1 expression by targeting the 3'-untranslated region (UTR) of its mRNA in human neuroblastoma cells, SH-SY5Y. Subsequently, this event results in an increased Nrf2 activity, as evidenced by an increase in the expression of its transcriptional targets, heme oxygenase 1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM), and an enhanced nuclear localization of Nrf2. In addition, miR-7 decreases the intracellular hydroperoxides level and increases the level of reduced form of glutathione, indicative of oxidative stress relief. We also demonstrate that targeted repression of Keap1 and activation of Nrf2 pathway, in part, underlies the protective effects of miR-7 against 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in SH-SY5Y and differentiated human neural progenitor cells, ReNcell VM. These findings point to a new mechanism by which miR-7 exerts cytoprotective effects by regulating the Nrf2 pathway.
Collapse
Affiliation(s)
- Savan Kabaria
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ., 08854, USA
| | - Doo Chul Choi
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ., 08854, USA
| | - Amrita Datta Chaudhuri
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ., 08854, USA
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, Rutgers-New Jersey Medical School, Newark, NJ., 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Rutgers-New Jersey Medical School, Newark, NJ., 07103, USA
| | - Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ., 08854, USA.
| |
Collapse
|
37
|
Ishii T. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation. Free Radic Biol Med 2015; 88:189-198. [PMID: 25968070 DOI: 10.1016/j.freeradbiomed.2015.04.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022]
Abstract
Inflammation is a complex biological self-defense reaction triggered by tissue damage or infection by pathogens. Acute inflammation is regulated by the time- and cell type-dependent production of cytokines and small signaling molecules including reactive oxygen species and prostaglandins. Recent studies have unveiled the important role of the transcription factor Nrf2 in the regulation of prostaglandin production through transcriptional regulation of peroxiredoxins 1 and 6 (Prx1 and Prx6) and lipocalin-type prostaglandin D synthase (L-PGDS). Prx1 and Prx6 are multifunctional proteins important for cell protection against oxidative stress, but also work together to facilitate production of prostaglandins E2 and D2 (PGE2 and PGD2). Prx1 secreted from cells under mild oxidative stress binds Toll-like receptor 4 and induces NF-κB activation, important for the expression of cyclooxygenase-2 and microsomal PGE synthase-1 (mPGES-1) expression. The activated MAPKs p38 and ERK phosphorylate Prx6, leading to NADPH oxidase-2 activation, which contributes to production of PGD2 by hematopoietic prostaglandin D synthase (H-PGDS). PGD2 and its end product 15-deoxy-∆(12,14)-prostaglandin J2 (15d-PGJ2) activate Nrf2 thereby forming a positive feedback loop for further production of PGD2 by L-PGDS. Maintenance of cellular glutathione levels is an important role of Nrf2 not only for cell protection but also for the synthesis of prostaglandins, as mPGES-1 and H-PGDS require glutathione for their activities. This review is aimed at describing the functions of Prx1 and Prx6 in the regulation of PGD2 and PGE2 production in acute inflammation in macrophages and the importance of 15d-PGJ2 as an intrinsic Nrf2 activator.
Collapse
|
38
|
Sun YX, Xu AH, Yang Y, Li J. Role of Nrf2 in bone metabolism. J Biomed Sci 2015; 22:101. [PMID: 26511009 PMCID: PMC4625735 DOI: 10.1186/s12929-015-0212-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/16/2015] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor expressed in many cell types, including osteoblasts, osteocytes, and osteoclasts. Nrf2 has been considered a master regulator of cytoprotective genes against oxidative and chemical insults. The lack of Nrf2 can induce pathologies in multiple organs. Nrf2 deficiency promotes osteoclast differentiation and osteoclast activity, which leads to an increase in bone resorption. The role of Nrf2 in osteoblast differentiation and osteoblast activity is more complex. Nrf2 mediates anabolic effects within an ideal range. Nrf2 deletion suppresses load induced bone formation and delays fracture healing. Overall, Nrf2 plays an important role in the regulation of bone homeostasis in bone cells.
Collapse
Affiliation(s)
- Yong-Xin Sun
- Department of Rehabilitation, The First Affiliated Hospital, China Medical University, No.155,North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Ai-Hua Xu
- Department of Rehabilitation, The First Affiliated Hospital, China Medical University, No.155,North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yang Yang
- Department of Rehabilitation, The First Affiliated Hospital, China Medical University, No.155,North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| |
Collapse
|
39
|
Kasparova D, Neckar J, Dabrowska L, Novotny J, Mraz J, Kolar F, Zurmanova J. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiol Genomics 2015; 47:612-20. [PMID: 26465708 DOI: 10.1152/physiolgenomics.00058.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
It has been documented that adaptation to hypoxia increases myocardial tolerance to ischemia-reperfusion (I/R) injury depending on the regimen of adaptation. Reactive oxygen species (ROS) formed during hypoxia play an important role in the induction of protective cardiac phenotype. On the other hand, the excess of ROS can contribute to tissue damage caused by I/R. Here we investigated the relationship between myocardial tolerance to I/R injury and transcription activity of major antioxidant genes, transcription factors, and oxidative stress in three different regimens of chronic hypoxia. Adult male Wistar rats were exposed to continuous normobaric hypoxia (FiO2 0.1) either continuously (CNH) or intermittently for 8 h/day (INH8) or 23 h/day (INH23) for 3 wk period. A control group was kept in room air. Myocardial infarct size was assessed in anesthetized open-chest animals subjected to 20 min coronary artery occlusion and 3 h reperfusion. Levels of mRNA transcripts and the ratio of reduced and oxidized glutathione (GSH/GSSG) were analyzed by real-time RT-PCR and by liquid chromatography, respectively. Whereas CNH as well as INH8 decreased infarct size, 1 h daily reoxygenation (INH23) abolished the cardioprotective effect and decreased GSH/GSSG ratio. The majority of mRNAs of antioxidant genes related to mitochondrial antioxidant defense (manganese superoxide dismutase, glutathione reductase, thioredoxin/thioredoxin reductase, and peroxiredoxin 2) were upregulated in both cardioprotective regimens (CNH, INH8). In contrast, INH23 increased only PRX5, which was not sufficient to induce the cardioprotective phenotype. Our results suggest that the increased mitochondrial antioxidant defense plays an important role in cardioprotection afforded by chronic hypoxia.
Collapse
Affiliation(s)
- Dita Kasparova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jan Neckar
- Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic; and
| | | | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jaroslav Mraz
- National Institute of Public Health, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic; and
| | - Jitka Zurmanova
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic;
| |
Collapse
|
40
|
Yard B, Chie EK, Adams DJ, Peacock C, Abazeed ME. Radiotherapy in the Era of Precision Medicine. Semin Radiat Oncol 2015; 25:227-36. [DOI: 10.1016/j.semradonc.2015.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Fittipaldi S, Mercatelli N, Dimauro I, Jackson MJ, Paronetto MP, Caporossi D. Alpha B-crystallin induction in skeletal muscle cells under redox imbalance is mediated by a JNK-dependent regulatory mechanism. Free Radic Biol Med 2015; 86:331-42. [PMID: 26066304 DOI: 10.1016/j.freeradbiomed.2015.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/12/2015] [Accepted: 05/30/2015] [Indexed: 11/28/2022]
Abstract
The small heat shock protein α-B-crystallin (CRYAB) is critically involved in stress-related cellular processes such as differentiation, apoptosis, and redox homeostasis. The up-regulation of CRYAB plays a key role in the cytoprotective and antioxidant response, but the molecular pathway driving its expression in muscle cells during oxidative stress still remains unknown. Here we show that noncytotoxic exposure to sodium meta-arsenite (NaAsO2) inducing redox imbalance is able to increase the CRYAB content of C2C12 myoblasts in a transcription-dependent manner. Our in silico analysis revealed a genomic region upstream of the Cryab promoter containing two putative antioxidant-responsive elements motifs and one AP-1-like binding site. The redox-sensitive transcription factors Nrf2 and the AP-1 component c-Jun were found to be up-regulated in NaAsO2-treated cells, and we demonstrated a specific NaAsO2-mediated increase of c-Jun and Nrf2 binding activity to the genomic region identified, supporting their putative involvement in CRYAB regulation following a shift in redox balance. These changes also correlated with a specific phosphorylation of JNK and p38 MAPK kinases, the well-known molecular mediators of signaling pathways leading to the activation of these transcription factors. Pretreatment of C2C12 cells with the JNK inhibitor SP600125 induced a decrease in c-Jun and Nrf2 content and was able to counteract the NaAsO2-mediated increase in CRYAB expression. Thus these data show a direct role of JNK in CRYAB regulation under redox imbalance and also point to a previously unrecognized link between c-Jun and Nrf2 transcription factors and redox-induced CRYAB expression in muscle cells.
Collapse
Affiliation(s)
- Simona Fittipaldi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy.
| | - Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy
| | - Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease, University of Liverpool, L69 3GA, Liverpool, UK
| | - Maria Paola Paronetto
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy; Laboratory of Molecular and Cellular Neurobiology, CERC Fondazione Santa Lucia, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy
| |
Collapse
|
42
|
Kannan MB, Dodard-Friedman I, Blank V. Stringent Control of NFE2L3 (Nuclear Factor, Erythroid 2-Like 3; NRF3) Protein Degradation by FBW7 (F-box/WD Repeat-containing Protein 7) and Glycogen Synthase Kinase 3 (GSK3). J Biol Chem 2015; 290:26292-302. [PMID: 26306035 DOI: 10.1074/jbc.m115.666446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The NFE2L3 transcription factor has been implicated in various cellular processes, including carcinogenesis, stress response, differentiation, and inflammation. Previously it has been shown that NFE2L3 has a rapid turnover and is stabilized by proteasomal inhibitors. The mechanisms regulating the degradation of this protein have not been investigated. Here we report ubiquitination of NFE2L3 and demonstrate that F-box/WD repeat-containing protein 7 (FBW7 or FBWX7), a component of Skp1, Cullin 1, F-box containing complex (SCF)-type E3 ligase, is the E3 ligase mediating the degradation of NFE2L3. We showed that FBW7 interacts with NFE2L3 and that dimerization of FBW7 is required for the degradation of the transcription factor. We also demonstrate that the kinase glycogen synthase kinase 3 (GSK3) mediates the FBW7-dependent ubiquitination of NFE2L3. We show phosphorylation of NFE2L3 by GSK3 and its significance in the regulation of NFE2L3 by the tumor suppressor FBW7. FBW7 abrogated NFE2L3-mediated repression of the NAD(P)H quinone oxidoreductase 1 (NQO1) gene antioxidant response element (ARE). Our findings reveal FBW7 and GSK3 as novel regulators of the NFE2L3 transcription factor and a potential mechanism by which FBW7 might regulate detoxification and the cellular response to stress.
Collapse
Affiliation(s)
| | | | - Volker Blank
- From the Lady Davis Institute for Medical Research, Department of Medicine, and Department of Physiology, McGill University, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
43
|
Luo L, Chen Y, Wu D, Shou J, Wang S, Ye J, Tang X, Wang XJ. Butylated hydroxyanisole induces distinct expression patterns of Nrf2 and detoxification enzymes in the liver and small intestine of C57BL/6 mice. Toxicol Appl Pharmacol 2015; 288:339-48. [PMID: 26291391 DOI: 10.1016/j.taap.2015.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/11/2022]
Abstract
Butylated hydroxyanisole (BHA) is widely used as an antioxidant and preservative in food, food packaging and medicines. Its chemopreventive properties are attributing to its ability to activate the transcription factor NF-E2 p45-related factor 2 (Nrf2), which directs central genetic programs of detoxification and protection against oxidative stress. This study was to investigate the histological changes of Nrf2 and its regulated phase II enzymes Nqo1, AKR1B8, and Ho-1 in wild-type (WT) and Nrf2(-/-) mice induced by BHA. The mice were given a 200mg/kg oral dose of BHA daily for three days. Immunohistochemistry revealed that, in the liver from WT mice, BHA increased Nqo1 staining in hepatocytes, predominately in the pericentral region. In contrast, the induction of AKR1B8 appeared mostly in hepatocytes in the periportal region. The basal and inducible Ho-1 was located almost exclusively in Kupffer cells. In the small intestine from WT mice, the inducible expression patterns of Nqo1 and AKR1B8 were nearly identical to that of Nrf2, with more intense staining in the villus than that the crypt. Conversely, Keap1 was more highly expressed in the crypt, where the proliferative cells reside. Our study demonstrates that BHA elicited differential expression patterns of phase II-detoxifying enzymes in the liver and small intestine from WT but not Nrf2(-/-) mice, demonstrating a cell type specific response to BHA in vivo.
Collapse
Affiliation(s)
- Lin Luo
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China; Department of Pharmacology, University of Nantong, Nantong, PR China
| | - Yeru Chen
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Deqi Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Jiafeng Shou
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Shengcun Wang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Ye
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| | - Xiu Jun Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
44
|
Ponniah M, Billett EE, De Girolamo LA. Bisphenol A increases BeWo trophoblast survival in stress-induced paradigms through regulation of oxidative stress and apoptosis. Chem Res Toxicol 2015; 28:1693-703. [PMID: 26247420 DOI: 10.1021/acs.chemrestox.5b00093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bisphenol A (BPA) is ubiquitous in the environment and is reported to be present at high concentrations in placental tissue, where its presence raises concerns over its potential to disrupt placental function. This report investigates how BPA interferes with the survival of human choriocarcinoma BeWo cells (a model of placental trophoblasts) under stress-induced paradigms reminiscent of pathways activated in placental development. These include conditions that promote oxidative stress (glutathione depletion) and apoptosis (serum withdrawal) or mimic hypoxia (HIF-1α accumulation via dimethyloxalylglycine treatment). Treatment of BeWo cells with BPA during stress-induced paradigms led to a consistent and significant increase in cell viability, with a concomitant increase in glutathione levels and a reduction in apoptosis. Assessment of the antioxidant capacity of BPA revealed its ability to quench reactive oxygen species and reduce the levels generated during glutathione and serum depletion. BPA was also able to reduce the activation of the antioxidant response element (ARE) through mediation of its activators, nuclear factor erythroid related factor family members (Nrf's). Indeed, the expression and nuclear translocation of Nrf2 (an important ARE activator) were impaired by BPA, while Nrf1 and Nrf3 expression levels were increased. Furthermore, BPA increased the levels of the anti-apoptotic proteins (Bcl-2 and Hsp70) and decreased HIF-1α levels during stress-induced conditions. Together, these results indicate that BPA inhibits trophoblast cell death under conditions of cellular stress. This could have implications on placental trophoblasts during development.
Collapse
Affiliation(s)
- Muralitharan Ponniah
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, U.K
| | - E Ellen Billett
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, U.K
| | - Luigi A De Girolamo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, U.K
| |
Collapse
|
45
|
Large M, Hehlgans S, Reichert S, Gaipl US, Fournier C, Rödel C, Weiss C, Rödel F. Study of the anti-inflammatory effects of low-dose radiation: The contribution of biphasic regulation of the antioxidative system in endothelial cells. Strahlenther Onkol 2015; 191:742-9. [PMID: 26051282 DOI: 10.1007/s00066-015-0848-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND We examined (a) the expression of the antioxidative factor glutathione peroxidase (GPx) and the transcription factor nuclear factor E2-related factor 2 (Nrf2) following low-dose X-irradiation in endothelial cells (ECs) and (b) the impact of reactive oxygen species (ROS) and Nrf2 on functional properties of ECs to gain further knowledge about the anti-inflammatory mode of action of low doses of ionizing radiation. MATERIAL AND METHODS EA.hy926 ECs and primary human dermal microvascular ECs (HMVEC) were stimulated by tumor necrosis factor-α (TNF-α, 20 ng/ml) 4 h before irradiation with single doses ranging from 0.3 to 3 Gy. The expression and activity of GPx and Nrf2 were analyzed by flow cytometry, colorimetric assays, and real-time PCR. The impact of ROS and Nrf2 on peripheral blood mononuclear cell (PBMC) adhesion was assayed in the presence of the ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2 activator AI-1. RESULTS Following a low-dose exposure, we observed in EA.hy926 EC and HMVECs a discontinuous expression and enzymatic activity of GPx concomitant with a lowered expression and DNA binding activity of Nrf2 that was most pronounced at a dose of 0.5 Gy. Scavenging of ROS by NAC and activation of Nrf2 by AI-1 significantly diminished a lowered adhesion of PBMC to EC at a dose of 0.5 Gy. CONCLUSION Low-dose irradiation resulted in a nonlinear expression and activity of major compounds of the antioxidative system that might contribute to anti-inflammatory effects in stimulated ECs.
Collapse
Affiliation(s)
- Martin Large
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sun YX, Li L, Corry KA, Zhang P, Yang Y, Himes E, Mihuti CL, Nelson C, Dai G, Li J. Deletion of Nrf2 reduces skeletal mechanical properties and decreases load-driven bone formation. Bone 2015; 74:1-9. [PMID: 25576674 DOI: 10.1016/j.bone.2014.12.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/13/2014] [Accepted: 12/29/2014] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor expressed in many cell types, including osteoblasts, osteocytes, and osteoclasts. Nrf2 has been considered a master regulator of cytoprotective genes against oxidative and chemical insults. The lack of Nrf2 can induce pathologies in multiple organs. The aim of this study was to investigate the role of Nrf2 in load-driven bone metabolism using Nrf2 knockout (KO) mice. Compared to age-matched littermate wild-type controls, Nrf2 KO mice have significantly lowered femoral bone mineral density (-7%, p<0.05), bone formation rate (-40%, p<0.05), as well as ultimate force (-11%, p<0.01). The ulna loading experiment showed that Nrf2 KO mice were less responsive than littermate controls, as indicated by reduction in relative mineralizing surface (rMS/BS, -69%, p<0.01) and relative bone formation rate (rBFR/BS, -84%, p<0.01). Furthermore, deletion of Nrf2 suppressed the load-driven gene expression of antioxidant enzymes and Wnt5a in cultured primary osteoblasts. Taken together, the results suggest that the loss-of-function mutation of Nrf2 in bone impairs bone metabolism and diminishes load-driven bone formation.
Collapse
Affiliation(s)
- Yong-Xin Sun
- Department of Rehabilitation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Lei Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province 163316, PR China
| | - Kylie A Corry
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Pei Zhang
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yang Yang
- Department of Rehabilitation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China; Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Evan Himes
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Cristina Layla Mihuti
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Cecilia Nelson
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Guoli Dai
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
47
|
Habib E, Linher-Melville K, Lin HX, Singh G. Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Redox Biol 2015; 5:33-42. [PMID: 25827424 PMCID: PMC4392061 DOI: 10.1016/j.redox.2015.03.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
Cancer cells adapt to high levels of oxidative stress in order to survive and proliferate by activating key transcription factors. One such master regulator, the redox sensitive transcription factor NF E2 Related Factor 2 (NRF2), controls the expression of cellular defense genes including those encoding intracellular redox-balancing proteins involved in glutathione (GSH) synthesis. Under basal conditions, Kelch-like ECH-associated protein 1 (KEAP1) targets NRF2 for ubiquitination. In response to oxidative stress, NRF2 dissociates from KEAP1, entering the nucleus and binding to the antioxidant response element (ARE) in the promoter of its target genes. Elevated reactive oxygen species (ROS) production may deplete GSH levels within cancer cells. System xc(-), an antiporter that exports glutamate while importing cystine to be converted into cysteine for GSH synthesis, is upregulated in cancer cells in response to oxidative stress. Here, we provided evidence that the expression of xCT, the light chain subunit of system xc(-), is regulated by NRF2 in representative human breast cancer cells. Hydrogen peroxide (H2O2) treatment increased nuclear translocation of NRF2, also increasing levels of xCT mRNA and protein and extracellular glutamate release. Overexpression of NRF2 up-regulated the activity of the xCT promoter, which contains a proximal ARE. In contrast, overexpression of KEAP1 repressed promoter activity and decreased xCT protein levels, while siRNA knockdown of KEAP1 up-regulated xCT protein levels and transporter activity. These results demonstrate the importance of the KEAP1/NRF2 pathway in balancing oxidative stress in breast cancer cells through system xc(-). We have previously shown that xCT is upregulated in various cancer cell lines under oxidative stress. In the current investigation, we focused on MCF-7 cells as a model for mechanistic studies.
Collapse
Affiliation(s)
- Eric Habib
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada L8S 4L8
| | - Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada L8S 4L8
| | - Han-Xin Lin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada L8S 4L8
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada L8S 4L8.
| |
Collapse
|
48
|
Overdosage of methylparaben induces cellular senescence in vitro and in vivo. J Invest Dermatol 2015; 135:609-612. [PMID: 25229254 DOI: 10.1038/jid.2014.405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Moon EJ, Giaccia A. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med 2015; 79:292-9. [PMID: 25458917 PMCID: PMC4339613 DOI: 10.1016/j.freeradbiomed.2014.11.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/16/2022]
Abstract
The cap'n'collar (CNC) family serves as cellular sensors of oxidative and electrophilic stresses and shares structural similarities including basic leucine zipper (bZIP) and CNC domains. They form heterodimers with small MAF proteins to regulate antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. Among the CNC family members, NRF2 is required for systemic protection against redox-mediated injury and carcinogenesis. On the other hand, NRF2 is activated by oncogenic pathways, metabolism, and hypoxia. Constitutive NRF2 activation is observed in a variety of human cancers and it is highly correlated with tumor progression and aggressiveness. In this review, we will discuss how NRF2 plays dual roles in cancer prevention and progression depending on the cellular context and environment. Therefore, a better understanding of NRF2 will be necessary to exploit this complex network of balancing antioxidant pathways to inhibit tumor progression.
Collapse
Affiliation(s)
- Eui Jung Moon
- Division of Radiation Biology & Oncology, Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Amato Giaccia
- Division of Radiation Biology & Oncology, Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
The mitochondrial unfolded protein response—synchronizing genomes. Curr Opin Cell Biol 2014; 33:74-81. [PMID: 25543897 DOI: 10.1016/j.ceb.2014.12.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
Maintenance of the mitochondrial proteome is performed primarily by chaperones, which fold and assemble proteins, and by proteases, which degrade excess damaged proteins. Upon various types of mitochondrial stress, triggered genetically or pharmacologically, dysfunction of the proteome is sensed and communicated to the nucleus, where an extensive transcriptional program, aimed to repair the damage, is activated. This feedback loop, termed the mitochondrial unfolded protein response (UPR(mt)), synchronizes the activity of the mitochondrial and nuclear genomes and as such ensures the quality of the mitochondrial proteome. Here we review the recent advances in the UPR(mt) field and discuss its induction, signaling, communication with the other mitochondrial and major cellular regulatory pathways, as well as its potential implications on health and lifespan.
Collapse
|