1
|
Liu Y, Mihna D, Izem L, Morton RE. Both full length-cholesteryl ester transfer protein and exon 9-deleted cholesteryl ester transfer protein promote triacylglycerol storage in cultured hepatocytes. Lipids 2022; 57:69-79. [PMID: 34866179 PMCID: PMC9060302 DOI: 10.1002/lipd.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
We previously reported that overexpression of full-length cholesteryl ester transfer protein (FL-CETP), but not its exon 9-deleted variant (∆E9-CETP), in an adipose cell line reduces their triacylglycerol (TAG) content. This provided mechanistic insight into several in vivo studies where FL-CETP levels are inversely correlated with adiposity. However, increased FL-CETP is also associated with elevated hepatic lipids, suggesting that the effect of CETP on cellular lipid metabolism may be tissue-specific. Here, we directly investigated the role of FL-CETP and ∆E9-CETP in hepatic lipid metabolism. FL- or ∆E9-CETP was overexpressed in HepG2-C3A by adenovirus transduction. Overexpression of either FL or ∆E9-CETP in hepatocytes increased cellular TAG mass by 25% but reduced TAG secretion. This cellular TAG was contained in larger and more numerous lipid droplets. Analysis of TAG synthetic and catabolic pathways showed that this elevated TAG content was due to increased incorporation of fatty acid into TAG (24%), and higher de novo synthesis of fatty acid (50%) and TAG from acetate (40%). siRNA knockdown of CETP had the opposite effect on TAG synthesis and lipogenesis, and decreased cellular TAG. This novel increase in cellular TAG by FL-CETP overexpression was reproduced in Caco-2 intestinal epithelial cells. We conclude that, unlike that seen in adipocyte cells, overexpression of either CETP isoform in lipoprotein-secreting cells promotes the accumulation of TAG. These data suggest that the in vivo correlation between CETP levels and hepatic steatosis can be explained, in part, by a direct effect of CETP on hepatocyte cellular metabolism.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Daniel Mihna
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard E Morton
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Zhu Y, Chen CY, Li J, Cheng JX, Jang M, Kim KH. In vitro exploration of ACAT contributions to lipid droplet formation during adipogenesis. J Lipid Res 2018; 59:820-829. [PMID: 29549095 DOI: 10.1194/jlr.m081745] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
As adipose tissue is the major cholesterol storage organ and most of the intracellular cholesterol is distributed to lipid droplets (LDs), cholesterol homeostasis may have a role in the regulation of adipocyte size and function. ACATs catalyze the formation of cholesteryl ester (CE) from free cholesterol to modulate the cholesterol balance. Despite the well-documented role of ACATs in hypercholesterolemia, their role in LD development during adipogenesis remains elusive. Here, we identify ACATs as regulators of de novo lipogenesis and LD formation in murine 3T3-L1 adipocytes. Pharmacological inhibition of ACAT activity suppressed intracellular cholesterol and CE levels, and reduced expression of genes involved in cholesterol uptake and efflux. ACAT inhibition resulted in decreased de novo lipogenesis, as demonstrated by reduced maturation of SREBP1 and SREBP1-downstream lipogenic gene expression. Consistent with this observation, knockdown of either ACAT isoform reduced total adipocyte lipid content by approximately 40%. These results demonstrate that ACATs are required for storage ability of lipids and cholesterol in adipocytes.
Collapse
Affiliation(s)
- Yuyan Zhu
- Department of Food Science Purdue University, West Lafayette, IN 47907
| | - Chih-Yu Chen
- Department of Food Science Purdue University, West Lafayette, IN 47907
| | - Junjie Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215
| | - Miran Jang
- Department of Food Science Purdue University, West Lafayette, IN 47907
| | - Kee-Hong Kim
- Department of Food Science Purdue University, West Lafayette, IN 47907 .,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
3
|
Rached FH, Chapman MJ, Kontush A. An overview of the new frontiers in the treatment of atherogenic dyslipidemias. Clin Pharmacol Ther 2014; 96:57-63. [PMID: 24727469 DOI: 10.1038/clpt.2014.85] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 01/19/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity/mortality worldwide. Dyslipidemia is a major risk factor for premature atherosclerosis and CVD. Lowering low-density-lipoprotein cholesterol (LDL-C) levels is well established as an intervention for the reduction of CVDs. Statins are the first-line drugs for treatment of dyslipidemia, but they do not address all CVD risk. Development of novel therapies is ongoing and includes the following: (i) reduction of LDL-C concentrations using antibodies to proprotein convertase subtilisin/kexin-9, antisense oligonucleotide inhibitors of apolipoprotein B production, microsomal transfer protein (MTP) inhibitors, and acyl-coenzyme A cholesterol acyl transferase inhibitors; (ii) reduction in levels of triglyceride-rich lipoproteins with ω-3 fatty acids, MTP inhibitors, and diacylglycerol acyl transferase-1 inhibitors; and (iii) increase of high-density-lipoprotein (HDL) cholesterol levels, HDL particle numbers, and/or HDL functionality using cholesteryl ester transfer protein inhibitors, HDL-derived agents, apolipoprotein AI mimetic peptides, and microRNAs. Large prospective outcome trials of several of these emerging therapies are under way, and thrilling progress in the field of lipid management is anticipated.
Collapse
Affiliation(s)
- F H Rached
- 1] UMR INSERM-UPMC 1166 ICAN, National Institute for Health and Medical Research, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France [2] Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - M J Chapman
- UMR INSERM-UPMC 1166 ICAN, National Institute for Health and Medical Research, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - A Kontush
- UMR INSERM-UPMC 1166 ICAN, National Institute for Health and Medical Research, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France
| |
Collapse
|
4
|
Abstract
Lipid lowering is established as a proven intervention to reduce atherosclerosis and its complications. Statins form the basis of care but are not able to treat all aspects of dyslipidaemia. Many novel therapeutic compounds are being developed. These include additional therapeutics for low-density lipoprotein cholesterol, for example, thyroid mimetics (thyroid receptor beta-agonists), antisense oligonucleotides or microsomal transfer protein inhibitors (MTPI); triglycerides, for example, novel peroxosimal proliferator activating receptors agonists, MTPIs, diacylglycerol acyl transferase-1 inhibitors and high-density lipoprotein cholesterol (HDL-C), for example, mimetic peptides; HDL delipidation strategies and cholesterol ester transfer protein inhibitors and modulators of inflammation, for example, phospholipase inhibitors. Gene therapy for specific rare disorders, for example, lipoprotein lipase deficiency using alipogene tiparvovec is also in clinical trials. Lipid-lowering drugs are likely to prove a fast-developing area for novel treatments as possible synergies exist between new and established compounds for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- A S Wierzbicki
- Metabolic Medicine/Chemical Pathology, St. Thomas' Hospital Campus, London, UK.
| | | | | |
Collapse
|
5
|
Zhang L, Perdomo G, Kim DH, Qu S, Ringquist S, Trucco M, Dong HH. Proteomic analysis of fructose-induced fatty liver in hamsters. Metabolism 2008; 57:1115-24. [PMID: 18640390 PMCID: PMC2553352 DOI: 10.1016/j.metabol.2008.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/18/2008] [Indexed: 01/19/2023]
Abstract
High fructose consumption is associated with the development of fatty liver and dyslipidemia with poorly understood mechanisms. We used a matrix-assisted laser desorption/ionization-based proteomics approach to define the molecular events that link high fructose consumption to fatty liver in hamsters. Hamsters fed high-fructose diet for 8 weeks, as opposed to regular-chow-fed controls, developed hyperinsulinemia and hyperlipidemia. High-fructose-fed hamsters exhibited fat accumulation in liver. Hamsters were killed, and liver tissues were subjected to matrix-assisted laser desorption/ionization-based proteomics. This approach identified a number of proteins whose expression levels were altered by >2-fold in response to high fructose feeding. These proteins fall into 5 different categories including (1) functions in fatty acid metabolism such as fatty acid binding protein and carbamoyl-phosphate synthase; (2) proteins in cholesterol and triglyceride metabolism such as apolipoprotein A-1 and protein disulfide isomerase; (3) molecular chaperones such as GroEL, peroxiredoxin 2, and heat shock protein 70, whose functions are important for protein folding and antioxidation; (4) enzymes in fructose catabolism such as fructose-1,6-bisphosphatase and glycerol kinase; and (5) proteins with housekeeping functions such as albumin. These data provide insight into the molecular basis linking fructose-induced metabolic shift to the development of metabolic syndrome characterized by hepatic steatosis and dyslipidemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - H. Henry Dong
- Correspondence should be addressed to: Dr. Dong, Rangos Research Center, Children’s Hospital of Pittsburgh, 3460 5th Avenue, Rm 5140, Pittsburgh, PA 15213, Tel: +1 (412) 692-6324, Fax: +1 (412) 692-5809,
| |
Collapse
|
6
|
Kitamura A, Imai S, Yabuki M, Komuro S. The new acyl-CoA cholesterol acyltransferase inhibitor SMP-797 does not interact with statins via OATP1B1 in human cryopreserved hepatocytes and oocytes expressing systems. Biopharm Drug Dispos 2007; 28:517-25. [DOI: 10.1002/bdd.581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Li LO, Mashek DG, An J, Doughman SD, Newgard CB, Coleman RA. Overexpression of rat long chain acyl-coa synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J Biol Chem 2006; 281:37246-55. [PMID: 17028193 DOI: 10.1074/jbc.m604427200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Long chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for both anabolic and catabolic pathways. We have hypothesized that each of the five ACSL isoforms partitions FA toward specific downstream pathways. Acsl1 mRNA is increased in cells under both lipogenic and oxidative conditions. To elucidate the role of ACSL1 in hepatic lipid metabolism, we overexpressed an Acsl1 adenovirus construct (Ad-Acsl1) in rat primary hepatocytes. Ad-ACSL1, located on the endoplasmic reticulum but not on mitochondria or plasma membrane, increased ACS specific activity 3.7-fold. With 100 or 750 mum [1-(14)C]oleate, Ad-Acsl1 increased oleate incorporation into diacylglycerol and phospholipids, particularly phosphatidylethanolamine and phosphatidylinositol, and decreased incorporation into cholesterol esters and secreted triacylglycerol. Ad-Acsl1 did not alter oleate incorporation into triacylglycerol, beta-oxidation products, or total amount of FA metabolized. In pulse-chase experiments to examine the effects of Ad-Acsl1 on lipid turnover, more labeled triacylglycerol and phospholipid, but less labeled diacylglycerol, remained in Ad-Acsl1 cells, suggesting that ACSL1 increased reacylation of hydrolyzed oleate derived from triacylglycerol and diacylglycerol. In addition, less hydrolyzed oleate was used for cholesterol ester synthesis and beta-oxidation. The increase in [1,2,3-(3)H]glycerol incorporation into diacylglycerol and phospholipid was similar to the increase with [(14)C]oleate labeling suggesting that ACSL1 increased de novo synthesis. Labeling Ad-Acsl1 cells with [(14)C]acetate increased triacylglycerol synthesis but did not channel endogenous FA away from cholesterol ester synthesis. Thus, consistent with the hypothesis that individual ACSLs partition FA, Ad-Acsl1 increased FA reacylation and channeled FA toward diacylglycerol and phospholipid synthesis and away from cholesterol ester synthesis.
Collapse
Affiliation(s)
- Lei O Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Leon C, Hill JS, Wasan KM. Potential role of acyl-coenzyme A:cholesterol transferase (ACAT) Inhibitors as hypolipidemic and antiatherosclerosis drugs. Pharm Res 2005; 22:1578-88. [PMID: 16180116 DOI: 10.1007/s11095-005-6306-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 06/03/2005] [Indexed: 11/29/2022]
Abstract
Acyl-coenzyme A:cholesterol transferase (ACAT) is an integral membrane protein localized in the endoplasmic reticulum. ACAT catalyzes the formation of cholesteryl esters from cholesterol and fatty acyl coenzyme A. The cholesteryl esters are stored as cytoplasmic lipid droplets inside the cell. This process is very important to the organism as high cholesterol levels have been associated with cardiovascular disease. In mammals, two ACAT genes have been identified, ACAT1 and ACAT2. ACAT1 is ubiquitous and is responsible for cholesteryl ester formation in brain, adrenal glands, macrophages, and kidneys. ACAT2 is expressed in the liver and intestine. The inhibition of ACAT activity has been associated with decreased plasma cholesterol levels by suppressing cholesterol absorption and by diminishing the assembly and secretion of apolipoprotein B-containing lipoproteins such as very low density lipoprotein (VLDL). ACAT inhibition also prevents the conversion of macrophages into foam cells in the arterial walls, a critical event in the development of atherosclerosis. This review paper will focus on the role of ACAT in cholesterol metabolism, in particular as a target to develop novel therapeutic agents to control hypercholesterolemia, atherosclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Carlos Leon
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | |
Collapse
|
10
|
Abstract
Lipid-lowering is established as a proven intervention to reduce atherosclerosis and its complications. This article summarises imminent developments in lipid-lowering therapy, including new statins and cholesterol absorption inhibitors currently undergoing investigation for licensing. It also discusses other therapeutic targets such as squalene synthase, microsomal transfer protein (MTP), acyl-cholesterol acyl transferase (ACAT), cholesterol ester transfer protein (CETP), peroxosimal proliferator activating receptors (PPARs) and lipoprotein (a) (LP(a)), for which compounds have been developed and have at least reached trials in animal models. Lipid-lowering drugs are likely to prove a fast-developing area for novel treatments, as possible synergies exist between new and established compounds for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Anthony S Wierzbicki
- Department of Chemical Pathology, St. Thomas' Hospital Campus, Lambeth Palace Road, London, SE1 7EH, UK.
| |
Collapse
|
11
|
Abstract
Lipid lowering is established as a proven intervention to reduce atherosclerosis and its complications. This article summarises novel developments in the lipid-altering therapies under development, including combination therapies, squalene synthase inhibitors, microsomal transfer protein inhibitors, acyl-cholesterol acyl transferase inhibitors, cholesterol ester transfer protein antagonists, peroxisome proliferator-activated receptor agonists, high-density lipoprotein-derived peptides and inflammation inhibitors, which have at least reached trials in animal models. Lipid-altering drugs are likely to to be a fast-developing area for novel treatments as possible synergies exist between new and established compounds for the treatment of atherosclerosis. New agents will have to show significant advantage in tolerability or efficacy over existing agents and have the potential to be used in combination therapy as is well established for bile acid sequestrants, nicotinic acid or fibrates and statins. Any new drugs will also have to be assessed in clinical end-point trials against current compounds with proven outcome benefits.
Collapse
Affiliation(s)
- Anthony S Wierzbicki
- St. Thomas' Hospital, Department of Chemical Pathology, Lambeth Palace Road, London, SE1 7EH, UK.
| |
Collapse
|
12
|
Tardif JC, Grégoire J, L'Allier PL, Anderson TJ, Bertrand O, Reeves F, Title LM, Alfonso F, Schampaert E, Hassan A, McLain R, Pressler ML, Ibrahim R, Lespérance J, Blue J, Heinonen T, Rodés-Cabau J. Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 2004; 110:3372-7. [PMID: 15533865 DOI: 10.1161/01.cir.0000147777.12010.ef] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inhibition of the acyl coenzyme A:cholesterol acyltransferase (ACAT) enzyme may prevent excess accumulation of cholesteryl esters in macrophages. The ACAT inhibitor avasimibe was shown to reduce experimental atherosclerosis. This study was designed to investigate the effects of avasimibe on human coronary atherosclerosis. METHODS AND RESULTS This randomized, double-blind, placebo-controlled trial assessed the effects of avasimibe at dosages of 50, 250, and 750 mg QD on the progression of coronary atherosclerosis as assessed by intravascular ultrasound (IVUS). All patients received background lipid-lowering therapy if necessary to reach a target baseline LDL level <125 mg/dL (3.2 mmol/L). IVUS and coronary angiography were performed at baseline and repeated after up to 24 months of treatment. Approximately equal percentages of patients across groups received concurrent statin therapy (87% to 89%). The mean total plaque volume at baseline was approximately 200 mm3, and the least squares mean change at end of treatment was 0.7 mm3 for placebo and 7.7, 4.1, and 4.8 mm3 for the avasimibe 50, 250, and 750 mg groups, respectively (adjusted P=0.17 [unadjusted P=0.057], 0.37, and 0.37, respectively). Percent atheroma volume increased by 0.4% with placebo and by 0.7%, 0.8%, and 1.0% in the respective avasimibe groups (P=NS). LDL cholesterol increased during the study by 1.7% with placebo but by 7.8%, 9.1%, and 10.9% in the respective avasimibe groups (P<0.05 in all groups). CONCLUSIONS Avasimibe did not favorably alter coronary atherosclerosis as assessed by IVUS. This ACAT inhibitor also caused a mild increase in LDL cholesterol.
Collapse
|
13
|
Abstract
Lipid-lowering is established as proven intervention to reduce atherosclerosis and its complications. This article summarises novel developments in the lipid-altering therapies under development. It also discusses other therapeutic targets, such as squalene synthase, microsomal transfer protein, acyl-cholesterol acyl transferase, cholesterol ester transfer protein, peroxosimal proliferator-activating receptors and lipoprotein (a), for which compounds have been developed and have at least reached trials in animal models. Lipid-altering drugs are likely to prove a fast-developing area for novel treatments, as possible synergies exist between new and established compounds for the treatment of atherosclerosis.
Collapse
|
14
|
Liang JJ, Oelkers P, Guo C, Chu PC, Dixon JL, Ginsberg HN, Sturley SL. Overexpression of human diacylglycerol acyltransferase 1, acyl-coa:cholesterol acyltransferase 1, or acyl-CoA:cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells. J Biol Chem 2004; 279:44938-44. [PMID: 15308631 DOI: 10.1074/jbc.m408507200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relative importance of each core lipid in the assembly and secretion of very low density lipoproteins (VLDL) has been of interest over the past decade. The isolation of genes encoding diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) provided the opportunity to investigate the effects of isolated increases in triglycerides (TG) or cholesteryl esters (CE) on apolipoprotein B (apoB) lipoprotein biogenesis. Overexpression of human DGAT1 in rat hepatoma McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of TG. These effects were associated with decreased intracellular degradation and increased secretion of newly synthesized apoB as VLDL. Similarly, overexpression of human ACAT1 or ACAT2 in McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of CE. This led to decreased intracellular degradation and increased secretion of VLDL apoB. Overexpression of ACAT2 had a significantly greater impact upon assembly and secretion of VLDL from liver cells than did overexpression of ACAT1. The addition of oleic acid (OA) to media resulted in a further increase in VLDL secretion from cells expressing DGAT1, ACAT1, or ACAT2. VLDL secreted from DGAT1-expressing cells incubated in OA had a higher TG:CE ratio than VLDL secreted from ACAT1- and ACAT2-expressing cells treated with OA. These studies indicate that increasing DGAT1, ACAT1, or ACAT2 expression in McA-RH7777 cells stimulates the assembly and secretion of VLDL from liver cells and that the core composition of the secreted VLDL reflects the enzymatic activity that is elevated.
Collapse
Affiliation(s)
- John J Liang
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Heinonen TM. Acyl coenzyme A:cholesterol acyltransferase inhibition: potential atherosclerosis therapy or springboard for other discoveries? Expert Opin Investig Drugs 2002; 11:1519-27. [PMID: 12437499 DOI: 10.1517/13543784.11.11.1519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholesterol is an essential building block without which humans and other animals could not exist. As with most necessities, under certain conditions, excess can sharply tip the scale and lead to an unfavourable outcome. Excess cholesterol is stored as cholesteryl ester through an esterification process regulated in part by acyl coenzyme A:cholesterol acyltransferase (ACAT). ACAT is found in many tissue types which require the storage of cholesterol. Most notably, for cardiovascular disease ACAT activity is significant in intestinal and hepatic tissue and arterial macrophages. Several ACAT inhibitors have been investigated for their potential to favourably alter serum lipoprotein levels by blocking intestinal absorption, hepatic inhibition and/or slowing the progression of atherosclerosis through a non-lipid arterial inhibition. Recent evaluations of ACAT and ACAT inhibitors have provided some insight into the therapeutic potential and risks of ACAT inhibition as a means of treating atherosclerosis.
Collapse
|