1
|
Stratiievska A, Filippova O, Özpolat T, Byrne D, Bailey SL, Chauhan A, Mollica MY, Harris J, Esancy K, Chen J, Dhaka AK, Sniadecki NJ, López JA, Stolla M. Cold temperature induces a TRPM8-independent calcium release from the endoplasmic reticulum in human platelets. PLoS One 2024; 19:e0289395. [PMID: 38437228 PMCID: PMC10911599 DOI: 10.1371/journal.pone.0289395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
The detection of temperature by the human sensory system is life-preserving and highly evolutionarily conserved. Platelets are sensitive to temperature changes and are activated by a decrease in temperature, akin to sensory neurons. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this multidisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.
Collapse
Affiliation(s)
| | - Olga Filippova
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Tahsin Özpolat
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Daire Byrne
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - S Lawrence Bailey
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Aastha Chauhan
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Molly Y Mollica
- Bloodworks Research Institute, Seattle, WA, United States of America
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Jeff Harris
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, WA, United States of America
| | - Junmei Chen
- Bloodworks Research Institute, Seattle, WA, United States of America
| | - Ajay K Dhaka
- Department of Biological Structure, University of Washington, Seattle, WA, United States of America
| | - Nathan J Sniadecki
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, United States of America
| | - José A López
- Bloodworks Research Institute, Seattle, WA, United States of America
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Moritz Stolla
- Bloodworks Research Institute, Seattle, WA, United States of America
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
2
|
Selescu T, Bivoleanu RA, Iodi Carstens M, Manolache A, Caragea VM, Hutanu DE, Meerupally R, Wei ET, Carstens E, Zimmermann K, Babes A. TRPM8-dependent shaking in mammals and birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573364. [PMID: 38234797 PMCID: PMC10793462 DOI: 10.1101/2023.12.27.573364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Removing water from wet fur or feathers is important for thermoregulation in warm-blooded animals. The "wet dog shake" (WDS) behavior has been largely characterized in mammals but to a much lesser extent in birds. Although it is known that TRPM8 is the main molecular transducer of low temperature in mammals, it is not clear if wetness-induced shaking in furred and feathered animals is dependent on TRPM8. Here, we show that a novel TRPM8 agonist induces WDS in rodents and, importantly, in birds, similar to the shaking behavior evoked by water-spraying. Furthermore, the WDS onset depends on TRPM8, as we show in water-sprayed mice. Overall, our results provide multiple evidence for a TRPM8 dependence of WDS behaviors in all tested species. These suggest that a convergent evolution selected similar shaking behaviors to expel water from fur and feathers, with TRPM8 being involved in wetness sensing in both mammals and birds.
Collapse
|
3
|
O'Carroll R, Reynolds JP, Al-Roqi M, Aiyegbusi ED, Dooley D. ThermoCyte: an inexpensive open-source temperature control system for in vitro live-cell imaging. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231037. [PMID: 38034122 PMCID: PMC10685113 DOI: 10.1098/rsos.231037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Live-cell imaging is a common technique in microscopy to investigate dynamic cellular behaviour and permits the accurate and relevant analysis of a wide range of cellular and tissue parameters, such as motility, cell division, wound healing responses and calcium (Ca2+) signalling in cell lines, primary cell cultures and ex vivo preparations. Furthermore, this can occur under many experimental conditions, making live-cell imaging indispensable for biological research. Systems which maintain cells at physiological conditions outside of a CO2 incubator are often bulky, expensive and use proprietary components. Here we present an inexpensive, open-source temperature control system for in vitro live-cell imaging. Our system 'ThermoCyte', which is constructed from standard electronic components, enables precise tuning, control and logging of a temperature 'set point' for imaging cells at physiological temperature. We achieved stable thermal dynamics, with reliable temperature cycling and a standard deviation of 0.42°C over 1 h. Furthermore, the device is modular in nature and is adaptable to the researcher's specific needs. This represents simple, inexpensive and reliable tool for laboratories to carry out custom live-cell imaging protocols, on a standard laboratory bench, at physiological temperature.
Collapse
Affiliation(s)
- Ross O'Carroll
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - James P. Reynolds
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Mazen Al-Roqi
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Emmanuelle Damilola Aiyegbusi
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| |
Collapse
|
4
|
Stratiievska A, Filippova O, Özpolat T, Byrne D, Bailey SL, Mollica MY, Harris J, Esancy K, Chen J, Dhaka AK, Sniadecki NJ, López JA, Stolla M. Cold temperature induces a TRPM8-independent calcium release from the endoplasmic reticulum in human platelets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549670. [PMID: 37502986 PMCID: PMC10370076 DOI: 10.1101/2023.07.19.549670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Platelets are sensitive to temperature changes and akin to sensory neurons, are activated by a decrease in temperature. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this interdisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.
Collapse
Affiliation(s)
| | | | | | - Daire Byrne
- Bloodworks Research Institute, Seattle, WA, USA
| | | | - Molly Y. Mollica
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Jeff Harris
- Bloodworks Research Institute, Seattle, WA, USA
| | - Kali Esancy
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Research Institute, Seattle, WA, USA
| | - Ajay K. Dhaka
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Nathan J. Sniadecki
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, USA
| | - José A López
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Moritz Stolla
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, Division of Hematology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Buijs TJ, Vilar B, Tan C, McNaughton PA. STIM1 and ORAI1 form a novel cold transduction mechanism in sensory and sympathetic neurons. EMBO J 2023; 42:e111348. [PMID: 36524441 PMCID: PMC9890232 DOI: 10.15252/embj.2022111348] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Moderate coolness is sensed by TRPM8 ion channels in peripheral sensory nerves, but the mechanism by which noxious cold is detected remains elusive. Here, we show that somatosensory and sympathetic neurons express two distinct mechanisms to detect noxious cold. In the first, inhibition by cold of a background outward current causes membrane depolarization that activates an inward current through voltage-dependent calcium (CaV ) channels. A second cold-activated mechanism is independent of membrane voltage, is inhibited by blockers of ORAI ion channels and by downregulation of STIM1, and is recapitulated in HEK293 cells by co-expression of ORAI1 and STIM1. Using total internal reflection fluorescence microscopy we found that cold causes STIM1 to aggregate with and activate ORAI1 ion channels, in a mechanism similar to that underlying store-operated calcium entry (SOCE), but directly activated by cold and not by emptying of calcium stores. This novel mechanism may explain the phenomenon of cold-induced vasodilation (CIVD), in which extreme cold increases blood flow in order to preserve the integrity of peripheral tissues.
Collapse
Affiliation(s)
- Tamara J Buijs
- Wolfson Centre for Age‐Related DiseasesKing's College LondonLondonUK
- Present address:
Department of Synapse and Network DevelopmentNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Bruno Vilar
- Wolfson Centre for Age‐Related DiseasesKing's College LondonLondonUK
| | - Chun‐Hsiang Tan
- Department of PharmacologyUniversity of CambridgeCambridgeUK
- Present address:
Department of NeurologyKaohsiung Medical University HospitalKaohsiungTaiwan
- Present address:
Graduate Institute of Clinical Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | | |
Collapse
|
6
|
Zhu X, Lin JW, Sander MY. Bidirectional modulation of evoked synaptic transmission by pulsed infrared light. Sci Rep 2022; 12:14196. [PMID: 35987765 PMCID: PMC9392733 DOI: 10.1038/s41598-022-18139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
Infrared (IR) neuromodulation (INM) has been demonstrated as a novel modulation modality of neuronal excitability. However, the effects of pulsed IR light on synaptic transmission have not been investigated systematically. In this report, the IR light (2 μm) is used to directly modulate evoked synaptic transmission at the crayfish opener neuromuscular junction. The extracellularly recorded terminal action potentials (tAPs) and evoked excitatory postsynaptic currents (EPSCs) modulated by localized IR light illumination (500 ms, 3–13 mW) aimed at the synapses are analyzed. The impact of a single IR light pulse on the presynaptic Ca2+ influx is monitored with Ca2+ indicators. The EPSC amplitude is enhanced, and its rising phase is accelerated under relatively low IR light power levels and localized temperature rises. Increasing the IR light power reversibly suppresses and eventually blocks the EPSCs. Meanwhile, the synaptic delay, tAP amplitude, and presynaptic Ca2+ influx decrease monotonously with higher IR light power. It is demonstrated for the first time that IR light illumination has bidirectional effects on evoked synaptic transmission. These results highlight the efficacy and flexibility of using pulsed IR light to directly control synaptic transmission and advance our understanding of INM of neural networks.
Collapse
|
7
|
Badin JK, Eggenberger C, Rodenbeck SD, Hashmi ZA, Wang IW, Garcia JP, Alloosh M, Sturek M. Intracellular Ca 2+ Dysregulation in Coronary Smooth Muscle Is Similar in Coronary Disease of Humans and Ossabaw Miniature Swine. J Cardiovasc Transl Res 2022; 15:167-178. [PMID: 34286469 PMCID: PMC10620470 DOI: 10.1007/s12265-021-10153-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/02/2021] [Indexed: 12/31/2022]
Abstract
Intracellular free Ca2+ ([Ca2+]i) dysregulation occurs in coronary smooth muscle (CSM) in atherosclerotic coronary artery disease (CAD) of metabolic syndrome (MetS) swine. Our goal was to determine how CAD severity, arterial structure, and MetS risk factors associate with [Ca2+]i dysregulation in human CAD compared to changes in Ossabaw miniature swine. CSM cells were dispersed from coronary arteries of explanted hearts from transplant recipients and from lean and MetS swine with CAD. CSM [Ca2+]i elicited by Ca2+ influx and sarcoplasmic reticulum (SR) Ca2+ release and sequestration was measured with fura-2. Increased [Ca2+]i signaling was associated with advanced age and a greater media area in human CAD. Decreased [Ca2+]i signaling was associated with a greater number of risk factors and a higher plaque burden in human and swine CAD. Similar [Ca2+]i dysregulation exhibited in human and Ossabaw swine CSM provides strong evidence for the translational relevance of this large animal model.
Collapse
Affiliation(s)
- Jill K Badin
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA
| | - Caleb Eggenberger
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA
- Marian University College of Osteopathic Medicine, Indianapolis, IN, 46222, USA
| | - Stacey Dineen Rodenbeck
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA
- Department of Biology, Harding University, Searcy, AR, 72149, USA
| | - Zubair A Hashmi
- Cardiothoracic Transplantation Surgery, Indiana University - Methodist Hospital, Indianapolis, IN, 46202, USA
| | - I-Wen Wang
- Cardiothoracic Transplantation Surgery, Indiana University - Methodist Hospital, Indianapolis, IN, 46202, USA
| | - Jose P Garcia
- Cardiothoracic Transplantation Surgery, Indiana University - Methodist Hospital, Indianapolis, IN, 46202, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA
| | - Michael Sturek
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Sciences, Room 385, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Kaszas A, Szalay G, Slézia A, Bojdán A, Vanzetta I, Hangya B, Rózsa B, O'Connor R, Moreau D. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci Rep 2021; 11:9775. [PMID: 33963220 PMCID: PMC8105372 DOI: 10.1038/s41598-021-89163-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Infrared neural stimulation is a promising tool for stimulating the brain because it can be used to excite with high spatial precision without the need of delivering or inserting any exogenous agent into the tissue. Very few studies have explored its use in the brain, as most investigations have focused on sensory or motor nerve stimulation. Using intravital calcium imaging with the genetically encoded calcium indicator GCaMP6f, here we show that the application of infrared neural stimulation induces intracellular calcium signals in Layer 2/3 neurons in mouse cortex in vivo. The number of neurons exhibiting infrared-induced calcium response as well as the amplitude of those signals are shown to be both increasing with the energy density applied. By studying as well the spatial extent of the stimulation, we show that reproducibility of the stimulation is achieved mainly in the central part of the infrared beam path. Stimulating in vivo at such a degree of precision and without any exogenous chromophores enables multiple applications, from mapping the brain's connectome to applications in systems neuroscience and the development of new therapeutic tools for investigating the pathological brain.
Collapse
Affiliation(s)
- Attila Kaszas
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Gergely Szalay
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Andrea Slézia
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Alexandra Bojdán
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Ivo Vanzetta
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Two-Photon Laboratory, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, 1083, Hungary
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France.
| |
Collapse
|
9
|
Dhandapani P, Dondapati SK, Zemella A, Bräuer D, Wüstenhagen DA, Mergler S, Kubick S. Targeted esterase-induced dye (TED) loading supports direct calcium imaging in eukaryotic cell-free systems. RSC Adv 2021; 11:16285-16296. [PMID: 35479141 PMCID: PMC9030739 DOI: 10.1039/d0ra08397f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
Calcium imaging is an important functional tool for analysing ion channels, transporters and pumps for drug screening in living cells. Depicted eukaryotic cell-free systems utilize microsomes, derived from the endoplasmic reticulum to incorporate the synthesized membrane proteins-like ion channels. Carboxylesterase is required to cleave the acetoxymethyl ester moiety of the chemical calcium indicators in order to ensure its immobility across the endoplasmic reticulum membrane. Absence or an inadequate amount of carboxylesterase in the endoplasmic reticulum of different eukaryotic cells poses a hindrance to perform calcium imaging in microsomes. In this work, we try to overcome this drawback and adapt the cell-based calcium imaging principle to a cell-free protein synthesis platform. Carboxylesterase synthesized in a Spodoptera frugiperda Sf21 lysate translation system is established as a viable calcium imaging tool in microsomes. Cell-free synthesized carboxylesterase inside microsomes is validated with esterase and dye loading assays. Native proteins from the endoplasmic reticulum, such as ryanodine channels and calcium ATPase, are analysed. Cell-free synthesized transient receptor potential channels are used as model proteins to demonstrate the realization of this concept. Carboxylesterase, the key enzyme to handle ester-based dyes, is synthesized in microsomes using eukaryotic cell-free protein synthesis platform and established as a viable calcium imaging tool to analyze native and cell-free synthesized ion channels.![]()
Collapse
Affiliation(s)
- Priyavathi Dhandapani
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Anne Zemella
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Dennis Bräuer
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Doreen Anja Wüstenhagen
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Stefan Mergler
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin Campus Virchow-Hospital Berlin Germany
| | - Stefan Kubick
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany .,Faculty of Health Sciences, Joint Faculty of Brandenburg University of Technology, Cottbus - Senftenberg, Theodor Fontane Medical School of Brandenburg, University of Potsdam Germany
| |
Collapse
|
10
|
Bednarkiewicz A, Marciniak L, Carlos LD, Jaque D. Standardizing luminescence nanothermometry for biomedical applications. NANOSCALE 2020; 12:14405-14421. [PMID: 32633305 DOI: 10.1039/d0nr03568h] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Luminescence nanothermometry enables accurate, remote, and all-optically-based thermal sensing. Notwithstanding its fast development, there are serious obstacles hindering reproducibility and reliable quantitative assessment of nanothermometers, which impede the intentional design, optimization and use of these sensors. These issues include ambiguities or absence of established universal rules for quantitative evaluation, incorrect assumptions about the mechanisms behind the thermal response of the sensors as well as the dependence of the nanothermometers readout on external conditions and host materials themselves. In this perspective article, we discuss these problems and propose a series of standardization guidelines to be followed. This critical discourse constitutes the first required step towards the ubiquitous acceptance, by the scientific community, of luminescence thermometry as a reliable tool for remote temperature determination in numerous practical biomedical implementations.
Collapse
Affiliation(s)
- Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Poland.
| | - Lukasz Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Poland.
| | - Luís D Carlos
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniel Jaque
- Fuorescence Imaging Group, Universidad Autónoma de Madrid, Madrid 28049, Spain and Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, Ctra. Colmenar Viejo, km., 9100 28034 Madrid, Spain
| |
Collapse
|
11
|
Olgar Y, Tuncay E, Degirmenci S, Billur D, Dhingra R, Kirshenbaum L, Turan B. Ageing-associated increase in SGLT2 disrupts mitochondrial/sarcoplasmic reticulum Ca 2+ homeostasis and promotes cardiac dysfunction. J Cell Mol Med 2020; 24:8567-8578. [PMID: 32652890 PMCID: PMC7412693 DOI: 10.1111/jcmm.15483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of death from cardiovascular disease is significantly higher in elderly populations; the underlying factors that contribute to the age‐associated decline in cardiac performance are poorly understood. Herein, we identify the involvement of sodium/glucose co‐transporter gene (SGLT2) in disrupted cellular Ca2+‐homeostasis, and mitochondrial dysfunction in age‐associated cardiac dysfunction. In contrast to younger rats (6‐month of age), older rats (24‐month of age) exhibited severe cardiac ultrastructural defects, including deformed, fragmented mitochondria with high electron densities. Cardiomyocytes isolated from aged rats demonstrated increased reactive oxygen species (ROS), loss of mitochondrial membrane potential and altered mitochondrial dynamics, compared with younger controls. Moreover, mitochondrial defects were accompanied by mitochondrial and cytosolic Ca2+ ([Ca2+]i) overload, indicative of disrupted cellular Ca2+‐homeostasis. Interestingly, increased [Ca2+]i coincided with decreased phosphorylation of phospholamban (PLB) and contractility. Aged‐cardiomyocytes also displayed high Na+/Ca2+‐exchanger (NCX) activity and blood glucose levels compared with young‐controls. Interestingly, the protein level of SGLT2 was dramatically increased in the aged cardiomyocytes. Moreover, SGLT2 inhibition was sufficient to restore age‐associated defects in [Ca2+]i‐homeostasis, PLB phosphorylation, NCX activity and mitochondrial Ca2+‐loading. Hence, the present data suggest that deregulated SGLT2 during ageing disrupts mitochondrial function and cardiac contractility through a mechanism that impinges upon [Ca2+]i‐homeostasis. Our studies support the notion that interventions that modulate SGLT2‐activity can provide benefits in maintaining [Ca2+]i and cardiac function with advanced age.
Collapse
Affiliation(s)
- Yusuf Olgar
- Departments of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Erkan Tuncay
- Departments of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sinan Degirmenci
- Departments of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Deniz Billur
- Departments of Histology-Embriyology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Rimpy Dhingra
- St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lorrie Kirshenbaum
- St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Belma Turan
- Departments of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
12
|
High-Throughput Fluorescence Assays for Ion Channels and GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:27-72. [DOI: 10.1007/978-3-030-12457-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Mao D, Li N, Xiong Z, Sun Y, Xu G. Single-Cell Optogenetic Control of Calcium Signaling with a High-Density Micro-LED Array. iScience 2019; 21:403-412. [PMID: 31704651 PMCID: PMC6889635 DOI: 10.1016/j.isci.2019.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
Precise optogenetic control, ideally down to single cells in dense cell populations, is essential in understanding the heterogeneity of cell networks. Devices with such capability, if built in a chip scale, will advance optogenetic studies at cellular levels in a variety of experimental settings. Here we demonstrate optogenetic control of intracellular Ca2+ dynamics at the single cell level using a 16-μm pitched micro-light emitting diode (LED) array that features high brightness, small spot size, fast response, and low voltage operation. Individual LED pixels are able to reliably trigger intracellular Ca2+ transients, confirmed by fluorescence microscopy and control experiments and cross-checked by two genetically coded Ca2+ indicators. Importantly, our array can optogenetically address individual cells that are sub-10 μm apart in densely packed cell populations. These results suggest the possible use of the micro-LED array toward a lab-on-a-chip for single-cell optogenetics, which may allow for pharmaceutical screening and fundamental studies on a variety of cell networks.
Collapse
Affiliation(s)
- Dacheng Mao
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Ningwei Li
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Zheshun Xiong
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Guangyu Xu
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
Thapa P, Arnquist I, Byrnes N, Denisenko AA, Foss FW, Jones BJP, McDonald AD, Nygren DR, Woodruff K. Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay. Sci Rep 2019; 9:15097. [PMID: 31641206 PMCID: PMC6805857 DOI: 10.1038/s41598-019-49283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/22/2019] [Indexed: 11/08/2022] Open
Abstract
The nature of the neutrino is one of the major open questions in experimental nuclear and particle physics. The most sensitive known method to establish the Majorana nature of the neutrino is detection of the ultra-rare process of neutrinoless double beta decay. However, identification of one or a handful of decay events within a large mass of candidate isotope, without obfuscation by backgrounds is a formidable experimental challenge. One hypothetical method for achieving ultra- low-background neutrinoless double beta decay sensitivity is the detection of single 136Ba ions produced in the decay of 136Xe ("barium tagging"). To implement such a method, a single-ion-sensitive barium detector must be developed and demonstrated in bulk liquid or dry gaseous xenon. This paper reports on the development of two families of dry-phase barium chemosensor molecules for use in high pressure xenon gas detectors, synthesized specifically for this purpose. One particularly promising candidate, an anthracene substituted aza-18-crown-6 ether, is shown to respond in the dry phase with almost no intrinsic background from the unchelated state, and to be amenable to barium sensing through fluorescence microscopy. This interdisciplinary advance, paired with earlier work demonstrating sensitivity to single barium ions in solution, opens a new path toward single ion detection in high pressure xenon gas.
Collapse
Affiliation(s)
- P Thapa
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA.
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - I Arnquist
- Pacific Northwest National Laboratory (PNNL), Richland, WA, 99352, USA
| | - N Byrnes
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - A A Denisenko
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - F W Foss
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - B J P Jones
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - A D McDonald
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - D R Nygren
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - K Woodruff
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
15
|
Neural basis of trigeminal chemo- and thermonociception in brown treesnakes, Boiga irregularis (Squamata: Colubridae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:677-686. [PMID: 29926181 DOI: 10.1007/s00359-018-1270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 10/28/2022]
Abstract
To elucidate the nociceptive system of the brown treesnake, Boiga irregularis, we exposed isolated brown treesnake trigeminal neurons to thermal and chemical stimulation. We measured responses as changes in intracellular calcium using ratiometric fluorescent calcium imaging. Responses to aversive thermal and chemical identified several classes of putative nociceptors. Compounds that were aversive excited many trigeminal neurons, putative chemonociceptors. Identification as nociceptors was further supported by lack of activation by compounds that were not aversive. Brown treesnake neurons had thermal thresholds ranging from 32 to 49 °C. The distribution was discontinuous, with a population of thresholds from 32 to 45 °C and a population with thresholds > 48 °C. Thermal stimulation of 48 °C has been shown to be strongly aversive to brown treesnakes, is lethal, and suggests the presence of thermonociceptors. Thermal sensitivity of brown treesnake trigeminal neurons greatly overlaps with chemical sensitivity; only 1.1% of neurons were sensitive to only thermal stimulation. 50% of brown treesnake trigeminal neurons tested with both > 48 °C and cinnamaldehyde responded to both stimuli, identifying putative polymodal nociceptors. Although a previous study found brown treesnakes insensitive to capsicum extract containing capsaicin, brown treesnake trigeminal neurons responded to capsaicin. These findings are of evolutionary interest as well as providing potential insights into managing this significant pest species.
Collapse
|
16
|
Barrett JN, Rincon S, Singh J, Matthewman C, Pasos J, Barrett EF, Rajguru SM. Pulsed infrared releases Ca 2+ from the endoplasmic reticulum of cultured spiral ganglion neurons. J Neurophysiol 2018; 120:509-524. [PMID: 29668377 DOI: 10.1152/jn.00740.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inner ear spiral ganglion neurons were cultured from day 4 postnatal mice and loaded with a fluorescent Ca2+ indicator (fluo-4, -5F, or -5N). Pulses of infrared radiation (IR; 1,863 nm, 200 µs, 200-250 Hz for 2-5 s, delivered via an optical fiber) produced a rapid, transient temperature increase of 6-12°C (above a baseline of 24-30°C). These IR pulse trains evoked transient increases in both nuclear and cytosolic Ca2+ concentration ([Ca2+]) of 0.20-1.4 µM, with a simultaneous reduction of [Ca2+] in regions containing endoplasmic reticulum (ER). IR-induced increases in cytosolic [Ca2+] continued in medium containing no added Ca2+ (±Ca2+ buffers) and low [Na+], indicating that the [Ca2+] increase was mediated by release from intracellular stores. Consistent with this hypothesis, the IR-induced [Ca2+] response was prolonged and eventually blocked by inhibition of ER Ca2+-ATPase with cyclopiazonic acid, and was also inhibited by a high concentration of ryanodine and by inhibitors of inositol (1,4,5)-trisphosphate (IP3)-mediated Ca2+ release (xestospongin C and 2-aminoethoxydiphenyl borate). The thermal sensitivity of the response suggested involvement of warmth-sensitive transient receptor potential (TRP) channels. The IR-induced [Ca2+] increase was inhibited by TRPV4 inhibitors (HC-067047 and GSK-2193874), and immunostaining of spiral ganglion cultures demonstrated the presence of TRPV4 and TRPM2 that colocalized with ER marker GRP78. These results suggest that the temperature sensitivity of IR-induced [Ca2+] elevations is conferred by TRP channels on ER membranes, which facilitate Ca2+ efflux into the cytosol and thereby contribute to Ca2+-induced Ca2+-release via IP3 and ryanodine receptors. NEW & NOTEWORTHY Infrared radiation-induced photothermal effects release Ca2+ from the endoplasmic reticulum of primary spiral ganglion neurons. This Ca2+ release is mediated by activation of transient receptor potential (TRPV4) channels and involves amplification by Ca2+-induced Ca2+-release. The neurons immunostained for warmth-sensitive channels, TRPV4 and TRPM2, which colocalize with endoplasmic reticulum. Pulsed infrared radiation provides a novel experimental tool for releasing intracellular Ca2+, studying Ca2+ regulatory mechanisms, and influencing neuronal excitability.
Collapse
Affiliation(s)
- John N Barrett
- Department of Physiology and Biophysics, University of Miami , Miami, Florida.,Neuroscience Program, University of Miami , Miami, Florida
| | - Samantha Rincon
- Department of Biomedical Engineering, University of Miami , Miami, Florida
| | - Jayanti Singh
- Department of Otolaryngology, University of Miami , Miami, Florida
| | | | - Julio Pasos
- Department of Otolaryngology, University of Miami , Miami, Florida
| | - Ellen F Barrett
- Department of Physiology and Biophysics, University of Miami , Miami, Florida.,Neuroscience Program, University of Miami , Miami, Florida
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami , Miami, Florida.,Department of Otolaryngology, University of Miami , Miami, Florida
| |
Collapse
|
17
|
Carr L, Bardet SM, Arnaud-Cormos D, Leveque P, O'Connor RP. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells. Bioelectrochemistry 2018; 119:68-75. [DOI: 10.1016/j.bioelechem.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022]
|
18
|
Abstract
Supplemental Digital Content is Available in the Text. The approved antiepileptic drug primidone potently inhibits TRPM3 channels and thereby exerts analgesic properties to chemical pain and thermal hyperalgesia in mice. The melastatin-related transient receptor potential (TRP) channel TRPM3 is a nonselective cation channel expressed in nociceptive neurons and activated by heat. Because TRPM3-deficient mice show inflammatory thermal hyperalgesia, pharmacological inhibition of TRPM3 may exert antinociceptive properties. Fluorometric Ca2+ influx assays and a compound library containing approved or clinically tested drugs were used to identify TRPM3 inhibitors. Biophysical properties of channel inhibition were assessed using electrophysiological methods. The nonsteroidal anti-inflammatory drug diclofenac, the tetracyclic antidepressant maprotiline, and the anticonvulsant primidone were identified as highly efficient TRPM3 blockers with half-maximal inhibition at 0.6 to 6 μM and marked specificity for TRPM3. Most prominently, primidone was biologically active to suppress TRPM3 activation by pregnenolone sulfate (PregS) and heat at concentrations markedly lower than plasma concentrations commonly used in antiepileptic therapy. Primidone blocked PregS-induced Ca2+i influx through TRPM3 by allosteric modulation and reversibly inhibited atypical inwardly rectifying TRPM3 currents induced by coapplication of PregS and clotrimazole. In vivo, analgesic effects of low doses of primidone were demonstrated in mice, applying PregS- and heat-induced pain models, including inflammatory hyperalgesia. Thus, applying the approved drug at concentrations that are lower than those needed to induce anticonvulsive effects offers a shortcut for studying physiological and pathophysiological roles of TRPM3 in vivo.
Collapse
|
19
|
Pozzi D, Ban J, Iseppon F, Torre V. An improved method for growing neurons: Comparison with standard protocols. J Neurosci Methods 2017; 280:1-10. [PMID: 28137433 DOI: 10.1016/j.jneumeth.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/22/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Since different culturing parameters - such as media composition or cell density - lead to different experimental results, it is important to define the protocol used for neuronal cultures. The vital role of astrocytes in maintaining homeostasis of neurons - both in vivo and in vitro - is well established: the majority of improved culturing conditions for primary dissociated neuronal cultures rely on astrocytes. NEW METHOD Our culturing protocol is based on a novel serum-free preparation of astrocyte - conditioned medium (ACM). We compared the proposed ACM culturing method with other two commonly used methods Neurobasal/B27- and FBS- based media. We performed morphometric characterization by immunocytochemistry and functional analysis by calcium imaging for all three culture methods at 1, 7, 14 and 60days in vitro (DIV). RESULTS ACM-based cultures gave the best results for all tested criteria, i.e. growth cone's size and shape, neuronal outgrowth and branching, network activity and synchronization, maturation and long-term survival. The differences were more pronounced when compared with FBS-based medium. Neurobasal/B27 cultures were comparable to ACM for young cultures (DIV1), but not for culturing times longer than DIV7. COMPARISON WITH EXISTING METHOD(S) ACM-based cultures showed more robust neuronal outgrowth at DIV1. At DIV7 and 60, the activity of neuronal network grown in ACM had a more vigorous spontaneous electrical activity and a higher degree of synchronization. CONCLUSIONS We propose our ACM-based culture protocol as an improved and more suitable method for both short- and long-term neuronal cultures.
Collapse
Affiliation(s)
- Diletta Pozzi
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Jelena Ban
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Federico Iseppon
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
20
|
Song K, Wang H, Kamm GB, Pohle J, de Castro Reis F, Heppenstall P, Wende H, Siemens J. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 2016; 353:1393-1398. [PMID: 27562954 PMCID: PMC7612276 DOI: 10.1126/science.aaf7537] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/27/2016] [Indexed: 07/26/2023]
Abstract
Body temperature homeostasis is critical for survival and requires precise regulation by the nervous system. The hypothalamus serves as the principal thermostat that detects and regulates internal temperature. We demonstrate that the ion channel TRPM2 [of the transient receptor potential (TRP) channel family] is a temperature sensor in a subpopulation of hypothalamic neurons. TRPM2 limits the fever response and may detect increased temperatures to prevent overheating. Furthermore, chemogenetic activation and inhibition of hypothalamic TRPM2-expressing neurons in vivo decreased and increased body temperature, respectively. Such manipulation may allow analysis of the beneficial effects of altered body temperature on diverse disease states. Identification of a functional role for TRP channels in monitoring internal body temperature should promote further analysis of molecular mechanisms governing thermoregulation and foster the genetic dissection of hypothalamic circuits involved with temperature homeostasis.
Collapse
Affiliation(s)
- Kun Song
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Hong Wang
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Gretel B. Kamm
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Jörg Pohle
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Fernanda de Castro Reis
- European Molecular Biology Laboratory (EMBL), Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00016 Monterotondo, Italy
| | - Paul Heppenstall
- European Molecular Biology Laboratory (EMBL), Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00016 Monterotondo, Italy
- Molecular Medicine Partnership Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Hagen Wende
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Jan Siemens
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
21
|
Schlafer S, Meyer RL. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods 2016; 138:50-59. [PMID: 26979645 DOI: 10.1016/j.mimet.2016.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 11/28/2022]
Abstract
The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens. Confocal microscopes are held by many research groups, and a number of methods for qualitative and quantitative imaging of the matrix have emerged in recent years. This review provides an overview and a critical discussion of techniques used to visualize different matrix compounds, to determine the concentration of solutes and the diffusive properties of the biofilm matrix.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Department of Dentistry, HEALTH, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Bioscience, Science and Technology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.
| |
Collapse
|
22
|
Chen CS, Anaya JM, Chen EYT, Farr E, Chin WC. Ocean warming-acidification synergism undermines dissolved organic matter assembly. PLoS One 2015; 10:e0118300. [PMID: 25714090 PMCID: PMC4340923 DOI: 10.1371/journal.pone.0118300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected.
Collapse
Affiliation(s)
- Chi-Shuo Chen
- School of Engineering, University of California Merced, Merced, California, United States of America
| | - Jesse M. Anaya
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Eric Y-T Chen
- School of Engineering, University of California Merced, Merced, California, United States of America
| | - Erik Farr
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Wei-Chun Chin
- School of Engineering, University of California Merced, Merced, California, United States of America
| |
Collapse
|
23
|
Itoh H, Oyama K, Suzuki M, Ishiwata S. Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts. Biophysics (Nagoya-shi) 2014; 10:109-19. [PMID: 27493505 PMCID: PMC4629654 DOI: 10.2142/biophysics.10.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/16/2014] [Indexed: 12/31/2022] Open
Abstract
Temperature-sensitive Ca2+ dynamics occur primarily through transient receptor potential channels, but also by means of Ca2+ channels and pumps on the endoplasmic reticulum membrane. As such, cytoplasmic Ca2+ concentration ([Ca2+]cyt) is re-equilibrated by changes in ambient temperature. The present study investigated the effects of heat pulses (heating duration: 2 s or 150 s) on [Ca2+]cyt in single WI-38 fibroblasts, which are considered as normal cells. We found that Ca2+ burst occurred immediately after short (2 s) heat pulse, which is similar to our previous report on HeLa cells, but with less thermosensitivity. The heat pulses originated from a focused 1455-nm infrared laser light were applied in the vicinity of cells under the optical microscope. Ca2+ bursts induced by the heat pulse were suppressed by treating cells with inhibitors for sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) or inositol trisphosphate receptor (IP3R). Long (150 s) heat pulses also induced Ca2+ bursts after the onset of heating and immediately after re-cooling. Cells were more thermosensitive at physiological (37°C) than at room (25°C) temperature; however, at 37°C, cells were responsive at a higher temperature (ambient temperature+heat pulse). These results strongly suggest that the heat pulse-induced Ca2+ burst is caused by a transient imbalance in Ca2+ flow between SERCA and IP3R, and offer a potential new method for thermally controlling Ca2+-regulated cellular functions.
Collapse
Affiliation(s)
- Hideki Itoh
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Institute of Medical Biology, Agency for Science Technology & Research (ASTAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Kotaro Oyama
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore; Organization for University Research Initiatives, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shin'ichi Ishiwata
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore; Organization for University Research Initiatives, Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| |
Collapse
|
24
|
Smith IC, Vandenboom R, Tupling AR. Juxtaposition of the changes in intracellular calcium and force during staircase potentiation at 30 and 37°C. J Gen Physiol 2014; 144:561-70. [PMID: 25422504 PMCID: PMC4242813 DOI: 10.1085/jgp.201411257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperature-dependent changes in basal calcium and in the calcium transient contribute to force potentiation during repetitive stimulation. Ca2+ entry during the action potential stimulates muscle contraction. During repetitive low frequency stimulation, skeletal muscle undergoes staircase potentiation (SP), a progressive increase in the peak twitch force induced by each successive stimulus. Multiple mechanisms, including myosin regulatory light chain phosphorylation, likely contribute to SP, a temperature-dependent process. Here, we used the Ca2+-sensitive fluorescence indicators acetoxymethyl (AM)-furaptra and AM-fura-2 to examine the intracellular Ca2+ transient (ICT) and the baseline Ca2+ level at the onset of each ICT during SP at 30 and 37°C in mouse lumbrical muscle. The stimulation protocol, 8 Hz for 8 s, resulted in a 27 ± 3% increase in twitch force at 37°C and a 7 ± 2% decrease in twitch force at 30°C (P < 0.05). Regardless of temperature, the peak rate of force production (+df/dt) was higher in all twitches relative to the first twitch (P < 0.05). Consistent with the differential effects of stimulation on twitch force at the two temperatures, raw ICT amplitude decreased during repetitive stimulation at 30°C (P < 0.05) but not at 37°C. Cytosolic Ca2+ accumulated during SP such that baseline Ca2+ at the onset of ICTs occurring late in the train was higher (P < 0.05) than that of those occurring early in the train. ICT duration increased progressively at both temperatures. This effect was not entirely proportional to the changes in twitch duration, as twitch duration characteristically decreased before increasing late in the protocol. This is the first study identifying a changing ICT as an important, and temperature-sensitive, modulator of muscle force during repetitive stimulation. Moreover, we extend previous observations by demonstrating that contraction-induced increases in baseline Ca2+ coincide with greater +df/dt but not necessarily with higher twitch force.
Collapse
Affiliation(s)
- Ian C Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rene Vandenboom
- Department of Kinesiology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Oheim M, van 't Hoff M, Feltz A, Zamaleeva A, Mallet JM, Collot M. New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2284-306. [PMID: 24681159 DOI: 10.1016/j.bbamcr.2014.03.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/09/2014] [Indexed: 01/15/2023]
Abstract
Most chemical and, with only a few exceptions, all genetically encoded fluorimetric calcium (Ca(2+)) indicators (GECIs) emit green fluorescence. Many of these probes are compatible with red-emitting cell- or organelle markers. But the bulk of available fluorescent-protein constructs and transgenic animals incorporate green or yellow fluorescent protein (GFP and YFP respectively). This is, in part, not only heritage from the tendency to aggregate of early-generation red-emitting FPs, and due to their complicated photochemistry, but also resulting from the compatibility of green-fluorescent probes with standard instrumentation readily available in most laboratories and core imaging facilities. Photochemical constraints like limited water solubility and low quantum yield have contributed to the relative paucity of red-emitting Ca(2+) probes compared to their green counterparts, too. The increasing use of GFP and GFP-based functional reporters, together with recent developments in optogenetics, photostimulation and super-resolution microscopies, has intensified the quest for red-emitting Ca(2+) probes. In response to this demand more red-emitting chemical and FP-based Ca(2+)-sensitive indicators have been developed since 2009 than in the thirty years before. In this topical review, we survey the physicochemical properties of these red-emitting Ca(2+) probes and discuss their utility for biological Ca(2+) imaging. Using the spectral separability index Xijk (Oheim M., 2010. Methods in Molecular Biology 591: 3-16) we evaluate their performance for multi-color excitation/emission experiments, involving the identification of morphological landmarks with GFP/YFP and detecting Ca(2+)-dependent fluorescence in the red spectral band. We also establish a catalog of criteria for evaluating Ca(2+) indicators that ideally should be made available for each probe. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Martin Oheim
- CNRS, UMR 8154, Paris F-75006, France; INSERM, U603, Paris F-75006, France; University Paris Descartes, PRES Sorbonne Paris Cité, Laboratory of Neurophysiology and New Microscopies, 45 rue des Saints Pères, Paris F-75006, France.
| | - Marcel van 't Hoff
- CNRS, UMR 8154, Paris F-75006, France; INSERM, U603, Paris F-75006, France; University Paris Descartes, PRES Sorbonne Paris Cité, Laboratory of Neurophysiology and New Microscopies, 45 rue des Saints Pères, Paris F-75006, France; University of Florence, LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| | - Anne Feltz
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris F-75005, France; INSERM U1024, Paris F-75005, France; CNRS UMR 8197, Paris F-75005, France
| | - Alsu Zamaleeva
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris F-75005, France; INSERM U1024, Paris F-75005, France; CNRS UMR 8197, Paris F-75005, France
| | - Jean-Maurice Mallet
- UPMC Université́ Paris 06, Ecole Normale Supérieure (ENS), 24 rue Lhomond, Paris F-75005, France; CNRS UMR 7203, Paris F-75005, France
| | - Mayeul Collot
- UPMC Université́ Paris 06, Ecole Normale Supérieure (ENS), 24 rue Lhomond, Paris F-75005, France; CNRS UMR 7203, Paris F-75005, France
| |
Collapse
|
26
|
Wang L, Zhang D, Schwarz W. TRPV Channels in Mast Cells as a Target for Low-Level-Laser Therapy. Cells 2014; 3:662-73. [PMID: 24971848 PMCID: PMC4197630 DOI: 10.3390/cells3030662] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/09/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
Low-level laser irradiation in the visible as well as infrared range is applied to skin for treatment of various diseases. Here we summarize and discuss effects of laser irradiation on mast cells that leads to degranulation of the cells. This process may contribute to initial steps in the final medical effects. We suggest that activation of TRPV channels in the mast cells forms a basis for the underlying mechanisms and that released ATP and histamine may be putative mediators for therapeutic effects.
Collapse
Affiliation(s)
- Lina Wang
- Shanghai University of Traditional Chinese Medicine and Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China.
| | - Di Zhang
- Department of Mechanics and Engineering Science, Fudan University Shanghai, Shanghai 201203, China.
| | - Wolfgang Schwarz
- Institute for Biophysics, Goethe-University Frankfurt am Main, 60438 Frankfurt, Germany.
| |
Collapse
|
27
|
Liu X, Mao D, Cole JM, Xu Z. Temperature insensitive fluorescence intensity in a coumarin monomer–aggregate coupled system. Chem Commun (Camb) 2014; 50:9329-32. [DOI: 10.1039/c4cc04245j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Lumbreras V, Bas E, Gupta C, Rajguru SM. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling. J Neurophysiol 2014; 112:1246-55. [PMID: 24920028 DOI: 10.1152/jn.00253.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca(2+) imaging. Both types of neurons responded consistently with robust intracellular Ca(2+) ([Ca(2+)]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25-1 pps). Radiant exposures of ∼637 mJ/cm(2) resulted in continual neuronal activation. Temperature or [Ca(2+)] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca(2+) involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na(+), K(+), and Ca(2+) plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca(2+) cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca(2+)]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca(2+) release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses.
Collapse
Affiliation(s)
- Vicente Lumbreras
- Department of Biomedical Engineering, University of Miami, Miami, Florida; and
| | - Esperanza Bas
- Department of Otolaryngology, University of Miami, Miami, Florida
| | - Chhavi Gupta
- Department of Otolaryngology, University of Miami, Miami, Florida
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, Florida; and Department of Otolaryngology, University of Miami, Miami, Florida
| |
Collapse
|
29
|
Calcium imaging of infrared-stimulated activity in rodent brain. Cell Calcium 2014; 55:183-90. [PMID: 24674600 DOI: 10.1016/j.ceca.2014.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 11/20/2022]
Abstract
Infrared neural stimulation (INS) is a promising neurostimulation technique that can activate neural tissue with high spatial precision and without the need for exogenous agents. However, little is understood about how infrared light interacts with neural tissue on a cellular level, particularly within the living brain. In this study, we use calcium sensitive dye imaging on macroscopic and microscopic scales to explore the spatiotemporal effects of INS on cortical calcium dynamics. The INS-evoked calcium signal that was observed exhibited a fast and slow component suggesting activation of multiple cellular mechanisms. The slow component of the evoked signal exhibited wave-like properties suggesting network activation, and was verified to originate from astrocytes through pharmacology and 2-photon imaging. We also provide evidence that the fast calcium signal may have been evoked through modulation of glutamate transients. This study demonstrates that pulsed infrared light can induce intracellular calcium modulations in both astrocytes and neurons, providing new insights into the mechanisms of action of INS in the brain.
Collapse
|
30
|
Dickinson GD, Parker I. Temperature dependence of IP3-mediated local and global Ca2+ signals. Biophys J 2013; 104:386-95. [PMID: 23442860 DOI: 10.1016/j.bpj.2012.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/12/2012] [Accepted: 12/13/2012] [Indexed: 11/28/2022] Open
Abstract
We examined the effect of temperature (12-40°C) on local and global Ca2+ signals mediated by inositol trisphosphate receptor/channels (IP3R) in human neuroblastoma (SH-SY5Y) cells. The amplitudes and spatial spread of local signals arising from single IP3R (blips) and clusters of IP3R (puffs) showed little temperature dependence, whereas their kinetics (durations and latencies) were markedly accelerated by increasing temperature. In contrast, the amplitude of global Ca2+ waves increased appreciably at lower temperatures, probably as a result of the longer duration of IP(3)R channel opening. Several parameters, including puff and blip durations, puff latency and frequency, and frequency of repetitive Ca2+ waves, showed a biphasic temperature dependence on Arrhenius plots. In all cases the transition temperature occurred at ∼25°C, possibly reflecting a phase transition in the lipids of the endoplasmic reticulum membrane. Although the IP3-evoked Ca2+ signals were qualitatively similar at 25°C and 36°C, one should consider the temperature sensitivity of IP3-mediated signal amplitudes when extrapolating from room temperature to physiological temperature. Conversely, further cooling may be advantageous to improve the optical resolution of channel gating kinetics.
Collapse
Affiliation(s)
- George D Dickinson
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA.
| | | |
Collapse
|
31
|
Herlenius E, Thonabulsombat C, Forsberg D, Jäderstad J, Jäderstad LM, Björk L, Olivius P. Functional stem cell integration assessed by organotypic slice cultures. ACTA ACUST UNITED AC 2013; Chapter 2:Unit 2D.13. [PMID: 23154935 DOI: 10.1002/9780470151808.sc02d13s23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neuronal network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue.
Collapse
Affiliation(s)
- Eric Herlenius
- Neonatal Research Unit, Department of Women's and Children's Health, Astrid Lindgren Children's Hospital, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Walsh AJ, Masters DB, Jansen ED, Welch AJ, Mahadevan-Jansen A. The effect of temperature on the autofluorescence of scattering and non-scattering tissue. Lasers Surg Med 2012; 44:712-8. [PMID: 23037939 DOI: 10.1002/lsm.22080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2012] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES With the increasing use of fluorescence in medical applications, a comprehensive understanding of the effect of temperature on tissue autofluorescence is essential. The purpose of this study is to explore the effect of temperature on the fluorescence of porcine cornea and rat skin and determine the relative contributions of irreversible changes in optical properties and in fluorescence yield. STUDY DESIGN/MATERIALS AND METHODS Fluorescence, diffuse reflectance, and temperature measurements were acquired from excised porcine cornea and rat skin over a temperature range of 0-80 °C. A dual excitation system was used with a 337 nm pulsed nitrogen laser for the fluorescence and a white light source for the diffuse reflectance measurements. A thermal camera measured tissue temperature. Optical property changes were inferred from diffuse reflectance measurements. The reversibility of the change in fluorescence was examined by acquiring measurements while the tissue sample cooled from the highest induced temperature to room temperature. RESULTS The fluorescence intensity decreased with increasing tissue temperature. This fluorescence change was reversible when the tissue was heated to a temperature of 45 °C, but irreversible when heated to a temperature of 80 °C. CONCLUSION Auto-fluorescence intensity dependence on temperature appears to be a combination of temperature-induced optical property changes and reduced fluorescence quantum yield due to changes in collagen structure. Temperature-induced changes in measured fluorescence must be taken into consideration in applications where fluorescence is used to diagnose disease or guide therapy.
Collapse
Affiliation(s)
- Alex J Walsh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Vetter I. Development and optimization of FLIPR high throughput calcium assays for ion channels and GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:45-82. [PMID: 22453938 DOI: 10.1007/978-94-007-2888-2_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ca(2+) permeable ion channels and GPCRs linked to Ca(2+) release are important drug targets, with modulation of Ca(2+) signaling increasingly recognized as a valid therapeutic strategy in a range of diseases. The FLIPR is a high throughput imaging plate reader that has contributed substantially to drug discovery efforts and pharmacological characterization of receptors and ion channels coupled to Ca(2+). Now in its fourth generation, the FLIPR(TETRA) is an industry standard for high throughput Ca(2+) assays. With an increasing number of excitation LED banks and emission filter sets available; FLIPR Ca(2+) assays are becoming more versatile. This chapter describes general methods for establishing robust FLIPR Ca(2+) assays, incorporating practical aspects as well as suggestions for assay optimization, to guide the reader in the development and optimization of high throughput FLIPR assays for ion channels and GPCRs.
Collapse
Affiliation(s)
- Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
35
|
Bowman SM, Drzewiecki KE, Mojica ERE, Zielinski AM, Siegel A, Aga DS, Berry JO. Toxicity and reductions in intracellular calcium levels following uptake of a tetracycline antibiotic in Arabidopsis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8958-64. [PMID: 21882870 DOI: 10.1021/es200863j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant responses to natural stresses have been the focus of numerous studies; however less is known about plant responses to artificial (i.e., man-made) stress. Chlortetracycline (CTC) is widely used in agriculture and becomes an environmental contaminant when introduced into soil from manure used as fertilizer. We show here that in the model plant Arabidopsis (Arabidopsis thaliana), root uptake of CTC leads to toxicity, with growth reductions and other effects. Analysis of protein accumulation and in vivo synthesis revealed numerous changes in soluble and membrane-associated proteins in leaves and roots. Many representative proteins associated with different cellular processes and compartments showed little or no change in response to CTC. However, differences in accumulation and synthesis of NAD-malic enzyme in leaves versus roots suggest potential CTC-associated effects on metabolic respiration may vary in different tissues. Fluorescence resonance energy transfer (FRET) analysis indicated reduced levels of intracellular calcium are associated with CTC uptake and toxicity. These findings support a model in which CTC uptake through roots leads to reductions in levels of intracellular calcium due to chelation. In turn, changes in overall patterns and levels of protein synthesis and accumulation due to reduced calcium ultimately lead to growth reductions and other toxicity effects.
Collapse
Affiliation(s)
- Shaun M Bowman
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Temperature-dependent STIM1 activation induces Ca²+ influx and modulates gene expression. Nat Chem Biol 2011; 7:351-8. [PMID: 21499266 PMCID: PMC3097298 DOI: 10.1038/nchembio.558] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/15/2011] [Indexed: 12/11/2022]
Abstract
Intracellular Ca2+ is essential for diverse cellular functions. Ca2+ entry into many cell types including immune cells is triggered by depleting endoplasmic reticulum (ER) Ca2+, a process termed store-operated Ca2+ entry (SOCE). STIM1 is an ER Ca2+ sensor. Upon Ca2+ store depletion, STIM1 clusters at ER-plasma membrane junctions where it interacts with and gates Ca2+-permeable Orai1 ion channels. Here we show that STIM1 is also activated by temperature. Heating cells caused clustering of STIM1 at temperatures above 35°C without depleting Ca2+ stores, and led to STIM1/Orai1-mediated Ca2+ influx as a heat off-response (response after cooling). Interestingly, the functional coupling of STIM1 and Orai1 is prevented at high temperatures, potentially explaining the heat off-response. Importantly, physiologically-relevant temperature shifts modulates STIM1-dependent gene expression in Jurkat T-cells. Therefore, temperature is an important regulator of STIM1 function.
Collapse
|
37
|
Ristagno G, Tantillo S, Sun S, Weil MH, Tang W. Hypothermia improves ventricular myocyte contractility under conditions of normal perfusion and after an interval of ischemia. Resuscitation 2010; 81:898-903. [PMID: 20395031 DOI: 10.1016/j.resuscitation.2010.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/17/2010] [Accepted: 03/19/2010] [Indexed: 11/18/2022]
Abstract
AIM Recent investigations have reported improved myocardial function during hypothermia following resuscitation from cardiac arrest. The effects of hypothermia on myocyte contractility were investigated under conditions of normal perfusion and after a 10min interval of ischemia. METHODS Ventricular myocytes were obtained from 10 male Sprague-Dawley rats weighing 400+/-50g. The myocytes were randomized to be perfused at: 37 degrees C, 34 degrees C, 32 degrees C, or 30 degrees C. A subsequent set of myocytes was subjected to 10min of ischemia at 37 degrees C, prior to being randomized to reperfusion at: 37 degrees C, 34 degrees C, 32 degrees C or 30 degrees C. Myocyte contractility was expressed as length-shortening percentage. Intracellular Ca(2+) transients were assessed in a separate group of myocytes preloaded with Fura-2/AM. Sensitivity to Ca(2+) was tested by increasing perfusate Ca(2+) content, i.e. 0.5mM, 1mM and 2mM. RESULTS During normal perfusion and following reperfusion after 10min of ischemia, myocyte contractility increased at 34 degrees C compared to 37 degrees C (P<0.01). When the perfusion temperature was decreased to 32 degrees C and 30 degrees C, contractility further increased (P<0.001). Intracellular Ca(2+) transients were greater during perfusion at 34 degrees C compared to those at 37 degrees C (P<0.001) and further increased at 30 degrees C (P<0.001). Increases in extracellular Ca(2+) concentration from 0.5mM to 2mM resulted in greater myocyte contractility during perfusion at 30 degrees C compared to that observed at 37 degrees C (P<0.001). Effects of hypothermia on intracellular Ca(2+) transients and sensitivity to Ca(2+) persisted after ischemia. CONCLUSIONS Hypothermia improved myocyte contractility, intracellular Ca(2+) transients and sensitivity to Ca(2+) under conditions of normal perfusion and following reperfusion after 10min of ischemia.
Collapse
Affiliation(s)
- Giuseppe Ristagno
- Weil Institute of Critical Care Medicine, Rancho Mirage, CA 92270, USA
| | | | | | | | | |
Collapse
|
38
|
Farkas MH, Mojica ERE, Patel M, Aga DS, Berry JO. Development of a rapid biolistic assay to determine changes in relative levels of intracellular calcium in leaves following tetracycline uptake by pinto bean plants. Analyst 2009; 134:1594-600. [DOI: 10.1039/b902147g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Chemical calcium indicators. Methods 2008; 46:143-51. [PMID: 18929663 DOI: 10.1016/j.ymeth.2008.09.025] [Citation(s) in RCA: 397] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/12/2008] [Indexed: 11/24/2022] Open
Abstract
Our understanding of the underlying mechanisms of Ca2+ signaling as well as our appreciation for its ubiquitous role in cellular processes has been rapidly advanced, in large part, due to the development of fluorescent Ca2+ indicators. In this chapter, we discuss some of the most common chemical Ca2+ indicators that are widely used for the investigation of intracellular Ca2+ signaling. Advantages, limitations and relevant procedures will be presented for each dye including their spectral qualities, dissociation constants, chemical forms, loading methods and equipment for optimal imaging. Chemical indicators now available allow for intracellular Ca2+ detection over a very large range (<50 nM to >50 microM). High affinity indicators can be used to quantify Ca2+ levels in the cytosol while lower affinity indicators can be optimized for measuring Ca2+ in subcellular compartments with higher concentrations. Indicators can be classified into either single wavelength or ratiometric dyes. Both classes require specific lasers, filters, and/or detection methods that are dependent upon their spectral properties and both classes have advantages and limitations. Single wavelength indicators are generally very bright and optimal for Ca2+ detection when more than one fluorophore is being imaged. Ratiometric indicators can be calibrated very precisely and they minimize the most common problems associated with chemical Ca2+ indicators including uneven dye loading, leakage, photobleaching, and changes in cell volume. Recent technical advances that permit in vivo Ca2+ measurements will also be discussed.
Collapse
Affiliation(s)
- R Madelaine Paredes
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
40
|
Ndobo-Epoy JP, Lesniewska E, Guicquero JP. Nano-pH Sensor for the Study of Reactive Materials. Anal Chem 2007; 79:7560-4. [PMID: 17715993 DOI: 10.1021/ac070706c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the development of a new iridium oxide nano-pH sensor designed to work in the range of pH 3-14. The fabrication process of reproducible iridium nanotips is described. The nanotips are covered by an insulating layer of parylene to ensure a chemical insulation. The use of a gallium focused ion beam enables the opening of the apex, leading to a sensing area of 100 nm diameter. A 12 h oxidation of the iridium tip in an oxygen atmosphere gives in a stable pH response. The calibration curve in buffer solutions exhibited a Nernstian behavior (slope 59.2 mV/pH). The distance control between the sample and the nanosensor is performed by atomic force microscopy (AFM), using either a shear force control or an inverted AFM configuration. The results of the hydration of two reactive samples, tricalcium silicate and tricalcium aluminate, having a size of 50 microm only, are presented.
Collapse
|
41
|
Douma K, Megens RTA, Reitsma S, Prinzen L, Slaaf DW, Van Zandvoort MAMJ. Two-photon lifetime imaging of fluorescent probes in intact blood vessels: a window to sub-cellular structural information and binding status. Microsc Res Tech 2007; 70:467-75. [PMID: 17393531 DOI: 10.1002/jemt.20424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescence lifetime imaging (FLIM) provides a complementary contrast mechanism to fluorescence intensity and ratio imaging in intact tissue. With FLIM the time-resolved decay in fluorescence intensity of (interacting) fluorophores can be quantified by means of time correlated single photon counting (TCSPC). Here we focus on fluorescence lifetime imaging in intact blood vessels. Requisites for imaging in intact tissue are good penetration depth and limited tissue damage. Therefore, in this pilot-study, we performed TCSPC-FLIM using two-photon laser scanning microscopy to determine, with sub-cellular resolution, the fluorescence lifetime of two fluorescent probes. First, we focused on the nucleic acid dye SYTO41 in the various compartments of cells in vitro and in situ in the wall of intact mouse carotid arteries. Second, it was assessed whether the interaction of the lectin WGA-FITC with the endothelial glycocalyx affects its fluorescence lifetime. Results showed comparable mono-exponential fluorescence lifetimes of SYTO41 in the nuclei of cells in vitro and in situ. The slightly shorter fluorescence lifetime observed in the cytoplasm allowed discrimination of the nuclei. SYTO41 displayed strong mitochondrial staining, as was verified by the mitochondrion-specific probe CMXRos. In addition, mitochondrial staining by SYTO41 was accompanied by a green shift in emission. In the mitochondrial region, SYTO41 showed a highly bi-exponential and relatively fast decay, with two distinct lifetime components. It is hypothesized that the fitted bi-exponential decay can either be contributed to (1) the mathematical approximation of the fluorescence intensity decay or (2) the presence of free and DNA-bound SYTO41 in the mitochondrial compartment, leading to two lifetime components. The fluorescence lifetime of WGA-FITC decreased by approximately 25% upon binding to the endothelial glycocalyx. From this study, we conclude that FLIM offers an additional contrast mechanism in imaging intact tissue and provides information on binding status between a probe and its ligand.
Collapse
Affiliation(s)
- Kim Douma
- Department of Biophysics, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Zharov VP, Galanzha EI, Tuchin VV. Photothermal flow cytometry in vitro for detection and imaging of individual moving cells. Cytometry A 2007; 71:191-206. [PMID: 17323354 DOI: 10.1002/cyto.a.20384] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Photothermal (PT) cytometry has recently demonstrated great potential for the label-free detection of nonfluorescent cells under static conditions. The goal of our investigation was to expand this technique to the detection of flowing cells in vitro. METHODS Cells in flow were irradiated with short, tunable laser pulses (420-2,300 nm, 8 ns), and the absorbed energy was detected by monitoring of the temperature-dependent variations in the refractive index in the cells with a second, collinear probe beam in two modes: (a) PT imaging of single cells with a pulsed probe beam (639 nm, 13 ns) and (b) thermolens monitoring of the integral PT responses from individual cells as whole with a continuous-wave probe beam (633 nm, 2 mW). RESULTS PT flow cytometry at the current speed of analysis of 10 cell/s, with the capability to image selected cells of interest flowing at velocities up to 2 m/s, demonstrated the capability for (a) label-free detection of flowing single cells (e.g., blood and cancer cells) on the basis of the differences in their endogenous absorption properties, (b) identification of cells labeled with gold nanoparticles, (c) rapid cell viability testing, (d) aggregation immunoassay, and (e) optimization of selective nanophotothermolysis. CONCLUSIONS PT cytometry can be extended to the study of cells in flow. This new technique increases the speed of cell analysis approximately 10(2) times over that of conventional PT technique, with the potential to achieve a rate of 10(4)-10(5) cells/s in specific PT applications, which has previously been realized only with cells under static conditions.
Collapse
Affiliation(s)
- Vladimir P Zharov
- Philips Classic Laser Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA.
| | | | | |
Collapse
|
43
|
Yan X, Hill K, Gao H, Ji HF. Surface stress changes induced by the conformational change of proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:11241-4. [PMID: 17154610 DOI: 10.1021/la0605337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A potential binding assay based on conformational-change-induced micromechanical motion is described. Calmodulin was used to modify a microcantilever (MCL) by a self-assembled layer-by-layer approach. The results showed that the modified MCL bent when the proteins changed their conformation upon binding with Ca2+. The cantilever deflection amplitudes were different under different ionic strengths, indicating different degrees of conformational change of the proteins in these conditions. On the contrary, cantilevers modified by proteins, such as hemoglobin and myoglobin, that do not change conformations upon binding with analytes do not cause the cantilever deflection. These results suggest that the conformational changes of proteins may be used to develop cantilever biosensors, and the MCL system has potential for use in label-free, protein-analyte screening applications.
Collapse
Affiliation(s)
- Xiaodong Yan
- Chemistry Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| | | | | | | |
Collapse
|
44
|
Zharov VP, Kim JW, Curiel DT, Everts M. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2005; 1:326-45. [PMID: 17292107 DOI: 10.1016/j.nano.2005.10.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
Nanotechnologies represent an unprecedented recent advance that may revolutionize many areas of medicine and biology, including cancer diagnostics and treatment. Nanoparticle-based technologies have demonstrated especially high potential for medical purposes, ranging from diagnosing diseases to providing novel therapies. However, to be clinically relevant, the existing nanoparticle-based technologies must overcome several challenges, including selective nanoparticle delivery, potential cytotoxicity, imaging of nanoparticles, and real-time assessment of their therapeutic efficacy. This review addresses these issues by summarizing the recent advances in medical diagnostics and therapy with a focus on the self-assembly of gold nanoparticles into nanoclusters in live cells, in combination with their detection using photothermal (PT) techniques.
Collapse
Affiliation(s)
- Vladimir P Zharov
- Philips Classic Laser Laboratories, the Arkansas Cancer Research Center, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | | | | | |
Collapse
|
45
|
Demchenko AP. The problem of self-calibration of fluorescence signal in microscale sensor systems. LAB ON A CHIP 2005; 5:1210-23. [PMID: 16234943 DOI: 10.1039/b507447a] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most recent developments in fluorescent molecular sensor devices are based on "ON-OFF" switching, which is an operation with a single measurable parameter, commonly the quenching of total intensity. In the meantime, with this approach self-calibration on the molecular level is not achievable. This calibration is strongly needed in all kinds of microscale applications, including microarrays, microfluidic systems and living cell imaging. Different possibilities are discussed for overcoming this difficulty and an "OR-OR" switching concept is suggested that involves the two-channel detection as a promising solution. For achieving the desired efficiency specific conditions are needed: it should be a single reporter dye exhibiting rapid reversible excited-state reaction and providing two-band wavelength ratiometric response.
Collapse
Affiliation(s)
- Alexander P Demchenko
- TUBITAK Research Institute for Genetic Engineering and Biotechnology, 41470 Gebze-Kocaeli, Turkey.
| |
Collapse
|
46
|
Guatteo E, Chung KKH, Bowala TK, Bernardi G, Mercuri NB, Lipski J. Temperature Sensitivity of Dopaminergic Neurons of the Substantia Nigra Pars Compacta: Involvement of Transient Receptor Potential Channels. J Neurophysiol 2005; 94:3069-80. [PMID: 16014800 DOI: 10.1152/jn.00066.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Changes in temperature of up to several degrees have been reported in different brain regions during various behaviors or in response to environmental stimuli. We investigated temperature sensitivity of dopaminergic neurons of the rat substantia nigra pars compacta (SNc), an area important for motor and emotional control, using a combination of electrophysiological techniques, microfluorometry, and RT-PCR in brain slices. Spontaneous neuron firing, cell membrane potential/currents, and intracellular Ca2+level ([Ca2+]i) were measured during cooling by ≤10° and warming by ≤5° from 34°C. Cooling evoked slowing of firing, cell membrane hyperpolarization, increase in cell input resistance, an outward current under voltage clamp, and a decrease of [Ca2+]i. Warming induced an increase in firing frequency, a decrease in input resistance, an inward current, and a rise in [Ca2+]i. The cooling-induced current, which reversed in polarity between −5 and −17 mV, was dependent on extracellular Na+. Cooling-induced whole cell currents and changes in [Ca2+]iwere attenuated by 79% in the presence of 2-aminoethoxydiphenylborane (2-APB; 200 μM), and the outward current was reduced by 20% with ruthenium red (100 μM). RT-PCR conducted with tissue punches containing the SNc revealed mRNA expression for TRPV3 and TRPV4 channels, known to be activated in expression systems by temperature changes within the physiological range. 2-APB, a TRPV3 modulator, increased baseline [Ca2+]i, whereas 4αPDD, a TRPV4 agonist, increased spontaneous firing in 7 of 14 neurons tested. We conclude that temperature-gated TRPV3 and TRPV4 cationic channels are expressed in nigral dopaminergic neurons and are constitutively active in brain slices at near physiological temperatures, where they affect the excitability and calcium homeostasis of these neurons.
Collapse
|
47
|
Hamamoto T, Tanaka H, Mani H, Tanabe T, Fujiwara K, Nakagami T, Horie M, Oyamada M, Takamatsu T. In situ Ca2+ dynamics of Purkinje fibers and its interconnection with subjacent ventricular myocytes. J Mol Cell Cardiol 2005; 38:561-9. [PMID: 15808833 DOI: 10.1016/j.yjmcc.2005.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 01/12/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
Purkinje fibers play essential roles in impulse propagation to the ventricles, and their functional impairment can become arrhythmogenic. However, little is known about precise spatiotemporal pattern(s) of interconnection between Purkinje-fiber network and the underlying ventricular myocardium within the heart. To address this issue, we simultaneously visualized intracellular Ca(2+) dynamics at Purkinje fibers and subjacent ventricular myocytes in Langendorff-perfused rat hearts using multi-pinhole type, rapid-scanning confocal microscopy. Under recording of electrocardiogram at room temperature spatiotemporal changes in fluo3-fluorescence intensity were visualized on the subendocardial region of the right-ventricular septum. Staining of the heart with either fluo3, acetylthiocholine iodide (ATCHI), or di-4-ANEPPS revealed characteristic structures of Purkinje fibers. During sinus rhythm (about 60 bpm) or atrial pacing (up to 3 Hz) each Purkinje-fiber exhibited spatiotemporally synchronous Ca(2+) transients nearly simultaneously to ventricular excitation. Ca(2+) transients in individual fibers were still synchronized within the Purkinje-fiber network not only under high-K(+) (8 mM) perfusion-induced Purkinje-to-ventricular (P-V) conduction delay, but also under unidirectional, orthodromic P-V block produced by 10-mM K(+) perfusion. While spontaneous, asynchronous intracellular Ca(2+) waves were identified in injured fibers of Purkinje network locally, surrounding fibers still exhibited Ca(2+) transients synchronously to ventricular excitation. In summary, these results are the first demonstration of intracellular Ca(2+) dynamics in the Purkinje-fiber network in situ. The synchronous Ca(2+) transients, preserved even under P-V conduction disturbances or under emergence of Ca(2+) waves, imply a syncytial role of Purkinje fibers as a specialized conduction system, whereas unidirectional block at P-V junctions indicates a substrate for reentrant arrhythmias.
Collapse
Affiliation(s)
- Tetsu Hamamoto
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Inoue T, Bryant BP. Multiple types of sensory neurons respond to irritating volatile organic compounds (VOCs): Calcium fluorimetry of trigeminal ganglion neurons. Pain 2005; 117:193-203. [PMID: 16043294 DOI: 10.1016/j.pain.2005.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 02/06/2023]
Abstract
Many volatile organic compounds (VOCs) are significant environmental irritants that stimulate somatosensory nerve endings to produce pain and irritation. We measured intracellular calcium in cultured trigeminal ganglion neurons to characterize the cellular mechanisms and chemical structural determinants underlying sensitivity to VOCs. Trigeminal neurons responded to homologous series of alcohols (C4-C7) as well as saturated and unsaturated aldehydes in a concentration dependent manner. Ranked in terms of threshold to recruit neurons by compounds of the same carbon chain length, enaldehyde<aldehyde<alcohol. Unlike aldehydes and alcohols that displayed ascending concentration curves, recruitment of neurons by enaldehydes (C4-C7) appeared to saturate, consistent with a mechanism that is restricted in its neural distribution. Using pentanol, pentanal and pentenal as model compounds, we found that many but not all cool/cold-sensitive and capsaicin-sensitive neurons responded with increases in intracellular calcium. These VOCs also stimulated other neurons that were insensitive to cooling and capsaicin. Because not all cooling- and all capsaicin-sensitive neurons responded to the model VOCs, it is highly unlikely that known nociceptive ion channels such as TRPV1 or TRPA1 mediate sensitivity to these compounds. For pentanol, pentanal and pentenal, induced calcium influx was dependent on the presence of extracellular calcium. Responses of all neurons to pentanal and pentenal were also dependent upon extracellular sodium. Responses to pentanol were variably dependent on sodium. The distribution of sensitivity suggests that VOC irritation may be mediated by an as yet unidentified mechanism(s) that is/are distributed across different modalities of neurons.
Collapse
Affiliation(s)
- Takashi Inoue
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
49
|
Abstract
Two-photon excitation fluorescence imaging provides thin optical sections from deep within thick, scattering specimens by way of restricting fluorophore excitation (and thus emission) to the focal plane of the microscope. Spatial confinement of two-photon excitation gives rise to several advantages over single-photon confocal microscopy. First, penetration depth of the excitation beam is increased. Second, because out-of-focus fluorescence is never generated, no pinhole is necessary in the detection path of the microscope, resulting in increased fluorescence collection efficiency. Third, two-photon excitation markedly reduces overall photobleaching and photodamage, resulting in extended viability of biological specimens during long-term imaging. Finally, localized excitation can be used for photolysis of caged compounds in femtoliter volumes and for diffusion measurements by two-photon fluorescence photobleaching recovery. This review aims to provide an overview of the use of two-photon excitation microscopy. Selected applications of this technique will illustrate its excellent suitability to assess cellular and subcellular events in intact, strongly scattering tissue. In particular, its capability to resolve differences in calcium dynamics between individual cardiomyocytes deep within intact, buffer-perfused hearts is demonstrated. Potential applications of two-photon laser scanning microscopy as applied to integrative cardiac physiology are pointed out.
Collapse
Affiliation(s)
- Michael Rubart
- Herman B Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, 1044 W Walnut St, Rm W359, Indianapolis, IN 46202-5225, USA.
| |
Collapse
|
50
|
Lapotko D, Shnip A, Lukianova E. Photothermal responses of individual cells. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:14006. [PMID: 15847587 DOI: 10.1117/1.1854685] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photothermal (PT) responses of individual intact cells are studied with a thermal lens dual-laser scheme. A multiparameter model for analysis of PT responses as a function of cell size, structure, and optical properties is suggested and verified experimentally for living cells, red blood cells, lymphocytes, tumor cells (K 562), hepatocytes, and miocytes, by applying pulsed laser radiation at 532 nm for 10-ns duration. PT responses for noninvasive and damaging modes of laser-cell interaction are investigated. It is shown theoretically and experimentally that specific optical and structural features of cells influence the polarity, shape, front, and tail lengths of their PT responses. Common for different cells, features of PT responses are evaluated. It is found that in cells with a highly heterogeneous light-absorbing structure, the PT response of a whole cell differs from that of the local absorbing area. The model suggested allows us to interpret PT responses from single cells and to compare cells in terms of their diameter, degree of spatial heterogeneity of light absorbance, and laser-induced damage thresholds.
Collapse
Affiliation(s)
- Dmitri Lapotko
- International Center, Luikov Heat and Mass Transfer Institute, Minsk 220072, Belarus.
| | | | | |
Collapse
|