1
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
2
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022; 61:e202200259. [DOI: 10.1002/anie.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
3
|
Chatterjee S, Zamani E, Farzin S, Evazzade I, Obewhere OA, Johnson TJ, Alexandrov V, Dishari SK. Molecular-Level Control over Ionic Conduction and Ionic Current Direction by Designing Macrocycle-Based Ionomers. JACS AU 2022; 2:1144-1159. [PMID: 35647599 PMCID: PMC9131371 DOI: 10.1021/jacsau.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Poor ionic conductivity of the catalyst-binding, sub-micrometer-thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1-2 orders of magnitude higher than Nafion at 20-25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us to demonstrate the role of macrocyclic cavities in boosting the proton conductivity. The systematic self-assembly of calix-2 chains into ellipsoids in thin films was evidenced from atomic force microscopy and grazing incidence small-angle X-ray scattering measurements. Moreover, the likelihood of alignment and stacking of macrocyclic units, the presence of one-dimensional water wires across this macrocycle stacks, and thus the formation of long-range proton conduction pathways were suggested by atomistic simulations. We not only did see an unprecedented improvement in thin-film proton conductivity but also saw an improvement in proton conductivity of bulk membranes when calix-2 was added to the Nafion matrices. Nafion-calix-2 composite membranes also took advantage of the asymmetric charge distribution across calix[4]arene repeat units collectively and exhibited voltage-gating behavior. The inclusion of molecular macrocyclic cavities into the ionomer chemical structure can thus emerge as a promising design concept for highly efficient ion-conducting and ion-permselective materials for sustainable energy applications.
Collapse
Affiliation(s)
| | | | | | - Iman Evazzade
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Oghenetega Allen Obewhere
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Tyler James Johnson
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Vitaly Alexandrov
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular
Engineering, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| |
Collapse
|
4
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
5
|
Huang QR, Li YC, Nishigori T, Katada M, Fujii A, Kuo JL. Vibrational Coupling in Solvated H 3O +: Interplay between Fermi Resonance and Combination Band. J Phys Chem Lett 2020; 11:10067-10072. [PMID: 33179938 DOI: 10.1021/acs.jpclett.0c03059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Complex vibrational features of solvated hydronium ion, H3O+, in 3 μm enable us to look into the vibrational coupling among O-H stretching modes and other degrees of freedom. Two anharmonic coupling schemes have often been engaged to explain observed spectra: coupling with the OH bending overtone, known as Fermi resonance (FR), has been proposed to account for the splitting of the OH stretch band at ∼3300 cm-1 in H3O+···Ar3, but an additional peak in H3O+···(N2)3 at the similar frequency region has been assigned to a combination band (CB) with the low-frequency intermolecular stretches. While even stronger vibrational coupling is expected in H3O+···(H2O)3, such pronounced peaks are absent. In the present study, vibrational spectra of H3O+···Kr3 and H3O+···(CO)3 are measured to complement the existing spectra. Using ab initio anharmonic algorithms, we are able to assign the observed complex spectral features, to resolve seemingly contradictory notions in the interpretations, and to reveal simple pictures of the interplay between FR and CB.
Collapse
Affiliation(s)
- Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Ying-Cheng Li
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Tomoki Nishigori
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Marusu Katada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Morelli AM, Ravera S, Calzia D, Panfoli I. An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 2020; 9:180221. [PMID: 30966998 PMCID: PMC6501646 DOI: 10.1098/rsob.180221] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding how biological systems convert and store energy is a primary purpose of basic research. However, despite Mitchell's chemiosmotic theory, we are far from the complete description of basic processes such as oxidative phosphorylation (OXPHOS) and photosynthesis. After more than half a century, the chemiosmotic theory may need updating, thanks to the latest structural data on respiratory chain complexes. In particular, up-to date technologies, such as those using fluorescence indicators following proton displacements, have shown that proton translocation is lateral rather than transversal with respect to the coupling membrane. Furthermore, the definition of the physical species involved in the transfer (proton, hydroxonium ion or proton currents) is still an unresolved issue, even though the latest acquisitions support the idea that protonic currents, difficult to measure, are involved. Moreover, FoF1-ATP synthase ubiquitous motor enzyme has the peculiarity (unlike most enzymes) of affecting the thermodynamic equilibrium of ATP synthesis. It seems that the concept of diffusion of the proton charge expressed more than two centuries ago by Theodor von Grotthuss is to be taken into consideration to resolve these issues. All these uncertainties remind us that also in biology it is necessary to consider the Heisenberg indeterminacy principle, which sets limits to analytical questions.
Collapse
Affiliation(s)
- Alessandro Maria Morelli
- 1 Pharmacy Department, Biochemistry Lab, University of Genova , Viale Benedetto XV 3, 16132 Genova , Italy
| | - Silvia Ravera
- 2 Experimental Medicine Department, University of Genova , Via De Toni 14, 16132 Genova , Italy
| | - Daniela Calzia
- 1 Pharmacy Department, Biochemistry Lab, University of Genova , Viale Benedetto XV 3, 16132 Genova , Italy
| | - Isabella Panfoli
- 2 Experimental Medicine Department, University of Genova , Via De Toni 14, 16132 Genova , Italy
| |
Collapse
|
7
|
Proton leakage across lipid bilayers: Oxygen atoms of phospholipid ester linkers align water molecules into transmembrane water wires. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:439-451. [PMID: 30904457 DOI: 10.1016/j.bbabio.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/20/2019] [Accepted: 03/10/2019] [Indexed: 12/31/2022]
Abstract
Up to half of the cellular energy gets lost owing to membrane proton leakage. The permeability of lipid bilayers to protons is by several orders of magnitude higher than to other cations, which implies efficient proton-specific passages. The nature of these passages remains obscure. By combining experimental measurements of proton flow across phosphatidylcholine vesicles, steered molecular dynamics (MD) simulations of phosphatidylcholine bilayers and kinetic modelling, we have analyzed whether protons could pass between opposite phospholipid molecules when they sporadically converge. The MD simulations showed that each time, when the phosphorus atoms of the two phosphatidylcholine molecules got closer than 1.6 nm, the eight oxygen atoms of their ester linkages could form a transmembrane 'oxygen passage' along which several water molecules aligned into a water wire. Proton permeability along such water wires would be limited by rearrangement of oxygen atoms, which could explain the experimentally shown independence of the proton permeability of pH, H2O/D2O substitution, and membrane dipole potential. We suggest that protons can cross lipid bilayers by moving along short, self-sustaining water wires supported by oxygen atoms of lipid ester linkages.
Collapse
|
8
|
Abstract
An important limitation of standard classical molecular dynamics simulations is the inability to make or break chemical bonds. This restricts severely our ability to study processes that involve even the simplest of chemical reactions, the transfer of a proton. Existing approaches for allowing proton transfer in the context of classical mechanics are rather cumbersome and have not achieved widespread use and routine status. Here we reconsider the combination of molecular dynamics with periodic stochastic proton hops. To ensure computational efficiency, we propose a non-Boltzmann acceptance criterion that is heuristically adjusted to maintain the correct or desirable thermodynamic equilibria between different protonation states and proton transfer rates. Parameters are proposed for hydronium, Asp, Glu, and His. The algorithm is implemented in the program CHARMM and tested on proton diffusion in bulk water and carbon nanotubes and on proton conductance in the gramicidin A channel. Using hopping parameters determined from proton diffusion in bulk water, the model reproduces the enhanced proton diffusivity in carbon nanotubes and gives a reasonable estimate of the proton conductance in gramicidin A.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of New York/CUNY , 160 Convent Avenue, New York, New York 10031, United States.,Graduate Programs in Chemistry, Biochemistry & Physics, Graduate Center, City University of New York , 365 Fifth Ave, New York, New York 10016, United States
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
9
|
DeCoursey TE. CrossTalk proposal: Proton permeation through H V 1 requires transient protonation of a conserved aspartate in the S1 transmembrane helix. J Physiol 2017; 595:6793-6795. [PMID: 29023793 DOI: 10.1113/jp274495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology and Biophysics, Rush University, Chicago, IL, 60612, USA
| |
Collapse
|
10
|
Tunuguntla RH, Allen FI, Kim K, Belliveau A, Noy A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. NATURE NANOTECHNOLOGY 2016; 11:639-44. [PMID: 27043198 DOI: 10.1038/nnano.2016.43] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/18/2016] [Indexed: 05/06/2023]
Abstract
Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca(2+) ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport.
Collapse
Affiliation(s)
- Ramya H Tunuguntla
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, 210 Hearst Avenue, Berkeley, California 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Kyunghoon Kim
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - Allison Belliveau
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - Aleksandr Noy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
- School of Natural Sciences, University of California Merced, 5200 N. Lake Road, Merced, California 94343, USA
| |
Collapse
|
11
|
Tan JA, Li JW, Chiu CC, Liao HY, Huynh HT, Kuo JL. Tuning the vibrational coupling of H3O+ by changing its solvation environment. Phys Chem Chem Phys 2016; 18:30721-30732. [DOI: 10.1039/c6cp06326h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study demonstrates how the intermode coupling in the hydronium ion (H3O+) is modulated by the composition of the first solvation shell.
Collapse
Affiliation(s)
- Jake A. Tan
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Republic of China
- Department of Chemistry
| | - Jheng-Wei Li
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Republic of China
- Department of Physics
| | - Cheng-chau Chiu
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Republic of China
| | - Hsin-Yi Liao
- Department of Science Education
- National Taipei University of Education
- Taipei City 10671
- Republic of China
| | - Hai Thi Huynh
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Republic of China
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Republic of China
- Molecular Science and Technology Program
| |
Collapse
|
12
|
Abstract
The mechanism of proton exchange in a metal-ligand enzyme active site mimic (compound 1) is described through amide hydrogen-deuterium exchange kinetics. The type and ratio of cationic guest to host in solution affect the rate of isotope exchange, suggesting that the rate of exchange is driven by a host whose cavity is occupied by water. Rate constants for acid-, base-, and water-mediated proton exchange vary by orders of magnitude depending on the guest, and differ by up to 200 million-fold relative to an alanine polypeptide. These results suggest that the unusual microenvironment of the cavity of 1 can dramatically alter the reactivity of associated water by magnitudes comparable to that of enzymes.
Collapse
|
13
|
Kiedrowski L. Neuronal acid-induced [Zn²⁺]i elevations calibrated using the low-affinity ratiometric probe FuraZin-1. J Neurochem 2015; 135:777-86. [PMID: 26263185 DOI: 10.1111/jnc.13282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/03/2015] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
The experiments were carried out on primary cultures of murine cortical neurons from cryopreserved preparations obtained from embryonic-day-16 fetuses. To calibrate acid-induced intracelluar [Zn(2+) ] ([Zn(2+) ]i ) elevations, a low affinity (Kd = 39 μM at pH 6.1) ratiometric Zn(2+) probe, FuraZin-1, was used. A pHi drop from 7.2 to 6.1 caused [Zn(2+) ]i elevations reaching 2 μM; when the thiol-reactive agent N-ethylmaleimide (NEM) was subsequently applied, [Zn(2+) ]i increased further to 5.6 μM; analogous acid- and NEM-induced [Zn(2+) ]i elevations could also be detected but not calibrated, using the high affinity Zn(2+) probe FluoZin-3. The data indicate that NEM causes Zn(2+) release from ligands that chelate Zn(2+) at pH 6.1. ATP could also chelate Zn(2+) at pH 6.1 because its pKa is about 6.8. Therefore, it was tested whether an ATP depletion affects the acid-induced [Zn(2+) ]i elevations. The ATP depletion was induced by inhibiting mitochondrial and glycolytic ATP production. Interestingly, an almost complete ATP depletion (confirmed using a luciferin/luciferase assay) failed to affect the acid-induced [Zn(2+) ]i increases. These data suggest that the total amount of Zn(2+) accumulated in intracellular ATP-dependent stores (Zn(2+) -ATP complexes and organelles that accumulate Zn(2+) in an ATP-dependent manner) is negligible compared to the amount of Zn(2+) accumulated in the acid-sensitive intracellular ligands. In vitro, upon acidification, Zn(2+) -cysteine complexes release Zn(2+) and ATP chelates the released Zn(2+) . However, in vivo (cultured neurons), an ATP depletion failed to enhance acid-induced [Zn(2+) ]i elevations. These [Zn(2+) ]i elevations were calibrated using a low affinity ratiometric probe FuraZin-1; they reached 2 µM levels and increased to 5 µM when a thiol-reactive agent, N-ethylmaleimide, compromised Zn(2+) binding by cysteines.
Collapse
Affiliation(s)
- Lech Kiedrowski
- The Psychiatric Institute, Departments of Psychiatry and Pharmacology, The University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Stevenson P, Tokmakoff A. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons. J Chem Phys 2015; 142:212424. [PMID: 26049444 PMCID: PMC4401804 DOI: 10.1063/1.4917321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/31/2015] [Indexed: 11/14/2022] Open
Abstract
Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D.
Collapse
Affiliation(s)
- Paul Stevenson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
15
|
Titus S, Sreejalekshmi KG. Propeller-shaped molecules with a thiazole hub: structural landscape and hydrazone cap mediated tunable host behavior in 4-hydrazino-1,3-thiazoles. CrystEngComm 2015. [DOI: 10.1039/c5ce01042j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propeller-shaped molecules with 2,4,5-trisubstituted-1,3-thiazole as the hub and tunable blades (B1–B3) were synthesized as trivariant scaffolds.
Collapse
Affiliation(s)
- Sarah Titus
- Department of Chemistry
- Indian Institute of Space Science and Technology
- Thiruvananthapuram – 695 547, India
| | - Kumaran G. Sreejalekshmi
- Department of Chemistry
- Indian Institute of Space Science and Technology
- Thiruvananthapuram – 695 547, India
| |
Collapse
|
16
|
Isaev AN. Structure of a proton wire in the harmonic model with allowance for the interproton interaction for the first and second neighbors. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Velez-Vega C, McKay DJJ, Aravamuthan V, Pearlstein R, Duca JS. Time-averaged distributions of solute and solvent motions: exploring proton wires of GFP and PfM2DH. J Chem Inf Model 2014; 54:3344-61. [PMID: 25405925 DOI: 10.1021/ci500571h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton translocation pathways of selected variants of the green fluorescent protein (GFP) and Pseudomonas fluorescens mannitol 2-dehydrogenase (PfM2DH) were investigated via an explicit solvent molecular dynamics-based analysis protocol that allows for direct quantitative relationship between a crystal structure and its time-averaged solute-solvent structure obtained from simulation. Our study of GFP is in good agreement with previous research suggesting that the proton released from the chromophore upon photoexcitation can diffuse through an extended internal hydrogen bonding network that allows for the proton to exit to bulk or be recaptured by the anionic chromophore. Conversely for PfM2DH, we identified the most probable ionization states of key residues along the proton escape channel from the catalytic site to bulk solvent, wherein the solute and high-density solvent crystal structures of binary and ternary complexes were properly reproduced. Furthermore, we proposed a plausible mechanism for this proton translocation process that is consistent with the state-dependent structural shifts observed in our analysis. The time-averaged structures generated from our analyses facilitate validation of MD simulation results and provide a comprehensive profile of the dynamic all-occupancy solvation network within and around a flexible solute, from which detailed hydrogen-bonding networks can be inferred. In this way, potential drawbacks arising from the elucidation of these networks by examination of static crystal structures or via alternate rigid-protein solvation analysis procedures can be overcome. Complementary studies aimed at the effective use of our methodology for alternate implementations (e.g., ligand design) are currently underway.
Collapse
Affiliation(s)
- Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
18
|
Zhu J, Quan Z, Lin YS, Jiang YB, Wang Z, Zhang J, Jin C, Zhao Y, Liu Z, Brinker CJ, Xu H. Porous ice phases with VI and distorted VII structures constrained in nanoporous silica. NANO LETTERS 2014; 14:6554-6558. [PMID: 25338300 DOI: 10.1021/nl503165n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-pressure compression of water contained in nanoporous silica allowed fabrication of novel porous ice phases as a function of pressure. The starting liquid nanoporous H2O transformed to ice VI and VII at 1.7 and 2.5 GPa, respectively, which are 0.6 and 0.4 GPa higher than commonly accepted pressures for bulk H2O. The continuous increase of pressure drives the formation of a tetragonally distorted VII structure with the space group I4mm, rather than a cubic Pn3m phase in bulk ice. The enhanced incompressibility of the tetragonal ice is related to the unique nanoporous configuration, and the distortion ratio c/a gradually increases with increasing pressure. The structural changes and enhanced thermodynamic stability may be interpreted by the two-dimensional distribution of silanol groups on the porous silica surfaces and the associated anisotropic interactions with H2O at the interfaces.
Collapse
Affiliation(s)
- Jinlong Zhu
- National Lab for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
DeCoursey TE, Hosler J. Philosophy of voltage-gated proton channels. J R Soc Interface 2014; 11:20130799. [PMID: 24352668 PMCID: PMC3899857 DOI: 10.1098/rsif.2013.0799] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/22/2013] [Indexed: 02/02/2023] Open
Abstract
In this review, voltage-gated proton channels are considered from a mainly teleological perspective. Why do proton channels exist? What good are they? Why did they go to such lengths to develop several unique hallmark properties such as extreme selectivity and ΔpH-dependent gating? Why is their current so minuscule? How do they manage to be so selective? What is the basis for our belief that they conduct H(+) and not OH(-)? Why do they exist in many species as dimers when the monomeric form seems to work quite well? It is hoped that pondering these questions will provide an introduction to these channels and a way to logically organize their peculiar properties as well as to understand how they are able to carry out some of their better-established biological functions.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| | - Jonathan Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
20
|
Karahka ML, Kreuzer HJ. Charge transport along proton wires. Biointerphases 2013; 8:13. [DOI: 10.1186/1559-4106-8-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/07/2013] [Indexed: 11/10/2022] Open
|
21
|
Decoursey TE, Cherny VV. An Electrophysiological Comparison of Voltage-Gated Proton Channels, Other Ion Channels, and Other Proton Channels. Isr J Chem 2013. [DOI: 10.1002/ijch.199900046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
|
23
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Chen D, Wei GW. Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation. COMMUNICATIONS IN COMPUTATIONAL PHYSICS 2013; 13:285-324. [PMID: 23550030 PMCID: PMC3580801 DOI: 10.4208/cicp.050511.050811s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.
Collapse
Affiliation(s)
- Duan Chen
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. (G.-W. Wei)
| |
Collapse
|
25
|
Abstract
Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely, the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance approximately 10(3) times smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn(2+) (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B-lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H(+) for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
26
|
Chen D, Chen Z, Wei GW. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:25-51. [PMID: 22328970 PMCID: PMC3274368 DOI: 10.1002/cnm.1458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 05/11/2023]
Abstract
Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model.
Collapse
Affiliation(s)
- Duan Chen
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Zhan Chen
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. Tel: (517)353 4689, Fax:(517)432 1562,
| |
Collapse
|
27
|
Si W, Chen L, Hu XB, Tang G, Chen Z, Hou JL, Li ZT. Selective Artificial Transmembrane Channels for Protons by Formation of Water Wires. Angew Chem Int Ed Engl 2011; 50:12564-8. [DOI: 10.1002/anie.201106857] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Indexed: 11/08/2022]
|
28
|
Si W, Chen L, Hu XB, Tang G, Chen Z, Hou JL, Li ZT. Selective Artificial Transmembrane Channels for Protons by Formation of Water Wires. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106857] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Zhou HX. Mechanistic insight into the h(2)o/d (2)o isotope effect in the proton transport of the influenza virus m2 protein. J Membr Biol 2011; 244:93-6. [PMID: 22041938 PMCID: PMC3237009 DOI: 10.1007/s00232-011-9402-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/15/2011] [Indexed: 11/27/2022]
Abstract
The M2 proton channel is essential for the replication of the flu virus and is a known drug target. The functional mechanism of channel activation and conductance is key to both the basic biology of viral replication and the design of drugs that can withstand mutations. A quantitative model was previously developed for calculating the rate of proton transport through the M2 channel. The permeant proton was assumed to diffuse to the pore, obligatorily bind to the His37 tetrad, and then dissociate and be released to either side of the tetrad. Here the model is used to calculate the effect of a change in solvent from H(2)O to D(2)O on the rate of proton transport. The solvent substitution affects two parameters in the model: the proton diffusion constant and the pK (a) for proton binding to the His37 tetrad. When the known effects on these two parameters are included, the deuterium isotope effect calculated from the model is in quantitatively agreement with experimental results. This strict test of the theoretical model provides strong support for the hypothesis that the permeant proton obligatorily binds to and then unbinds from the His37 tetrad. This putatively essential role of the His37 tetrad in the functional mechanism of the M2 channel makes it a promising target for designing mutation-tolerant drugs.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, USA.
| |
Collapse
|
30
|
Liang C, Jansen TLC, Knoester J. Proton transport in biological systems can be probed by two-dimensional infrared spectroscopy. J Chem Phys 2011; 134:044502. [PMID: 21280743 DOI: 10.1063/1.3522770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a new method to determine the proton transfer (PT) rate in channel proteins by two-dimensional infrared (2DIR) spectroscopy. Proton transport processes in biological systems, such as proton channels, trigger numerous fundamental biochemical reactions. Due to the limitation in both spatial and time resolution of the traditional experimental approaches, describing the whole proton transport process and identifying the rate limiting steps at the molecular level is challenging. In the present paper, we focus on proton transport through the Gramicidin A channel. Using a kinetic PT model derived from all-atom molecular dynamics simulations, we model the amide I region of the 2DIR spectrum of the channel protein to examine its sensitivity to the proton transport process. We demonstrate that the 2DIR spectrum of the isotope-labeled channel contain information on the PT rate, which may be extracted by analyzing the antidiagonal linewidth of the spectral feature related to the labeled site. Such experiments in combination with detailed numerical simulations should allow the extraction of site dependent PT rates, providing a method for identifying possible rate limiting steps for proton channel transfer.
Collapse
Affiliation(s)
- Chungwen Liang
- Center for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
31
|
Isaev AN. The geometry and electronic structure of the ionic defect in a chain of water molecules between a donor and an acceptor. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2010. [DOI: 10.1134/s0036024410030179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Isaev AN. Quantum-chemical calculations of a long proton wire. Application of a harmonic model to analysis of the structure of an ionic defect in a water chain with an excess proton. J Phys Chem A 2010; 114:2201-12. [PMID: 20085360 DOI: 10.1021/jp908259p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum-chemical calculations of molecular complexes (NH(3))(3)Zn(2+)...(H(2)O)(n)...NH(3) (C(n), n = 11, 16, 21, and 30) simulating a proton wire donor-water chain-acceptor were carried out. Earlier found periodicity in the length of the O-H bonds in water chain is explained within the framework of a one-component harmonic model. In complexes C(n), the geometry and electronic structure of ionic defect in water chain with an excess proton were studied. Calculations carried out at ab initio (B3LYP/6-31+G**) and semiempirical (PM3) levels of theory predict different patterns of distribution of the O-H bonds lengths and positive charge on the H-bond hydrogen atoms in the region of ionic defect. The obtained data show how a length of water chain and position of a protonated water link in the chain influence the ionic defect structure. To describe the observed structures of ionic defect, the harmonic model was used and the role of parameters of the H-bonded chain was investigated. The performed analysis explains different mechanisms (concerted and stepwise) of proton transfer along the H-bonded chain derived from ab initio and semiempirical calculation schemes.
Collapse
Affiliation(s)
- Alexander N Isaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia.
| |
Collapse
|
33
|
DeCoursey TE. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. Physiology (Bethesda) 2010; 25:27-40. [PMID: 20134026 PMCID: PMC3023998 DOI: 10.1152/physiol.00039.2009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated proton channel bears surprising resemblance to the voltage-sensing domain (S1-S4) of other voltage-gated ion channels but is a dimer with two conduction pathways. The proton channel seems designed for efficient proton extrusion from cells. In phagocytes, it facilitates the production of reactive oxygen species by NADPH oxidase.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
34
|
Kuno M, Ando H, Morihata H, Sakai H, Mori H, Sawada M, Oiki S. Temperature dependence of proton permeation through a voltage-gated proton channel. ACTA ACUST UNITED AC 2009; 134:191-205. [PMID: 19720960 PMCID: PMC2740922 DOI: 10.1085/jgp.200910213] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated proton channels are found in many different types of cells, where they facilitate proton movement through the membrane. The mechanism of proton permeation through the channel is an issue of long-term interest, but it remains an open question. To address this issue, we examined the temperature dependence of proton permeation. Under whole cell recordings, rapid temperature changes within a few milliseconds were imposed. This method allowed for the measurement of current amplitudes immediately before and after a temperature jump, from which the ratios of these currents (Iratio) were determined. The use of Iratio for evaluating the temperature dependence minimized the contributions of factors other than permeation. Temperature jumps of various degrees (DeltaT, -15 to 15 degrees C) were applied over a wide temperature range (4-49 degrees C), and the Q10s for the proton currents were evaluated from the Iratios. Q10 exhibited a high temperature dependence, varying from 2.2 at 10 degrees C to 1.3 at 40 degrees C. This implies that processes with different temperature dependencies underlie the observed Q10. A novel resistivity pulse method revealed that the access resistance with its low temperature dependence predominated in high temperature ranges. The measured temperature dependence of Q10 was decomposed into Q10 of the channel and of the access resistances. Finally, the Q10 for proton permeation through the voltage-gated proton channel itself was calculated and found to vary from 2.8 at 5 degrees C to 2.2 at 45 degrees C, as expected for an activation enthalpy of 64 kJ/mol. The thermodynamic features for proton permeation through proton-selective channels were discussed for the underlying mechanism.
Collapse
Affiliation(s)
- Miyuki Kuno
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Prakash M, Subramanian V, Gadre SR. Stepwise Hydration of Protonated Carbonic Acid: A Theoretical Study. J Phys Chem A 2009; 113:12260-75. [DOI: 10.1021/jp904576u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Prakash
- Chemical Laboratory, Central Leather Research Institute, Central Leather Research Institute, Adyar, Chennai 600 020, India, and Department of Chemistry, University of Pune, Pune 411 007, India
| | - V. Subramanian
- Chemical Laboratory, Central Leather Research Institute, Central Leather Research Institute, Adyar, Chennai 600 020, India, and Department of Chemistry, University of Pune, Pune 411 007, India
| | - Shridhar R. Gadre
- Chemical Laboratory, Central Leather Research Institute, Central Leather Research Institute, Adyar, Chennai 600 020, India, and Department of Chemistry, University of Pune, Pune 411 007, India
| |
Collapse
|
36
|
Chapter 7 Influenza A M2. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1554-4516(09)10007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Phillips LR, Cole CD, Hendershot RJ, Cotten M, Cross TA, Busath DD. Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin. Biophys J 2008; 77:2492-501. [PMID: 20540928 DOI: 10.1016/s0006-3495(99)77085-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/1998] [Accepted: 08/04/1999] [Indexed: 11/25/2022] Open
Abstract
Proton transport on water wires, of interest for many problems in membrane biology, is analyzed in side-chain analogs of gramicidin A channels. In symmetrical 0.1N HCl solutions, fluorination of channel Trp(11), Trp-(13), or Trp(15) side chains is found to inhibit proton transport, and replacement of one or more Trps with Phe enhances proton transport, the opposite of the effects on K(+) transport in lecithin bilayers. The current-voltage relations are superlinear, indicating that some membrane field-dependent process is rate limiting. The interfacial dipole effects are usually assumed to affect the rate of cation translocation across the channel. For proton conductance, however, water reorientation after proton translocation is anticipated to be rate limiting. We propose that the findings reported here are most readily interpreted as the result of dipole-dipole interactions between channel waters and polar side chains or lipid headgroups. In particular, if reorientation of the water column begins with the water nearest the channel exit, this hypothesis explains the negative impact of fluorination and the positive impact of headgroup dipole on proton conductance.
Collapse
Affiliation(s)
- L R Phillips
- Zoology Department, Brigham Young University, Provo, Utah 84062, USA
| | | | | | | | | | | |
Collapse
|
38
|
Till MS, Essigke T, Becker T, Ullmann GM. Simulating the proton transfer in gramicidin A by a sequential dynamical Monte Carlo method. J Phys Chem B 2008; 112:13401-10. [PMID: 18826179 DOI: 10.1021/jp801477b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The large interest in long-range proton transfer in biomolecules is triggered by its importance for many biochemical processes such as biological energy transduction and drug detoxification. Since long-range proton transfer occurs on a microsecond time scale, simulating this process on a molecular level is still a challenging task and not possible with standard simulation methods. In general, the dynamics of a reactive system can be described by a master equation. A natural way to describe long-range charge transfer in biomolecules is to decompose the process into elementary steps which are transitions between microstates. Each microstate has a defined protonation pattern. Although such a master equation can in principle be solved analytically, it is often too demanding to solve this equation because of the large number of microstates. In this paper, we describe a new method which solves the master equation by a sequential dynamical Monte Carlo algorithm. Starting from one microstate, the evolution of the system is simulated as a stochastic process. The energetic parameters required for these simulations are determined by continuum electrostatic calculations. We apply this method to simulate the proton transfer through gramicidin A, a transmembrane proton channel, in dependence on the applied membrane potential and the pH value of the solution. As elementary steps in our reaction, we consider proton uptake and release, proton transfer along a hydrogen bond, and rotations of water molecules that constitute a proton wire through the channel. A simulation of 8 mus length took about 5 min on an Intel Pentium 4 CPU with 3.2 GHz. We obtained good agreement with experimental data for the proton flux through gramicidin A over a wide range of pH values and membrane potentials. We find that proton desolvation as well as water rotations are equally important for the proton transfer through gramicidin A at physiological membrane potentials. Our method allows to simulate long-range charge transfer in biological systems at time scales, which are not accessible by other methods.
Collapse
Affiliation(s)
- Mirco S Till
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstr. 30, BGI, 95447 Bayreuth, Germany
| | | | | | | |
Collapse
|
39
|
Abstract
This review is an attempt to identify and place in context some of the many questions about voltage-gated proton channels that remain unsolved. As the gene was identified only 2 years ago, the situation is very different than in fields where the gene has been known for decades. For the proton channel, most of the obvious and less obvious structure-function questions are still wide open. Remarkably, the proton channel protein strongly resembles the voltage-sensing domain of many voltage-gated ion channels, and thus offers a novel approach to study gating mechanisms. Another surprise is that the proton channel appears to function as a dimer, with two separate conduction pathways. A number of significant biological questions remain in dispute, unanswered, or in some cases, not yet asked. This latter deficit is ascribable to the intrinsic difficulty in evaluating the importance of one component in a complex system, and in addition, to the lack, until recently, of a means of performing an unambiguous lesion experiment, that is, of selectively eliminating the molecule in question. We still lack a potent, selective pharmacological inhibitor, but the identification of the gene has allowed the development of powerful new tools including proton channel antibodies, siRNA and knockout mice.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Abstract
The history of research on voltage-gated proton channels is recounted, from their proposed existence in dinoflagellates by Hastings in 1972 and their demonstration in snail neurons by Thomas and Meech in 1982 to the discovery in 2006 (after a decade of controversy) of genes that unequivocally code for proton channels. Voltage-gated proton channels are perfectly selective for protons, conduct deuterons half as well, and the conductance is strongly temperature dependent. These properties are consistent with a conduction mechanism involving hydrogen-bonded-chain transfer, in which the selectivity filter is a titratable amino acid residue. Channel opening is regulated stringently by pH such that only outward current is normally activated. Main functions of proton channels include acid extrusion from cells and charge compensation for the electrogenic activity of the phagocyte NADPH oxidase. Genetic approaches hold the promise of rapid progress in the near future.
Collapse
Affiliation(s)
- T E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, Illinois 60612, USA.
| |
Collapse
|
41
|
Isaev AN. Cooperative interactions of hydrogen bonds in proton-transfer processes involving water molecules. Simulation of biochemical systems. RUSS J GEN CHEM+ 2008. [DOI: 10.1134/s1070363208040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff GL, Pederson LR, Zhang JG. Oriented nanostructures for energy conversion and storage. CHEMSUSCHEM 2008; 1:676-697. [PMID: 18693284 DOI: 10.1002/cssc.200800087] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently, the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures demonstrate promising properties for energy harvesting, conversion, and storage. In this Review, we highlight the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors, and thermoelectrics. Although the applications differ from field to field, a common fundamental challenge is to improve the generation and transport of electrons and ions. We highlight the role of high surface area to maximize the surface activity and discuss the importance of optimum dimension and architecture, controlled pore channels, and alignment of the nanocrystalline phase to optimize the transport of electrons and ions. Finally, we discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information is provided for the relevant technologies, but the emphasis is focused mainly on the nanoscale effects of mostly inorganic-based materials and devices.
Collapse
Affiliation(s)
- Jun Liu
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Philip Ball
- Nature, 4-6 Crinan Street, London N1 9XW, U.K
| |
Collapse
|
44
|
Siwick BJ, Cox MJ, Bakker HJ. Long-Range Proton Transfer in Aqueous Acid−Base Reactions. J Phys Chem B 2007; 112:378-89. [DOI: 10.1021/jp075663i] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. J. Siwick
- FOM Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | - M. J. Cox
- FOM Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | - H. J. Bakker
- FOM Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| |
Collapse
|
45
|
Isaev AN. The wave nature of the protonic conductivity mechanism in the active site of carboanhydrase. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2007. [DOI: 10.1134/s0036024407060155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Yan S, Zhang L, Cukier RI, Bu Y. Exploration on Regulating Factors for Proton Transfer along Hydrogen-Bonded Water Chains. Chemphyschem 2007; 8:944-54. [PMID: 17387667 DOI: 10.1002/cphc.200600674] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proton transfer along a single-file hydrogen-bonded water chain is elucidated with a special emphasis on the investigation of chain length, side water, and solvent effects, as well as the temperature and pressure dependences. The number of water molecules in the chain varies from one to nine. The proton can be transported to the acceptor fragment through the single-file hydrogen-bonded water wire which contains at most five water molecules. If the number of water molecule is more than five, the proton is trapped by the chain in the hydroxyl-centered H(7)O(3) (+) state. The farthest water molecule involved in the formation of H(7)O(3) (+) is the fifth one away from the donor fragment. These phenomena reappear in the molecular dynamics simulations. The energy of the system is reduced along with the proton conduction. The proton transfer mechanism can be altered by excess proton. The augmentation of the solvent dielectric constant weakens the stability of the system, but favors the proton transfer. NMR spin-spin coupling constants can be used as a criterion in judging whether the proton is transferred or not. The enhancement of temperature increases the thermal motion of the molecule, augments the internal energy of the system, and favors the proton transfer. The lengthening of the water wire increases the entropy of the system, concomitantly, the temperature dependence of the Gibbs free energy increases. The most favorable condition for the proton transfer along the H-bonded water wire is the four-water contained chain with side water attached near to the acceptor fragment in polar solvent under higher temperature.
Collapse
Affiliation(s)
- Shihai Yan
- Institute of Theoretical Chemistry, Shandong University, Jinan, 250100, P. R. China
| | | | | | | |
Collapse
|
47
|
Voges D, Berendes R, Demange P, Benz J, Göttig P, Liemann S, Huber R, Burger A. Structure and function of the ion channel model system annexin V. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:209-39. [PMID: 8644490 DOI: 10.1002/9780470123171.ch4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D Voges
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chernyshev A, Cukierman S. Proton transfer in gramicidin water wires in phospholipid bilayers: attenuation by phosphoethanolamine. Biophys J 2006; 91:580-7. [PMID: 16617081 PMCID: PMC1483085 DOI: 10.1529/biophysj.106.083352] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transfer of protons in water wires was studied in native gramicidin A (gA), and in the SS- and RR-diastereoisomers of dioxolane-linked gA channels (SS and RR channels). These peptides were incorporated into membranes comprised of distinct combinations of phospholipid headgroups and acyl chains. Quantitative relationships between single channel conductances to H+ (g(H)) and [H+] were determined in distinct phospholipid membranes, and are in remarkable contrast with results previously obtained in monoglyceride membranes. In particular: 1), g(H)-[H+] relationships for the various gA channels in distinct phospholipid membranes are well fitted by single adsorption isotherms. A simple kinetic model assuming mono-occupancy of channels by protons fits said relationships. This does not occur with monoglyceride membranes. 2), Under nonsaturating [H+], g(H) is approximately 1 order of magnitude larger in phospholipid than in monoglyceride membranes. 3), Differences between rates of H+ transfer in various gA channels are still present but considerably attenuated in phospholipid relative to monoglyceride membranes. 4), Charged phospholipid headgroups affect g(H) via changes in [H+] at the membrane/solution interfaces. 5), Phosphoethanolamine groups caused a marked attenuation of g(H) relative to membranes with other phospholipid headgroups. This attenuation is voltage-dependent and tends to saturate H+ currents at voltages larger than 250 mV. This effect is likely to occur by limiting the access and exit of H+ in and out of the channel due to relatively strong oriented H-bonds between waters and phosphoethanolamine groups at channel interfaces. The differential effects of phospholipids on proton transfer could be reasoned by considering solvation effects of side chain residues of gramicidin channels by double acyl chains and by the presence of polar headgroups facilitating the entrance/exit of protons through the channel mouths.
Collapse
Affiliation(s)
- Anatoly Chernyshev
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Ilinois 60153, USA
| | | |
Collapse
|
49
|
Chaidee A, Pfeiffer W. Parameters for cellular viability and membrane function in chenopodium cells show a specific response of extracellular pH to heat shock with extreme Q10. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:42-51. [PMID: 16435268 DOI: 10.1055/s-2005-872945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The effect of brief heat shock on Chenopodium cells was investigated by measuring biochemical parameters for cellular vitality, membrane function and integrity: extracellular pH, release of osmotic compounds, phosphatase, protein and betalain, and cellular reduction of DCPIP and MTT. A threshold temperature was found at 45 degrees C, where release of osmotic compounds, protein and betalain, and reduction of DCPIP and MTT indicate loss of vitality. Extracellular pH and an alkaline phosphatase responded 10-20 degrees C below this threshold, suggesting that extracellular alkalinization, and probably the release of a phosphatase, are part of a specific cellular response to abiotic stress induced by heat shock. The extracellular proton concentration did not increase above 45 degrees C: this may indicate equilibration of gradients driving this process or an inactivation of cellular mechanisms responsible for extracellular alkalinization. The response of extracellular pH to heat shock in Chenopodium cell suspensions was fast, i.e., up to +1 pH in 5 min. Addition of the K+/H+ antiporter nigericin to Chenopodium cells caused an extracellular alkalinization similar to heat shock. The heat shock-induced extracellular alkalinization was characterized by Q10 values for distinct ranges of temperature (Q10 of 56 for 24-31 degrees C, 2.3 for 31-42 degrees C, and 1.0 for 42-50 degrees C). To the author's knowledge, the Q10 of 56 is the highest found up to now. These results suggest that extracellular protons are involved in temperature sensing and signalling in plant cells, probably via a channel-mediated pathway.
Collapse
Affiliation(s)
- A Chaidee
- Institut für Pflanzenphysiologie, Universität Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | |
Collapse
|
50
|
Cukierman S. Et tu, Grotthuss! and other unfinished stories. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1757:876-85. [PMID: 16414007 DOI: 10.1016/j.bbabio.2005.12.001] [Citation(s) in RCA: 350] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/16/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
This review article is divided into three sections. In Section 1, a short biographical note on Freiherr von Grotthuss is followed by a detailed summary of the main findings and ideas present in his 1806 paper. Attempts to place Grotthuss contribution in the context of the science done at his time were also made. In Section 2, the modern version of the Grotthuss mechanism is reviewed. The classical Grotthuss model has been recently questioned and new mechanisms and ideas regarding proton transfer are briefly discussed. The last section discusses the significance of a classical Grotthuss mechanism for proton transfer in water chains inside protein cavities. This has been an interesting new twist in the ongoing history of the Grotthuss mechanism. A summary and discussion of what was learned from probably the simplest currently available experimental models of proton transfer in water wires in semi-synthetic ion channels are critically presented. This review ends discussing some of the questions that need to be addressed in the near future.
Collapse
Affiliation(s)
- Samuel Cukierman
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|