1
|
Lopez C, David-Briand E, Mériadec C, Bourgaux C, Pérez J, Artzner F. Milk sphingosomes as lipid carriers for α-tocopherol in aqueous foods: thermotropic phase behaviour and morphology. Food Res Int 2022; 162:112115. [DOI: 10.1016/j.foodres.2022.112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
2
|
López CA, Zhang X, Aydin F, Shrestha R, Van QN, Stanley CB, Carpenter TS, Nguyen K, Patel LA, Chen D, Burns V, Hengartner NW, Reddy TJE, Bhatia H, Di Natale F, Tran TH, Chan AH, Simanshu DK, Nissley DV, Streitz FH, Stephen AG, Turbyville TJ, Lightstone FC, Gnanakaran S, Ingólfsson HI, Neale C. Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework. J Chem Theory Comput 2022; 18:5025-5045. [PMID: 35866871 DOI: 10.1021/acs.jctc.2c00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Fikret Aydin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rebika Shrestha
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Que N Van
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Christopher B Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Kien Nguyen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lara A Patel
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - De Chen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Violetta Burns
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tyler J E Reddy
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harsh Bhatia
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Francesco Di Natale
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Albert H Chan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Thomas J Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Sarkar P, Chattopadhyay A. Membrane Dipole Potential: An Emerging Approach to Explore Membrane Organization and Function. J Phys Chem B 2022; 126:4415-4430. [PMID: 35696090 DOI: 10.1021/acs.jpcb.2c02476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological membranes are complex organized molecular assemblies of lipids and proteins that provide cells and membrane-bound intracellular organelles their individual identities by morphological compartmentalization. Membrane dipole potential originates from the electrostatic potential difference within the membrane due to the nonrandom arrangement (orientation) of amphiphile and solvent (water) dipoles at the membrane interface. In this Feature Article, we will focus on the measurement of dipole potential using electrochromic fluorescent probes and highlight interesting applications. In addition, we will focus on ratiometric fluorescence microscopic imaging technique to measure dipole potential in cellular membranes, a technique that can be used to address novel problems in cell biology which are otherwise difficult to address using available approaches. We envision that membrane dipole potential could turn out to be a convenient tool in exploring the complex interplay between membrane lipids and proteins and could provide novel insights in membrane organization and function.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
4
|
Martin HS, Podolsky KA, Devaraj NK. Probing the Role of Chirality in Phospholipid Membranes. Chembiochem 2021; 22:3148-3157. [PMID: 34227722 DOI: 10.1002/cbic.202100232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Indexed: 11/09/2022]
Abstract
Nucleotides, amino acids, sugars, and lipids are almost ubiquitously homochiral within individual cells on Earth. While oligonucleotides and proteins exist as one natural chirality throughout the tree of life, two stereoisomers of phospholipids have separately emerged in archaea and bacteria, an evolutionary divergence known as "the lipid divide". Within this review, we focus on the emergence of phospholipid homochirality and compare the stability of synthetic homochiral and heterochiral membranes in vitro. We discuss chemical probes designed to study the stereospecific interactions of lipid membranes in vitro. Overall, we aim to highlight studies that help elucidate the determinants of stereospecific interactions between lipids, peptides, and small molecule ligands. Continued work in understanding the drivers of favorable interactions between chiral molecules and biological membranes will lead to the design of increasingly selective chemical tools for bioorthogonal labeling of lipid membranes and safer membrane-associating pharmaceuticals.
Collapse
Affiliation(s)
- Hannah S Martin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. The biophysical interaction of ferulic acid with liposomes as biological membrane model: The effect of the lipid bilayer composition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Lopez C, Mériadec C, David-Briand E, Dupont A, Bizien T, Artzner F, Riaublanc A, Anton M. Loading of lutein in egg-sphingomyelin vesicles as lipid carriers: Thermotropic phase behaviour, structure of sphingosome membranes and lutein crystals. Food Res Int 2020; 138:109770. [PMID: 33292950 DOI: 10.1016/j.foodres.2020.109770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Lutein is a xanthophyll carotenoid provided exclusively by the diet, that has protective functions and beneficial effects on human health. Supplementation in lutein is necessary to reach the recommended daily dietary intake. However, the introduction of lutein into foods and beverages is a real challenge since this lipophilic nutrient has a poor aqueous solubility and a low bioavailability. In this study, we investigated the capacity of egg-sphingomyelin (ESM) vesicles called sphingosomes to solubilise lutein into the bilayers. The thermal and structural properties of ESM bilayers were examined in presence of various amounts of lutein by differential scanning calorimetry (DSC) and temperature-controlled X-ray diffraction (XRD), the structures of sphingosomes and lutein crystals were observed by microscopic techniques. ESM bilayers were in the fluid Lα phase above the phase transition temperature Tm = 39.6 °C and in the lamellar ripple Pβ' phase below Tm where ESM sphingosomes exhibited ondulations and were facetted. Lutein molecules were successfully incorporated into the ESM bilayers where they induced a structural disorganisation. For ESM/lutein 90/10 %mol (91.8/8.2 %wt; 89 mg lutein / g ESM), lutein partitioning occured with the formation of lutein crystals in the aqueous phase together with lutein-loaded ESM vesicles. This study highlighted the capacity of new lipid carriers such as egg-sphingosomes to solubilise lutein and opens perspectives for the formulation of effective lutein-fortified functionnal foods and beverages providing health benefits.
Collapse
Affiliation(s)
- Christelle Lopez
- INRAE, BIA, 44316 Nantes, France; INRAE, STLO, 35000 Rennes, France.
| | | | | | - Aurélien Dupont
- Univ Rennes, CNRS, Inserm, BIOSIT - UMS 3480, US_S 018, 35000 Rennes, France
| | - Thomas Bizien
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Franck Artzner
- IPR, UMR 6251, CNRS, University of Rennes 1, 35042 Rennes, France
| | | | | |
Collapse
|
7
|
Molecular interactions between Vitamin B12 and membrane models: A biophysical study for new insights into the bioavailability of Vitamin. Colloids Surf B Biointerfaces 2020; 194:111187. [DOI: 10.1016/j.colsurfb.2020.111187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
|
8
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
9
|
Hanashima S, Yano Y, Murata M. Enantiomers of phospholipids and cholesterol: A key to decipher lipid‐lipid interplay in membrane. Chirality 2020; 32:282-298. [DOI: 10.1002/chir.23171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry, Graduate School of ScienceOsaka University Toyonaka Japan
| | - Yo Yano
- Department of Chemistry, Graduate School of ScienceOsaka University Toyonaka Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of ScienceOsaka University Toyonaka Japan
| |
Collapse
|
10
|
Surface interactions determined by stereostructure on the example of 7-hydroxycholesterol epimers – The Langmuir monolayer study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1275-1283. [DOI: 10.1016/j.bbamem.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/06/2023]
|
11
|
Patel H, Ding B, Ernst K, Shen L, Yuan W, Tang J, Drake LR, Kang J, Li Y, Chen Z, Schwendeman A. Characterization of apolipoprotein A-I peptide phospholipid interaction and its effect on HDL nanodisc assembly. Int J Nanomedicine 2019; 14:3069-3086. [PMID: 31118623 PMCID: PMC6500440 DOI: 10.2147/ijn.s179837] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/06/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Synthetic HDLs (sHDLs), small nanodiscs of apolipoprotein mimetic peptides surrounding lipid bilayers, were developed clinically for atheroma regression in cardiovascular patients. Formation of HDL involves interaction of apolipoprotein A-I (ApoA-I) with phospholipid bilayers and assembly into lipid-protein nanodiscs. Purpose: The objective of this study is to improve understanding of physico-chemical aspects of HDL biogenesis such as the thermodynamics of ApoA-I-peptide membrane insertion, lipid binding, and HDL self-assembly to improve our ability to form homogeneous sHDL nanodiscs that are suitable for clinical administration. Methods: The ApoA-I-mimetic peptide, 22A, was combined with either egg sphingomyelin (eSM) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid vesicles to form sHDL. The sHDL assembly process was investigated through lipid vehicle solubilization assays and characterization of purity, size, and morphology of resulting nanoparticles via gel permeation chromatography (GPC), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Peptide-lipid interactions involved were further probed by sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The pharmacokinetics of eSM-sHDL and POPC-sHDL nanodiscs were investigated in Sprague Dawley rats. Results: sHDL formation was temperature-dependent, with spontaneous formation of sHDL nanoparticles occurring only at temperatures exceeding lipid transition temperatures as evidenced by DLS, GPC, and TEM characterization. SFG and ATR-FTIR spectroscopy findings support a change in peptide-lipid bilayer interactions at temperatures above the lipid transition temperature. Lipid-22A interactions were stronger with eSM than with POPC, which resulted in the formation of more homogeneous sHDL nanoparticles with longer in vivo circulation time as evidenced the PK study. Conclusion: Physico-chemical characteristics of sHDL are in part determined by phospholipid composition. Optimization of phospholipid composition may be utilized to improve the stability and homogeneity of sHDL.
Collapse
Affiliation(s)
- Hiren Patel
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Bei Ding
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey Ernst
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Lei Shen
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Jie Tang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Lindsey R Drake
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Jukyung Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Yaoxin Li
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Anna Schwendeman
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Kinnun JJ, Bittman R, Shaikh SR, Wassall SR. DHA Modifies the Size and Composition of Raftlike Domains: A Solid-State 2H NMR Study. Biophys J 2019; 114:380-391. [PMID: 29401435 DOI: 10.1016/j.bpj.2017.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/22/2023] Open
Abstract
Docosahexaenoic acid is an omega-3 polyunsaturated fatty acid that relieves the symptoms of a wide variety of chronic inflammatory disorders. The structural mechanism is not yet completely understood. Our focus here is on the plasma membrane as a site of action. We examined the molecular organization of [2H31]-N-palmitoylsphingomyelin (PSM-d31) mixed with 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) or 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), as a monounsaturated control, and cholesterol (chol) (1:1:1 mol) in a model membrane by solid-state 2H NMR. The spectra were analyzed in terms of segregation into ordered SM-rich/chol-rich (raftlike) and disordered PC-rich/chol-poor (nonraft) domains that are nanoscale in size. An increase in the size of domains is revealed when POPC was replaced by PDPC. Spectra that are single-component, attributed to fast exchange between domains (<45 nm), for PSM-d31 mixed with POPC and chol become two-component, attributed to slow exchange between domains (r > 30 nm), for PSM-d31 mixed with PDPC and chol. The resolution of separate signals from PSM-d31, and correspondingly from [3α-2H1]cholesterol (chol-d1) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31), in raftlike and nonraft domains enabled us to determine the composition of the domains in the PDPC-containing membrane. Most of the lipid (28% SM, 29% chol, and 23% PDPC with respect to total lipid at 30°C) was found in the raftlike domain. Despite substantial infiltration of PDPC into raftlike domains, there appears to be minimal effect on the order of SM, implying the existence of internal structure that limits contact between SM and PDPC. Our results suggest a significant refinement to the model by which DHA regulates the architecture of ordered, sphingolipid-chol-enriched domains (rafts) in membranes.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of CUNY, Flushing, New York
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana.
| |
Collapse
|
13
|
North K, Bisen S, Dopico AM, Bukiya AN. Tyrosine 450 in the Voltage- and Calcium-Gated Potassium Channel of Large Conductance Channel Pore-Forming (slo1) Subunit Mediates Cholesterol Protection against Alcohol-Induced Constriction of Cerebral Arteries. J Pharmacol Exp Ther 2018; 367:234-244. [PMID: 30115756 PMCID: PMC6170972 DOI: 10.1124/jpet.118.250514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
Alcohol (ethanol) at physiologically relevant concentrations (<100 mM) constricts cerebral arteries via inhibition of voltage- and calcium-gated potassium channels of large conductance (BK) located in vascular smooth muscle (VSM). These channels consist of channel-forming slo1 (cbv1, KCNMA1) and accessory beta1 (KCNMB1) subunits. An increase in VSM cholesterol (CLR) via either dietary CLR intake or in vitro CLR enrichment was shown to protect against endothelium-independent, alcohol-induced constriction of cerebral arteries. The molecular mechanism(s) of this protection remains unknown. Here, we demonstrate that CLR enrichment of de-endothelialized middle cerebral arteries (MCAs) of rat increased CLR content in the VSM in a concentration-dependent manner. CLR enrichment blunted MCA constriction evoked by 18-75 mM but not by 100 mM alcohol. MCA enrichment with coprostanol (COPR) also blunted vasoconstriction by 50 mM alcohol, despite the fact that COPR and CLR differ in their ability to modify several major physical properties of the bilayer. CLR protection against 50 but not 100 mM alcohol was also observed in C57BL/6 and KCNMB1 knockout (KO) mice. Permeabilization of KCNMA1 KO MCAs with Y450Fcbv1 totally ablated CLR, but not COPR protection against vasoconstriction by 50 mM alcohol. Thus, CLR and alcohol interact at the level of the BK channel slo1 subunit, with Y450 being critical for CLR protection against alcohol-induced vasoconstriction. We document for the first time a functional competition between CLR and alcohol in regulating cerebral artery diameter and a critical role of a single amino acid within the BK channel pore-forming subunit in controlling CLR-alcohol interaction at the organ level.
Collapse
Affiliation(s)
- Kelsey North
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Shivantika Bisen
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alex M Dopico
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
14
|
Yano Y, Hanashima S, Yasuda T, Tsuchikawa H, Matsumori N, Kinoshita M, Al Sazzad MA, Slotte JP, Murata M. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation. Biophys J 2018; 115:1530-1540. [PMID: 30274830 DOI: 10.1016/j.bpj.2018.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 01/03/2023] Open
Abstract
Sphingomyelin is an abundant lipid in some cellular membrane domains, such as lipid rafts. Hydrogen bonding and hydrophobic interactions of the lipid with surrounding components such as neighboring sphingomyelin and cholesterol (Cho) are widely considered to stabilize the raft-like liquid-ordered (Lo) domains in membrane bilayers. However, details of their interactions responsible for the formation of Lo domains remain largely unknown. In this study, the enantiomer of stearoyl sphingomyelin (ent-SSM) was prepared, and its physicochemical properties were compared with the natural SSM and the diastereomer of SSM to examine possible stereoselective lipid-lipid interactions. Interestingly, differential scanning calorimetry experiments demonstrated that palmitoyl sphingomyelin, with natural stereochemistry, exhibited higher miscibility with SSM bilayers than with ent-SSM bilayers, indicating that the homophilic sphingomyelin interactions occurred in a stereoselective manner. Solid-state 2H NMR revealed that Cho elicited its ordering effect very similarly on SSM and ent-SSM (and even on the diastereomer of SSM), suggesting that SSM-Cho interactions are not significantly affected by stereospecific hydrogen bonding. SSM and ent-SSM formed gel-like domains with very similar lateral packing in SSM/Cho/palmitoyloleoyl phosphatidylcholine membranes, as shown by fluorescence lifetime experiments. This observation can be explained by a homophilic hydrogen-bond network, which was largely responsible for the formation of gel-like nanodomains of SSMs (or ent-SSM). Our previous study revealed that Cho-poor gel-like domains contributed significantly to the formation of an Lo phase in sphingomyelin/Cho membranes. The results of the study presented here further show that SSM-SSM interactions occur near the headgroup region, whereas hydrophobic SSM-Cho interactions appeared important in the bilayer interior for Lo domain formation. The homophilic interactions of sphingomyelins could be mainly responsible for the formation of the domains of nanometer size, which may correspond to the small sphingomyelin/Cho-based rafts that temporally occur in biological membranes.
Collapse
Affiliation(s)
- Yo Yano
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Tomokazu Yasuda
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Md Abdullah Al Sazzad
- Biochemistry, Faculty of Science Engineering, Åbo Akademi University, Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science Engineering, Åbo Akademi University, Turku, Finland.
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
15
|
Thermotropic phase behavior of milk sphingomyelin and role of cholesterol in the formation of the liquid ordered phase examined using SR-XRD and DSC. Chem Phys Lipids 2018; 215:46-55. [DOI: 10.1016/j.chemphyslip.2018.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 01/14/2023]
|
16
|
Penny WM, Palmer CP. Sphingomyelin ability to act as chiral selector using nanodisc electrokinetic chromatography. Chem Phys Lipids 2018; 214:11-14. [PMID: 29753650 PMCID: PMC6657505 DOI: 10.1016/j.chemphyslip.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 10/16/2022]
Abstract
Understanding how stereochemistry affects interactions with cell membranes is important for effective drug development. Chirality has been shown to greatly effect pharmaceutical distribution and metabolism within the cell. However it has been thought that interactions with, and passive diffusion through, the membrane are not stereochemically selective. Various studies have produced conflicting results regarding whether interactions with lipid bilayers are or can be stereoselective. In the current work, stereoselective interactions between a pair of atropisomers, R-(+)/(S)-(-) 1,1'-Bi-2-naphthol, and sphingomyelin nanodisc bilayers, are demonstrated. This is accomplished using nanodisc electrokinetic chromatography, demonstrating that this approach is sensitive to subtle differences in affinity between small molecule probes and lipid bilayers. Using the same approach, no evidence of stereoselectivity was observed using enantiomer or diastereomer probes of varied chemistry and structure.
Collapse
Affiliation(s)
- William M Penny
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59803, United States
| | - Christopher P Palmer
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59803, United States.
| |
Collapse
|
17
|
Arsov Z, González-Ramírez EJ, Goñi FM, Tristram-Nagle S, Nagle JF. Phase behavior of palmitoyl and egg sphingomyelin. Chem Phys Lipids 2018; 213:102-110. [PMID: 29689259 DOI: 10.1016/j.chemphyslip.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/02/2018] [Accepted: 03/06/2018] [Indexed: 01/28/2023]
Abstract
Despite the biological significance of sphingomyelins (SMs), there is far less structural information available for SMs compared to glycerophospholipids. Considerable confusion exists in the literature regarding even the phase behavior of SM bilayers. This work studies both palmitoyl (PSM) and egg sphingomyelin (ESM) in the temperature regime from 3 °C to 55 °C using X-ray diffraction and X-ray diffuse scattering on hydrated, oriented thick bilayer stacks. We observe clear evidence for a ripple phase for ESM in a large temperature range from 3 °C to the main phase transition temperature (TM) of ∼38 °C. This unusual stability of the ripple phase was not observed for PSM, which was in a gel phase at 3 °C, with a gel-to-ripple transition at ∼24 °C and a ripple-to-fluid transition at ∼41 °C. We also report structural results for all phases. In the gel phase at 3 °C, PSM has chains tilted by ∼30° with an area/lipid ∼45 Å2 as determined by wide angle X-ray scattering. The ripple phases for both PSM and ESM have temperature dependent ripple wavelengths that are ∼145 Å near 30 °C. In the fluid phase, our electron density profiles combined with volume measurements allow calculation of area/lipid to be ∼64 Å2 for both PSM and ESM, which is larger than that from most of the previous molecular dynamics simulations and experimental studies. Our study demonstrates that oriented lipid films are particularly well-suited to characterize ripple phases since the scattering pattern is much better resolved than in unoriented samples.
Collapse
Affiliation(s)
- Zoran Arsov
- Department of Condensed Matter Physics, Laboratory of Biophysics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Emilio J González-Ramírez
- Instituto Biofísika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | - Felix M Goñi
- Instituto Biofísika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | - John F Nagle
- Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
18
|
Stereospecific Interactions of Cholesterol in a Model Cell Membrane: Implications for the Membrane Dipole Potential. J Membr Biol 2018; 251:507-519. [DOI: 10.1007/s00232-018-0016-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
|
19
|
Discrimination of Stereoisomers by Their Enantioselective Interactions with Chiral Cholesterol-Containing Membranes. Molecules 2017; 23:molecules23010049. [PMID: 29295605 PMCID: PMC5943951 DOI: 10.3390/molecules23010049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/02/2022] Open
Abstract
Discrimination between enantiomers is an important subject in medicinal and biological chemistry because they exhibit markedly different bioactivity and toxicity. Although stereoisomers should vary in the mechanistic interactions with chiral targets, their discrimination associated with the mode of action on membrane lipids is scarce. The aim of this study is to reveal whether enantiomers selectively act on chiral lipid membranes. Different classes of stereoisomers were subjected at 5–200 μM to reactions with biomimetic phospholipid membranes containing ~40 mol % cholesterol to endow the lipid bilayers with chirality and their membrane interactions were comparatively evaluated by measuring fluorescence polarization. All of the tested compounds interacted with cholesterol-containing membranes to modify their physicochemical property with different potencies between enantiomers, correlating to those of their experimental and clinical effects. The rank order of membrane interactivity was reversed by changing cholesterol to C3-epimeric α-cholesterol. The same selectivity was also obtained from membranes prepared with 5α-cholestan-3β-ol and 5β-cholestan-3α-ol diastereomers. The opposite configuration allows molecules to interact with chiral sterol-containing membranes enantioselectively, and the specific β configuration of cholesterol’s 3-hydroxyl group is responsible for such selectivity. The enantioselective membrane interaction has medicinal implications for the characterization of the stereostructures with higher bioactivity and lower toxicity.
Collapse
|
20
|
Zhang B, Naik JS, Jernigan NL, Walker BR, Resta TC. Reduced membrane cholesterol limits pulmonary endothelial Ca 2+ entry after chronic hypoxia. Am J Physiol Heart Circ Physiol 2017; 312:H1176-H1184. [PMID: 28364016 DOI: 10.1152/ajpheart.00097.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is associated with diminished production of endothelium-derived Ca2+-dependent vasodilators such as nitric oxide. Interestingly, ATP-induced endothelial Ca2+ entry as well as membrane cholesterol (Chol) are decreased in pulmonary arteries from CH rats (4 wk, barometric pressure = 380 Torr) compared with normoxic controls. Store-operated Ca2+ entry (SOCE) and depolarization-induced Ca2+ entry are major components of the response to ATP and are similarly decreased after CH. We hypothesized that membrane Chol facilitates both SOCE and depolarization-induced pulmonary endothelial Ca2+ entry and that CH attenuates these responses by decreasing membrane Chol. To test these hypotheses, we administered Chol or epicholesterol (Epichol) to acutely isolated pulmonary arterial endothelial cells (PAECs) from control and CH rats to either supplement or replace native Chol, respectively. The efficacy of membrane Chol manipulation was confirmed by filipin staining. Epichol greatly reduced ATP-induced Ca2+ influx in PAECs from control rats. Whereas Epichol similarly blunted endothelial SOCE in PAECs from both groups, Chol supplementation restored diminished SOCE in PAECs from CH rats while having no effect in controls. Similar effects of Chol manipulation on PAEC Ca2+ influx were observed in response to a depolarizing stimulus of KCl. Furthermore, KCl-induced Ca2+ entry was inhibited by the T-type Ca2+ channel antagonist mibefradil but not the L-type Ca2+ channel inhibitor diltiazem. We conclude that PAEC membrane Chol is required for ATP-induced Ca2+ entry and its two components, SOCE and depolarization-induced Ca2+ entry, and that reduced Ca2+ entry after CH may be due to loss of this key regulator.NEW & NOTEWORTHY This research is the first to examine the direct role of membrane cholesterol in regulating pulmonary endothelial agonist-induced Ca2+ entry and its components. The results provide a potential mechanism by which chronic hypoxia impairs pulmonary endothelial Ca2+ influx, which may contribute to pulmonary hypertension.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
21
|
Hasan IY, Mechler A. Analytical approaches to study domain formation in biomimetic membranes. Analyst 2017; 142:3062-3078. [PMID: 28758651 DOI: 10.1039/c7an01038a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Novel characterization methods open new horizons in the study of membrane mixtures.
Collapse
Affiliation(s)
- Imad Younus Hasan
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Adam Mechler
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
22
|
Fürst O, Nichols CG, Lamoureux G, D'Avanzo N. Identification of a cholesterol-binding pocket in inward rectifier K(+) (Kir) channels. Biophys J 2016; 107:2786-2796. [PMID: 25517146 DOI: 10.1016/j.bpj.2014.10.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022] Open
Abstract
Cholesterol is the major sterol component of all mammalian plasma membranes. Recent studies have shown that cholesterol inhibits both bacterial (KirBac1.1 and KirBac3.1) and eukaryotic (Kir2.1) inward rectifier K(+) (Kir) channels. Lipid-sterol interactions are not enantioselective, and the enantiomer of cholesterol (ent-cholesterol) does not inhibit Kir channel activity, suggesting that inhibition results from direct enantiospecific binding to the channel, and not indirect effects of changes to the bilayer. Furthermore, conservation of the effect of cholesterol among prokaryotic and eukaryotic Kir channels suggests an evolutionary conserved cholesterol-binding pocket, which we aimed to identify. Computational experiments were performed by docking cholesterol to the atomic structures of Kir2.2 (PDB: 3SPI) and KirBac1.1 (PDB: 2WLL) using Autodock 4.2. Poses were assessed to ensure biologically relevant orientation and then clustered according to location and orientation. The stability of cholesterol in each of these poses was then confirmed by molecular dynamics simulations. Finally, mutation of key residues (S95H and I171L) in this putative binding pocket found within the transmembrane domain of Kir2.1 channels were shown to lead to a loss of inhibition by cholesterol. Together, these data provide support for this location as a biologically relevant pocket.
Collapse
Affiliation(s)
- Oliver Fürst
- Département de Physiologie Moléculaire et Intégrative and Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montreal, Quebec, Canada
| | - Colin G Nichols
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitabiltiy Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Guillaume Lamoureux
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Groupe d'Étude des Protéines Membranaires (GÉPROM), Concordia University, Montreal, Quebec, Canada
| | - Nazzareno D'Avanzo
- Département de Physiologie Moléculaire et Intégrative and Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Dent MR, López-Duarte I, Dickson CJ, Geoghegan ND, Cooper JM, Gould IR, Krams R, Bull JA, Brooks NJ, Kuimova MK. Imaging phase separation in model lipid membranes through the use of BODIPY based molecular rotors. Phys Chem Chem Phys 2016; 17:18393-402. [PMID: 26104504 DOI: 10.1039/c5cp01937k] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In order to fully understand the dynamics of processes within biological lipid membranes, it is necessary to possess an intimate knowledge of the physical state and ordering of lipids within the membrane. Here we report the use of three molecular rotors based on meso-substituted boron-dipyrrin (BODIPY) in combination with fluorescence lifetime spectroscopy to investigate the viscosity and phase behaviour of model lipid bilayers. In phase-separated giant unilamellar vesicles, we visualise both liquid-ordered (Lo) and liquid-disordered (Ld) phases using fluorescence lifetime imaging microscopy (FLIM), determining their associated viscosity values, and investigate the effect of composition on the viscosity of these phases. Additionally, we use molecular dynamics simulations to investigate the orientation of the BODIPY probes within the bilayer, as well as using molecular dynamics simulations and fluorescence correlation spectroscopy (FCS) to compare diffusion coefficients with those predicted from the fluorescence lifetimes of the probes.
Collapse
Affiliation(s)
- Michael R Dent
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kishimoto T, Ishitsuka R, Kobayashi T. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:812-829. [PMID: 26993577 DOI: 10.1016/j.bbalip.2016.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
Although sphingomyelin and cholesterol are major lipids of mammalian cells, the detailed distribution of these lipids in cellular membranes remains still obscure. However, the recent development of protein probes that specifically bind sphingomyelin and/or cholesterol provides new information about the landscape of the lipid domains that are enriched with sphingomyelin or cholesterol or both. Here, we critically summarize the tools to study distribution and dynamics of sphingomyelin and cholesterol. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Reiko Ishitsuka
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, Université Lyon 1, Villeurbanne 69621, France.
| |
Collapse
|
25
|
Kepczynski M, Róg T. Functionalized lipids and surfactants for specific applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2362-2379. [PMID: 26946243 DOI: 10.1016/j.bbamem.2016.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101, Tampere, Finland; Department of Physics, Helsinki University, P.O. Box 64, FI 00014 Helsinki, Finland.
| |
Collapse
|
26
|
A calorimetric and spectroscopic comparison of the effects of cholesterol and its sulfur-containing analogs thiocholesterol and cholesterol sulfate on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:168-80. [DOI: 10.1016/j.bbamem.2015.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/26/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022]
|
27
|
Benesch MGK, McElhaney RN. A comparative differential scanning calorimetry study of the effects of cholesterol and various oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2015; 195:21-33. [PMID: 26620814 DOI: 10.1016/j.chemphyslip.2015.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 01/19/2023]
Abstract
We have carried out a comparative differential scanning calorimetric (DSC) study of the effects of cholesterol (C) and the eight most physiologically relevant oxysterols on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayer membranes. The structures of these oxysterols differ from that of C by the presence of additional hydroxyl, keto or epoxy groups on the steroid ring system or by the presence of a hydroxyl group in the alkyl side chain. In general, the progressive incorporation of these oxysterols reduces the temperature, cooperativity and enthalpy of the pretransition of DPPC to a greater extent than C, indicating that their presence thermally destabilizes and disorders the gel states of DPPC bilayers to a greater extent than C. Similarly, the incorporation of these oxysterols either increases the temperature of the broad component of the main phase transition to a smaller extent than C or actually decreases it. Again, this indicates that the presence of these compounds is less effective at thermally stabilizing and ordering the sterol-rich domains of DPPC bilayers than is C itself. Moreover, the incorporation of these oxysterols decrease the cooperativity and enthalpy of the main phase transition of DPPC to a smaller extent than C, indicating that they are somewhat less miscible in fluid DPPC bilayers than is C. Particularly notable in this regard is 25-hydroxycholesterol, which exhibits a markedly reduced miscibility in both gel and fluid DPPC bilayers compared to C itself. In general, the effectiveness of these oxysterols in stabilizing and ordering DPPC bilayers decreases as their rate of interbilayer exchange and the polarity of the oxysterol increases. We close by providing a tentative molecular explanation for the results of our DSC studies and of those of previous biophysical studies of the effects of various oxysterol on lipid bilayer model membranes.
Collapse
Affiliation(s)
- Matthew G K Benesch
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Ronald N McElhaney
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
28
|
Benesch MG, Lewis RN, McElhaney RN. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2015; 191:123-35. [DOI: 10.1016/j.chemphyslip.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
29
|
Kuć M, Cieślik-Boczula K, Świątek P, Jaszczyszyn A, Gąsiorowski K, Malinka W. FTIR-ATR study of the influence of the pyrimidine analog of fluphenazine on the chain-melting phase transition of sphingomyelin membranes. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Mannock DA, Benesch MG, Lewis RN, McElhaney RN. A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols β-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1629-38. [DOI: 10.1016/j.bbamem.2015.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/08/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022]
|
31
|
Rogers MA, Liu J, Song BL, Li BL, Chang CCY, Chang TY. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. J Steroid Biochem Mol Biol 2015; 151:102-7. [PMID: 25218443 PMCID: PMC4851438 DOI: 10.1016/j.jsbmb.2014.09.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 09/06/2014] [Indexed: 01/18/2023]
Abstract
Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form the basis to further pursue ACAT structure-function analysis, and can be explored to develop novel allosteric ACAT inhibitors for therapeutic purposes. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Maximillian A Rogers
- Department of Biochemistry, Geisel School of Medicine, Dartmouth HB7200, Hanover, NH 03755, United States; Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay Liu
- Department of Biochemistry, Geisel School of Medicine, Dartmouth HB7200, Hanover, NH 03755, United States
| | - Bao-Liang Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bo-Liang Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine, Dartmouth HB7200, Hanover, NH 03755, United States.
| | - Ta-Yuan Chang
- Department of Biochemistry, Geisel School of Medicine, Dartmouth HB7200, Hanover, NH 03755, United States.
| |
Collapse
|
32
|
A DSC and FTIR spectroscopic study of the effects of the epimeric coprostan-3-ols and coprostan-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2015; 188:10-26. [DOI: 10.1016/j.chemphyslip.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022]
|
33
|
A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Chem Phys Lipids 2015; 187:34-49. [DOI: 10.1016/j.chemphyslip.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 11/23/2022]
|
34
|
Carravilla P, Nieva JL, Goñi FM, Requejo-Isidro J, Huarte N. Two-photon Laurdan studies of the ternary lipid mixture DOPC:SM:cholesterol reveal a single liquid phase at sphingomyelin:cholesterol ratios lower than 1. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2808-2817. [PMID: 25658036 DOI: 10.1021/la504251u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ternary lipid mixture DOPC:eggSM:cholesterol in excess water has been studied in the form of giant unilamellar vesicles using two-photon fluorescence microscopy. Previous publications based on single-photon fluorescence microscopy had reported heterogeneous phase behavior (phase coexistence) in the region of the triangular phase diagram corresponding to SM:cholesterol molar ratios <1. We have examined this region by two-photon microscopy of Laurdan-labeled mixtures and have found that, under our conditions, only a single liquid phase exists. We have shown that macroscopic phase separation in the above region can be artifactually induced by one-photon excitation of the fluorescent probes and ensuing photooxidation and is prevented using two-photon excitation. The main effect of increasing the concentration of cholesterol in mixtures containing 30 mol % SM was to increase the rigidity of the disordered domains. Increasing the concentration of SM in mixtures containing 20 mol % cholesterol gradually augmented the rigidity of the ordered domains, while the disordered domains reached minimal order at a SM:cholesterol 2.25:1 molar ratio, which then increased again. Moreover, the detailed measurement of Laurdan generalized polarization across the whole phase diagram allowed the representation, for both the single- and two-phase regions, of the gradual variation of membrane lateral packing along the diagram, which we found to be governed largely by SM:cholesterol interactions.
Collapse
Affiliation(s)
- Pablo Carravilla
- Unidad de Biofísica (CSIC, UPV/EHU), Barrio de Sarriena s/n, 48490 Leioa, Spain
| | | | | | | | | |
Collapse
|
35
|
Georgieva R, Chachaty C, Hazarosova R, Tessier C, Nuss P, Momchilova A, Staneva G. Docosahexaenoic acid promotes micron scale liquid-ordered domains. A comparison study of docosahexaenoic versus oleic acid containing phosphatidylcholine in raft-like mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1424-35. [PMID: 25767038 DOI: 10.1016/j.bbamem.2015.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Abstract
The understanding of the functional role of the lipid diversity in biological membranes is a major challenge. Lipid models have been developed to address this issue by using lipid mixtures generating liquid-ordered (Lo)/liquid-disordered (Ld) immiscibility. The present study examined mixtures comprising Egg sphingomyelin (SM), cholesterol (chol) and phosphatidylcholine (PC) either containing docosahexaenoic (PDPC) or oleic acid (POPC). The mixtures were examined in terms of their capability to induce phase separation at the micron- and nano-scales. Fluorescence microscopy, electron spin resonance (ESR), X-ray diffraction (XRD) and calorimetry methods were used to analyze the lateral organization of the mixtures. Fluorescence microscopy of giant vesicles could show that the temperature of the micron-scale Lo/Ld miscibility is higher for PDPC than for POPC ternary mixtures. At 37°C, no micron-scale Lo/Ld phase separation could be identified in the POPC containing mixtures while it was evident for PDPC. In contrast, a phase separation was distinguished for both PC mixtures by ESR and XRD, indicative that PDPC and POPC mixtures differed in micron vs nano domain organization. Compared to POPC, the higher line tension of the Lo domains observed in PDPC mixtures is assumed to result from the higher difference in Lo/Ld order parameter rather than hydrophobic mismatch.
Collapse
Affiliation(s)
- R Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - C Chachaty
- Universite Pierre et Marie Curie-Paris 6, INSERM U893, CHU St. Antoine, 27 rue Chaligny, 75012 Paris, France
| | - R Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - C Tessier
- UMR 7203, INSERM ERL 1057 - Bioactive Molecules Laboratory, Pierre et Marie Curie University, Paris, France; Department of Psychiatry, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - P Nuss
- UMR 7203, INSERM ERL 1057 - Bioactive Molecules Laboratory, Pierre et Marie Curie University, Paris, France; Department of Psychiatry, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - A Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - G Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| |
Collapse
|
36
|
Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 2015; 20:584-606. [DOI: 10.1007/s10495-015-1104-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Benesch MG, Lewis RN, Mannock DA, McElhaney RN. A DSC and FTIR spectroscopic study of the effects of the epimeric 4,6-cholestadien-3-ols and 4,6-cholestadien-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2014; 183:142-58. [DOI: 10.1016/j.chemphyslip.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
38
|
Busto JV, García-Arribas AB, Sot J, Torrecillas A, Gómez-Fernández JC, Goñi FM, Alonso A. Lamellar gel (lβ) phases of ternary lipid composition containing ceramide and cholesterol. Biophys J 2014; 106:621-30. [PMID: 24507602 DOI: 10.1016/j.bpj.2013.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022] Open
Abstract
Lipid lateral segregation into specific domains in cellular membranes is associated with cell signaling and metabolic regulation. This phenomenon partially arises as a consequence of the very distinct bilayer-associated lipid physico-chemical properties that give rise to defined phase states at a given temperature. Until now lamellar gel (Lβ) phases have been described in detail in single or two-lipid systems. Using x-ray scattering, differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy, we have characterized phases of ternary lipid compositions in the presence of saturated phospholipids, cholesterol, and palmitoyl ceramide mixtures. These phases stabilized by direct cholesterol-ceramide interaction can exist either with palmitoyl sphingomyelin or with dipalmitoyl phosphatidylcholine and present intermediate properties between raft-associated phospholipid-cholesterol liquid-ordered and phospholipid-ceramide Lβ phases. The present data provide novel, to our knowledge, evidence of a chemically defined, multicomponent lipid system that could cooperate in building heterogeneous segregated platforms in cell membranes.
Collapse
Affiliation(s)
- Jon V Busto
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Aritz B García-Arribas
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Jesús Sot
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, E-30080/Murcia, Spain
| | - Juan C Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, E-30080/Murcia, Spain
| | - Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
39
|
Bandari S, Chakraborty H, Covey DF, Chattopadhyay A. Membrane dipole potential is sensitive to cholesterol stereospecificity: implications for receptor function. Chem Phys Lipids 2014; 184:25-9. [PMID: 25219773 DOI: 10.1016/j.chemphyslip.2014.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022]
Abstract
Dipole potential is the potential difference within the membrane bilayer, which originates due to the nonrandom arrangement of lipid dipoles and water molecules at the membrane interface. Cholesterol, an essential lipid in higher eukaryotic membranes, has previously been shown to increase membrane dipole potential. In this work, we explored the effect of stereoisomers of cholesterol, ent-cholesterol and epi-cholesterol, on membrane dipole potential, monitored by the dual wavelength ratiometric approach utilizing the probe di-8-ANEPPS. Our results show that cholesterol and ent-cholesterol share comparable ability in increasing membrane dipole potential. In contrast, epi-cholesterol displays a slight reduction in membrane dipole potential. Our results constitute the first report on the effect of stereoisomers of cholesterol on membrane dipole potential, and imply that an extremely subtle change in sterol structure can significantly alter the dipolar field at the membrane interface. These results assume relevance in the context of differential abilities of these stereoisomers of cholesterol in supporting the activity of the serotonin1A receptor, a representative G protein-coupled receptor. The close correlation between membrane dipole potential and receptor activity provides new insight in receptor-cholesterol interaction in terms of stereospecificity. We envision that membrane dipole potential could prove to be a sensitive indicator of lipid-protein interactions in biological membranes.
Collapse
Affiliation(s)
- Suman Bandari
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Douglas F Covey
- Departments of Developmental Biology, Anesthesiology, Psychiatry and The Taylor Family Institute for Innovative Psychiatry Research, WA University in St. Louis Medical School, St. Louis, MO 63110, USA
| | | |
Collapse
|
40
|
A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1941-9. [PMID: 24704414 DOI: 10.1016/j.bbamem.2014.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/20/2022]
Abstract
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.
Collapse
|
41
|
A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2014; 177:71-90. [DOI: 10.1016/j.chemphyslip.2013.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 01/08/2023]
|
42
|
Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol. Biophys J 2013; 104:1456-64. [PMID: 23561522 DOI: 10.1016/j.bpj.2013.02.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/12/2013] [Accepted: 02/19/2013] [Indexed: 11/20/2022] Open
Abstract
We propose a novel, to our knowledge, method for the determination of tie lines in a phase diagram of ternary lipid mixtures. The method was applied to a system consisting of dioleoylphosphatidylcholine (DOPC), egg sphingomyelin (eSM), and cholesterol (Chol). The approach is based on electrofusion of single- or two-component homogeneous giant vesicles in the fluid phase and analyses of the domain areas of the fused vesicle. The electrofusion approach enables us to create three-component vesicles with precisely controlled composition, in contrast to conventional methods for giant vesicle formation. The tie lines determined in the two-liquid-phase coexistence region are found to be not parallel, suggesting that the dominant mechanism of lipid phase separation in this region changes with the membrane composition. We provide a phase diagram of the DOPC/eSM/Chol mixture and predict the location of the critical point. Finally, we evaluate the Gibbs free energy of transfer of individual lipid components from one phase to the other.
Collapse
|
43
|
Jafurulla M, Rao BD, Sreedevi S, Ruysschaert JM, Covey DF, Chattopadhyay A. Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:158-63. [PMID: 24008092 DOI: 10.1016/j.bbamem.2013.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 01/04/2023]
Abstract
The serotonin1A receptor is an important member of the G protein-coupled receptor (GPCR) family. It is involved in the generation and modulation of a variety of cognitive and behavioral functions and serves as a drug target. Previous work from our laboratory has established the sensitivity of the function of the serotonin1A receptor to membrane cholesterol. Solubilization of the hippocampal serotonin1A receptor utilizing the zwitterionic detergent CHAPS is accompanied by loss of cholesterol and results in reduction in specific ligand binding. Replenishment of cholesterol to solubilized membranes restores specific ligand binding to the receptor. We utilized this strategy of sterol replenishment of solubilized membranes to explore the stereospecific stringency of cholesterol for receptor function. We used two stereoisomers of cholesterol, ent-cholesterol (enantiomer of cholesterol) and epi-cholesterol (a diastereomer of cholesterol), for this purpose. Importantly, we show here that while ent-cholesterol could replace cholesterol in supporting receptor function, epi-cholesterol could not. These results imply that the requirement of membrane cholesterol for the serotonin1A receptor function is diastereospecific, yet not enantiospecific. Our results extend and help define specificity of the interaction of membrane cholesterol with the serotonin1A receptor, and represent the first report utilizing ent-cholesterol to examine stereospecificity of GPCR-cholesterol interaction.
Collapse
Affiliation(s)
- Md Jafurulla
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|
44
|
Fritzsching KJ, Kim J, Holland GP. Probing lipid–cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13C solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1889-98. [DOI: 10.1016/j.bbamem.2013.03.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
|
45
|
Le Guillou J, Ropers MH, Gaillard C, David-Briand E, Desherces S, Schmitt E, Bencharif D, Amirat-Briand L, Tainturier D, Anton M. Organization of lipids in the artificial outer membrane of bull spermatozoa reconstructed at the air–water interface. Colloids Surf B Biointerfaces 2013; 108:246-54. [DOI: 10.1016/j.colsurfb.2013.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/15/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
46
|
Quinn PJ. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9447-9456. [PMID: 23863113 DOI: 10.1021/la4018129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sphingomyelin and cholesterol are of interest to biologists because they interact to form condensed structures said to be responsible for a variety of functions that membranes perform. Synchrotron X-ray diffraction methods have been used to investigate the structure of bilayers of D-erythro palmitoyl-sphingomyelin and complexes formed by palmitoyl- and egg-sphingomyelin with cholesterol in aqueous multibilayer dispersions. D-erythro palmitoyl sphingomyelin bilayers exist in two conformers that are distinguished by their lamellar repeat spacing, bilayer thickness, and polar group hydration. The distinction is attributed to hydrogen bonding to water or to intermolecular hydrogen bonds that are disrupted by the formation of ripple structure. The coexisting bilayer structures of pure palmitoyl sphingomyelin are observed in the presence of cholesterol-rich bilayers that are characterized by different bilayer parameters. The presence of cholesterol preferentially affects the conformer of D-erythro sphingomyelin with thicker, more hydrated bilayers. Coexisting bilayers of sphingomyelin and complexes with cholesterol are in register and remain coupled at temperatures at least up to 50 °C. Cholesterol forms a complex of 1.8 mols of sphingomyelin per cholesterol at 37 °C that coexists with bilayers of pure sphingomyelin up to 50 °C. Redistribution of the two lipids takes place on cooling below the fluid- to gel-phase transition temperature, resulting in the withdrawal of sphingomyelin into gel phase and the formation of coexisting bilayers of equimolar proportions of the two lipids. Cholesterol-rich bilayers fit a stripe model at temperatures less than 37 °C characterized by alternating rows of sphingomyelin and cholesterol molecules. A quasicrystalline array models the arrangement at higher temperatures in which each cholesterol molecule is surrounded by seven hydrocarbon chains, each of which is in contact with two cholesterol molecules. The thickness of bilayer complexes of sphingomyelin and cholesterol is less than that of coexisting bilayers of pure sphingomyelin. The implications for protein sorting theories based on bilayer thickness are discussed.
Collapse
Affiliation(s)
- Peter J Quinn
- Department of Biochemistry, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
47
|
Salvador JAR, Carvalho JFS, Neves MAC, Silvestre SM, Leitão AJ, Silva MMC, Sá e Melo ML. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep 2013; 30:324-74. [PMID: 23151898 DOI: 10.1039/c2np20082a] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Steroids, a widespread class of natural organic compounds occurring in animals, plants and fungi, have shown great therapeutic value for a broad array of pathologies. The present overview is focused on the anticancer activity of steroids, which is very representative of a rich structural molecular diversity and ability to interact with various biological targets and pathways. This review encompasses the most relevant discoveries on steroid anticancer drugs and leads through the last decade and comprises 668 references.
Collapse
Affiliation(s)
- Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, 3000-508, Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
48
|
Forster V, Luciani P, Leroux JC. Treatment of calcium channel blocker-induced cardiovascular toxicity with drug scavenging liposomes. Biomaterials 2012; 33:3578-85. [PMID: 22330848 DOI: 10.1016/j.biomaterials.2012.01.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/22/2012] [Indexed: 12/20/2022]
Abstract
Calcium channel blocker (CCB) overdose is potentially lethal. Verapamil and diltiazem are particularly prone to acute toxicity due to their dual effect on cardiac and vascular tissues. Unfortunately, conventional decontamination measures are ineffective in accelerating blood clearance and, to date, few efforts have been made to develop antidotes. To address the issue, injectable long-circulating liposomes bearing a transmembrane pH-gradient are proposed as efficient detoxifying agents of CCB poisoning. By scavenging the drug in situ, these circulating nanocarriers can restrict its distribution in tissues and hinder its pharmacological effect. In vitro, we showed that liposomes stability in serum and their ability to sequester CCBs could be finely-tuned by modulating their internal pH, surface charge, and lipid bilayer structure. Subsequently, we verified their efficacy in reversing the cardiovascular effects of verapamil in rats implanted with telemetric pressure/biopotential transmitters. In animals orally intoxicated to verapamil, an intravenous injection of the liposomal antidote rapidly attenuated the reduction in blood pressure. Areas under diastolic, systolic, and mean pressures curves were significantly reduced by up to 60% and the time to hemodynamic recovery was shortened from 19 to only 11 h. These findings confirm the protective effect of pH-gradient liposomes against cardiovascular failure after CBB intoxication, and endorse their potential as efficient, versatile antidotes.
Collapse
Affiliation(s)
- Vincent Forster
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
49
|
Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat Chem Biol 2012; 8:211-20. [PMID: 22231273 PMCID: PMC3262054 DOI: 10.1038/nchembio.765] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/03/2011] [Indexed: 12/13/2022]
Abstract
Oxysterols are a class of endogenous signaling molecules that can activate the Hedgehog pathway, which has critical roles in development, regeneration and cancer. However, it has been unclear how oxysterols influence Hedgehog signaling, including whether their effects are mediated through a protein target or indirectly through effects on membrane properties. To answer this question, we synthesized the enantiomer and an epimer of the most potent oxysterol, 20(S)-hydroxycholesterol. Using these molecules, we show that the effects of oxysterols on Hedgehog signaling are exquisitely stereoselective, consistent with the hypothesis that they function through a specific protein target. We present several lines of evidence that this protein target is the seven-pass transmembrane protein Smoothened, a major drug target in oncology. Our work suggests that these enigmatic sterols, which have multiple effects on cell physiology, may act as ligands for signaling receptors and provides a generally applicable framework for probing sterol signaling mechanisms.
Collapse
|
50
|
Benesch MGK, Mannock DA, Lewis RNAH, McElhaney RN. A Calorimetric and Spectroscopic Comparison of the Effects of Lathosterol and Cholesterol on the Thermotropic Phase Behavior and Organization of Dipalmitoylphosphatidylcholine Bilayer Membranes. Biochemistry 2011; 50:9982-97. [DOI: 10.1021/bi200721j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew G. K. Benesch
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - David A. Mannock
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Ruthven N. A. H. Lewis
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Ronald N. McElhaney
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|