1
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
2
|
Silva DPF, Coelho RCV, Pagonabarraga I, Succi S, Telo da Gama MM, Araújo NAM. Lattice Boltzmann simulation of deformable fluid-filled bodies: progress and perspectives. SOFT MATTER 2024; 20:2419-2441. [PMID: 38420837 PMCID: PMC10933750 DOI: 10.1039/d3sm01648j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
With the rapid development of studies involving droplet microfluidics, drug delivery, cell detection, and microparticle synthesis, among others, many scientists have invested significant efforts to model the flow of these fluid-filled bodies. Motivated by the intricate coupling between hydrodynamics and the interactions of fluid-filled bodies, several methods have been developed. The objective of this review is to present a compact foundation of the methods used in the literature in the context of lattice Boltzmann methods. For hydrodynamics, we focus on the lattice Boltzmann method due to its specific ability to treat time- and spatial-dependent boundary conditions and to incorporate new physical models in a computationally efficient way. We split the existing methods into two groups with regard to the interfacial boundary: fluid-structure and fluid-fluid methods. The fluid-structure methods are characterised by the coupling between fluid dynamics and mechanics of the flowing body, often used in applications involving membranes and similar flexible solid boundaries. We further divide fluid-structure-based methods into two subcategories, those which treat the fluid-structure boundary as a continuum medium and those that treat it as a discrete collection of individual springs and particles. Next, we discuss the fluid-fluid methods, particularly useful for the simulations of fluid-fluid interfaces. We focus on models for immiscible droplets and their interaction in a suspending fluid and describe benchmark tests to validate the models for fluid-filled bodies.
Collapse
Affiliation(s)
- Danilo P F Silva
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Rodrigo C V Coelho
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Carrer de Martí Franqués 1, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sauro Succi
- Center for Life Nano Science at La Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I/00161 Roma, Italy
- Harvard Institute for Applied Computational Science, Cambridge, MA 02138, USA
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Cheng X, Caruso C, Lam WA, Graham MD. Marginated aberrant red blood cells induce pathologic vascular stress fluctuations in a computational model of hematologic disorders. SCIENCE ADVANCES 2023; 9:eadj6423. [PMID: 38019922 PMCID: PMC10686556 DOI: 10.1126/sciadv.adj6423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Red blood cell (RBC) disorders such as sickle cell disease affect billions worldwide. While much attention focuses on altered properties of aberrant RBCs and corresponding hemodynamic changes, RBC disorders are also associated with vascular dysfunction, whose origin remains unclear and which provoke severe consequences including stroke. Little research has explored whether biophysical alterations of RBCs affect vascular function. We use a detailed computational model of blood that enables characterization of cell distributions and vascular stresses in blood disorders and compare simulation results with experimental observations. Aberrant RBCs, with their smaller size and higher stiffness, concentrate near vessel walls (marginate) because of contrasts in physical properties relative to normal cells. In a curved channel exemplifying the geometric complexity of the microcirculation, these cells distribute heterogeneously, indicating the importance of geometry. Marginated cells generate large transient stress fluctuations on vessel walls, indicating a mechanism for the observed vascular inflammation.
Collapse
Affiliation(s)
- Xiaopo Cheng
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christina Caruso
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Wilbur A. Lam
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307, USA
- Wallace H. Coulter Department of Biomedical Engineering. Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Michael D. Graham
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Nouaman M, Darras A, John T, Simionato G, Rab MAE, van Wijk R, Laschke MW, Kaestner L, Wagner C, Recktenwald SM. Effect of Cell Age and Membrane Rigidity on Red Blood Cell Shape in Capillary Flow. Cells 2023; 12:1529. [PMID: 37296651 PMCID: PMC10252257 DOI: 10.3390/cells12111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Blood flow in the microcirculatory system is crucially affected by intrinsic red blood cell (RBC) properties, such as their deformability. In the smallest vessels of this network, RBCs adapt their shapes to the flow conditions. Although it is known that the age of RBCs modifies their physical properties, such as increased cytosol viscosity and altered viscoelastic membrane properties, the evolution of their shape-adapting abilities during senescence remains unclear. In this study, we investigated the effect of RBC properties on the microcapillary in vitro flow behavior and their characteristic shapes in microfluidic channels. For this, we fractioned RBCs from healthy donors according to their age. Moreover, the membranes of fresh RBCs were chemically rigidified using diamide to study the effect of isolated graded-membrane rigidity. Our results show that a fraction of stable, asymmetric, off-centered slipper-like cells at high velocities decreases with increasing age or diamide concentration. However, while old cells form an enhanced number of stable symmetric croissants at the channel centerline, this shape class is suppressed for purely rigidified cells with diamide. Our study provides further knowledge about the distinct effects of age-related changes of intrinsic cell properties on the single-cell flow behavior of RBCs in confined flows due to inter-cellular age-related cell heterogeneity.
Collapse
Affiliation(s)
- Mohammed Nouaman
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Alexis Darras
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Thomas John
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Greta Simionato
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Minke A. E. Rab
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Lars Kaestner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Steffen M. Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Cheng X, Caruso C, Lam WA, Graham MD. Marginated aberrant red blood cells induce pathologic vascular stress fluctuations in a computational model of hematologic disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541016. [PMID: 37293094 PMCID: PMC10245698 DOI: 10.1101/2023.05.16.541016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Red blood cell (RBC) disorders affect billions worldwide. While alterations in the physical properties of aberrant RBCs and associated hemodynamic changes are readily observed, in conditions such as sickle cell disease and iron deficiency, RBC disorders can also be associated with vascular dysfunction. The mechanisms of vasculopathy in those diseases remain unclear and scant research has explored whether biophysical alterations of RBCs can directly affect vascular function. Here we hypothesize that the purely physical interactions between aberrant RBCs and endothelial cells, due to the margination of stiff aberrant RBCs, play a key role in this phenomenon for a range of disorders. This hypothesis is tested by direct simulations of a cellular scale computational model of blood flow in sickle cell disease, iron deficiency anemia, COVID-19, and spherocytosis. We characterize cell distributions for normal and aberrant RBC mixtures in straight and curved tubes, the latter to address issues of geometric complexity that arise in the microcirculation. In all cases aberrant RBCs strongly localize near the vessel walls (margination) due to contrasts in cell size, shape, and deformability from the normal cells. In the curved channel, the distribution of marginated cells is very heterogeneous, indicating a key role for vascular geometry. Finally, we characterize the shear stresses on the vessel walls; consistent with our hypothesis, the marginated aberrant cells generate large transient stress fluctuations due to the high velocity gradients induced by their near-wall motions. The anomalous stress fluctuations experienced by endothelial cells may be responsible for the observed vascular inflammation.
Collapse
Affiliation(s)
- Xiaopo Cheng
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Christina Caruso
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307
| | - Wilbur A. Lam
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30307
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Michael D. Graham
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
6
|
Amoudruz L, Economides A, Arampatzis G, Koumoutsakos P. The stress-free state of human erythrocytes: Data-driven inference of a transferable RBC model. Biophys J 2023; 122:1517-1525. [PMID: 36926695 PMCID: PMC10147838 DOI: 10.1016/j.bpj.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/19/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The stress-free state (SFS) of red blood cells (RBCs) is a fundamental reference configuration for the calibration of computational models, yet it remains unknown. Current experimental methods cannot measure the SFS of cells without affecting their mechanical properties, whereas computational postulates are the subject of controversial discussions. Here, we introduce data-driven estimates of the SFS shape and the visco-elastic properties of RBCs. We employ data from single-cell experiments that include measurements of the equilibrium shape of stretched cells and relaxation times of initially stretched RBCs. A hierarchical Bayesian model accounts for these experimental and data heterogeneities. We quantify, for the first time, the SFS of RBCs and use it to introduce a transferable RBC (t-RBC) model. The effectiveness of the proposed model is shown on predictions of unseen experimental conditions during the inference, including the critical stress of transitions between tumbling and tank-treading cells in shear flow. Our findings demonstrate that the proposed t-RBC model provides predictions of blood flows with unprecedented accuracy and quantified uncertainties.
Collapse
Affiliation(s)
- Lucas Amoudruz
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Athena Economides
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Georgios Arampatzis
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, ETH Zürich, Zürich, Switzerland; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
7
|
Hareendranath S, Sathian SP. Dynamic response of red blood cells in health and disease. SOFT MATTER 2023; 19:1219-1230. [PMID: 36688330 DOI: 10.1039/d2sm01090a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The viscoelastic response of the red blood cells (RBCs) affected by hematological disorders become severely impaired by the altered biophysical and morphological properties. These include traits like reduced deformability, increased membrane viscosity, and change in cell shape, causing substantial changes in the overall hemodynamics. RBCs, by virtue of their highly elastic membrane and low bending rigidity, exhibit complex dynamics when exposed to cyclic, transient forces in the microcirculation. Here, we employ mesoscopic numerical simulations based on the dissipative particle dynamics (DPD) framework to explore the dynamics of healthy, schizont stage malaria-infected and type 2 diabetes mellitus affected RBCs subjected to external time-dependent loads. The paper focuses on the imposition and cessation of external forcing on the cells of two different typologies, saw-tooth cyclic wave loading and sudden loads in the form of creep and relaxation phenomena. The effects of varying the rate of stress and the applied stress magnitude were investigated. Our simulations disclosed unique shape transitions of the hysteresis curves at varied loading rates. A careful analysis reveals a critical threshold of half cycle time of the from wherein the deformation of all cells observed, healthy or otherwise, falls under the nearly reversible deformation regime displaying minimal energy dissipation. Finally, we also examined the individual effects of the different constitutive and geometric characteristics attributed to the pathological cells and observed interesting recovery dynamics of spherocytes and cells having high shear moduli. The distinguished deformation behaviour of healthy and diseased cells could establish external force as a valuable initial biomarker.
Collapse
Affiliation(s)
- Sainath Hareendranath
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Sarith P Sathian
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
8
|
Hou M, Xing F, Yang J, Hu F, Pan L, Xu J. Molecular Resolution Mapping of Erythrocyte Cytoskeleton by Ultrastructure Expansion Single-Molecule Localization Microscopy. SMALL METHODS 2023; 7:e2201243. [PMID: 36543363 DOI: 10.1002/smtd.202201243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The combination of expansion microscopy and single-molecule localization microscopy has the potential to approach the molecular resolution. However, this combination meets challenges due to the hydrogel shrinkage in the presence of imaging buffer. Here, a method of ultrastructure expansion single-molecule localization microscopy (U-ExSMLM) based on skillfully adhering the gel onto poly-l-lysine (pLL)-coated coverslip is developed to prevent lateral shrinkage of the hydrogel. U-ExSMLM is then applied to dissect the membrane cytoskeleton organization of human erythrocytes at molecular resolution. The resolved nanoscale spatial distributions of cytoskeleton proteins, including the N/C-termini of β-spectrin, protein 4.1, and tropomodulin, show good agreement with the acknowledged model of erythrocyte cytoskeleton structure, demonstrating the reliability of U-ExSMLM. Furthermore, the concentration of pLL is adjusted to preserve the physiological biconcave morphology of erythrocytes, and it is found that the spectrin cytoskeleton in the dimple regions has lower density and larger length than that in the rim regions, which provides the direct evidence for cytoskeleton asymmetry in human erythrocytes. Therefore, the integrated method offers future opportunities to study the ultrastructure of membrane cytoskeleton at molecular resolution.
Collapse
Affiliation(s)
- Mengdi Hou
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Fulin Xing
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Jianyu Yang
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, Guangdong, 518083, China
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen, Guangdong, 518083, China
| |
Collapse
|
9
|
Wang C, Li J, Zhao L, Qian P. Shape transformations of red blood cells in the capillary and their possible connections to oxygen transportation. J Biol Phys 2022; 48:79-92. [PMID: 34799817 PMCID: PMC8866595 DOI: 10.1007/s10867-021-09594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
In this work, a series of numerical simulations have been performed to obtain the steady shapes of red blood cells under a shear force field in the capillary. Two possible classes of steady shapes, the axisymmetric parachute and the non-axisymmetric parachute, are found. If we assume that oxygen diffusion across the red cell membrane is mediated by membrane curvature, it is found that the non-axisymmetric parachute will be more favorable due to its special shape which enables it to have a larger portion of membrane patch capable of releasing oxygen to tissues.
Collapse
Affiliation(s)
- Caiqun Wang
- Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083 China ,Beijing Computing Center, Beijing, 100094 China
| | - Jianfeng Li
- Department of Macromolecular Science, the State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
| | - Liutao Zhao
- College of Mechanical Engineering, Tianjin University, Tianjin, 300350 China ,Beijing Computing Center, Beijing, 100094 China
| | - Ping Qian
- Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
10
|
Xie Y, Liu X. Multifunctional manipulation of red blood cells using optical tweezers. JOURNAL OF BIOPHOTONICS 2022; 15:e202100315. [PMID: 34773382 DOI: 10.1002/jbio.202100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Serving as natural vehicles to deliver oxygen throughout the whole body, red blood cells (RBCs) have been regarded as important indicators for biomedical analysis and clinical diagnosis. Various diseases can be induced due to the dysfunction of RBCs. Hence, a flexible tool is required to perform precise manipulation and quantitative characterization of their physiological mechanisms and viscoelastic properties. Optical tweezers have emerged as potential candidates due to their noncontact manipulation and femtonewton-precision measurements. This review aimed to highlight the recent advances in the multifunctional manipulation of RBCs using optical tweezers, including controllable deformation, dynamic stretching, RBC aggregation, blood separation and Raman characterization. Further, great attentions have been focused on the precise assembly of functional biophotonics devices with trapped RBCs, and a brief overview was offered for the growing interests to manipulate RBCs in vivo.
Collapse
Affiliation(s)
- Yanzheng Xie
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Recktenwald SM, Graessel K, Maurer FM, John T, Gekle S, Wagner C. Red blood cell shape transitions and dynamics in time-dependent capillary flows. Biophys J 2022; 121:23-36. [PMID: 34896369 PMCID: PMC8758421 DOI: 10.1016/j.bpj.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
The dynamics of single red blood cells (RBCs) determine microvascular blood flow by adapting their shape to the flow conditions in the narrow vessels. In this study, we explore the dynamics and shape transitions of RBCs on the cellular scale under confined and unsteady flow conditions using a combination of microfluidic experiments and numerical simulations. Tracking RBCs in a comoving frame in time-dependent flows reveals that the mean transition time from the symmetric croissant to the off-centered, nonsymmetric slipper shape is significantly faster than the opposite shape transition, which exhibits pronounced cell rotations. Complementary simulations indicate that these dynamics depend on the orientation of the RBC membrane in the channel during the time-dependent flow. Moreover, we show how the tank-treading movement of slipper-shaped RBCs in combination with the narrow channel leads to oscillations of the cell's center of mass. The frequency of these oscillations depends on the cell velocity, the viscosity of the surrounding fluid, and the cytosol viscosity. These results provide a potential framework to identify and study pathological changes in RBC properties.
Collapse
Affiliation(s)
- Steffen M. Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany,Corresponding author
| | - Katharina Graessel
- Biofluid Simulation and Modeling, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - Felix M. Maurer
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Thomas John
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Department of Physics, University of Bayreuth, Bayreuth, Germany
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany,Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
12
|
Blanch AJ, Nunez-Iglesias J, Namvar A, Menant S, Looker O, Rajagopal V, Tham WH, Tilley L, Dixon MW. Multimodal imaging reveals membrane skeleton reorganisation during reticulocyte maturation and differences in dimple and rim regions of mature erythrocytes. J Struct Biol X 2022; 6:100056. [PMID: 34977554 PMCID: PMC8688873 DOI: 10.1016/j.yjsbx.2021.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022] Open
Abstract
Multimodal microscopies reveal dynamic changes in erythrocyte membrane skeleton architecture. Reticulocytes have 30% more surface area than mature erythrocytes but only slightly lower skeletal meshwork coverage. The spectrin-based skeleton reorganises during reticulocyte maturation. Inhomogeneity within the erythrocyte’s membrane skeleton underpins its biconcave disc shape.
The red blood cell (RBC) is remarkable in its ability to deform as it passages through the vasculature. Its deformability derives from a spectrin-actin protein network that supports the cell membrane and provides strength and flexibility, however questions remain regarding the assembly and maintenance of the skeletal network. Using scanning electron microscopy (SEM) and atomic force microscopy (AFM) we have examined the nanoscale architecture of the cytoplasmic side of membrane discs prepared from reticulocytes and mature RBCs. Immunofluorescence microscopy was used to probe the distribution of spectrin and other membrane skeleton proteins. We found that the cell surface area decreases by up to 30% and the spectrin-actin network increases in density by approximately 20% as the reticulocyte matures. By contrast, the inter-junctional distance and junctional density increase only by 3–4% and 5–9%, respectively. This suggests that the maturation-associated reduction in surface area is accompanied by an increase in spectrin self-association to form higher order oligomers. We also examined the mature RBC membrane in the edge (rim) and face (dimple) regions of mature RBCs and found the rim contains about 1.5% more junctional complexes compared to the dimple region. A 2% increase in band 4.1 density in the rim supports these structural measurements.
Collapse
|
13
|
Guglietta F, Behr M, Biferale L, Falcucci G, Sbragaglia M. Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200395. [PMID: 34455835 DOI: 10.1098/rsta.2020.0395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 06/13/2023]
Abstract
The tumbling to tank-treading (TB-TT) transition for red blood cells (RBCs) has been widely investigated, with a main focus on the effects of the viscosity ratio [Formula: see text] (i.e., the ratio between the viscosities of the fluids inside and outside the membrane) and the shear rate [Formula: see text] applied to the RBC. However, the membrane viscosity [Formula: see text] plays a major role in a realistic description of RBC dynamics, and only a few works have systematically focused on its effects on the TB-TT transition. In this work, we provide a parametric investigation on the effect of membrane viscosity [Formula: see text] on the TB-TT transition for a single RBC. It is found that, at fixed viscosity ratios [Formula: see text], larger values of [Formula: see text] lead to an increased range of values of capillary number at which the TB-TT transition occurs; moreover, we found that increasing [Formula: see text] or increasing [Formula: see text] results in a qualitatively but not quantitatively similar behaviour. All results are obtained by means of mesoscale numerical simulations based on the lattice Boltzmann models. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
Collapse
Affiliation(s)
- Fabio Guglietta
- Department of Physics and INFN, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 1, 00133 Rome, Italy
- Chair for Computational Analysis of Technical Systems (CATS), RWTH Aachen University, 52056 Aachen, Germany
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Str., 2121 Nicosia, Cyprus
| | - Marek Behr
- Chair for Computational Analysis of Technical Systems (CATS), RWTH Aachen University, 52056 Aachen, Germany
| | - Luca Biferale
- Department of Physics and INFN, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| | - Giacomo Falcucci
- Department of Enterprise Engineering 'Mario Lucertini,' University of Rome 'Tor Vergata', Via del Politecnico, 1,00133 Rome, Italy
- Department of Physics, Harvard University, 17 Oxford Street, 02138 Cambridge, MA, USA
| | - Mauro Sbragaglia
- Department of Physics and INFN, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| |
Collapse
|
14
|
Modeling Red Blood Cell Viscosity Contrast Using Inner Soft Particle Suspension. MICROMACHINES 2021; 12:mi12080974. [PMID: 34442596 PMCID: PMC8398941 DOI: 10.3390/mi12080974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
The inner viscosity of a biological red blood cell is about five times larger than the viscosity of the blood plasma. In this work, we use dissipative particles to enable the proper viscosity contrast in a mesh-based red blood cell model. Each soft particle represents a coarse-grained virtual cluster of hemoglobin proteins contained in the cytosol of the red blood cell. The particle interactions are governed by conservative and dissipative forces. The conservative forces have purely repulsive character, whereas the dissipative forces depend on the relative velocity between the particles. We design two computational experiments that mimic the classical viscometers. With these experiments we study the effects of particle suspension parameters on the inner cell viscosity and provide parameter sets that result in the correct viscosity contrast. The results are validated with both static and dynamic biological experiment, showing an improvement in the accuracy of the original model without major increase in computational complexity.
Collapse
|
15
|
Microfluidic Obstacle Arrays Induce Large Reversible Shape Change in Red Blood Cells. MICROMACHINES 2021; 12:mi12070783. [PMID: 34209413 PMCID: PMC8303182 DOI: 10.3390/mi12070783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
Red blood cell (RBC) shape change under static and dynamic shear stress has been a source of interest for at least 50 years. High-speed time-lapse microscopy was used to observe the rate of deformation and relaxation when RBCs are subjected to periodic shear stress and deformation forces as they pass through an obstacle. We show that red blood cells are reversibly deformed and take on characteristic shapes not previously seen in physiological buffers when the maximum shear stress was between 2.2 and 25 Pa (strain rate 2200 to 25,000 s−1). We quantify the rates of RBC deformation and recovery using Kaplan–Meier survival analysis. The time to deformation decreased from 320 to 23 milliseconds with increasing flow rates, but the distance traveled before deformation changed little. Shape recovery, a measure of degree of deformation, takes tens of milliseconds at the lowest flow rates and reached saturation at 2.4 s at a shear stress of 11.2 Pa indicating a maximum degree of deformation was reached. The rates and types of deformation have relevance in red blood cell disorders and in blood cell behavior in microfluidic devices.
Collapse
|
16
|
Walsh B, Boyle FJ. In-Flow dynamics of an area-difference-energy spring-particle red blood cell model on non-uniform grids. Comput Methods Biomech Biomed Engin 2021; 25:52-64. [PMID: 34097528 DOI: 10.1080/10255842.2021.1931845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this paper the area-difference-energy spring-particle (ADE-SP) red blood cell (RBC) structural model developed by Chen and Boyle is coupled with a lattice Boltzmann flux solver to simulate RBC dynamics. The novel ADE-SP model accounts for bending resistance due to the membrane area difference of RBCs while the lattice Boltzmann flux solver offers reduced computational runtimes through GPU parallelisation and enabling the employment of non-uniform meshes. This coupled model is used to simulate RBC dynamics and predictions are compared with existing experimental measurements. The simulations successfully predict tumbling, tank-treading, swinging and intermittent behaviour of an RBC in shear flow, and demonstrate the capability of the model in capturing in-flow RBC behaviours.
Collapse
Affiliation(s)
- Brendan Walsh
- School of Mechanical and Design Engineering, College of Engineering and Built Environment, Technological University Dublin, Dublin 1, Ireland
| | - Fergal J Boyle
- School of Mechanical and Design Engineering, College of Engineering and Built Environment, Technological University Dublin, Dublin 1, Ireland
| |
Collapse
|
17
|
Chien W, Gompper G, Fedosov DA. Effect of cytosol viscosity on the flow behavior of red blood cell suspensions in microvessels. Microcirculation 2020; 28:e12668. [PMID: 33131140 DOI: 10.1111/micc.12668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The flow behavior of blood is strongly affected by red blood cell (RBC) properties, such as the viscosity ratio C between cytosol and suspending medium, which can significantly be altered in several pathologies (e.g. sickle-cell disease, malaria). The main objective of this study is to understand the effect of C on macroscopic blood flow properties such as flow resistance in microvessels, and to link it to the deformation and dynamics of single RBCs. METHODS We employ mesoscopic hydrodynamic simulations to investigate flow properties of RBC suspensions with different cytosol viscosities for various flow conditions in cylindrical microchannels. RESULTS Starting from a dispersed cell configuration which approximates RBC dispersion at vessel bifurcations in the microvasculature, we find that the flow convergence and development of RBC-free layer (RBC-FL) depend only weakly on C, and require a convergence length in the range of 25D-50D, where D is channel diameter. In vessels with D ≤ 20 μ m , the final resistance of developed flow is nearly the same for C = 5 and C = 1, while for D = 40 μ m , the flow resistance for C = 5 is about 10% larger than for C = 1. The similarities and differences in flow resistance can be explained by viscosity-dependent RBC-FL thicknesses, which are associated with the viscosity-dependent dynamics of single RBCs. CONCLUSIONS The weak effect on the flow resistance and RBC-FL explains why RBCs can contain a high concentration of hemoglobin for efficient oxygen delivery, without a pronounced increase in the flow resistance. Furthermore, our results suggest that significant alterations in microvascular flow in various pathologies are likely not due to mere changes in cytosolic viscosity.
Collapse
Affiliation(s)
- Wei Chien
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
18
|
Melzak KA, Moreno-Flores S, Bieback K. Spicule movement on RBCs during echinocyte formation and possible segregation in the RBC membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183338. [PMID: 32485161 DOI: 10.1016/j.bbamem.2020.183338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
We use phase contrast microscopy of red blood cells to observe the transition between the initial discocyte shape and a spiculated echinocyte form. During the early stages of this change, spicules can move across the surface of the cell; individual spicules can also split apart into pairs. One possible explanation of this behaviour is that the membrane forms large scale domains in association with the spicules. The spicules are formed initially at the rim of the cell and then move at speeds of up to 3 μm/min towards the centre of the disc. Spicule formation that was reversed and then allowed to proceed a second time resulted in spicules at reproducible places, a shape memory effect that implies that the cytoskeleton contributes towards stopping the spicule movement. The splitting of the spicules produces a well-defined shape change with an increase in membrane curvature associated with formation of the daughter pair of spicules; the total boundary length around the spicules also increases. Following the model in which the spicules are associated with lipid domains, these observations suggest an experimental procedure that could potentially be applied to the calculation of the line tension of lipid domains in living cells.
Collapse
Affiliation(s)
- K A Melzak
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | | | - K Bieback
- Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
19
|
Erol G, Kartal H, Comu FM, Cetin E, Demirdas E, Sicim H, Unal CS, Gunay C, Oz BS, Bolcal C. Effects of N-Acetylcysteine and N-Acetylcysteine Amide on Erythrocyte Deformability and Oxidative Stress in a Rat Model of Lower Extremity Ischemia-Reperfusion Injury. Cardiol Res Pract 2020; 2020:6841835. [PMID: 33062321 PMCID: PMC7542486 DOI: 10.1155/2020/6841835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/05/2020] [Accepted: 07/25/2020] [Indexed: 11/17/2022] Open
Abstract
N-acetylcysteine (NAC) is an antioxidant which works as a free radical scavenger and antiapoptotic agent. N-acetylcysteine-amide (NACA) is a modified form of NAC containing an amide group instead of a carboxyl group of NAC. Our study aims to investigate the effectiveness of these two substances on erythrocyte deformability and oxidative stress in muscle tissue. Materials and Methods. A total of 24 Wistar albino rats were used in our study. The animals were randomly divided into five groups as control (n: 6), ischemia (n: 6), NAC (n: 6), and NACA (n: 6). In the ischemia, NAC, and NACA groups, 120 min of ischemia and 120 min of reperfusion were achieved by placing nontraumatic vascular clamps across the abdominal aorta. The NAC and NACA groups were administered an injection 30 min before ischemia (100 mg/kg NAC; 100 mg/kg NACA; intravenous). Blood samples were taken from the animals at the end of the ischemic period. The lower extremity gastrocnemius muscle was isolated and stored at -80 degrees to assess the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) values and was analyzed. Results. The erythrocyte deformability index was found to be statistically significantly lower in rats treated with NAC and NACA before ischemia-reperfusion compared to the groups that received only ischemia-reperfusion. In addition, no statistically significant difference was found between the control group and the NAC and NACA groups. The groups receiving NAC and NACA before ischemia exhibited higher total antioxidative status and lower total oxidative status while the oxidative stress index was also lower. Conclusion. The results of our study demonstrated the protective effects of NAC and NACA on erythrocyte deformability and oxidative damage in skeletal muscle in lower extremity ischemia-reperfusion. NAC and NACA exhibited similar protective effects on oxidative damage and erythrocyte deformability.
Collapse
Affiliation(s)
- Gokhan Erol
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Hakan Kartal
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Faruk M. Comu
- Department of Physiology, Kırıkkale University Medical Faculty, Kırıkkale, Turkey
| | - Erdem Cetin
- Department of Cardiovascular Surgery, Karabük Training and Research Hospital, Karabük, Turkey
| | - Ertan Demirdas
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Huseyin Sicim
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Celal S. Unal
- Department of Cardiovascular Surgery, Karabük Training and Research Hospital, Karabük, Turkey
| | - Celalettin Gunay
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Bilgehan S. Oz
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Cengiz Bolcal
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
20
|
Wang Y, Sang J, Ao R, Ma Y, Fu B. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Comput Methods Biomech Biomed Engin 2020; 23:1190-1200. [DOI: 10.1080/10255842.2020.1791836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ying Wang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Jianbing Sang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Rihan Ao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Yu Ma
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Bowei Fu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
21
|
Bogdanova A, Kaestner L. Early Career Scientists' Guide to the Red Blood Cell - Don't Panic! Front Physiol 2020; 11:588. [PMID: 32903637 PMCID: PMC7438720 DOI: 10.3389/fphys.2020.00588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Why should we take interest in studying red blood cells? This mini review attempts to answer this question and highlights the problems that authors find most appealing in this dynamic research area. It addresses the early career scientists who are just starting their independent journey and facing tough times. Despite unlimited access to information, the exponential development of computational and intellectual powers, and the seemingly endless possibilities open to talented and ambitious early career researchers, they soon realize that the pressure of imminent competition for financial support is hard. They have to hit deadlines, produce data, publish, report, teach, manage, lead groups, and remain loving family members at the same time. Are these countless hardships worth it? We think they are. Despite centuries of research, red blood cells remain a mysterious and fascinating study objects. These cells bring together experts within the family of the European Red Cell Society and beyond. We all share our joy for the unknown and excitement in understanding how red cells function and what they tell us about the microenvironments and macroenvironments they live in. This review is an invitation to our colleagues to join us on our quest.
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
22
|
Habibi S, Joshi PU, Mi X, Heldt CL, Minerick AR. Changes in Membrane Dielectric Properties of Porcine Kidney Cells Provide Insight into the Antiviral Activity of Glycine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8344-8356. [PMID: 32614601 DOI: 10.1021/acs.langmuir.0c00175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to monitor the status and progression of viral infections is important for development and screening of new antiviral drugs. Previous research illustrated that the osmolyte glycine (Gly) reduced porcine parvovirus (PPV) infection in porcine kidney (PK-13) cells by stabilizing the capsid protein and preventing virus capsid assembly into viable virus particles. Dielectrophoresis (DEP) was examined herein as a noninvasive, electric field- and frequency-dependent tool for real-time monitoring of PK-13 cell responses to obtain information about membrane barrier functionality and polarization. DEP responses of PK-13 cells were compared to those of PPV-infected cells in the absence and presence of the osmolyte glycine. With infection progression, PK-13 DEP spectra shifted toward lower frequencies, reducing crossover frequencies (fCO). The spherical single-shell model was used to extract PK-13 cell dielectric properties. Upon PPV infection, specific membrane capacitance increased over the time progression of virus attachment, penetration, and capsid protein production and assembly. Following glycine treatment, the DEP spectra displayed attenuated fCO and specific membrane capacitance values shifted back toward uninfected PK-13 cell values. These results suggest that DEP can be used to noninvasively monitor the viral infection cycle and screen antiviral compounds. DEP can augment traditional tools by elucidating membrane polarization changes related to drug mechanisms that interrupt the virus infection cycle.
Collapse
Affiliation(s)
- Sanaz Habibi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Pratik U Joshi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xue Mi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adrienne R Minerick
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
23
|
Bogdanova A, Kaestner L, Simionato G, Wickrema A, Makhro A. Heterogeneity of Red Blood Cells: Causes and Consequences. Front Physiol 2020; 11:392. [PMID: 32457644 PMCID: PMC7221019 DOI: 10.3389/fphys.2020.00392] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Mean values of hematological parameters are currently used in the clinical laboratory settings to characterize red blood cell properties. Those include red blood cell indices, osmotic fragility test, eosin 5-maleimide (EMA) test, and deformability assessment using ektacytometry to name a few. Diagnosis of hereditary red blood cell disorders is complemented by identification of mutations in distinct genes that are recognized "molecular causes of disease." The power of these measurements is clinically well-established. However, the evidence is growing that the available information is not enough to understand the determinants of severity of diseases and heterogeneity in manifestation of pathologies such as hereditary hemolytic anemias. This review focuses on an alternative approach to assess red blood cell properties based on heterogeneity of red blood cells and characterization of fractions of cells with similar properties such as density, hydration, membrane loss, redox state, Ca2+ levels, and morphology. Methodological approaches to detect variance of red blood cell properties will be presented. Causes of red blood cell heterogeneity include cell age, environmental stress as well as shear and metabolic stress, and multiple other factors. Heterogeneity of red blood cell properties is also promoted by pathological conditions that are not limited to the red blood cells disorders, but inflammatory state, metabolic diseases and cancer. Therapeutic interventions such as splenectomy and transfusion as well as drug administration also impact the variance in red blood cell properties. Based on the overview of the studies in this area, the possible applications of heterogeneity in red blood cell properties as prognostic and diagnostic marker commenting on the power and selectivity of such markers are discussed.
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Greta Simionato
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Asya Makhro
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Gruziel-Słomka M, Kondratiuk P, Szymczak P, Ekiel-Jeżewska ML. Stokesian dynamics of sedimenting elastic rings. SOFT MATTER 2019; 15:7262-7274. [PMID: 31486465 DOI: 10.1039/c9sm00598f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We consider elastic microfilaments which form closed loops. We investigate how the loops change shape and orientation while settling under gravity in a viscous fluid. Loops are circular at the equilibrium. Their dynamics are investigated numerically based on the Stokes equations for the fluid motion and the bead-spring model of the microfilament. The Rotne-Prager approximation for the bead mobility is used. We demonstrate that the relevant dimensionless parameter is the ratio of the bending resistance of the filament to the gravitation force corrected for buoyancy. The inverse of this ratio, called the elasto-gravitation number B, is widely used in the literature for sedimenting elastic linear filaments. We assume that B is of the order of 104-106, which corresponds to easily deformable loops. We find out that initially tilted circles evolve towards different sedimentation modes, depending on B. Very stiff or stiff rings attain almost planar, oval shapes, which are vertical or tilted, respectively. More flexible loops deform significantly and converge towards one of several characteristic periodic motions. These sedimentation modes are also detected when starting from various shapes, and for different loop lengths. In general, multi-stability is observed: an elastic ring converges to one of several sedimentation modes, depending on the initial conditions. This effect is pronounced for very elastic loops. The surprising diversity of long-lasting periodic motions and shapes of elastic rings found in this work gives a new perspective for the dynamics of more complex deformable objects at micrometer and nanometer scales, sedimenting under gravity or rotating in a centrifuge, such as red blood cells, ring polymers or circular DNA.
Collapse
Affiliation(s)
- Magdalena Gruziel-Słomka
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Paw-ińskiego 5B, 02-106, Warsaw, Poland.
| | | | | | | |
Collapse
|
25
|
Dasanna AK, Fedosov DA, Gompper G, Schwarz US. State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping. SOFT MATTER 2019; 15:5511-5520. [PMID: 31241632 DOI: 10.1039/c9sm00677j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Red blood cells in shear flow show a variety of different shapes due to the complex interplay between hydrodynamics and membrane elasticity. Malaria-infected red blood cells become generally adhesive and less deformable. Adhesion to a substrate leads to a reduction in shape variability and to a flipping motion of the non-spherical shapes during the mid-stage of infection. Here, we present a complete state diagram for wall adhesion of red blood cells in shear flow obtained by simulations, using a particle-based mesoscale hydrodynamics approach, multiparticle collision dynamics. We find that cell flipping at a substrate is replaced by crawling beyond a critical shear rate, which increases with both membrane stiffness and viscosity contrast between the cytosol and suspending medium. This change in cell dynamics resembles the transition between tumbling and tank-treading for red blood cells in free shear flow. In the context of malaria infections, the flipping-crawling transition would strongly increase the adhesive interactions with the vascular endothelium, but might be suppressed by the combined effect of increased elasticity and viscosity contrast.
Collapse
Affiliation(s)
- Anil K Dasanna
- BioQuant and Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany. and Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ulrich S Schwarz
- BioQuant and Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
26
|
Chien W, Zhang Z, Gompper G, Fedosov DA. Deformation and dynamics of erythrocytes govern their traversal through microfluidic devices with a deterministic lateral displacement architecture. BIOMICROFLUIDICS 2019; 13:044106. [PMID: 31372194 PMCID: PMC6660305 DOI: 10.1063/1.5112033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/10/2019] [Indexed: 05/11/2023]
Abstract
Deterministic lateral displacement (DLD) microfluidic devices promise versatile and precise processing of biological samples. However, this prospect has been realized so far only for rigid spherical particles and remains limited for biological cells due to the complexity of cell dynamics and deformation in microfluidic flow. We employ mesoscopic hydrodynamics simulations of red blood cells (RBCs) in DLD devices with circular posts to better understand the interplay between cell behavior in complex microfluidic flow and sorting capabilities of such devices. We construct a mode diagram of RBC behavior (e.g., displacement, zig-zagging, and intermediate modes) and identify several regimes of RBC dynamics (e.g., tumbling, tank-treading, and trilobe motion). Furthermore, we link the complex interaction dynamics of RBCs with the post to their effective cell size and discuss relevant physical mechanisms governing the dynamic cell states. In conclusion, sorting of RBCs in DLD devices based on their shear elasticity is, in general, possible but requires fine-tuning of flow conditions to targeted mechanical properties of the RBCs.
Collapse
Affiliation(s)
- Wei Chien
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Zunmin Zhang
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dmitry A. Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
27
|
Gou Z, Ruan X, Huang F, Fu X. Effects of membrane reference state on shape memory of a red blood cell. Comput Methods Biomech Biomed Engin 2019; 22:465-474. [PMID: 30714397 DOI: 10.1080/10255842.2018.1564820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
By using a three-dimensional continuum model, we simulate the shape memory of a red blood cell after the remove of external forces. The purpose of this study is to illustrate the effect of membrane reference state on cell behavior during the recovery process. The reference state of an elastic element is the geometry with zero stress. Since the cell membrane is composed of cytoskeleton and lipid bilayer, both the reference states of cytoskeleton (RSC) and lipid bilayer (RSL) are considered. Results show that a non-spherical RSC can result in shape memory. The energy barrier due to non-spherical RSC is determined by the ratio of the equator length to the meridian length of the RSC. Thus different RSCs can have similar energy barrier and leading to identical recovery response. A series of simulations of more intermediate RSCs show that the recovery time scale is inversely proportional to the energy barrier. Comparing to spherical RSL, a spheroid RSL contributes to the energy barrier and recovery time. Furthermore, we observe a folding recovery due to the biconcave RSL which is different from the tank treading recovery. These results may motivate novel numerical and experimental studies to determine the exact RSC and RSL.
Collapse
Affiliation(s)
- Zhe Gou
- a State Key Laboratory of Fluid Power & Mechatronic Systems , Zhejiang University , Hangzhou , China
| | - Xiaodong Ruan
- a State Key Laboratory of Fluid Power & Mechatronic Systems , Zhejiang University , Hangzhou , China
| | - Feng Huang
- b College of Metrology & Measurement Engineering , China Jiliang University , Hangzhou , China
| | - Xin Fu
- a State Key Laboratory of Fluid Power & Mechatronic Systems , Zhejiang University , Hangzhou , China
| |
Collapse
|
28
|
Xu Z, Yang Y, Zhu G, Chen P, Huang Z, Dai X, Hou C, Yan L. Simulating Transport of Soft Matter in Micro/Nano Channel Flows with Dissipative Particle Dynamics. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziyang Xu
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Ye Yang
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Guolong Zhu
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Pengyu Chen
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Zihan Huang
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Xiaobin Dai
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Cuiling Hou
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Li‐Tang Yan
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| |
Collapse
|
29
|
Mauer J, Mendez S, Lanotte L, Nicoud F, Abkarian M, Gompper G, Fedosov DA. Flow-Induced Transitions of Red Blood Cell Shapes under Shear. PHYSICAL REVIEW LETTERS 2018; 121:118103. [PMID: 30265089 DOI: 10.1103/physrevlett.121.118103] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/29/2018] [Indexed: 05/25/2023]
Abstract
A recent study of red blood cells (RBCs) in shear flow [Lanotte et al., Proc. Natl. Acad. Sci. U.S.A. 113, 13289 (2016)PNASA60027-842410.1073/pnas.1608074113] has demonstrated that RBCs first tumble, then roll, transit to a rolling and tumbling stomatocyte, and finally attain polylobed shapes with increasing shear rate, when the viscosity contrast between cytosol and blood plasma is large enough. Using two different simulation techniques, we construct a state diagram of RBC shapes and dynamics in shear flow as a function of shear rate and viscosity contrast, which is also supported by microfluidic experiments. Furthermore, we illustrate the importance of RBC shear elasticity for its dynamics in flow and show that two different kinds of membrane buckling trigger the transition between subsequent RBC states.
Collapse
Affiliation(s)
- Johannes Mauer
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Simon Mendez
- IMAG, University of Montpellier, CNRS, Montpellier, France
| | - Luca Lanotte
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, University of Montpellier, 34090 Montpellier, France
| | - Franck Nicoud
- IMAG, University of Montpellier, CNRS, Montpellier, France
| | - Manouk Abkarian
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, University of Montpellier, 34090 Montpellier, France
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
30
|
Blood Transfusion Practice among Healthcare Personnel in Nepal: An Observational Study. JOURNAL OF BLOOD TRANSFUSION 2018; 2018:6190859. [PMID: 29670804 PMCID: PMC5833242 DOI: 10.1155/2018/6190859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 11/17/2022]
Abstract
Background The complications associated with errors in transfusion practice can be minimized by assessing transfusion practices. In Nepal, there is no standard protocol on blood transfusion. So, this study was conducted with an aim to assess the blood transfusion practice among healthcare personnel. Methods A descriptive observational study was conducted in two tertiary hospitals in Kathmandu, Nepal, over a period of 10 months. Bedside blood transfusion procedures were observed using structured checklist. Results Altogether, 86 observations were made. Time taken from dispatch from the blood bank to transfusion was >2 hours in 53.2% of cases. In majority of the cases, blood was kept in the ward in uncontrolled and unprotected manner by the patients' relatives. Only 8.2% of the patients and/or the relatives were informed about the reasons, associated probable risks (2.4%), and the benefits of transfusion (4.7%). Assessment of vital signs at 15 minutes of initiation of transfusion was done on about 2 to 4% of cases. Conclusion We found a suboptimal blood transfusion practice in Nepal, which could be attributable to substantial knowledge gap among healthcare personnel and the absence of quality culture, quality system, and quality management in the area of blood transfusion practices.
Collapse
|
31
|
Krog BL, Henry MD. Biomechanics of the Circulating Tumor Cell Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:209-233. [PMID: 30368755 DOI: 10.1007/978-3-319-95294-9_11] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTCs) exist in a microenvironment quite different from the solid tumor tissue microenvironment. They are detached from matrix and exposed to the immune system and hemodynamic forces leading to the conclusion that life as a CTC is "nasty, brutish, and short." While there is much evidence to support this assertion, the mechanisms underlying this are much less clear. In this chapter we will specifically focus on biomechanical influences on CTCs in the circulation and examine in detail the question of whether CTCs are mechanically fragile, a commonly held idea that is lacking in direct evidence. We will review multiple lines of evidence indicating, perhaps counterintuitively, that viable cancer cells are mechanically robust in the face of exposures to physiologic shear stresses that would be encountered by CTCs during their passage through the circulation. Finally, we present emerging evidence that malignant epithelial cells, as opposed to their benign counterparts, possess specific mechanisms that enable them to endure these mechanical stresses.
Collapse
Affiliation(s)
- Benjamin L Krog
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Pathology and Urology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
32
|
Li X, Li H, Chang HY, Lykotrafitis G, Em Karniadakis G. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. J Biomech Eng 2017; 139:2580906. [PMID: 27814430 DOI: 10.1115/1.4035120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/02/2023]
Abstract
We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269;Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - George Em Karniadakis
- Fellow ASME Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| |
Collapse
|
33
|
Fai TG, Leo-Macias A, Stokes DL, Peskin CS. Image-based model of the spectrin cytoskeleton for red blood cell simulation. PLoS Comput Biol 2017; 13:e1005790. [PMID: 28991926 PMCID: PMC5654263 DOI: 10.1371/journal.pcbi.1005790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/19/2017] [Accepted: 09/22/2017] [Indexed: 01/05/2023] Open
Abstract
We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton. Red blood cells are responsible for delivering oxygen to tissues throughout the body. These terminally differentiated cells have developed a fascinating flexibility and resiliency that is critical to navigating the circulatory system. Far from being rigid bodies, red blood cells adopt biconcave disk shapes at equilibrium, parachute-like shapes as they move between large vessels and small capillaries, and more extreme shapes as they traverse the endothelial slits of the spleen. Understanding the remarkable mechanical properties that allow red cells to experience such large deformations while maintaining structural integrity is a fundamental question in physiology that may help advance treatments of genetic disorders such as hereditary spherocytosis and elliptocytosis that affect red cell flexibility and can lead to severe anemia. In this work, we present a model of the red blood cell cytoskeleton based on cryoelectron tomography data. We develop an image processing technique to gather statistics from these data and use these statistics to generate a random entropic network to model the cytoskeleton. We then simulate the behavior of the resulting red blood cells in flow. As we demonstrate through simulations, this method makes it possible to examine the consequences of changes in microstructural properties such as the rate of cytoskeletal remodeling.
Collapse
Affiliation(s)
- Thomas G. Fai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Alejandra Leo-Macias
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, United States of America
| | - David L. Stokes
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Charles S. Peskin
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| |
Collapse
|
34
|
Cairone F, Ortiz D, Cabrales PJ, Intaglietta M, Bucolo M. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry. Microvasc Res 2017; 116:77-86. [PMID: 28918110 DOI: 10.1016/j.mvr.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/08/2017] [Accepted: 09/12/2017] [Indexed: 01/22/2023]
Abstract
The key points in the design of microfluidic Lab-On-a-Chips for blood tests are the simplicity of the microfluidic chip geometry, the portability of the monitoring system and the ease on-chip integration of the data analysis procedure. The majority of those, recently designed, have been used for blood separation, however their introduction, also, for pathological conditions diagnosis would be important in different biomedical contexts. To overcome this lack is necessary to establish the relation between the RBCs flow and blood viscosity changes in micro-vessels. For that, the development of methods to analyze the dynamics of the RBCs flows in networks of micro-channels becomes essential in the study of RBCs flows in micro-vascular networks. A simplification in the experimental set-up and in the approach for the data collection and analysis could contribute significantly to understand the relation between the blood non-Newtonian properties and the emergent behaviors in collective RBCs flows. In this paper, we have investigated the collective behaviors of RBCs in a micro-channel in unsteady conditions, using a simplified monitoring set-up and implementing a 2D image processing procedure based on the digital particle image velocimetry. Our experimental study consisted in the analysis of RBCs motions freely in the micro-channel and driven by an external pressure. Despite the equipment minimal complexity, the advanced signal processing method implemented has allowed a significant qualitative and quantitative classification of the RBCs behaviors and the dynamical characterization of the particles velocities along both the horizontal and vertical directions. The concurrent causes for the particles displacement as the base solution-particles interaction, particle-particle interaction, and the external force due to pressure gradient were accounted in the results interpretation. The method implemented and the results obtained represent a proof of concept toward the realization of a general-purpose microfluidic LOC device for in-vitro flow analysis of RBCs collective behaviors.
Collapse
Affiliation(s)
- F Cairone
- Department of Electrical, Electronic and Computer Science Engineering, University of Catania, Italy.
| | - D Ortiz
- Department of Bioengineering, University of California San Diego, California, USA
| | - P J Cabrales
- Department of Bioengineering, University of California San Diego, California, USA
| | - M Intaglietta
- Department of Bioengineering, University of California San Diego, California, USA
| | - M Bucolo
- Department of Electrical, Electronic and Computer Science Engineering, University of Catania, Italy
| |
Collapse
|
35
|
Zhu Q, Salehyar S, Cabrales P, Asaro RJ. Prospects for Human Erythrocyte Skeleton-Bilayer Dissociation during Splenic Flow. Biophys J 2017; 113:900-912. [PMID: 28834726 PMCID: PMC5567461 DOI: 10.1016/j.bpj.2017.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
Prospects of vesiculation occurring during splenic flow of erythrocytes are addressed via model simulations of RBC flow through the venous slits of the human spleen. Our model is multiscale and contains a thermally activated rate-dependent description of the entropic elasticity of the RBC spectrin cytoskeleton, including domain unfolding/refolding. Our model also includes detail of the skeleton attachment to the fluidlike lipid bilayer membrane, including a specific accounting for the expansion/contraction of the skeleton that may occur via anchor protein diffusive motion, that is, band 3 and glycophorin, through the membrane. This ability allows us to follow the change in anchor density and thereby the strength of the skeleton/membrane attachment. We define a negative pressure between the skeleton/membrane connection that promotes separation; critical levels for this are estimated using published data on the work of adhesion of this connection. By following the maximum range of negative pressure, along with the observed slight decrease in skeletal density, we conclude that there must be biochemical influences that probably include binding of degraded hemoglobin, among other things, that significantly reduce effective attachment density. These findings are consistent with reported trends in vesiculation that are believed to occur in cases of various hereditary anemias and during blood storage. Our findings also suggest pathways for further study of erythrocyte vesiculation that point to the criticality of understanding the biochemical phenomena involved with cytoskeleton/membrane attachment.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, La Jolla, California
| | - Sara Salehyar
- Department of Structural Engineering, University of California, San Diego, La Jolla, California
| | - Pedro Cabrales
- Department of Structural Engineering, University of California, San Diego, La Jolla, California
| | - Robert J Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, California.
| |
Collapse
|
36
|
Abstract
Red blood cell responses during a long-standing load were experimentally investigated. With a high-speed camera and a high-speed actuator, we were able to manipulate cells staying inside a microfluidic constriction, and each cell was compressed due to the geometric constraints. During the load inside the constriction, the color of the cells was found to gradually darken, while the cell lengths became shorter and shorter. According to the analysis results of a 5 min load, the average increase of the cell darkness was 60.9 in 8-bit color resolution, and the average shrinkage of the cell length was 15% of the initial length. The same tendency was consistently observed from cell to cell. A correlation between the changes of the color and the length were established based on the experimental results. The changes are believed partially due to the viscoelastic properties of the cells that the cells’ configurations change with time for adapting to the confined space inside the constriction.
Collapse
|
37
|
Ito H, Murakami R, Sakuma S, Tsai CHD, Gutsmann T, Brandenburg K, Pöschl JMB, Arai F, Kaneko M, Tanaka M. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling. Sci Rep 2017; 7:43134. [PMID: 28233788 PMCID: PMC5324053 DOI: 10.1038/srep43134] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/19/2017] [Indexed: 12/03/2022] Open
Abstract
Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.
Collapse
Affiliation(s)
- Hiroaki Ito
- Department of Mechanical Engineering, Osaka University, 565-0871 Suita, Japan.,Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
| | - Ryo Murakami
- Department of Mechanical Engineering, Osaka University, 565-0871 Suita, Japan
| | - Shinya Sakuma
- Department of Micro-Nano Systems Engineering, Nagoya University, 464-8603 Nagoya, Japan
| | | | | | | | - Johannes M B Pöschl
- Department of Pediatrics, Clinic of Neonatology, University of Heidelberg, D69120 Heidelberg, Germany
| | - Fumihito Arai
- Department of Micro-Nano Systems Engineering, Nagoya University, 464-8603 Nagoya, Japan
| | - Makoto Kaneko
- Department of Mechanical Engineering, Osaka University, 565-0871 Suita, Japan
| | - Motomu Tanaka
- Institute of Physical Chemistry, University of Heidelberg, D69120 Heidelberg, Germany.,Institute for Integrated Cell-Material Sciences (WPI iCeMS), Kyoto University, 606-8501 Kyoto, Japan
| |
Collapse
|
38
|
Levant M, Steinberg V. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow. Phys Rev E 2017; 94:062412. [PMID: 28085369 DOI: 10.1103/physreve.94.062412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 11/07/2022]
Abstract
In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σ_{c} of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.
Collapse
Affiliation(s)
- Michael Levant
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Victor Steinberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Biconcave shape of human red-blood-cell ghosts relies on density differences between the rim and dimple of the ghost's plasma membrane. Proc Natl Acad Sci U S A 2016; 113:14847-14851. [PMID: 27930321 DOI: 10.1073/pnas.1615452113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The shape of the human red blood cell is known to be a biconcave disk. It is evident from a variety of theoretical work that known physical properties of the membrane, such as its bending energy and elasticity, can explain the red-blood-cell biconcave shape as well as other shapes that red blood cells assume. But these analyses do not provide information on the underlying molecular causes. This paper describes experiments that attempt to identify some of the underlying determinates of cell shape. To this end, red-blood-cell ghosts were made by hypotonic hemolysis and then reconstituted such that they were smooth spheres in hypo-osmotic solutions and smooth biconcave discs in iso-osmotic solutions. The spherical ghosts were centrifuged onto a coated coverslip upon which they adhered. When the attached spheres were changed to biconcave discs by flushing with an iso-osmotic solution, the ghosts were observed to be mainly oriented in a flat alignment on the coverslip. This was interpreted to mean that, during centrifugation, the spherical ghosts were oriented by a dense band in its equatorial plane, parallel to the centrifugal field. This appears to be evidence that the difference in the densities between the rim and the dimple regions of red blood cells and their ghosts may be responsible for their biconcave shape.
Collapse
|
40
|
Henry E, Holm SH, Zhang Z, Beech JP, Tegenfeldt JO, Fedosov DA, Gompper G. Sorting cells by their dynamical properties. Sci Rep 2016; 6:34375. [PMID: 27708337 PMCID: PMC5052630 DOI: 10.1038/srep34375] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/13/2016] [Indexed: 11/09/2022] Open
Abstract
Recent advances in cell sorting aim at the development of novel methods that are sensitive to various mechanical properties of cells. Microfluidic technologies have a great potential for cell sorting; however, the design of many micro-devices is based on theories developed for rigid spherical particles with size as a separation parameter. Clearly, most bioparticles are non-spherical and deformable and therefore exhibit a much more intricate behavior in fluid flow than rigid spheres. Here, we demonstrate the use of cells’ mechanical and dynamical properties as biomarkers for separation by employing a combination of mesoscale hydrodynamic simulations and microfluidic experiments. The dynamic behavior of red blood cells (RBCs) within deterministic lateral displacement (DLD) devices is investigated for different device geometries and viscosity contrasts between the intra-cellular fluid and suspending medium. We find that the viscosity contrast and associated cell dynamics clearly determine the RBC trajectory through a DLD device. Simulation results compare well to experiments and provide new insights into the physical mechanisms which govern the sorting of non-spherical and deformable cells in DLD devices. Finally, we discuss the implications of cell dynamics for sorting schemes based on properties other than cell size, such as mechanics and morphology.
Collapse
Affiliation(s)
- Ewan Henry
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stefan H Holm
- Division of Solid State Physics, NanoLund, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Zunmin Zhang
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jason P Beech
- Division of Solid State Physics, NanoLund, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Jonas O Tegenfeldt
- Division of Solid State Physics, NanoLund, Lund University, PO Box 118, S-221 00 Lund, Sweden
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
41
|
Simulation of Deformation and Aggregation of Two Red Blood
Cells in a Stenosed Microvessel by Dissipative Particle Dynamics. Cell Biochem Biophys 2016; 74:513-525. [DOI: 10.1007/s12013-016-0765-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
|
42
|
Creep and stress relaxation of human red cell membrane. Biomech Model Mechanobiol 2016; 16:239-247. [PMID: 27514540 DOI: 10.1007/s10237-016-0813-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/02/2016] [Indexed: 11/27/2022]
Abstract
In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR [Formula: see text] can be found in the literature. Here, an experiment is presented that allows measurement of [Formula: see text] up to values of about 10 h. The membrane skeleton was deformed passively by changing the spontaneous curvature of the bilayer thus transforming the natively biconcave red cells into echinocytes. This shape and the concomitant deformation of the skeleton were kept up to 4 h by incubation at 37 ℃. During this period, no plastic deformation (creep) was observed. After the incubation, the spontaneous curvature was returned to normal. The resulting shape was smooth showing no remnants of the echinocytic shape. Both observations indicate [Formula: see text] 10 h. This result is in gross disagreement to postulates or assumptions existing in the literature.
Collapse
|
43
|
Halliday I, Lishchuk SV, Spencer TJ, Pontrelli G, Evans PC. Local membrane length conservation in two-dimensional vesicle simulation using a multicomponent lattice Boltzmann equation method. Phys Rev E 2016; 94:023306. [PMID: 27627411 DOI: 10.1103/physreve.94.023306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 06/06/2023]
Abstract
We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods [e.g., T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting, Eur. Phys. J. 222, 177 (2013)10.1140/epjst/e2013-01834-y] and underscore the importance of a correct vesicle membrane condition.
Collapse
Affiliation(s)
- I Halliday
- Materials & Engineering Research Institute, Sheffield Hallam University, Howard Street S1 1WB, United Kingdom
| | - S V Lishchuk
- Materials & Engineering Research Institute, Sheffield Hallam University, Howard Street S1 1WB, United Kingdom
| | - T J Spencer
- Materials & Engineering Research Institute, Sheffield Hallam University, Howard Street S1 1WB, United Kingdom
| | - G Pontrelli
- Istituto per le Applicazioni del Calcolo-CNR, Via dei Taurini 19-00185, Roma, Italy
| | - P C Evans
- Department of Cardiovascular Science, and Insigneo Institute of In Silico Medicine, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| |
Collapse
|
44
|
Mechanical perturbations trigger endothelial nitric oxide synthase activity in human red blood cells. Sci Rep 2016; 6:26935. [PMID: 27345770 PMCID: PMC4921846 DOI: 10.1038/srep26935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO), a vascular signaling molecule, is primarily produced by endothelial NO synthase. Recently, a functional endothelial NO synthase (eNOS) was described in red blood cells (RBC). The RBC-eNOS contributes to the intravascular NO pool and regulates physiological functions. However the regulatory mechanisms and clinical implications of RBC-eNOS are unknown. The present study investigated regulation and functions of RBC-eNOS under mechanical stimulation. This study shows that mechanical stimuli perturb RBC membrane, which triggers a signaling cascade to activate the eNOS. Extracellular NO level, estimated by the 4-Amino-5-Methylamino-2', 7'-Difluorofluorescein Diacetate probe, was significantly increased under mechanical stimuli. Immunostaining and western blot studies confirmed that the mechanical stimuli phosphorylate the serine 1177 moiety of RBC-eNOS, and activates the enzyme. The NO produced by activation of RBC-eNOS in vortexed RBCs promoted important endothelial functions such as migration and vascular sprouting. We also show that mechanical perturbation facilitates nitrosylation of RBC proteins via eNOS activation. The results of the study confirm that mechanical perturbations sensitize RBC-eNOS to produce NO, which ultimately defines physiological boundaries of RBC structure and functions. Therefore, we propose that mild physical perturbations before, after, or during storage can improve viability of RBCs in blood banks.
Collapse
|
45
|
Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium. Biophys J 2016; 108:1352-1360. [PMID: 25809249 DOI: 10.1016/j.bpj.2015.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/23/2015] [Indexed: 11/21/2022] Open
Abstract
Red cells suspended in solutions much more viscous than blood plasma assume an almost steady-state orientation when sheared above a threshold value of shear rate. This orientation is a consequence of the motion of the membrane around the red cell called tank-treading. Observed along the undisturbed vorticity of the shear flow, tank-treading red cells appear as slender bodies. Their orientation can be quantified as an angle of inclination (θ) of the major axis with respect to the undisturbed flow direction. We measured θ using solution viscosities (η0) and shear rates (γ˙) covering one and three orders of magnitude, respectively. At the lower values of η0, θ was almost independent of γ˙. At the higher values of η0, θ displayed a maximum at intermediate shear rates. The respective maximal values of θ increased by ∼10° from 10.7 to 104 mPas. After accounting for the absent membrane viscosity in models by using an increased cytoplasmic viscosity, their predictions of θ agree qualitatively with our data. Comparison of the observed variation of θ at constant γ˙ with model results suggests a change in the reference configuration of the shear stiffness of the membrane.
Collapse
|
46
|
Salehyar S, Zhu Q. Deformation and internal stress in a red blood cell as it is driven through a slit by an incoming flow. SOFT MATTER 2016; 12:3156-3164. [PMID: 26865054 DOI: 10.1039/c5sm02933c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To understand the deformation and internal stress of a red blood cell when it is pushed through a slit by an incoming flow, we conduct a numerical investigation by combining a fluid-cell interaction model based on boundary-integral equations with a multiscale structural model of the cell membrane that takes into account the detailed molecular architecture of this biological system. Our results confirm the existence of cell 'infolding', during which part of the membrane is inwardly bent to form a concave region. The time histories and distributions of area deformation, shear deformation, and contact pressure during and after the translocation are examined. Most interestingly, it is found that in the recovery phase after the translocation significant dissociation pressure may develop between the cytoskeleton and the lipid bilayer. The magnitude of this pressure is closely related to the locations of the dimple elements during the transit. Large dissociation pressure in certain cases suggests the possibility of mechanically induced structural remodeling and structural damage such as vesiculation. With quantitative knowledge about the stability of intra-protein, inter-protein and protein-to-lipid linkages under dynamic loads, it will be possible to achieve numerical prediction of these processes.
Collapse
|
47
|
|
48
|
Dupire J, Abkarian M, Viallat A. A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow. SOFT MATTER 2015; 11:8372-8382. [PMID: 26352875 DOI: 10.1039/c5sm01407g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An analytical model was proposed by Keller and Skalak in 1982 to understand the motion of red blood cells in shear flow. The cell was described as a fluid ellipsoid of fixed shape. This model was extended in 2007 to introduce shear elasticity of the red blood cell membrane. Here, this model is further extended to take into account that the cell discoid shape physiologically observed is not a stress-free shape. The model shows that spheroid stress-free shapes allow us to fit the experimental data with the values of shear elasticity typical to that found with micropipette and optical tweezer experiments. In the range of moderate shear rates (for which RBCs keep their discoid shape) this model enables us to quantitatively determine (i) an effective cell viscosity, which combines membrane and hemoglobin viscosities and (ii) an effective shear modulus of the membrane that combines the shear modulus and the stress-free shape. This model can also be used to determine RBC mechanical parameters not only in the tanktreading regime when cells are suspended in medium of high viscosity but also in the tumbling regime characteristic of cells suspended in media of low viscosity. In this regime, a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell.
Collapse
Affiliation(s)
- Jules Dupire
- Université Aix-Marseille, CNRS, LAI UMR 7333, Inserm UMT 1067, Marseille, 13288, France
| | - Manouk Abkarian
- Centre de Biochimie Structurale, UMR 5048 CNRS/UM1, INSERM UMR 1054, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | - Annie Viallat
- Université Aix-Marseille, CNRS, CINaM UMR 7325, 13288, Marseille, France.
| |
Collapse
|
49
|
Sinha K, Graham MD. Dynamics of a single red blood cell in simple shear flow. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042710. [PMID: 26565275 DOI: 10.1103/physreve.92.042710] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 05/25/2023]
Abstract
This work describes simulations of a red blood cell (RBC) in simple shear flow, focusing on the dependence of the cell dynamics on the spontaneous curvature of the membrane. The results show that an oblate spheroidal spontaneous curvature maintains the dimple of the RBC during tank-treading dynamics as well as exhibits off-shear-plane tumbling consistent with the experimental observations of Dupire et al. [J. Dupire, M. Socol, and A. Viallat, Proc. Natl. Acad. Sci. USA 109, 20808 (2012)] and their hypothesis of an inhomogeneous spontaneous shape. As the flow strength (capillary number Ca) is increased at a particular viscosity ratio between inner and outer fluid, the dynamics undergo transitions in the following sequence: tumbling, kayaking or rolling, tilted tank-treading, oscillating-swinging, swinging, and tank-treading. The tilted tank-treading (or spinning frisbee) regime has been previously observed in experiments but not in simulations. Two distinct classes of regime are identified: a membrane reorientation regime, where the part of membrane that is at the dimple at rest moves to the rim and vice versa, is observed in motions at high Ca such as tilted tank-treading, oscillating-swinging, swinging, and tank-treading, and a nonreorientation regime, where the part of the membrane starting from the dimple stays at the dimple, is observed in motions at low Ca such as rolling, tumbling, kayaking, and flip-flopping.
Collapse
Affiliation(s)
- Kushal Sinha
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691, USA
| | - Michael D Graham
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691, USA
| |
Collapse
|
50
|
Ni A, Cheema TA, Park CW. Numerical Study of RBC Motion and Deformation through Microcapillary in Alcohol Plasma Solution. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojfd.2015.51004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|