1
|
Zuo Z, Wu T, Lin M, Zhang S, Yan F, Yang Z, Wang Y, Wang C. Chronic exposure to tributyltin chloride induces pancreatic islet cell apoptosis and disrupts glucose homeostasis in male mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5179-5186. [PMID: 24693970 DOI: 10.1021/es404729p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It has been reported that organotin compounds such as triphenyltin or tributyltin (TBT) induce diabetes and insulin resistance. However, histopathological effects of organotin compounds on the Islets of Langerhans and exocrine pancreas are still unclear. In the present study, male KM mice were orally administered with TBT (0.5, 5, and 50 μg/kg) once every 3 days. The fasting plasma glucose levels significantly elevated, and the levels of serum insulin or glucagon decreased in the animals treated with TBT for 60 days. In animals treated for 45 days, the number of apoptotic cells in the islets and exocrine pancreas was elevated in a dose-dependent manner. The percentage of proliferating (PCNA-positive) cells was decreased in the islets, while it was increased in exocrine acinar cells. Immunohistochemistry analysis showed that estrogen receptor (ER) and androgen receptor (AR) were present in vascular endothelium, ductal cells, and islet cells, but absent from pancreatic exocrine cells. TBT exposure decreased the production of estradiol and triiodothyronine and elevated the concentration of testosterone, and resulted in a decrease of ERα expression and an elevation of AR in the pancreas measured by Western boltting. The results suggested that TBT inhibited the proliferation and induced the apoptosis of islet cells via multipathways, causing a decrease of relative islet area in the animals treated for 60 days, which could result in a disruption of glucose homeostasis. The different presence of ERs and AR between the islets and exocrine pancreas might be one of reasons causing different effects on cell proliferation.
Collapse
Affiliation(s)
- Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University , Xiamen, PR China
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Lane R, Ghazi SO, Whalen MM. Increases in cytosolic calcium ion levels in human natural killer cells in response to butyltin exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:816-25. [PMID: 19365649 PMCID: PMC2765521 DOI: 10.1007/s00244-009-9313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/09/2009] [Indexed: 05/27/2023]
Abstract
This study investigated whether exposures to butyltins (BTs), tributylin (TBT), and dibutyltin (DBT) were able to alter cytosolic calcium levels in human natural killer (NK) cells. Additionally, the effects of cytosolic calcium ion increases on the activation state of mitogen-activated protein kinases (MAPKs) in NK cells were also investigated. NK cells are an intital immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). TBT has also been shown to activate MAPKs in NK cells. The results of this study indicated that TBT increased cytosolic calcium levels by as much as 100% after a 60-min exposure to 500 nM TBT, whereas DBT increased cytosolic calcium levels to a much smaller extent (and required higher concentrations). The results also indicated that increases in cytosolic calcium could activate MAPKs but only for a short period of time (5 min), whereas previous studies showed that activation of MAPKs by TBT last for at least 6 h. Thus, it appears that TBT-stimulated increases in cytosolic calcium might contribute to, but are not fully responsible for, TBT-induced activation of MAPKs.
Collapse
Affiliation(s)
- Rhonda Lane
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | | | | |
Collapse
|
3
|
Grondin M, Marion M, Denizeau F, Averill-Bates DA. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Toxicol Appl Pharmacol 2007; 222:57-68. [PMID: 17512566 DOI: 10.1016/j.taap.2007.03.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/15/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad from the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl(-)/HCO(3)(-) exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes.
Collapse
Affiliation(s)
- Mélanie Grondin
- Département de Chimie, Centre de Recherche en Toxicologie de l'environnement (TOXEN), Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montreal, Québec, Canada H3C 3P8
| | | | | | | |
Collapse
|
4
|
Zhu X, Xing M, Lou J, Wang X, Fu W, Xu L. Apoptotic related biochemical changes in human amnion cells induced by tributyltin. Toxicology 2007; 230:45-52. [PMID: 17174019 DOI: 10.1016/j.tox.2006.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 10/12/2006] [Accepted: 10/25/2006] [Indexed: 11/20/2022]
Abstract
Tributyltin (TBT) is one of the environmental pollutants, which is mostly accumulated in marine animals. The toxic effects of TBT have been extensively documented in several types of cells, but the molecular mechanisms responsible for TBT-induced cell damage are still not fully elucidated. The present study was undertaken to evaluate the apoptotic related biochemical changes in human amnion cells induced by TBT. After cells were exposed to TBT at the concentrations of 1-4 microM for 2h, the results suggested that TBT could induce an early and typical apoptosis, moreover caspase-3, the modifications of cytoskeletal structure and the Bcl-2 family were involved in this process. The results will deepen our understanding about the toxic mechanism of TBT on human amnion cells.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Zhejiang, 310058 Hangzhou, China
| | | | | | | | | | | |
Collapse
|
5
|
Suzuki N, Tabata MJ, Kambegawa A, Srivastav AK, Shimada A, Takeda H, Kobayashi M, Wada S, Katsumata T, Hattori A. Tributyltin inhibits osteoblastic activity and disrupts calcium metabolism through an increase in plasma calcium and calcitonin levels in teleosts. Life Sci 2006; 78:2533-41. [PMID: 16318860 DOI: 10.1016/j.lfs.2005.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 10/10/2005] [Indexed: 11/22/2022]
Abstract
To examine the direct effects of tributyltin acetate (TBTA) on osteoclasts and osteoblasts, teleost scale, which has both osteoclasts and osteoblasts and is similar to mammalian membrane bone, was used in the present study. The activities of tartrate-resistant acid phosphatase and alkaline-phosphatase, as respective indicators of activity in both cells, were used. In freshwater teleost (goldfish) and marine teleosts (nibbler and wrasse), the osteoclastic activity in the scales did not change as a result of TBTA treatment (10(-9) to 10(-5) M). However, the osteoblastic activity decreased in the goldfish, nibbler, and wrasse after 6 h of incubation. In goldfish, even 10(-10) M of TBTA significantly inhibited the osteoblastic activity. The inhibitory activity in goldfish was stronger than that in nibbler and wrasse. Therefore, details of the mechanism were examined using goldfish. The mRNA expressions of the estrogen receptor and insulin-like growth factor-I, which participate in osteoblastic growth and differentiation, decreased in the TBTA-treated scales. However, the mRNA expression of metallothionein (MT), a metal-binding protein that protects the organism from heavy metal, increased much less than those of cadmium and methyl-mercury. Furthermore, we showed that the plasma calcium and hypocalcemic hormone (calcitonin) level increased in goldfish kept in water containing TBTA (10(-10) and 10(-8) M). The current data are the first to demonstrate that, in teleosts, TBTA inhibits osteoblastic activity without affecting osteoclastic activity and disrupts the calcium metabolism, including the calcemic hormone, in goldfish.
Collapse
Affiliation(s)
- Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nakatsu Y, Kotake Y, Komasaka K, Hakozaki H, Taguchi R, Kume T, Akaike A, Ohta S. Glutamate Excitotoxicity Is Involved in Cell Death Caused by Tributyltin in Cultured Rat Cortical Neurons. Toxicol Sci 2005; 89:235-42. [PMID: 16207939 DOI: 10.1093/toxsci/kfj007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tributyltin, an endocrine-disrupting chemical, has been used as a heat stabilizer, agricultural pesticide, and component of antifouling paints. In this study, the neurotoxicity of tributyltin was investigated in cultured rat cortical neurons. Tributyltin caused marked time- and dose-dependent increases in the number of trypan blue-stained cells. Measurement of extracellular glutamate concentration showed that glutamate release was induced by tributyltin. Application of the glutamate receptor antagonists MK-801 and CNQX decreased the neurotoxicity. These results suggest that released glutamate and glutamate receptors are involved in tributyltin toxicity. Next, we examined whether various factors, believed to be involved in glutamate excitotoxicity also influence tributyltin toxicity. Cell death induced by tributyltin was found to be reduced by alpha-tocopherol (a membrane-permeable antioxidant), SB202190 (a p38 mitogen-activated protein kinase inhibitor), and U-0126 (an extracellular signal-regulated protein kinase kinase inhibitor). MK-801 and CNQX decreased the phosphorylation of ERK, but not that of p38. A caspase-3 inhibitor had no effect on tributyltin toxicity, and tributyltin did not change the nuclear morphology. These results suggest that the glutamate excitotoxicity caused by tributyltin is unrelated to apoptosis. In conclusion, we demonstrated that tributyltin induced glutamate release and subsequent activation of glutamate receptors, leading to neuronal death. We propose two independent neuronal death pathways by tributyltin; one is glutamate receptor-dependent cell death via ERK phosphorylation, and the other may be glutamate receptor-independent cell death via p38 activation.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Inadera H, Shimomura A. Environmental chemical tributyltin augments adipocyte differentiation. Toxicol Lett 2005; 159:226-34. [PMID: 15993011 DOI: 10.1016/j.toxlet.2005.05.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/23/2005] [Accepted: 05/25/2005] [Indexed: 11/30/2022]
Abstract
Scientific attention has been drawn to environmental factors that affect obesity and type II diabetes. Previously, acute organotin toxicosis was reported to induce hyperglycemia without morphological abnormalities in islet tissue, suggesting that these compounds have a direct effect on adipose tissue. Therefore, we investigated the effect of tributyltin (TBT) on adipocyte differentiation. When confluent 3T3-L1 cells were incubated with TBT for 2 days in the presence or absence of isobutyl methylxanthine, dexamethasone and insulin (MDI), the lipid accumulation in adipocytes was greatly enhanced. These morphological changes induced by TBT were accompanied by the expression of a differentiation marker for adipocytes in a dose-dependent manner. Co-treatment with the peroxisome proliferator-activated receptor (PPAR)gamma antagonist GW9662 did not inhibit the effect of TBT, suggesting that the observed effect of TBT may not be PPARgamma-dependent. Although TBT was reported to exert androgenic effects and inhibit the activity of aromatase, treatments with dihydrotestosterone or 17beta-estradiol did not influence the aP2 expression in 3T3-L1 cells, suggesting that the TBT effect does not occur via sex-steroids. These findings indicate that TBT may be one of the environmental chemicals that lead to excessive accumulation of adipose tissue, which can result in obesity.
Collapse
Affiliation(s)
- Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | |
Collapse
|
8
|
da Silva de Assis HC, Sánchez-Chardi A, Dos Reis RC, Nicaretta L, Mencinauski C, Jakobi SCG, da Silva PH, Zampronio AR, Pelletier E, de Oliveira Ribeiro CA. Subchronic toxic effects of tributyltin (TBT) and inorganic lead (PbII) in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:113-120. [PMID: 21783467 DOI: 10.1016/j.etap.2004.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 05/25/2004] [Indexed: 05/31/2023]
Abstract
This study evaluated the toxic effects of two doses of inorganic lead (PbII) and tributyltin (TBT), separately and together in different exposure times (30 and 60 days) in rats. After exposure, liver, kidney, brain and blood were sampled for histopathological, hematological and enzymatic analysis. The number of peritoneal cells and lipopolysaccharide (LPS)-induced neutrophil migration after exposure was also analyzed. The liver presented necrotic areas in all exposed individuals while hematological and enzymatic parameters showed no changes. TBT, but not PbII, reduced the number of resident peritoneal macrophages. The combination of both toxicants abolished TBT effects at lower doses and even increased the number of macrophages at higher doses. The neutrophil migration was increased by lead and lead associated with TBT. These results confirm the potential hepatotoxicity of these compounds and they may have antagonistic effects on the immune cells when administered alone. The combination of toxicants induced an increased inflammatory response suggesting that lead effects may prevail over TBT reduction on macrophage number.
Collapse
|
9
|
Tsukamoto Y, Ishihara Y, Miyagawa-Tomita S, Hagiwara H. Inhibition of ossification in vivo and differentiation of osteoblasts in vitro by tributyltin. Biochem Pharmacol 2004; 68:739-46. [PMID: 15276081 DOI: 10.1016/j.bcp.2004.04.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 04/27/2004] [Indexed: 11/16/2022]
Abstract
Tributyltin is ubiquitous in the environment and an endocrine disruptor for many wildlife species. However, minimal information is available regarding the effect of this chemical on bone formation. When tributyltin chloride (TBT) (1mg/kg body weight) was administered subcutaneously to pregnant mice at 10, 12, and 14 days post coitus (dpc), fetuses at 17.5 days post coitus revealed the inhibition of calcification of supraoccipital bone. In contrast, 1mg/kg body weight monobutyltin trichloride (MBT) did not affect the fetal skeleton. Therefore, we examined the effects of TBT and its metabolites (dibutyltin dichloride, DBT, and MBT) on bone metabolism using rat calvarial osteoblast-like cells (ROB cells). The viability of ROB cells was not affected by the exposure of the cells to 10(-10) to 10(-7)M TBT. However, TBT reduced the activity of alkaline phosphatase (ALPase) and the rate of deposition of calcium of ROB cells. In addition, the expression levels of mRNA for ALPase and osteocalcin, which are markers of osteoblastic differentiation, were depressed by the treatment with TBT. TBT inhibited ALPase activity and the deposition of calcium to a greater extent than did DBT. MBT had no effect on the osteoblast differentiation of ROB cells. Tributyltin is known to inhibit the activity of aromatase. However, the aromatase inhibitor aminoglutethimide did not reproduce the inhibitory effects of TBT on osteoblast differentiation. Our findings indicate that TBT might have critical effects on the formation of bone both in vivo and in vitro although its action mechanism is not clarified.
Collapse
Affiliation(s)
- Yu Tsukamoto
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|