1
|
Imai D, Numoto N, Tokiwa H, Kakuta H, Ito N. Structural basis for the full and partial agonist activities of retinoid X receptor α ligands with an iso-butoxy and an isopropyl group. Biochem Biophys Res Commun 2024; 734:150617. [PMID: 39241622 DOI: 10.1016/j.bbrc.2024.150617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Retinoid X receptors (RXRs) belong to a retinoid-binding subgroup of the nuclear receptor family, and their synthetic agonists have been developed as therapeutics for glucose and lipid metabolism, inflammation, and inflammatory bowel disease, although RXR agonists could cause side effects such as hypothyroidism, hypertriglyceridemia, and hepatomegaly. We previously reported novel full and partial agonists, NEt-3IB and NEt-4IB, which reduce the side effects, but the molecular basis of their different activity was not clear. In this study, we report the crystal structures of the ligand-binding domain of human RXRα complexed with NEt-3IB and NEt-4IB. Detailed comparisons of the two structures showed that the full agonist, NEt-3IB, is more stably accommodated in the ligand-binding pocket due to the interactions of the bulky iso-butoxy group with helices 5 and 7. The stabilization of these helices led to the stabilization of helix 12, which is important for formation of the coactivator-binding site. The structures shed light on the novel mechanism of the regulation of RXR activity through the interaction between the bound agonist and helix 7, an interaction that was not previously considered important.
Collapse
Affiliation(s)
- Daisuke Imai
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan; Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan; International Center for Structural Biology, Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hiroaki Tokiwa
- Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
2
|
Design, synthesis and biological evaluation of acyl hydrazones-based derivatives as RXRα-targeted anti-mitotic agents. Bioorg Chem 2022; 128:106069. [DOI: 10.1016/j.bioorg.2022.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
|
3
|
Takamura Y, Morishita KI, Kikuzawa S, Watanabe M, Kakuta H. Development of Scaled-Up Synthetic Method for Retinoid X Receptor Agonist NEt-3IB Contributing to Sustainable Development Goals. Chem Pharm Bull (Tokyo) 2022; 70:146-154. [PMID: 35110435 DOI: 10.1248/cpb.c21-00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small-molecular drugs, which are generally inexpensive compared with biopharmaceuticals and can often be taken orally, may contribute to the Sustainable Development Goals (SDGs) adopted by the United Nations. We previously reported the retinoid X receptor (RXR) agonist 4-(ethyl(3-isobutoxy-4-isopropylphenyl)amino)benzoic acid (NEt-3IB, 1) as a small-molecular drug candidate to replace biopharmaceuticals for the treatment of inflammatory bowel disease. The previous synthetic method to 1 required a large amount of organic solvent and extensive purification. In line with the SDGs, we aimed to develop an environmentally friendly, inexpensive method for the large-scale synthesis of 1. The developed method requires only a hydrophobic ether and EtOH as reaction and extraction solvents. The product was purified by recrystallization twice to afford 99% pure 1 at 100 mmol scale in about 30% yield. The optimized process showed a 35-fold improvement of the E-factor (an index of environmental impact) compared to the original method. This work, which changes the solvent used to environmentally preferable ones based on the existing synthetic method for 1, illustrates how synthetic methods for small-molecular drugs can be adapted and improved to contribute to the SDGs.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ken-Ichi Morishita
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shota Kikuzawa
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
4
|
Matsumoto R, Takahashi D, Watanabe M, Nakatani S, Takamura Y, Kurosaki Y, Kakuta H, Hase K. A Retinoid X Receptor Agonist Directed to the Large Intestine Ameliorates T-Cell-Mediated Colitis in Mice. Front Pharmacol 2021; 12:715752. [PMID: 34475823 PMCID: PMC8406631 DOI: 10.3389/fphar.2021.715752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Retinoid X receptor (RXR) is a nuclear receptor that heterodimerizes with several nuclear receptors, integrating ligand-mediated signals across the heterodimers. Synthetic RXR agonists have been developed to cure certain inflammatory diseases, including inflammatory bowel diseases (IBDs). However, pre-existing RXR agonists, which are lipophilic and readily absorbed in the upper intestine, cause considerable adverse effects such as hepatomegaly, hyperlipidemia, and hypothyroidism. To minimize these adverse effects, we have developed an RXR agonist, NEt-3IB, which has lipophilic and thus poorly absorptive properties. In this study, we evaluated the effects of NEt-3IB in an experimental murine colitis model induced through the adoptive transfer of CD45RBhighCD4+ T cells. Pharmacokinetic studies demonstrated that the major portion of NEt-3IB was successfully delivered to the large intestine after oral administration. Notably, NEt-3IB treatment suppressed the development of T cell-mediated chronic colitis, as indicated by improvement of wasting symptoms, inflammatory infiltration, and mucosal hyperplasia. The protective effect of NEt-3IB was mediated by the suppression of IFN-γ-producing Th1 cell expansion in the colon. In conclusion, NEt-3IB, a large intestine-directed RXR agonist, is a promising drug candidate for IBDs.
Collapse
Affiliation(s)
- Ryohtaroh Matsumoto
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shunsuke Nakatani
- Division of Pharmaceutical Sciences, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuji Kurosaki
- Division of Pharmaceutical Sciences, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Hase
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
5
|
Yamada S, Takamura Y, Fujihara M, Kawasaki M, Ito S, Nakano S, Kakuta H. Fluorescence properties of retinoid X receptor antagonist NEt-SB. Bioorg Med Chem Lett 2021; 31:127666. [DOI: 10.1016/j.bmcl.2020.127666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
|
6
|
Dupuis H, Pest MA, Hadzic E, Vo TX, Hardy DB, Beier F. Exposure to the RXR Agonist SR11237 in Early Life Causes Disturbed Skeletal Morphogenesis in a Rat Model. Int J Mol Sci 2019; 20:ijms20205198. [PMID: 31635173 PMCID: PMC6829207 DOI: 10.3390/ijms20205198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 01/22/2023] Open
Abstract
Longitudinal bone growth occurs through endochondral ossification (EO), controlled by various signaling molecules. Retinoid X Receptor (RXR) is a nuclear receptor with important roles in cell death, development, and metabolism. However, little is known about its role in EO. In this study, the agonist SR11237 was used to evaluate RXR activation in EO. Rats given SR11237 from post-natal day 5 to post-natal day 15 were harvested for micro-computed tomography (microCT) scanning and histology. In parallel, newborn CD1 mouse tibiae were cultured with increasing concentrations of SR11237 for histological and whole-mount evaluation. RXR agonist-treated rats had shorter long bones than the controls and developed dysmorphia of the growth plate. Cells invading the calcified and dysmorphic growth plate appeared pre-hypertrophic in size and shape, in correspondence with p57 immunostaining. Additionally, SOX9-positive cells were found surrounding the calcified tissue. The epiphysis of SR11237-treated bones showed increased TRAP staining and additional TUNEL staining at the osteo-chondral junction. MicroCT revealed morphological disorganization in the long bones of the treated animals. This study suggests that stimulation of RXR causes irregular ossification, premature closure of the growth plate, and disrupted long bone growth in rodent models
Collapse
Affiliation(s)
- Holly Dupuis
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University London, London, ON N6A 5C1, Canada.
- Western Bone and Joint Institute, Western University London, London, ON N6A 5C1, Canada.
| | - Michael Andrew Pest
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University London, London, ON N6A 5C1, Canada.
- Western Bone and Joint Institute, Western University London, London, ON N6A 5C1, Canada.
| | - Ermina Hadzic
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University London, London, ON N6A 5C1, Canada.
- Western Bone and Joint Institute, Western University London, London, ON N6A 5C1, Canada.
| | - Thin Xuan Vo
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University London, London, ON N6A 5C1, Canada.
| | - Daniel B Hardy
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University London, London, ON N6A 5C1, Canada.
- Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University London, London, ON N6A 5C1, Canada.
| | - Frank Beier
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University London, London, ON N6A 5C1, Canada.
- Western Bone and Joint Institute, Western University London, London, ON N6A 5C1, Canada.
| |
Collapse
|
7
|
Takamura Y, Shibahara O, Watanabe M, Fujihara M, Yamada S, Akehi M, Sasaki T, Hirano H, Kakuta H. Fluorine-18 ( 18F)-labeled retinoid x receptor (RXR) partial agonist whose tissue transferability is affected by other RXR ligands. Bioorg Med Chem 2019; 27:3128-3134. [PMID: 31176570 DOI: 10.1016/j.bmc.2019.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
Bexarotene (1), a retinoid X receptor (RXR) agonist approved for the treatment of cutaneous T cell lymphoma (CTCL), was reported to migrate into baboon brain based on findings obtained by positron emission tomography (PET) with a 11C-labeled tracer. However, co-administration of non-radioactive 1 had no effect on the distribution of [11C]1, probably due to non-specific binding of 1 as a result of its high lipophilicity. Here, we report a fluorine-18 (18F)-labeled PET tracer [18F]6 derived from RXR partial agonist CBt-PMN (2), which has lower lipophilicity and weaker RXR-binding ability than [11C]1. The concomitant administration of 1 or 2 with [18F]6 with resulted in decreased accumulation of [18F]6 in liver, together with increased brain uptake and increased accumulation in kidney and muscle, as visualized by PET. A plausible explanation of these findings is the inhibition of [18F]6 uptake into the liver by concomitantly administered 1 or 2, leading to an increase in blood concentration of [18F]6 followed by increased accumulation in other tissues.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Osamu Shibahara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan; AIBIOS Co. Ltd. Tri-Seven Roppongi, 8F 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032 Japan
| | - Shoya Yamada
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Masaru Akehi
- Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Takanori Sasaki
- Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Hiroyuki Hirano
- SHI Accelerator Service Ltd., 1-17-6 Osaki Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan.
| |
Collapse
|
8
|
Miyashita Y, Numoto N, Arulmozhiraja S, Nakano S, Matsuo N, Shimizu K, Shibahara O, Fujihara M, Kakuta H, Ito S, Ikura T, Ito N, Tokiwa H. Dual conformation of the ligand induces the partial agonistic activity of retinoid X receptor α (RXRα). FEBS Lett 2018; 593:242-250. [DOI: 10.1002/1873-3468.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Yurina Miyashita
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED-CREST; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Nobutaka Numoto
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Sundaram Arulmozhiraja
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
| | - Shogo Nakano
- School of Food and Nutritional Sciences; University of Shizuoka; Japan
| | - Naoya Matsuo
- Department of Chemistry; Rikkyo University; Tokyo Japan
| | | | - Osamu Shibahara
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Japan
| | - Sohei Ito
- School of Food and Nutritional Sciences; University of Shizuoka; Japan
| | - Teikichi Ikura
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Nobutoshi Ito
- Department of Structural Biology; Medical Research Institute; Tokyo Medical and Dental University (TMDU); Japan
| | - Hiroaki Tokiwa
- Department of Chemistry; Rikkyo University; Tokyo Japan
- AMED-CREST; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- AMED; Japan Agency for Medical Research and Development (AMED); Tokyo Japan
- Research Center for Smart Molecules; Rikkyo University; Tokyo Japan
| |
Collapse
|
9
|
Shibahara O, Watanabe M, Yamada S, Akehi M, Sasaki T, Akahoshi A, Hanada T, Hirano H, Nakatani S, Nishioka H, Takeuchi Y, Kakuta H. Synthesis of 11C-Labeled RXR Partial Agonist 1-[(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)amino]benzotriazole-5-carboxylic Acid (CBt-PMN) by Direct [11C]Carbon Dioxide Fixation via Organolithiation of Trialkyltin Precursor and PET Imaging Thereof. J Med Chem 2017; 60:7139-7145. [DOI: 10.1021/acs.jmedchem.7b00817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Osamu Shibahara
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Masaki Watanabe
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Shoya Yamada
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Masaru Akehi
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Takanori Sasaki
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Akiya Akahoshi
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Takahisa Hanada
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Hiroyuki Hirano
- SHI Accelerator Service Ltd. 1-17-6 Osaki Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Shunsuke Nakatani
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Hiromi Nishioka
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Yasuo Takeuchi
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Kobayashi T, Furusawa Y, Yamada S, Akehi M, Takenaka F, Sasaki T, Akahoshi A, Hanada T, Matsuura E, Hirano H, Tai A, Kakuta H. Positron emission tomography to elucidate pharmacokinetic differences of regioisomeric retinoid x receptor agonists. ACS Med Chem Lett 2015; 6:334-8. [PMID: 25815156 DOI: 10.1021/ml500511m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022] Open
Abstract
RXR partial agonist NEt-4IB (2a, 6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: EC50 = 169 nM, E max = 55%) showed a blood concentration higher than its E max after single oral administration at 30 mg/kg to mice, and repeated oral administration at 10 mg/kg/day to KK-A(y) mice afforded antitype 2 diabetes activity without the side effects caused by RXR full agonists. However, RXR full agonist NEt-3IB (1a), in which the isobutoxy and isopropyl groups of 2a are interchanged, gave a much lower blood concentration than 2a. Here we used positron emission tomography (PET) with tracers [(11)C]1a, [(11)C]2a and fluorinated derivatives [(18)F]1b, [(18)F]2b, which have longer half-lives, to examine the reason why 1a and 2a exhibited significantly different blood concentrations. As a result, the reason for the high blood concentration of 2a after oral administration was found to be linked to higher intestinal absorbability together with lower biliary excretion, compared with 1a.
Collapse
Affiliation(s)
- Toshiki Kobayashi
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuki Furusawa
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Shoya Yamada
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Research
Fellowship Division, Japan Society for the Promotion of Science, Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Masaru Akehi
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-ku, Okayama 700-8558, Japan
| | - Fumiaki Takenaka
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-ku, Okayama 700-8558, Japan
| | - Takanori Sasaki
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-ku, Okayama 700-8558, Japan
| | - Akiya Akahoshi
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-ku, Okayama 700-8558, Japan
| | - Takahisa Hanada
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-ku, Okayama 700-8558, Japan
| | - Eiji Matsuura
- Collaborative
Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroyuki Hirano
- SHI Accelerator Service Ltd. 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Akihiro Tai
- Faculty
of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho, Shobara, Hiroshima 727-0023, Japan
| | - Hiroki Kakuta
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Kawata K, Morishita KI, Nakayama M, Yamada S, Kobayashi T, Furusawa Y, Arimoto-Kobayashi S, Oohashi T, Makishima M, Naitou H, Ishitsubo E, Tokiwa H, Tai A, Kakuta H. RXR partial agonist produced by side chain repositioning of alkoxy RXR full agonist retains antitype 2 diabetes activity without the adverse effects. J Med Chem 2014; 58:912-26. [PMID: 25486327 DOI: 10.1021/jm501863r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported RXR partial agonist CBt-PMN (1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid: 5, EC50 = 143 nM, Emax = 75%), which showed a potent glucose-lowering effect without causing serious adverse effects. However, it remains important to elucidate the structural requirements for RXR efficacy and the glucose-lowering effect because RXR-permissive heterodimers such as PPAR/RXR or LXR/RXR are reported to be activated differently depending upon the chemical structure of RXR agonists. In this work, we show that an RXR partial agonist, NEt-4IB (6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: 8b, EC50 = 169 nM, Emax = 55%), can be obtained simply by repositioning the side chains (interchanging the isobutoxy and isopropoxy groups) at the hydrophobic moiety of the RXR full agonist NEt-3IB (6-[ethyl-(3-isobutoxy-4-isopropylphenyl)amino]pyridine-3-carboxylic acid: 7b, EC50 = 19 nM). NEt-4IB (8b) showed antitype 2 diabetes activity without the above side effects upon repeated oral administration to mice at 10 mg/kg/day, similarly to 5.
Collapse
Affiliation(s)
- Kohei Kawata
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka, Kita-ku Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McCaffery P, Deutsch CK. Macrocephaly and the control of brain growth in autistic disorders. Prog Neurobiol 2005; 77:38-56. [PMID: 16280193 DOI: 10.1016/j.pneurobio.2005.10.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 09/29/2005] [Accepted: 10/05/2005] [Indexed: 01/17/2023]
Abstract
Autism is a childhood-onset neuropsychiatric disorder characterized by marked impairments in social interactions and communication, with restricted stereotypic and repetitive patterns of behavior, interests, and activities. Genetic epidemiology studies indicate that a strong genetic component exists to this disease, but these same studies also implicate significant environmental influence. The disorder also displays symptomatologic heterogeneity, with broad individual differences and severity on a graded continuum. In the search for phenotypes to resolve heterogeneity and better grasp autism's underlying biology, investigators have noted a statistical overrepresentation of macrocephaly, an indicator of enlarged brain volume. This feature is one of the most widely replicated biological findings in autism. What then does brain enlargement signify? One hypothesis invoked for the origin of macrocephaly is a reduction in neuronal pruning and consolidation of synapses during development resulting in an overabundance of neurites. An increase in generation of cells is an additional mechanism for macrocephaly, though it is less frequently discussed in the literature. Here, we review neurodevelopmental mechanisms regulating brain growth and highlight one underconsidered potential causal mechanism for autism and macrocephaly--an increase in neurogenesis and/or gliogenesis. We review factors known to control these processes with an emphasis on nuclear receptor activation as one signaling control that may be abnormal and contribute to increased brain volume in autistic disorders.
Collapse
|
13
|
Li X, Hansen PA, Xi L, Chandraratna RAS, Burant CF. Distinct Mechanisms of Glucose Lowering by Specific Agonists for Peroxisomal Proliferator Activated Receptor γ and Retinoic Acid X Receptors. J Biol Chem 2005; 280:38317-27. [PMID: 16179348 DOI: 10.1074/jbc.m505853200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonists for the nuclear receptor peroxisomal proliferator-activated receptor-gamma (PPARgamma) and its heterodimeric partner, retinoid X receptor (RXR), are effective agents for the treatment of type 2 diabetes. To gain insight into the antidiabetic action of these compounds, we treated female Zucker diabetic rats (ZFF) with AGN194204, which we show to be a homodimer-specific RXR agonist, or the PPARgamma agonist, troglitazone. Hyperinsulinemic-euglycemic clamps in ZFF showed that troglitazone and AGN194204 reduced basal endogenous glucose production (EGP) approximately 30% and doubled the insulin suppression of EGP. AGN194204 had no effect on peripheral glucose utilization, whereas troglitazone increased insulin-stimulated glucose utilization by 50%, glucose uptake into skeletal muscle by 85%, and de novo skeletal muscle glycogen synthesis by 300%. Troglitazone increased skeletal muscle Irs-1 and phospho-Akt levels following in vivo insulin treatment, whereas AGN194204 increased hepatic Irs-2 and insulin stimulated phospho-Akt in liver. Gene profiles of AGN194204-treated mouse liver analyzed by Ingenuity Pathway Analysis identified increases in fatty acid synthetic genes, including Srebp-1 and fatty acid synthase, a pathway previously shown to be induced by RXR agonists. A network of down-regulated genes containing Foxa2, Foxa3, and G-protein subunits was identified, and decreases in these mRNA levels were confirmed by quantitative reverse transcription-PCR. Treatment of HepG2 cells with AGN194204 resulted in inhibition of glucagon-stimulated cAMP accumulation suggesting the G-protein down-regulation may provide an additional mechanism for hepatic insulin sensitization by RXR. These studies demonstrate distinct molecular events lead to insulin sensitization by high affinity RXR and PPARgamma agonists.
Collapse
Affiliation(s)
- Xiangquan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-0354, USA
| | | | | | | | | |
Collapse
|
14
|
Anderson SP, Dunn C, Laughter A, Yoon L, Swanson C, Stulnig TM, Steffensen KR, Chandraratna RAS, Gustafsson JA, Corton JC. Overlapping transcriptional programs regulated by the nuclear receptors peroxisome proliferator-activated receptor alpha, retinoid X receptor, and liver X receptor in mouse liver. Mol Pharmacol 2004; 66:1440-52. [PMID: 15371561 DOI: 10.1124/mol.104.005496] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipid homeostasis is controlled in part by the nuclear receptors peroxisome proliferator (PP)-activated receptor alpha (PPARalpha) and liver X receptor (LXR) through regulation of genes involved in fatty acid and cholesterol metabolism. Exposure to agonists of retinoid X receptor (RXR), the obligate heterodimer partner of PPARalpha, and LXR results in responses that partially overlap with those of PP. To better understand the gene networks regulated by these nuclear receptors, transcript profiles were generated from the livers of wild-type and PPARalpha-null mice exposed to the RXR pan-agonist 3,7-dimethyl-6S,7S-methano, 7-[1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphth-7-yl]-2E,4E-heptadienoic acid (AGN194,204) or the PPAR pan-agonist WY-14,643 (WY; pirinixic acid) and compared with the profiles from the livers of wild-type and LXRalpha/LXRbeta-null mice after exposure to the LXR agonist N-(2,2,2-trifluoroethyl)-N-[4-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethylethyl)phenyl] sulfonamide (T0901317). All 218 WY-regulated genes altered in wild-type mice required PPARalpha. Remarkably, approximately 80% of genes regulated by AGN194,204 required PPARalpha including cell-cycle genes, consistent with AGN-induced hepatocyte proliferation having both PPARalpha-dependent and -independent components. Overlaps of approximately 31 to 62% in the transcript profiles of WY, AGN194,204, and T0901317 required PPARalpha and LXRalpha/LXRbeta for statistical significance. Ofthe 50 overlapping genes regulated by T0901317 and WY, all but one were regulated in a similar direction. These results 1) identify new transcriptional targets of PPARalpha and RXR important in regulating lipid metabolism and liver homeostasis, 2) illustrate the importance of PPARalpha in regulation of gene expression by a prototypical PP and by an RXR agonist, and 3) provide support for an axis of PPARalpha-RXR-LXR in which agonists for each nuclear receptor regulate an overlapping set of genes in the mouse liver.
Collapse
Affiliation(s)
- Steven P Anderson
- Investigative Toxicology and Pathology Group, Safety Assessment, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Corton JC, Apte U, Anderson SP, Limaye P, Yoon L, Latendresse J, Dunn C, Everitt JI, Voss KA, Swanson C, Kimbrough C, Wong JS, Gill SS, Chandraratna RAS, Kwak MK, Kensler TW, Stulnig TM, Steffensen KR, Gustafsson JA, Mehendale HM. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem 2004; 279:46204-12. [PMID: 15302862 DOI: 10.1074/jbc.m406739200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The obesity epidemic in industrialized countries is associated with increases in cardiovascular disease (CVD) and certain types of cancer. In animal models, caloric restriction (CR) suppresses these diseases as well as chemical-induced tissue damage. These beneficial effects of CR overlap with those altered by agonists of nuclear receptors (NR) under control of the fasting-responsive transcriptional co-activator, peroxisome proliferator-activated co-activator 1alpha (PGC-1alpha). In a screen for compounds that mimic CR effects in the liver, we found statistically significant overlaps between the CR transcript profile in wild-type mice and the profiles altered by agonists of lipid-activated NR, including peroxisome proliferator-activated receptor alpha (PPARalpha), liver X receptor, and their obligate heterodimer partner, retinoid X receptor. The overlapping genes included those involved in CVD (lipid metabolism and inflammation) and cancer (cell fate). Based on this overlap, we hypothesized that some effects of CR are mediated by PPARalpha. As determined by transcript profiling, 19% of all gene expression changes in wild-type mice were dependent on PPARalpha, including Cyp4a10 and Cyp4a14, involved in fatty acid omega-oxidation, acute phase response genes, and epidermal growth factor receptor but not increases in PGC-1alpha. CR protected the livers of wild-type mice from damage induced by thioacetamide, a liver toxicant and hepatocarcinogen. CR protection was lost in PPARalpha-null mice due to inadequate tissue repair. These results demonstrate that PPARalpha mediates some of the effects of CR and indicate that a pharmacological approach to mimicking many of the beneficial effects of CR may be possible.
Collapse
|
16
|
Haffner CD, Lenhard JM, Miller AB, McDougald DL, Dwornik K, Ittoop OR, Gampe RT, Xu HE, Blanchard S, Montana VG, Consler TG, Bledsoe RK, Ayscue A, Croom D. Structure-Based Design of Potent Retinoid X Receptor α Agonists. J Med Chem 2004; 47:2010-29. [PMID: 15056000 DOI: 10.1021/jm030565g] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of tetrahydrobenzofuranyl and tetrahydrobenzothienyl propenoic acids that showed potent agonist activity against RXRalpha were synthesized via a structure-based design approach. Among the compounds studied, 46a,b showed not only very good potency against RXRalpha (K(i) = 6 nM) but was also found to be greater than 167-fold selective vs RARalpha (K(i) > 1000 nM). This compound profiled out as a full agonist in a cell-based transient transfection assay (EC(50) = 3 nM). The two antipodes were separated via chiral chromatography, and 46b was found to be 40-fold more potent than 46a. Interestingly, cocrystallization of 46a,b with the RXRalpha protein generated a liganded structure whereby the (S)-antipode was found in the binding pocket. Given orally in db/db mice or ZDF rats, 46a,b showed a significant glucose-lowering effect and an increase in liver mass. Triglycerides decreased significantly in db/db mice but increased in the ZDF rats. A dose-dependent decrease of nonesterified free fatty acids was seen in ZDF rats but not in db/db mice. These differences indicate a species specific effect of RXR agonists on lipid metabolism.
Collapse
Affiliation(s)
- Curt D Haffner
- GlaxoSmithKline Research and Development, 5 Moore Drive, P.O. Box 13398, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ouamrane L, Larrieu G, Gauthier B, Pineau T. RXR activators molecular signalling: involvement of a PPAR alpha-dependent pathway in the liver and kidney, evidence for an alternative pathway in the heart. Br J Pharmacol 2003; 138:845-54. [PMID: 12642386 PMCID: PMC1573724 DOI: 10.1038/sj.bjp.0705113] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(1) In this study we compared the molecular signalling elicited by rexinoids, selective retinoid X receptor (RXR)-activators, in several organs (i.e. liver, kidney, heart) and in hepatocytes of various species. (2) RXR plays the pivotal role of a hetero-dimerization partner for the members of the class II subset of nuclear receptors which regulate the transcription of numerous target genes, following chemical activation. Several of these selective activators are currently used to treat hyperlipidaemia (fibrates), type II diabetes (glitazones), or skin disorders (retinoic acid). Although these therapeutic pathways are not fully elucidated, receptor activation is considered a pre-requisite for efficacy. Therefore RXR, which accepts numerous dimeric partners, is considered a worthwhile pharmacological target. (3) We analysed a number of biochemical and molecular responses to rexinoids which were given orally to mice. Our results showed a prominent involvement of the peroxisome proliferator-activated receptor (PPARalpha) as a majority of the observed hepatic and renal regulations were abolished in PPARalpha-knockout animals. Therefore we documented the species-specificity of these rexinoid actions which were reproduced in rat primary hepatocyte cultures but not in cultures of rabbit or human origin. Conversely, we established that the regulation of the pyruvate dehydrogenase kinase (PDK4) gene in the heart, by rexinoids, is independent of PPARalpha expression. (4) Our results support the obligatory expression of the active, although quiescent, PPARalpha to sustain a subset of relevant regulations attributable to rexinoids in the liver and kidney. Their cardiac molecular signalling unveiled an alternate transduction pathway and therefore opens new prospects in the therapeutic potential of rexinoids.
Collapse
Affiliation(s)
- Laïla Ouamrane
- Laboratoire de Pharmacologie et Toxicologie, INRA, B.P. 3, 31931 Toulouse, France
- GALDERMA R&D, 635 route des Lucioles, B.P. 87, 06902 Sophia-Antipolis, France
| | - Gilberte Larrieu
- Laboratoire de Pharmacologie et Toxicologie, INRA, B.P. 3, 31931 Toulouse, France
| | - Béatrice Gauthier
- GALDERMA R&D, 635 route des Lucioles, B.P. 87, 06902 Sophia-Antipolis, France
| | - Thierry Pineau
- Laboratoire de Pharmacologie et Toxicologie, INRA, B.P. 3, 31931 Toulouse, France
- Author for correspondence:
| |
Collapse
|
18
|
Standeven AM, Thacher SM, Yuan YD, Escobar M, Vuligonda V, Beard RL, Chandraratna RA. Retinoid X receptor agonist elevation of serum triglycerides in rats by potentiation of retinoic acid receptor agonist induction or by action as single agents. Biochem Pharmacol 2001; 62:1501-9. [PMID: 11728386 DOI: 10.1016/s0006-2952(01)00803-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertriglyceridemia is a major side-effect of retinoid therapy in humans. We previously reported that agonists for the retinoic acid receptors (RARs), but not the retinoid X receptors (RXRs), elevate serum triglycerides in male Fischer rats, and that, surprisingly, the RAR/RXR pan-agonists 9-cis-retinoic acid and AGN 191659 [(E)-5-[2-(5,6,7,8-tetrahydro-3,5,5,8,8-pentamethyl-2-naphthyl)propen-1-yl]-2-thiophenecarboxylic acid] induce 2- to 3-fold higher levels of serum triglycerides than the RAR-selective agonists alone. We have now demonstrated that hypertriglyceridemia induced by an RAR agonist, AGN 190121 [4-[4-(2',6',6'-trimethylcyclohex-1-enyl)-but-1-yne-3-enyl]benzoic acid], is substantially potentiated by the RXR-selective agonists AGN 191701 [(E) 2-[2-(5,6,7,8-tetrahydro-3,5,5,8,8-pentamethyl-2-naphthyl)propen-1-yl]-4-thiophene-carboxylic acid] and AGN 192849 [(3,5,5,8,8,-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl) (5 carboxypyrid-2-yl)sulfide] in a dose-dependent manner. RXR-specific retinoids, as previously reported, had no independent effect on serum triglycerides when tested at 24 hr after final dosing, but did elicit a reversible hypertriglyceridemia at 2.5 and 5 hr. This induction of serum triglycerides could not be blocked by the potent RAR-specific antagonist AGN 193109 [4-[(5,6-dihydro-5,5-dimethyl-8-(4-methylphenyl)-2-naphthalenyl)-ethynyl] benzoic acid]. The RXR ligand-induced hypertriglyceridemia was independent of the effect of feeding or fasting. The relative potencies of RXR-specific retinoids for acute triglyceride elevation (AGN 194204 [3,7-dimethyl-6S,7S-methano-7-[1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphth-7-yl] 2(E),4(E) heptadienoic acid] > AGN 192849 approximately AGN 191701) approximately correlated with potencies in the activation of the RXR receptors. The RAR/RXR pan-agonist effect included >50% inhibition of total heparin-releasable lipase activity in serum, consistent with inhibition of lipase-mediated triglyceride disposal. These data also indicate that RAR and RXR ligands can act synergistically to induce hypertriglyceridemia through distinct mechanisms of action.
Collapse
Affiliation(s)
- A M Standeven
- Department of Biology, Retinoid Research, Allergan, P.O. Box 19534, 2525 Dupont Drive, Irvine, CA 92623, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Cho CS, Cho KY, Park IK, Kim SH, Sasagawa T, Uchiyama M, Akaike T. Receptor-mediated delivery of all trans-retinoic acid to hepatocyte using poly(L-lactic acid) nanoparticles coated with galactose-carrying polystyrene. J Control Release 2001; 77:7-15. [PMID: 11689255 DOI: 10.1016/s0168-3659(01)00390-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
All trans-retinoic acid (RA)-loaded poly(L-lactic acid) (PLA) nanoparticles coated with galactose-carrying polymer, as hepatocyte-specific targeting material using galactose ligands as recognition signals to asialoglycoprotein receptors were prepared by the diafiltration method. Effects of released RA from its loaded nanoparticles on morphology and DNA synthesis of hepatocytes were studied. Receptor-mediated endocytosis of the nanoparticles was checked by fluorescence and confocal laser microscopy. It was found that the shapes of most hepatocytes attached onto polystyrene dish precoated with collagen solution were flat and spreading at low concentration of RA for the RA-loaded nanoparticles, whereas their shapes were round at even low concentration of RA when RA was mixed with the nanoparticles. From the fluorescence and confocal laser microscopic studies, it was suggested that the nanoparticles coated with galactose-carrying polymers were internalized by the hepatocytes through the receptor-mediated mechanism. The RA-loaded nanoparticles were more potent stimulators of hepatocyte DNA synthesis than the free RA system in the presence of epidermal growth factor (EGF) owing to the controlled release of RA from the RA-loaded nanoparticles.
Collapse
Affiliation(s)
- C S Cho
- School of Agricultural Biotechnology, Seoul National University, 103 Serdun-dong, Kwonsun-gu, Suwon 441-744, South Korea.
| | | | | | | | | | | | | |
Collapse
|
20
|
Corton JC, Anderson SP, Stauber A. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol 2000; 40:491-518. [PMID: 10836145 DOI: 10.1146/annurev.pharmtox.40.1.491] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxisome proliferators (PPs) are a large class of structurally dissimilar chemicals that have diverse effects in rodents and humans. Most, if not all, of the diverse effects of PPs are mediated by three members of the nuclear receptor superfamily called peroxisome proliferator-activated receptors (PPARs). In this review, we define the molecular mechanisms of PPs, including PPAR binding specificity, alteration of gene expression through binding to DNA response elements, and cross talk with other signaling pathways. We discuss the roles of PPARs in growth promotion in rodent hepatocarcinogenesis and potential therapeutic effects, including suppression of cancer growth and inflammation.
Collapse
Affiliation(s)
- J C Corton
- Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709-2137, USA.
| | | | | |
Collapse
|
21
|
Chen S, Gardner DG. Retinoic acid uses divergent mechanisms to activate or suppress mitogenesis in rat aortic smooth muscle cells. J Clin Invest 1998; 102:653-62. [PMID: 9710432 PMCID: PMC508926 DOI: 10.1172/jci3483] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In different experimental models, retinoid has been shown to stimulate or suppress mitogenesis in cultured cells. The mechanisms underlying this seemingly paradoxical activity remain only partially understood. We have examined the ability of all-trans retinoic acid (ATRA), as well as a number of synthetic retinoids, either alone or in the presence of a mitogenic stimulus (i.e., endothelin), to regulate DNA synthesis and cell replication in cultured rat aortic smooth muscle cells. ATRA alone stimulates [3H]thymidine incorporation (approximately twofold) and increases cell number (approximately twofold) in these cultures but suppresses [3H]thymidine incorporation and reduces cell number in cultures treated with endothelin. The reduction in endothelin-stimulated DNA synthesis correlates closely with the ability of ATRA to inhibit endothelin-stimulated extracellular signal-regulated kinase but not c-Jun NH2-terminal kinase activity. Activation of mitogenesis, seen in the presence of ATRA alone, was independent of extracellular signal-regulated kinase activation but correlated well with increased expression of cyclin D1 mRNA and protein. Concomitant activation of the cdk inhibitor p21 led to truncation of ATRA's mitogenic activity at higher doses of ligand. Collectively, these data indicate that the role of retinoids in the regulation of mitogenesis in vascular smooth muscle is complex. Under quiescent conditions they activate mitogenesis, while in the presence of growth stimulation, as is frequently seen with vasculopathic conditions, they suppress mitogenesis. It appears that independent circuitry is involved in signaling each of these effects.
Collapse
Affiliation(s)
- S Chen
- Metabolic Research Unit and Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|