1
|
Walker G, Brown C, Ge X, Kumar S, Muzumdar MD, Gupta K, Bhattacharyya M. Determination of oligomeric organization of membrane proteins from native membranes at nanoscale-spatial and single-molecule resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.529138. [PMID: 36865290 PMCID: PMC9980011 DOI: 10.1101/2023.02.19.529138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The oligomeric organization of membrane proteins in native cell membranes is a critical regulator of their function. High-resolution quantitative measurements of oligomeric assemblies and how they change under different conditions are indispensable to the understanding of membrane protein biology. We report a single-molecule imaging technique (Native-nanoBleach) to determine the oligomeric distribution of membrane proteins directly from native membranes at an effective spatial resolution of ∼10 nm. We achieved this by capturing target membrane proteins in "native nanodiscs" with their proximal native membrane environment using amphipathic copolymers. We established this method using structurally and functionally diverse membrane proteins with well-established stoichiometries. We then applied Native-nanoBleach to quantify the oligomerization status of a receptor tyrosine kinase (TrkA) and a small GTPase (KRas) under conditions of growth-factor binding or oncogenic mutations, respectively. Native-nanoBleach provides a sensitive, single-molecule platform to quantify membrane protein oligomeric distributions in native membranes at an unprecedented spatial resolution.
Collapse
|
2
|
da Rocha-Azevedo B, Lee S, Dasgupta A, Vega AR, de Oliveira LR, Kim T, Kittisopikul M, Malik ZA, Jaqaman K. Heterogeneity in VEGF Receptor-2 Mobility and Organization on the Endothelial Cell Surface Leads to Diverse Models of Activation by VEGF. Cell Rep 2021; 32:108187. [PMID: 32997988 PMCID: PMC7541195 DOI: 10.1016/j.celrep.2020.108187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The dynamic nanoscale organization of cell surface receptors plays an important role in signaling. We determine this organization and its relation to activation of VEGF receptor-2 (VEGFR-2), a critical receptor tyrosine kinase in endothelial cells (ECs), by combining single-molecule imaging of endogenous VEGFR-2 in live ECs with multiscale computational analysis. We find that surface VEGFR-2 can be mobile or exhibit restricted mobility and be monomeric or non-monomeric, with a complex interplay between the two. This basal heterogeneity results in heterogeneity in the sequence of steps leading to VEGFR-2 activation by VEGF. Specifically, we find that VEGF can bind to monomeric and non-monomeric VEGFR-2 and that, when binding to monomeric VEGFR-2, its effect on dimerization depends on the mobility of VEGFR-2. Our study highlights the dynamic and heterogeneous nature of cell surface receptor organization and the need for multiscale, single-molecule-based analysis to determine its relationship to receptor activation and signaling. da Rocha-Azevedo et al. show that VEGFR-2 exhibits mobility and interaction heterogeneity on the endothelial cell surface. The sequence of steps leading to VEGFR-2 activation by VEGF depends on the basal state of VEGFR-2. Thus, there is not one model but multiple co-existing models of VEGFR-2 activation by VEGF.
Collapse
Affiliation(s)
| | - Sungsoo Lee
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aparajita Dasgupta
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony R Vega
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tae Kim
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mark Kittisopikul
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachariah A Malik
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Unveiling functional motions based on point mutations in biased signaling systems: A normal mode study on nerve growth factor bound to TrkA. PLoS One 2020; 15:e0231542. [PMID: 32497034 PMCID: PMC7272051 DOI: 10.1371/journal.pone.0231542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.
Collapse
|
4
|
Franco ML, Nadezhdin KD, Goncharuk SA, Mineev KS, Arseniev AS, Vilar M. Structural basis of the transmembrane domain dimerization and rotation in the activation mechanism of the TRKA receptor by nerve growth factor. J Biol Chem 2020; 295:275-286. [PMID: 31801826 PMCID: PMC6952603 DOI: 10.1074/jbc.ra119.011312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
Tropomyosin-receptor kinases (TRKs) are essential for the development of the nervous system. The molecular mechanism of TRKA activation by its ligand nerve growth factor (NGF) is still unsolved. Recent results indicate that at endogenous levels most of TRKA is in a monomer-dimer equilibrium and that the binding of NGF induces an increase of the dimeric and oligomeric forms of this receptor. An unsolved issue is the role of the TRKA transmembrane domain (TMD) in the dimerization of TRKA and the structural details of the TMD in the active dimer receptor. Here, we found that the TRKA-TMD can form dimers, identified the structural determinants of the dimer interface in the active receptor, and validated this interface through site-directed mutagenesis together with functional and cell differentiation studies. Using in vivo cross-linking, we found that the extracellular juxtamembrane region is reordered after ligand binding. Replacement of some residues in the juxtamembrane region with cysteine resulted in ligand-independent active dimers and revealed the preferred dimer interface. Moreover, insertion of leucine residues into the TMD helix induced a ligand-independent TRKA activation, suggesting that a rotation of the TMD dimers underlies NGF-induced TRKA activation. Altogether, our findings indicate that the transmembrane and juxtamembrane regions of TRKA play key roles in its dimerization and activation by NGF.
Collapse
Affiliation(s)
- María L Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, Consejo Superior de Investigaciones Científicas, 46010 València, Spain
| | - Kirill D Nadezhdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation.
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, Consejo Superior de Investigaciones Científicas, 46010 València, Spain.
| |
Collapse
|
5
|
Dimerization of the Trk receptors in the plasma membrane: effects of their cognate ligands. Biochem J 2018; 475:3669-3685. [PMID: 30366959 DOI: 10.1042/bcj20180637] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors which control cell growth and differentiation, and play important roles in tumorigenesis. Despite decades of RTK research, the mechanism of RTK activation in response to their ligands is still under debate. Here, we investigate the interactions that control the activation of the tropomyosin receptor kinase (Trk) family of RTKs in the plasma membrane, using a FRET-based methodology. The Trk receptors are expressed in neuronal tissues, and guide the development of the central and peripheral nervous systems during development. We quantify the dimerization of human Trk-A, Trk-B, and Trk-C in the absence and presence of their cognate ligands: human β-nerve growth factor, human brain-derived neurotrophic factor, and human neurotrophin-3, respectively. We also assess conformational changes in the Trk dimers upon ligand binding. Our data support a model of Trk activation in which (1) Trks have a propensity to interact laterally and to form dimers even in the absence of ligand, (2) different Trk unliganded dimers have different stabilities, (3) ligand binding leads to Trk dimer stabilization, and (4) ligand binding induces structural changes in the Trk dimers which propagate to their transmembrane and intracellular domains. This model, which we call the 'transition model of RTK activation,' may hold true for many other RTKs.
Collapse
|
6
|
Bocharov EV, Mineev KS, Pavlov KV, Akimov SA, Kuznetsov AS, Efremov RG, Arseniev AS. Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:561-576. [PMID: 27884807 DOI: 10.1016/j.bbamem.2016.10.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/18/2016] [Accepted: 10/20/2016] [Indexed: 12/23/2022]
Abstract
Interaction between transmembrane helices often determines biological activity of membrane proteins. Bitopic proteins, a broad subclass of membrane proteins, form dimers containing two membrane-spanning helices. Some aspects of their structure-function relationship cannot be fully understood without considering the protein-lipid interaction, which can determine the protein conformational ensemble. Experimental and computer modeling data concerning transmembrane parts of bitopic proteins are reviewed in the present paper. They highlight the importance of lipid-protein interactions and resolve certain paradoxes in the behavior of such proteins. Besides, some properties of membrane organization provided a clue to understanding of allosteric interactions between distant parts of proteins. Interactions of these kinds appear to underlie a signaling mechanism, which could be widely employed in the functioning of many membrane proteins. Treatment of membrane proteins as parts of integrated fine-tuned proteolipid system promises new insights into biological function mechanisms and approaches to drug design. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; National Research Centre "Kurchatov Institute", Akad. Kurchatova pl. 1, Moscow, 123182, Russian Federation.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Konstantin V Pavlov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation
| | - Sergey A Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskiy prospect 31/5, Moscow, 119071, Russian Federation; National University of Science and Technology "MISiS", Leninskiy prospect 4, Moscow, 119049, Russian Federation
| | - Andrey S Kuznetsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation; Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya ul. 16/10, Moscow, 117997, Russian Federation.
| |
Collapse
|
7
|
Czyzewicz N, Nikonorova N, Meyer MR, Sandal P, Shah S, Vu LD, Gevaert K, Rao AG, De Smet I. The growing story of (ARABIDOPSIS) CRINKLY 4. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4835-4847. [PMID: 27208540 DOI: 10.1093/jxb/erw192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Receptor kinases play important roles in plant growth and development, but only few of them have been functionally characterized in depth. Over the past decade CRINKLY 4 (CR4)-related research has peaked as a result of a newly discovered role of ARABIDOPSIS CR4 (ACR4) in the root. Here, we comprehensively review the available (A)CR4 literature and describe its role in embryo, seed, shoot, and root development, but we also flag an unexpected role in plant defence. In addition, we discuss ACR4 domains and protein structure, describe known ACR4-interacting proteins and substrates, and elaborate on the transcriptional regulation of ACR4 Finally, we address the missing knowledge in our understanding of ACR4 signalling.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Natalia Nikonorova
- Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthew R Meyer
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Priyanka Sandal
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Shweta Shah
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Medical Biotechnology Center, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Medical Biotechnology Center, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - A Gururaj Rao
- Roy J. Carver Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent University, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
8
|
Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:116. [PMID: 27439311 PMCID: PMC4955168 DOI: 10.1186/s13046-016-0395-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/12/2016] [Indexed: 02/01/2023]
Abstract
Recent progress in the Nerve Growth Factor (NGF) research has shown that this factor acts not only outside its classical domain of the peripheral and central nervous system, but also on non-neuronal and cancer cells. This latter observation has led to divergent hypothesis about the role of NGF, its specific distribution pattern within the tissues and its implication in induction as well as progression of carcinogenesis. Moreover, other recent studies have shown that NGF has direct clinical relevance in certain human brain neuron degeneration and a number of human ocular disorders. These studies, by suggesting that NGF is involved in a plethora of physiological function in health and disease, warrant further investigation regarding the true role of NGF in carcinogenesis. Based on our long-lasting experience in the physiopathology of NGF, we aimed to review previous and recent in vivo and in vitro NGF studies on tumor cell induction, progression and arrest. Overall, these studies indicate that the only presence of NGF is unable to generate cell carcinogenesis, both in normal neuronal and non-neuronal cells/tissues. However, it cannot be excluded the possibility that the co-expression of NGF and pro-carcinogenic molecules might open to different consequence. Whether NGF plays a direct or an indirect role in cell proliferation during carcinogenesis remains to demonstrate.
Collapse
Affiliation(s)
- Luigi Aloe
- Institute of Cell Biology and Neurobiology, CNR, Via Del Fosso di Fiorano, 64 I-00143, Rome, Italy.
| | - Maria Luisa Rocco
- Institute of Cell Biology and Neurobiology, CNR, Via Del Fosso di Fiorano, 64 I-00143, Rome, Italy
| | | | - Alessandra Micera
- IRCCS - G.B. Bietti Foundation, Via Santo Stefano Rotondo, 6 I-00184, Rome, Italy
| |
Collapse
|
9
|
Sarabipour S, Ballmer-Hofer K, Hristova K. VEGFR-2 conformational switch in response to ligand binding. eLife 2016; 5:e13876. [PMID: 27052508 PMCID: PMC4829425 DOI: 10.7554/elife.13876] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 01/02/2023] Open
Abstract
VEGFR-2 is the primary regulator of angiogenesis, the development of new blood vessels from pre-existing ones. VEGFR-2 has been hypothesized to be monomeric in the absence of bound ligand, and to undergo dimerization and activation only upon ligand binding. Using quantitative FRET and biochemical analysis, we show that VEGFR-2 forms dimers also in the absence of ligand when expressed at physiological levels, and that these dimers are phosphorylated. Ligand binding leads to a change in the TM domain conformation, resulting in increased kinase domain phosphorylation. Inter-receptor contacts within the extracellular and TM domains are critical for the establishment of the unliganded dimer structure, and for the transition to the ligand-bound active conformation. We further show that the pathogenic C482R VEGFR-2 mutant, linked to infantile hemangioma, promotes ligand-independent signaling by mimicking the structure of the ligand-bound wild-type VEGFR-2 dimer.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| | - Kurt Ballmer-Hofer
- Laboratory of Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
10
|
Singh DR, Cao Q, King C, Salotto M, Ahmed F, Zhou XY, Pasquale EB, Hristova K. Unliganded EphA3 dimerization promoted by the SAM domain. Biochem J 2015; 471:101-9. [PMID: 26232493 PMCID: PMC4692061 DOI: 10.1042/bj20150433] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023]
Abstract
The erythropoietin-producing hepatocellular carcinoma A3 (EphA3) receptor tyrosine kinase (RTK) regulates morphogenesis during development and is overexpressed and mutated in a variety of cancers. EphA3 activation is believed to follow a 'seeding mechanism' model, in which ligand binding to the monomeric receptor acts as a trigger for signal-productive receptor clustering. We study EphA3 lateral interactions on the surface of live cells and we demonstrate that EphA3 forms dimers in the absence of ligand binding. We further show that these dimers are stabilized by interactions involving the EphA3 sterile α-motif (SAM) domain. The discovery of unliganded EphA3 dimers challenges the current understanding of the chain of EphA3 activation events and suggests that EphA3 may follow the 'pre-formed dimer' model of activation known to be relevant for other receptor tyrosine kinases. The present work also establishes a new role for the SAM domain in promoting Eph receptor lateral interactions and signalling on the cell surface.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - QingQing Cao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Matt Salotto
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Xiang Yang Zhou
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A. Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A.
| |
Collapse
|
11
|
Travaglia A, Pietropaolo A, Di Martino R, Nicoletti VG, La Mendola D, Calissano P, Rizzarelli E. A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells. ACS Chem Neurosci 2015; 6:1379-92. [PMID: 25939060 DOI: 10.1021/acschemneuro.5b00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ever since the discovery of its neurite growth promoting activity in sympathetic and sensory ganglia, nerve growth factor (NGF) became the prototype of the large family of neurotrophins. The use of primary cultures and clonal cell lines has revealed several distinct actions of NGF and other neurotrophins. Among several models of NGF activity, the clonal cell line PC12 is the most widely employed. Thus, in the presence of NGF, through the activation of the transmembrane protein TrkA, these cells undergo a progressive mitotic arrest and start to grow electrically excitable neuritis. A vast number of studies opened intriguing aspects of NGF mechanisms of action, its biological properties, and potential use as therapeutic agents. In this context, identifying and utilizing small portions of NGF is of great interest and involves several human diseases including Alzheimer's disease. Here we report the specific action of the peptide encompassing the 1-14 sequence of the human NGF (NGF(1-14)), identified on the basis of scattered indications present in literature. The biological activity of NGF(1-14) was tested on PC12 cells, and its binding with TrkA was predicted by means of a computational approach. NGF(1-14) does not elicit the neurite outgrowth promoting activity, typical of the whole protein, and it only has a moderate action on PC12 proliferation. However, this peptide exerts, in a dose and time dependent fashion, an effective and specific NGF-like action on some highly conserved and biologically crucial intermediates of its intracellular targets such as Akt and CREB. These findings indicate that not all TrkA pathways must be at all times operative, and open the possibility of testing each of them in relation with specific NGF needs, biological actions, and potential therapeutic use.
Collapse
Affiliation(s)
- Alessio Travaglia
- Center for Neural Science, New York University, 4 Washington Place, New York, New York 10003, United States
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rossana Di Martino
- Istituto di Bioimmagini e Fisiologia Molecolare (IBFM)-CNR, C.da Pietrapollastra-Pisciotto, Cefalù, Palermo 90015, Italy
| | - Vincenzo G. Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche - Sezione di Biochimica Medica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB) − Sezione Biomolecole, Consorzio Interuniversitario, Viale Medaglie d’Oro 305, 00136 Roma, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano, 64-65, 00143 Rome, Italy
| | | |
Collapse
|
12
|
Paul A, Samaddar S, Bhattacharya A, Banerjee A, Das A, Chakrabarti S, DasGupta M. Gatekeeper tyrosine phosphorylation is autoinhibitory for Symbiosis Receptor Kinase. FEBS Lett 2014; 588:2881-9. [PMID: 24996184 DOI: 10.1016/j.febslet.2014.06.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 11/27/2022]
Abstract
Plant receptor-like kinases (RLKs) are distinguished by having a tyrosine in the 'gatekeeper' position. Previously we reported Symbiosis Receptor Kinase from Arachis hypogaea (AhSYMRK) to autophosphorylate on the gatekeeper tyrosine (Y670), though this phosphorylation was not necessary for the kinase activity. Here we report that recombinant catalytic domain of AhSYMRK with a phosphomimic substitution in the gatekeeper position (Y670E) is catalytically almost inactive and is conformationally quite distinct from the corresponding native enzyme. Additionally, we show that gatekeeper-phosphorylated AhSYMRK polypeptides are inactive and depletion of this inactive form leads to activation of intramolecular autophosphorylation of AhSYMRK. Together, our results suggest gatekeeper tyrosine autophosphorylation to be autoinhibitory for AhSYMRK.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Sandip Samaddar
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | | - Anindyajit Banerjee
- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Abhishek Das
- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Saikat Chakrabarti
- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | | |
Collapse
|
13
|
Maruyama IN. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells 2014; 3:304-30. [PMID: 24758840 PMCID: PMC4092861 DOI: 10.3390/cells3020304] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights.
Collapse
Affiliation(s)
- Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan.
| |
Collapse
|
14
|
Diversity in Dimerization Topologies Enables Differential Control of Receptor Tyrosine Kinase Phosphorylation Dynamics. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
15
|
Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov 2013; 12:507-25. [PMID: 23977697 DOI: 10.1038/nrd4024] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotrophins and their receptors modulate multiple signalling pathways to regulate neuronal survival and to maintain axonal and dendritic networks and synaptic plasticity. Neurotrophins have potential for the treatment of neurological diseases. However, their therapeutic application has been limited owing to their poor plasma stability, restricted nervous system penetration and, importantly, the pleiotropic actions that derive from their concomitant binding to multiple receptors. One strategy to overcome these limitations is to target individual neurotrophin receptors — such as tropomyosin receptor kinase A (TRKA), TRKB, TRKC, the p75 neurotrophin receptor or sortilin — with small-molecule ligands. Such small molecules might also modulate various aspects of these signalling pathways in ways that are distinct from the programmes triggered by native neurotrophins. By departing from conventional neurotrophin signalling, these ligands might provide novel therapeutic options for a broad range of neurological indications.
Collapse
|
16
|
Bhang SH, Kwon SH, Lee S, Kim GC, Han AM, Kwon YHK, Kim BS. Enhanced neuronal differentiation of pheochromocytoma 12 cells on polydopamine-modified surface. Biochem Biophys Res Commun 2013; 430:1294-300. [DOI: 10.1016/j.bbrc.2012.11.123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
17
|
Abstract
Neurotrophins are a family of target-derived growth factors that support survival, development, and maintenance of innervating neurons. Owing to the unique architecture of neurons, neurotrophins that act locally on the axonal terminals must convey their signals across the entire axon for subsequent regulation of gene transcription in the cell nucleus. This long-distance retrograde signaling, a motor-driven process that can take hours or days, has been a subject of intense interest. In the last decade, live-cell imaging with high sensitivity has significantly increased our capability to track the transport of neurotrophins, their receptors, and subsequent signals in real time. This review summarizes recent research progress in understanding neurotrophin-receptor interactions at the axonal terminal and their transport dynamics along the axon. We emphasize high-resolution studies at the single-molecule level and also discuss recent technical advances in the field.
Collapse
|
18
|
Steketee MB, Goldberg JL. Signaling endosomes and growth cone motility in axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:35-73. [PMID: 23211459 DOI: 10.1016/b978-0-12-407178-0.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development and regeneration, growth cones guide neurites to their targets by altering their motility in response to extracellular guidance cues. One class of cues critical to nervous system development is the neurotrophins. Neurotrophin binding to their cognate receptors stimulates their endocytosis into signaling endosomes. Current data indicate that the spatiotemporal localization of signaling endosomes can direct diverse processes regulating cell motility, including membrane trafficking, cytoskeletal remodeling, adhesion dynamics, and local translation. Recent experiments manipulating signaling endosome localization in neuronal growth cones support these views and place the neurotrophin signaling endosome in a central role regulating growth cone motility during axon growth and regeneration.
Collapse
|
19
|
Lamour G, Souès S, Hamraoui A. Interplay between long- and short-range interactions drives neuritogenesis on stiff surfaces. J Biomed Mater Res A 2011; 99:598-606. [PMID: 21953886 DOI: 10.1002/jbm.a.33213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/24/2011] [Accepted: 07/17/2011] [Indexed: 11/12/2022]
Abstract
Substrate factors such as surface energy distribution can affect cell functions, such as neuronal differentiation of PC12 cells. However, the surface effects that trigger such cell responses need to be clarified and analyzed. Here we show that the total surface tension is not a critical parameter. Self-assembled monolayers of alkylsiloxanes on glass were used as culture substrates. By changing the nanoscale structure and ordering of the monolayer, we designed surfaces with a range of dispersive (γ(d) ) and nondispersive (γ(nd) ) potentials, but with a similar value for total free-energy (50 ≤ γ(d) + γ(nd) ≤ 55 mN m⁻¹). When seeded on surfaces displaying γ(d) /γ(nd) ≤ 3.7, PC12 cells underwent low level of neuritogenesis. On surfaces exhibiting γ(d) /γ(nd) ≥ 5.4, neurite outgrowth was greatly enhanced and apparent by only 24 h of culture in absence of nerve growth-factor treatment. These data indicate how the spatial distribution of surface potentials may control neuritogenesis, thus providing a new criterion to address nerve regeneration issues on rigid biocompatible surfaces.
Collapse
Affiliation(s)
- Guillaume Lamour
- UFR Biomédicale, Université Paris Descartes, 45 Rue des Saints-Pères, 75006 Paris, France.
| | | | | |
Collapse
|
20
|
Meyer MR, Lichti CF, Townsend RR, Rao AG. Identification of in vitro autophosphorylation sites and effects of phosphorylation on the Arabidopsis CRINKLY4 (ACR4) receptor-like kinase intracellular domain: insights into conformation, oligomerization, and activity. Biochemistry 2011; 50:2170-86. [PMID: 21294549 DOI: 10.1021/bi101935x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arabidopsis CRINKLY4 (ACR4) is a receptor-like kinase (RLK) that consists of an extracellular domain and an intracellular domain (ICD) with serine/threonine kinase activity. While genetic and cell biology experiments have demonstrated that ACR4 is important in cell fate specification and overall development of the plant, little is known about the biochemical properties of the kinase domain and the mechanisms that underlie the overall function of the receptor. To complement in planta studies of the function of ACR4, we have expressed the ICD in Escherichia coli as a soluble C-terminal fusion to the N-utilization substance A (NusA) protein, purified the recombinant protein, and characterized the enzymatic and conformational properties. The protein autophosphorylates via an intramolecular mechanism, prefers Mn(2+) over Mg(2+) as the divalent cation, and displays typical Michaelis-Menten kinetics with respect to ATP with an apparent K(m) of 6.67 ± 2.07 μM and a V(max) of 1.83 ± 0.18 nmol min(-1) mg(-1). Autophosphorylation is accompanied by a conformational change as demonstrated by circular dichroism, fluorescence spectroscopy, and limited proteolysis with trypsin. Analysis by nanoliquid chromatography and mass spectrometry revealed 16 confirmed sites of phosphorylation at Ser and Thr residues. Sedimentation velocity and gel filtration experiments indicate that the ICD has a propensity to oligomerize and that this property is lost upon autophosphorylation.
Collapse
Affiliation(s)
- Matthew R Meyer
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | | | | | | |
Collapse
|
21
|
Shen J, Maruyama IN. Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells. FEBS Lett 2010; 585:295-9. [DOI: 10.1016/j.febslet.2010.12.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/05/2010] [Accepted: 12/19/2010] [Indexed: 11/28/2022]
|
22
|
Brahimi F, Liu J, Malakhov A, Chowdhury S, Purisima EO, Ivanisevic L, Caron A, Burgess K, Saragovi HU. A monovalent agonist of TrkA tyrosine kinase receptors can be converted into a bivalent antagonist. Biochim Biophys Acta Gen Subj 2010; 1800:1018-26. [PMID: 20600627 DOI: 10.1016/j.bbagen.2010.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/28/2010] [Accepted: 06/11/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND Receptor tyrosine kinases (RTK) act through dimerization. Previously it was thought that only bivalent ligands could be agonistic, whereas monovalent ligands should be antagonistic. This notion changed after the demonstration that monovalent ligands can be agonistic, including our report of a small molecule monovalent ligand "D3" that is a partial agonist of the NGF receptor TrkA. A bivalent "D3-linker-D3" was expected to increase agonism. METHODS Dimeric analogs were synthesized and tested in binding, biochemical, and biological assays. RESULTS One analog, 1-ss, binds TrkA with higher affinity than D3 and induces or stabilizes receptor dimers. However, 1-ss exhibited antagonistic activity, through two mechanisms. One mechanism is that 1-ss blocks NGF binding, unlike D3 which is non-competitive. Inhibition of NGF binding may be due to the linker of 1-ss filling the inter-receptor space that NGF traverses before docking. In a second mechanism, 1-ss acts as a pure antagonist, inhibiting NGF-independent TrkA activity in cells over-expressing receptors. Inhibition is likely due to 1-ss "freezing" the TrkA dimer in the inactive state. CONCLUSIONS Dimerization of an RTK can result in antagonism, through two independent mechanisms. GENERAL SIGNIFICANCE we report a small molecule monovalent agonist being converted to a bivalent antagonist.
Collapse
Affiliation(s)
- Fouad Brahimi
- Lady Davis Institute-Jewish General Hospital, Pharmacology and Therapeutics, Oncology and the Cancer Center. McGill University, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lamour G, Eftekhari-Bafrooei A, Borguet E, Souès S, Hamraoui A. Neuronal adhesion and differentiation driven by nanoscale surface free-energy gradients. Biomaterials 2010; 31:3762-71. [DOI: 10.1016/j.biomaterials.2010.01.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/15/2010] [Indexed: 11/29/2022]
|
24
|
Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN, Nehama D, Rajadas J, Longo FM. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 2010; 120:1774-85. [PMID: 20407211 DOI: 10.1172/jci41356] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 02/17/2010] [Indexed: 02/01/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) activates the receptor tropomyosin-related kinase B (TrkB) with high potency and specificity, promoting neuronal survival, differentiation, and synaptic function. Correlations between altered BDNF expression and/or function and mechanism(s) underlying numerous neurodegenerative conditions, including Alzheimer disease and traumatic brain injury, suggest that TrkB agonists might have therapeutic potential. Using in silico screening with a BDNF loop-domain pharmacophore, followed by low-throughput in vitro screening in mouse fetal hippocampal neurons, we have efficiently identified small molecules with nanomolar neurotrophic activity specific to TrkB versus other Trk family members. Neurotrophic activity was dependent on TrkB and its downstream targets, although compound-induced signaling activation kinetics differed from those triggered by BDNF. A selected prototype compound demonstrated binding specificity to the extracellular domain of TrkB. In in vitro models of neurodegenerative disease, it prevented neuronal degeneration with efficacy equal to that of BDNF, and when administered in vivo, it caused hippocampal and striatal TrkB activation in mice and improved motor learning after traumatic brain injury in rats. These studies demonstrate the utility of loop modeling in drug discovery and reveal what we believe to be the first reported small molecules derived from a targeted BDNF domain that specifically activate TrkB.We propose that these compounds constitute a novel group of tools for the study of TrkB signaling and may provide leads for developing new therapeutic agents for neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephen M Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, UCSF, San Francisco, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guillemard V, Ivanisevic L, Garcia AG, Scholten V, Lazo OM, Bronfman FC, Saragovi HU. An agonistic mAb directed to the TrkC receptor juxtamembrane region defines a trophic hot spot and interactions with p75 coreceptors. Dev Neurobiol 2010; 70:150-64. [PMID: 19953569 DOI: 10.1002/dneu.20776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The D5 domain of TrkC receptors is a docking site for Neurotrophin-3 (NT-3), but other domains may be relevant for function or harmonizing signals with p75(NTR) coreceptors. We report a monoclonal antibody (mAb) 2B7 targeting the juxtamembrane domain of TrkC. mAb 2B7 binds to murine and human TrkC receptors and is a functional agonist that affords activation of TrkC, AKT, and MAPK. These signals result in cell survival but not in cellular differentiation. Monomeric 2B7 Fabs also affords cell survival. Binding of 2B7 mAb and 2B7 Fabs to TrkC are blocked by NT-3 in a dose-dependent manner but not by pro-NT-3. Expression of p75(NTR) coreceptors on the cell surface block the binding and function of mAb 2B7, whereas NT-3 binding and function are enhanced. mAb 2B7 defines a previously unknown neurotrophin receptor functional hot spot; that exclusively generates survival signals; that can be activated by non-dimeric ligands; and potentially unmasks a site for p75-TrkC interactions.
Collapse
Affiliation(s)
- Veronique Guillemard
- Department of Pharmacology and Therapeutics, Lady Davis Research Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Bogdanovic E, Coombs N, Dumont DJ. Oligomerized Tie2 localizes to clathrin-coated pits in response to angiopoietin-1. Histochem Cell Biol 2009; 132:225-37. [PMID: 19424712 DOI: 10.1007/s00418-009-0603-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2009] [Indexed: 12/27/2022]
Abstract
The tyrosine kinase receptor Tie2 is expressed on endothelial cells, and together with its ligand angiopoietin-1 (Ang1), is important for angiogenesis and vascular stability. Upon activation by Ang1, Tie2 is rapidly internalized and degraded, a mechanism most likely necessary to attenuate receptor activity. Using immunogold electron microscopy, we show that on the surface of endothelial cells, Tie2 is arranged in variably sized clusters containing dimers and higher order oligomers. Clusters of Tie2 were expressed on the apical and basolateral plasma membranes, and on the tips of microvilli. Upon activation by Ang1, Tie2 co-localized with the clathrin heavy chain at the apical and basolateral plasma membranes and within endothelial cells indicating that Tie2 internalizes through clathrin-coated pits. Inhibiting cellular endocytosis by depleting cellular potassium or by acidifying the cytosol blocked the internalization of Tie2 in response to Ang1. Our results suggest that one pathway mediating the internalization of Tie2 in response to Ang1 is through clathrin-coated pits.
Collapse
Affiliation(s)
- Elena Bogdanovic
- Molecular and Cellular Biology Research, Sunnybrook Research Institute, 2075 Bayview Avenue, Research Building, S-218, Toronto, ON, M4N 3M5, Canada
| | | | | |
Collapse
|
27
|
Lombardi L, De Stefano ME, Paggi P. Components of the NGF signaling complex are altered in mdx mouse superior cervical ganglion and its target organs. Neurobiol Dis 2008; 32:402-11. [PMID: 18725298 DOI: 10.1016/j.nbd.2008.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/11/2008] [Accepted: 07/29/2008] [Indexed: 01/19/2023] Open
Abstract
We previously reported that in the superior cervical ganglion (SCG) of dystrophic mdx mice, which lack full-length dystrophin, there is a loss of neurons projecting to SCG muscular targets, like the iris. Nonetheless, surviving neurons, innervating either iris or submandibular gland (SuGl), a SCG non-muscular target, underwent reduced axon defasciculation and terminal branching. Here we report that, during early post-natal development, levels of pro-apoptotic proNGF in mdx mouse iris, but not in the SuGl, are higher than in the wild-type. This increase, along with reduced levels of NGF receptors (TrkA and p75NTR) in SCG, may be partly responsible for the observed loss of neurons projecting to the iris. These alterations, combined with a reduction in polysialylated-NCAM and neurofilament protein levels in SCG, may also account for reduced axon defasciculation and terminal branching in mdx mouse SCG targets.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Dyneins/genetics
- Dyneins/metabolism
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Gene Expression
- Immunohistochemistry
- Iris/innervation
- Iris/metabolism
- Male
- Mice
- Mice, Inbred mdx
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Nerve Growth Factor/biosynthesis
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- Neural Cell Adhesion Molecule L1/genetics
- Neural Cell Adhesion Molecule L1/metabolism
- Protein Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, trkA/biosynthesis
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sialic Acids/genetics
- Sialic Acids/metabolism
- Signal Transduction
- Submandibular Gland/innervation
- Submandibular Gland/metabolism
- Superior Cervical Ganglion/metabolism
Collapse
Affiliation(s)
- Loredana Lombardi
- Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza Università di Roma, Italy
| | | | | |
Collapse
|
28
|
Tacconelli A, Farina AR, Cappabianca L, Gulino A, Mackay AR. Alternative TrkAIII splicing: a potential regulated tumor-promoting switch and therapeutic target in neuroblastoma. Future Oncol 2007; 1:689-98. [PMID: 16556046 DOI: 10.2217/14796694.1.5.689] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An association between elevated tyrosine kinase receptor (Trk)-A expression and better prognosis; the absence of mutation-activated TrkA oncogenes; the induction of apoptosis, growth arrest, morphological differentiation and inhibition of xenograft growth; and angiogenesis by TrkA gene transduction, provide the basis for the current concept of an exclusively tumor-suppressor role for TrkA in the aggressive pediatric tumor, neuroblastoma. This concept, however, has recently been challenged by the discovery of a novel hypoxia-regulated alternative TrkAIII splice variant, initial data for which suggest predominant expression in advanced-stage neuroblastoma. TrkAIII exhibits neuroblastoma xenograft tumor-promoting activity associated with the induction of a more angiogenic and stress-resistant neuroblastoma phenotype and antagonises nerve growth factor/TrkAI antioncogenic signaling. In this short review, the authors integrate this novel information into a modified concept that places alternative TrkA splicing as a potential pivotal regulator of neuroblastoma behavior and identifies the TrkAIII alternative splice variant as a potential biomarker of patient prognosis and novel therapeutic target.
Collapse
Affiliation(s)
- Antonella Tacconelli
- University of L'Aquila, Department of Experimental Medicine, Via Vetoio, Coppito 2, 67100 L'Aquila, Italy
| | | | | | | | | |
Collapse
|
29
|
Ivanisevic L, Zheng W, Woo SB, Neet KE, Saragovi HU. TrkA Receptor “Hot Spots” for Binding of NT-3 as a Heterologous Ligand. J Biol Chem 2007; 282:16754-63. [PMID: 17439940 DOI: 10.1074/jbc.m701996200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotrophins signal via Trk tyrosine kinase receptors. Nerve growth factor (NGF) is the cognate ligand for TrkA, the brain-derived neurotrophic factor for TrkB, and NT-3 for TrkC. NT-3 also binds TrkA as a lower affinity heterologous ligand. Because neurotrophin-3 (NT-3) interactions with TrkA are biologically relevant, we aimed to define the TrkA "hot spot" functional docking sites of NT-3. The Trk extracellular domain consists of two cysteine-rich subdomains (D1 and D3), flanking a leucine-rich subdomain (D2), and two immunoglobulin-like subdomains IgC1(D4) and IgC2(D5). Previously, the D5 subdomain was defined as the primary ligand-binding site of neurotrophins for their cognate receptors (e.g. NGF binds and activates through TRKA-D5 hot spots). Here binding studies with truncated and chimeric extracellular subdomains show that TRKA-D5 also includes an NT-3 docking and activation hot spot (site 1), and competition studies show that the NGF and NT-3 hot spots on TRKA-D5 are distinct but partially overlapping. In addition, ligand binding studies provide evidence for an NT-3-binding/allosteric site on TRKA-D4 (site 2). NT-3 docking on sites 1 and/or 2 partially blocks NGF binding. Functional survival studies showed that sites 1 and 2 regulate TrkA activation. NT-3 docking on both sites 1 and 2 affords full agonism, which can be additive with NGF activation of Trk. However, NT-3 docking solely on site 1 is partially agonistic but noncompetitively antagonizes NGF binding and activation of Trk. This study demonstrates that Trk signaling is more complex than previously thought because it involves several receptor subdomains and hot spots.
Collapse
Affiliation(s)
- Ljubica Ivanisevic
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
30
|
Zhang J, Chen D, Gong X, Ling H, Zhang G, Wood A, Heinrich J, Cho S. Cyclic-AMP response element-based signaling assays for characterization of Trk family tyrosine kinases modulators. Neurosignals 2006; 15:26-39. [PMID: 16837782 DOI: 10.1159/000094385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/01/2006] [Indexed: 11/19/2022] Open
Abstract
Neurotrophins (NTs) induce gene transcription by binding their high-affinity tropomyosin-related kinase (Trk) receptors and initiating intracellular signal transduction cascades. In particular, activation of the cyclic AMP response element (CRE) in the promoters of target genes serves as surrogate markers for Trk receptor activation as demonstrated in both in vivo and in vitro systems. We used a HEK293 cell line stably expressing a CRE-luciferase reporter gene to develop an assay for monitoring Trk activation in response to their cognate ligands. Using TrkB, we showed that the assay was sensitive to physiological concentrations of brain-derived neurotrophic factor (BDNF) and that the signal was sufficiently robust to be suitable for implementation in high-throughput format. Further characterization of the TrkB expressing stable cell lines showed high-affinity binding for BDNF, a high density of receptor expression, and supported BDNF-mediated phosphorylation signaling. Consistent with this, inhibitors of phosphatidylinositol 3-kinase and the phospholipase C-gamma pathways led to reduction of BDNF-mediated luciferase responses. In contrast, inhibitors of mitogen-activated protein kinase pathways further potentiated BDNF responses. This assay was NT-Trk receptor pair-selective and shown to be further applicable to other Trk family members. This assay may be useful in screening compound libraries to identify Trk agonists, which may be applied towards discriminating between the activities of the different Trk receptor family members and the development of pharmacological drugs.
Collapse
Affiliation(s)
- Jie Zhang
- Neuroscience Discovery Research, Wyeth Research, Princeton, NJ 08543-8000, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zaccaro MC, Lee HB, Pattarawarapan M, Xia Z, Caron A, L'Heureux PJ, Bengio Y, Burgess K, Saragovi HU. Selective Small Molecule Peptidomimetic Ligands of TrkC and TrkA Receptors Afford Discrete or Complete Neurotrophic Activities. ACTA ACUST UNITED AC 2005; 12:1015-28. [PMID: 16183026 DOI: 10.1016/j.chembiol.2005.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 01/08/2023]
Abstract
We designed a minilibrary of 55 small molecule peptidomimetics based on beta-turns of the neurotrophin growth factor polypeptides neurotrophin-3 (NT-3) and nerve growth factor (NGF). Direct binding, binding competition, and biological screens identified agonistic ligands of the ectodomain of the neurotrophin receptors TrkC and TrkA. Agonism is intrinsic to the peptidomimetic ligand (in the absence of neurotrophins), and/or can also be detected as potentiation of neurotrophin action. Remarkably, some peptidomimetics afford both neurotrophic activities of cell survival and neuronal differentiation, while others afford discrete signals leading to either survival or differentiation. The high rate of hits identified suggests that focused minilibraries may be desirable for developing bioactive ligands of cell surface receptors. Small, selective, proteolytically stable ligands with defined biological activity may have therapeutic potential.
Collapse
Affiliation(s)
- Maria Clara Zaccaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reddy CVG, Malinowska K, Menhart N, Wang R. Identification of TrkA on living PC12 cells by atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1667:15-25. [PMID: 15533302 DOI: 10.1016/j.bbamem.2004.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 08/17/2004] [Accepted: 08/26/2004] [Indexed: 11/17/2022]
Abstract
In neural cells, nerve growth factor (NGF) initiates its survival signal through the binding to its cell surface receptor tyrosine kinase A (TrkA). Understanding the pattern of TrkA distribution and association in living cells can provide a fingerprint for the diagnostic comparison with alterations underlying ligand-receptor dysfunction seen in various neurological diseases. In this study, we use the NGF-TrkA-specific interaction as a probe to identify TrkA on living PC12 cell by atomic force microscopy (AFM). An NGF-modified AFM tip was used to perform force volume (FV) imaging, generating a 2D force map to illustrate the distribution and association of TrkA on PC12 cell membrane. It is found that TrkA is highly aggregated at local regions of the cell. This unique protein association may be required to promote its function as a receptor of NGF. The methodology that we developed in this study can be adapted by other systems, thus providing a general tool for investigating protein association in its natural environment.
Collapse
Affiliation(s)
- C V Gopal Reddy
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Mookda Pattarawarapan
- Texas A & M University, Department of Chemistry, PO Box 30012, College Station, Texas 77841-3012, USA
| | | |
Collapse
|