1
|
Peñalva DA, Munafó JP, Antollini SS. Cholesterol´s role in membrane organization and nicotinic acetylcholine receptor function: Implications for aging and Alzheimer's disease. Chem Phys Lipids 2025; 269:105484. [PMID: 40147619 DOI: 10.1016/j.chemphyslip.2025.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Biological membranes are complex entities composed of various molecules exhibiting lateral and transbilayer lipid asymmetries, along with a selective spatial distribution of different membrane proteins. This dynamic orchestration is crucial for proper physiological functions, undergoes changes with aging, and is disturbed in several neurological disorders. In this review, we analyze the impact of disruption in this equilibrium on physiological aging and the onset of pathological conditions. Alzheimer´s disease (AD) is a multifactorial neurodegenerative disorder in the elderly, characterized by the increased presence of the Aβ peptide, which supports the amyloid hypothesis of the disease. However, AD also involves a progressive loss of cholinergic innervation, leading to the cholinergic hypothesis of the disease. Nicotinic acetylcholine receptors (nAChRs) are transmembrane proteins, and Aβ peptides, their oligomeric and fibrillar species, which increase in hydrophobicity as they develop, interact with membranes. Therefore, a membrane hypothesis of the disease emerges as a bridge between the other two. Here, we discuss the impact of the membrane environment, through direct or indirect mechanisms, on cholinergic signaling and Aβ formation and subsequent incorporation into the membrane, with a special focus on the crucial role of cholesterol in these processes.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Barrantes FJ. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol Res 2023; 190:106729. [PMID: 36931540 DOI: 10.1016/j.phrs.2023.106729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a transmembrane protein that mediates fast intercellular communication in response to the endogenous neurotransmitter acetylcholine. It is the best characterized and archetypal molecule in the superfamily of pentameric ligand-gated ion channels (pLGICs). As a typical transmembrane macromolecule, it interacts extensively with its vicinal lipid microenvironment. Experimental evidence provides a wealth of information on receptor-lipid crosstalk: the nAChR exerts influence on its immediate membrane environment and conversely, the lipid moiety modulates ligand binding, affinity state transitions and gating of ion translocation functions of the receptor protein. Recent cryogenic electron microscopy (cryo-EM) studies have unveiled the occurrence of sites for phospholipids and cholesterol on the lipid-exposed regions of neuronal and electroplax nAChRs, confirming early spectroscopic and affinity labeling studies demonstrating the close contact of lipid molecules with the receptor transmembrane segments. This new data provides structural support to the postulated "lipid sensor" ability displayed by the outer ring of M4 transmembrane domains and their modulatory role on nAChR function, as we postulated a decade ago. Borrowing from the best characterized nAChR, the electroplax (muscle-type) receptor, and exploiting new structural information on the neuronal nAChR, it is now possible to achieve an improved depiction of these sites. In combination with site-directed mutagenesis, single-channel electrophysiology, and molecular dynamics studies, the new structural information delivers a more comprehensive portrayal of these lipid-sensitive loci, providing mechanistic explanations for their ability to modulate nAChR properties and raising the possibility of targetting them in disease.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA) - Argentine Scientific & Technol. Research Council (CONICET), Av. Alicia Moreau de Justo 1600, C1107AAZ Buenos Aires, Argentina.
| |
Collapse
|
3
|
Izquierdo PG, Charvet CL, Neveu C, Green AC, Tattersall JEH, Holden-Dye L, O'Connor V. Modelling organophosphate intoxication in C. elegans highlights nicotinic acetylcholine receptor determinants that mitigate poisoning. PLoS One 2023; 18:e0284786. [PMID: 37083685 PMCID: PMC10121051 DOI: 10.1371/journal.pone.0284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Organophosphate intoxication via acetylcholinesterase inhibition executes neurotoxicity via hyper stimulation of acetylcholine receptors. Here, we use the organophosphate paraoxon-ethyl to treat C. elegans and use its impact on pharyngeal pumping as a bio-assay to model poisoning through these neurotoxins. This assay provides a tractable measure of acetylcholine receptor mediated contraction of body wall muscle. Investigation of the time dependence of organophosphate treatment and the genetic determinants of the drug-induced inhibition of pumping highlight mitigating modulation of the effects of paraoxon-ethyl. We identified mutants that reduce acetylcholine receptor function protect against the consequence of intoxication by organophosphates. Data suggests that reorganization of cholinergic signalling is associated with organophosphate poisoning. This reinforces the under investigated potential of using therapeutic approaches which target a modulation of nicotinic acetylcholine receptor function to treat the poisoning effects of this important class of neurotoxins.
Collapse
Affiliation(s)
- Patricia G Izquierdo
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Claude L Charvet
- French National Institute for Agricultural Research (INRA), Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Cedric Neveu
- French National Institute for Agricultural Research (INRA), Infectiologie Animale et Santé Publique, Nouzilly, France
| | - A Christopher Green
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - John E H Tattersall
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Lindy Holden-Dye
- Dstl, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Vincent O'Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
4
|
Thompson MJ, Domville JA, Edrington CH, Venes A, Giguère PM, Baenziger JE. Distinct functional roles for the M4 α-helix from each homologous subunit in the hetero-pentameric ligand-gated ion channel nAChR. J Biol Chem 2022; 298:102104. [PMID: 35679899 PMCID: PMC9260303 DOI: 10.1016/j.jbc.2022.102104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022] Open
Abstract
The outermost lipid-exposed α-helix (M4) in each of the homologous α, β, δ, and γ/ε subunits of the muscle nicotinic acetylcholine receptor (nAChR) has previously been proposed to act as a lipid sensor. However, the mechanism by which this sensor would function is not clear. To explore how the M4 α-helix from each subunit in human adult muscle nAChR influences function, and thus explore its putative role in lipid sensing, we functionally characterized alanine mutations at every residue in αM4, βM4, δM4, and εM4, along with both alanine and deletion mutations in the post-M4 region of each subunit. Although no critical interactions involving residues on M4 or in post-M4 were identified, we found that numerous mutations at the M4–M1/M3 interface altered the agonist-induced response. In addition, homologous mutations in M4 in different subunits were found to have different effects on channel function. The functional effects of multiple mutations either along M4 in one subunit or at homologous positions of M4 in different subunits were also found to be additive. Finally, when characterized in both Xenopus oocytes and human embryonic kidney 293T cells, select αM4 mutations displayed cell-specific phenotypes, possibly because of the different membrane lipid environments. Collectively, our data suggest different functional roles for the M4 α-helix in each heteromeric nAChR subunit and predict that lipid sensing involving M4 occurs primarily through the cumulative interactions at the M4–M1/M3 interface, as opposed to the alteration of specific interactions that are critical to channel function.
Collapse
|
5
|
Mesoy SM, Bridgland-Taylor M, Lummis SCR. Mutations of the nACh Receptor M4 Helix Reveal Different Phenotypes in Different Expression Systems: Could Lipids be Responsible? Front Physiol 2022; 13:850782. [PMID: 35600303 PMCID: PMC9116227 DOI: 10.3389/fphys.2022.850782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
The role of the outermost helix (M4) in the pentameric ligand-gated ion channel (pLGIC) family is currently not fully understood. It is known that M4 is important for receptor assembly, possibly via interactions with neighboring M1 and M3 helices. M4 can also transmit information on the lipid content of the membrane to the gating mechanism, and it may form a link to the extracellular domain via the Cys-loop. Our previous study examining the α4β2 nACh receptor M4 helix using HEK cells indicated M4 here is more sensitive to change than those of other pLGIC. Many of these other studies, however, were performed in Xenopus oocytes. Here we examine the nine previously identified nonfunctional α4β2 nACh receptor M4 mutant receptors using this system. The data reveal that seven of these mutant receptors do function when expressed in oocytes, with only 2, the conserved Asp at the intracellular end of M4 and a Phe in the center, having a similar phenotype (nonfunctional) in both HEK cells and oocytes. The oocyte data are more consistent with studies in other pLGIC and demonstrate the importance of the expression system used. Of the many differences between these two expression systems, we suggest that the different lipid content of the plasma membrane is a possible candidate for explaining these discrepancies.
Collapse
Affiliation(s)
- Susanne M. Mesoy
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Bridgland-Taylor
- Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Sarah C. R. Lummis,
| |
Collapse
|
6
|
Dämgen MA, Biggin PC. State-dependent protein-lipid interactions of a pentameric ligand-gated ion channel in a neuronal membrane. PLoS Comput Biol 2021; 17:e1007856. [PMID: 33571182 PMCID: PMC7904231 DOI: 10.1371/journal.pcbi.1007856] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/24/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are receptor proteins that are sensitive to their membrane environment, but the mechanism for how lipids modulate function under physiological conditions in a state dependent manner is not known. The glycine receptor is a pLGIC whose structure has been resolved in different functional states. Using a realistic model of a neuronal membrane coupled with coarse-grained molecular dynamics simulations, we demonstrate that some key lipid-protein interactions are dependent on the receptor state, suggesting that lipids may regulate the receptor's conformational dynamics. Comparison with existing structural data confirms known lipid binding sites, but we also predict further protein-lipid interactions including a site at the communication interface between the extracellular and transmembrane domain. Moreover, in the active state, cholesterol can bind to the binding site of the positive allosteric modulator ivermectin. These protein-lipid interaction sites could in future be exploited for the rational design of lipid-like allosteric drugs.
Collapse
Affiliation(s)
- Marc A. Dämgen
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip C. Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Thompson MJ, Baenziger JE. Structural basis for the modulation of pentameric ligand-gated ion channel function by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183304. [DOI: 10.1016/j.bbamem.2020.183304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
|
8
|
Thompson MJ, Domville JA, Baenziger JE. The functional role of the αM4 transmembrane helix in the muscle nicotinic acetylcholine receptor probed through mutagenesis and coevolutionary analyses. J Biol Chem 2020; 295:11056-11067. [PMID: 32527728 DOI: 10.1074/jbc.ra120.013751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 01/22/2023] Open
Abstract
The activity of the muscle-type Torpedo nicotinic acetylcholine receptor (nAChR) is highly sensitive to lipids, but the underlying mechanisms remain poorly understood. The nAChR transmembrane α-helix, M4, is positioned at the perimeter of each subunit in direct contact with lipids and likely plays a central role in lipid sensing. To gain insight into the mechanisms underlying nAChR lipid sensing, we used homology modeling, coevolutionary analyses, site-directed mutagenesis, and electrophysiology to examine the role of the α-subunit M4 (αM4) in the function of the adult muscle nAChR. Ala substitutions for most αM4 residues, including those in clusters of polar residues at both the N and C termini, and deletion of up to 11 C-terminal residues had little impact on the agonist-induced response. Even Ala substitutions for coevolved pairs of residues at the interface between αM4 and the adjacent helices, αM1 and αM3, had little effect, although some impaired nAChR expression. On the other hand, Ala substitutions for Thr422 and Arg429 caused relatively large losses of function, suggesting functional roles for these specific residues. Ala substitutions for aromatic residues at the αM4-αM1/αM3 interface generally led to gains of function, as previously reported for the prokaryotic homolog, the Erwinia chrysanthemi ligand-gated ion channel (ELIC). The functional effects of individual Ala substitutions in αM4 were found to be additive, although not in a completely independent manner. Our results provide insight into the structural features of αM4 that are important. They also suggest how lipid-dependent changes in αM4 structure ultimately modify nAChR function.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jaimee A Domville
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Tong A, Petroff JT, Hsu FF, Schmidpeter PA, Nimigean CM, Sharp L, Brannigan G, Cheng WW. Direct binding of phosphatidylglycerol at specific sites modulates desensitization of a ligand-gated ion channel. eLife 2019; 8:50766. [PMID: 31724949 PMCID: PMC6855808 DOI: 10.7554/elife.50766] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are essential determinants of synaptic transmission, and are modulated by specific lipids including anionic phospholipids. The exact modulatory effect of anionic phospholipids in pLGICs and the mechanism of this effect are not well understood. Using native mass spectrometry, coarse-grained molecular dynamics simulations and functional assays, we show that the anionic phospholipid, 1-palmitoyl-2-oleoyl phosphatidylglycerol (POPG), preferentially binds to and stabilizes the pLGIC, Erwinia ligand-gated ion channel (ELIC), and decreases ELIC desensitization. Mutations of five arginines located in the interfacial regions of the transmembrane domain (TMD) reduce POPG binding, and a subset of these mutations increase ELIC desensitization. In contrast, a mutation that decreases ELIC desensitization, increases POPG binding. The results support a mechanism by which POPG stabilizes the open state of ELIC relative to the desensitized state by direct binding at specific sites.
Collapse
Affiliation(s)
- Ailing Tong
- Department of Anesthesiology, Washington University, Saint Louis, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University, Saint Louis, United States
| | - Fong-Fu Hsu
- Department of Internal Medicine, Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University, Saint Louis, United States
| | | | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, United States
| | - Liam Sharp
- Center for Computational and Integrative Biology, Rutgers University, Camden, United States
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, United States.,Department of Physics, Rutgers University, Camden, United States
| | - Wayland Wl Cheng
- Department of Anesthesiology, Washington University, Saint Louis, United States
| |
Collapse
|
10
|
Liu W, Su K. A Review on the Receptor-ligand Molecular Interactions in the Nicotinic Receptor Signaling Systems. Pak J Biol Sci 2019; 21:51-66. [PMID: 30221881 DOI: 10.3923/pjbs.2018.51.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nicotine is regarded as the main active addictive ingredient in tobacco products driving continued tobacco abuse behavior (smoking) to the addiction behavior, whereas nicotinic acetylcholine receptors (nAChR) is the crucial effective apparatus or molecular effector of nicotine and acetylcholine and other similar ligands. Many nAChR subunits have been revealed to bind to either neurotransmitters or exogenous ligands, such as nicotine and acetylcholine, being involved in the nicotinic receptor signal transduction. Therefore, the nicotinic receptor signalling molecules and the receptor-ligand molecular interactions between nAChRs and their ligands are universally regarded as crucial mediators of cellular functions and drug targets in medical treatment and clinical diagnosis. Given numerous endeavours have been made in defining the roles of nAChRs in response to nicotine and other addictive drugs, this review focuses on studies and reports in recent years on the receptor-ligand interactions between nAChR receptors and ligands, including lipid-nAChR and protein-nAChR molecular interactions, relevant signal transduction pathways and their molecular mechanisms in the nicotinic receptor signalling systems. All the references were carefully retrieved from the PubMed database by searching key words "nicotine", "acetylcholine", "nicotinic acetylcholine receptor(s)", "nAChR*", "protein and nAChR", "lipid and nAChR", "smok*" and "tobacco". All the relevant referred papers and reports retrieved were fully reviewed for manual inspection. This effort intend to get a quick insight and understanding of the nicotinic receptor signalling and their molecular interactions mechanisms. Understanding the cellular receptor-ligand interactions and molecular mechanisms between nAChRs and ligands will lead to a better translational and therapeutic operations and outcomes for the prevention and treatment of nicotine addiction and other chronic drug addictions in the brain's reward circuitry.
Collapse
|
11
|
Mesoy S, Jeffreys J, Lummis SCR. Characterization of Residues in the 5-HT 3 Receptor M4 Region That Contribute to Function. ACS Chem Neurosci 2019; 10:3167-3172. [PMID: 30835437 DOI: 10.1021/acschemneuro.8b00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5-HT3 receptors are members of the family of pentameric ligand gated ion channels (pLGICs). Each subunit has four transmembrane α-helices (M1-M4), with M4 being most distant from the central pore. Residues in this α-helix interact with adjacent lipids and the neighboring M1 and M3 helices, contributing to both receptor assembly and channel function. This study probes the role of each M4 receptor residue in the 5-HT3A receptor using mutagenesis and subsequent expression in HEK293 cells, probing functional parameters using fluorescence membrane potential sensitive dye. The data show that only one residue in M4 (Y441) and two flanking residues (D434 and W459) result in nonfunctional receptors when substituted with Ala: D434A and W459A-containing receptors ablate expression, while Y441A-containing receptor do not, suggesting the latter is involved in channel gating. Most other altered residues have wild-type-like properties, which is inconsistent with data from other pLGICs. Substitution of Y441 and W459 with other aromatics restores function, suggesting the π ring is important. Further substitutions indicate interactions of Y441 with D238 in M1, W459 with F144 in the Cys loop, and D434 with R251 in M2, data consistent with recently published structures. These regions are critical for transducing binding into gating, and thus interactions of these residues can explain their importance in the function of the 5-HT3 receptor. We also conclude that the small number of critical M4 residues compared to related receptors supports the hypothesis that M4 does not behave identically in all pLGICs.
Collapse
Affiliation(s)
- Susanne Mesoy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Jennifer Jeffreys
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB 1QW, United Kingdom
| |
Collapse
|
12
|
Bondarenko V, Wells M, Xu Y, Tang P. Solution NMR Studies of Anesthetic Interactions with Ion Channels. Methods Enzymol 2018; 603:49-66. [PMID: 29673534 DOI: 10.1016/bs.mie.2018.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NMR spectroscopy is one of the major tools to provide atomic resolution protein structural information. It has been used to elucidate the molecular details of interactions between anesthetics and ion channels, to identify anesthetic binding sites, and to characterize channel dynamics and changes introduced by anesthetics. In this chapter, we present solution NMR methods essential for investigating interactions between ion channels and general anesthetics, including both volatile and intravenous anesthetics. Case studies are provided with a focus on pentameric ligand-gated ion channels and the voltage-gated sodium channel NaChBac.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marta Wells
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Xu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pei Tang
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
13
|
An allosteric link connecting the lipid-protein interface to the gating of the nicotinic acetylcholine receptor. Sci Rep 2018; 8:3898. [PMID: 29497086 PMCID: PMC5832824 DOI: 10.1038/s41598-018-22150-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/16/2018] [Indexed: 11/08/2022] Open
Abstract
The mechanisms underlying lipid-sensing by membrane proteins is of considerable biological importance. A unifying mechanistic question is how a change in structure at the lipid-protein interface is translated through the transmembrane domain to influence structures critical to protein function. Gating of the nicotinic acetylcholine receptor (nAChR) is sensitive to its lipid environment. To understand how changes at the lipid-protein interface influence gating, we examined how a mutation at position 418 on the lipid-facing surface of the outer most M4 transmembrane α-helix alters the energetic couplings between M4 and the remainder of the transmembrane domain. Human muscle nAChR is sensitive to mutations at position 418, with the Cys-to-Trp mutation resulting in a 16-fold potentiation in function that leads to a congenital myasthenic syndrome. Energetic coupling between M4 and the Cys-loop, a key structure implicated in gating, do not change with C418W. Instead, Trp418 and an adjacent residue couple energetically with residues on the M1 transmembrane α-helix, leading to a reorientation of M1 that stabilizes the open state. We thus identify an allosteric link connecting the lipid-protein interface of the nAChR to altered channel function.
Collapse
|
14
|
Poveda JA, Marcela Giudici A, Lourdes Renart M, Morales A, González-Ros JM. Towards understanding the molecular basis of ion channel modulation by lipids: Mechanistic models and current paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1507-1516. [PMID: 28408206 DOI: 10.1016/j.bbamem.2017.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Research on ion channel modulation has become a hot topic because of the key roles these membrane proteins play in both prokaryotic and eukaryotic organisms. In this respect, lipid modulation adds to the overall modulatory mechanisms as a potential via to find new pharmacological targets for drug design based on interfering with lipid/channel interactions. However, our knowledge in this field is scarce and often circumscribed to the sites where lipids bind and/or its final functional consequences. To fully understand this process it is necessary to improve our knowledge on its molecular basis, from the binding sites to the signalling pathways that derive in structural and functional effects on the ion channel. In this review, we have compiled information about such mechanisms and established a classification into four different modes of action. Afterwards, we have revised in more detail the lipid modulation of Cys-loop receptors and of the potassium channel KcsA, which were chosen as model channels modulated by specific lipids. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- José A Poveda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
| | - A Marcela Giudici
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - M Lourdes Renart
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain
| | - José M González-Ros
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
| |
Collapse
|
15
|
Therien JPD, Baenziger JE. Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function. Sci Rep 2017; 7:450. [PMID: 28348412 PMCID: PMC5428567 DOI: 10.1038/s41598-017-00573-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/03/2017] [Indexed: 11/17/2022] Open
Abstract
Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.
Collapse
Affiliation(s)
- J P Daniel Therien
- Department of Biochemistry, Microbiology, and Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
16
|
Basak S, Schmandt N, Gicheru Y, Chakrapani S. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel. eLife 2017; 6:23886. [PMID: 28262093 PMCID: PMC5378477 DOI: 10.7554/elife.23886] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/04/2017] [Indexed: 12/14/2022] Open
Abstract
Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω−3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels. DOI:http://dx.doi.org/10.7554/eLife.23886.001 The nerve cells (or neurons) in the brain communicate with each other by releasing chemicals called neurotransmitters that bind to ion channels on neighboring neurons. This ultimately causes ions to flow in or out of the receiving neuron through these ion channels; this ion flow determines how the neuron responds. One family of ion channels that is found at the junction between neurons, and between neurons and muscle fibers, is known as the pentameric ligand-gated ion channels (or pLGICs). These channels act as ‘gates’ that open to allow ions through them when a neurotransmitter binds to the channel. In addition to the open ‘active’ state, the channels can take on two different ‘inactive’ states that do not allow ions to pass through the channel: a closed (resting) state and a desensitized state (that is still bound to the neurotransmitter). Understanding how channels switch between these states is important for designing drugs that correct problems that cause the channels to work incorrectly. Problems that affect the desensitized state have been linked to neurological disorders such as epilepsy. Medically important molecules such as anesthetics and alcohols are thought to affect desensitization, and drugs that target desensitized ion channels may present ways of treating neurological disorders with fewer side effects. Docosahexaenoic acid (DHA) is an abundant lipid molecule that is present in the membranes of neurons. It is one of the key ingredients in fish oil supplements and is thought to enhance learning and memory. DHA affects the desensitization of pLGICs but it is not clear exactly how it does so. Basak et al. now show that DHA affects a bacterial pLGIC in the same way as it affects human channels – by enhancing desensitization. Using a technique called X-ray crystallography to analyze the channel while bound to DHA revealed a previously unobserved channel structure. The DHA molecule binds to a site at the edge of the channel and causes a change in its structure that leaves the upper part of the channel open while the lower part is constricted. Basak et al. predict that molecules such as anesthetics target this desensitized state. The next step will be to obtain the structures of bacterial and human pLGIC channels in a natural membrane environment. This will allow us to better understand the changes in structure that the channels go through as they transmit signals between neurons, and so help in the development of new treatments for neurological disorders. DOI:http://dx.doi.org/10.7554/eLife.23886.002
Collapse
Affiliation(s)
- Sandip Basak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Nicolaus Schmandt
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Yvonne Gicheru
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
17
|
Baenziger JE, Domville JA, Therien JD. The Role of Cholesterol in the Activation of Nicotinic Acetylcholine Receptors. CURRENT TOPICS IN MEMBRANES 2017; 80:95-137. [DOI: 10.1016/bs.ctm.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Antollini SS, Barrantes FJ. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function. Front Physiol 2016; 7:573. [PMID: 27965583 PMCID: PMC5124694 DOI: 10.3389/fphys.2016.00573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.
Collapse
Affiliation(s)
- Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET-UNS)Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del SurBahía Blanca, Argentina
| | | |
Collapse
|
19
|
From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels. Prog Lipid Res 2016; 63:1-13. [DOI: 10.1016/j.plipres.2016.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
|
20
|
Heterogeneous Inhibition in Macroscopic Current Responses of Four Nicotinic Acetylcholine Receptor Subtypes by Cholesterol Enrichment. J Membr Biol 2016; 249:539-49. [PMID: 27116687 DOI: 10.1007/s00232-016-9896-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/02/2016] [Indexed: 10/21/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR), located in the cell membranes of neurons and muscle cells, mediates the transmission of nerve impulses across cholinergic synapses. In addition, the nAChR is also found in the electric organs of electric rays (e.g., the genus Torpedo). Cholesterol, which is a key lipid for maintaining the correct functionality of membrane proteins, has been found to alter the nAChR function. We were thus interested to probe the changes in the functionality of different nAChRs expressed in a model membrane with modified cholesterol to phospholipid ratios (C/P). In this study, we examined the effect of increasing the C/P ratio in Xenopus laevis oocytes expressing the neuronal α7, α4β2, muscle-type, and Torpedo californica nAChRs in their macroscopic current responses. Using the two-electrode voltage clamp technique, it was found that the neuronal α7 and Torpedo nAChRs are significantly more sensitive to small increases in C/P than the muscle-type nAChR. The peak current versus C/P profiles during enrichment display different behaviors; α7 and Torpedo nAChRs display a hyperbolic decay with two clear components, whereas muscle-type and α4β2 nAChRs display simple monophasic decays with different slopes. This study clearly illustrates that a physiologically relevant increase in membrane cholesterol concentration produces a remarkable reduction in the macroscopic current responses of the neuronal α7 and Torpedo nAChRs functionality, whereas the muscle nAChR appears to be the most resistant to cholesterol inhibition among all four nAChR subtypes. Overall, the present study demonstrates differential profiles for cholesterol inhibition among the different types of nAChR to physiological cholesterol increments in the plasmatic membrane. This is the first study to report a cross-correlation analysis of cholesterol sensitivity among different nAChR subtypes in a model membrane.
Collapse
|
21
|
Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:47-56. [PMID: 26454038 DOI: 10.1016/j.bbamem.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/17/2015] [Accepted: 10/01/2015] [Indexed: 11/21/2022]
Abstract
In our previous study we examined the functionality and stability of nicotinic acetylcholine receptor (nAChR)-detergent complexes (nAChR-DCs) from affinity-purified Torpedo californica (Tc) using fluorescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) and planar lipid bilayer (PLB) recordings for phospholipid and cholesterol like detergents. In the present study we enhanced the functional characterization of nAChR-DCs by recording macroscopic ion channel currents in Xenopus oocytes using the two electrode voltage clamp (TEVC). The use of TEVC allows for the recording of macroscopic currents elicited by agonist activation of nAChR-DCs that assemble in the oocyte plasma membrane. Furthermore, we examined the stability of nAChR-DCs, which is obligatory for the nAChR crystallization, using a 30 day FRAP assay in LCP for each detergent. The present results indicate a marked difference in the fractional fluorescence recovery (ΔFFR) within the same detergent family during the 30 day period assayed. Within the cholesterol analog family, sodium cholate and CHAPSO displayed a minimum ΔFFR and a mobile fraction (MF) over 80%. In contrast, CHAPS and BigCHAP showed a marked decay in both the mobile fraction and diffusion coefficient. nAChR-DCs containing phospholipid analog detergents with an alkylphosphocholine (FC) and lysofoscholine (LFC) of 16 carbon chains (FC-16, LFC-16) were more effective in maintaining a mobile fraction of over 80% compared to their counterparts with shorter acyl chain (C12, C14). The significant differences in macroscopic current amplitudes, activation and desensitization rates among the different nAChR-DCs evaluated in the present study allow to dissect which detergent preserves both, agonist activation and ion channel function. Functionality assays using TEVC demonstrated that LFC16, LFC14, and cholate were the most effective detergents in preserving macroscopic ion channel function, however, the nAChR-cholate complex display a significant delay in the ACh-induce channel activation. In summary, these results suggest that the physical properties of the lipid analog detergents (headgroup and acyl chain length) are the most effective in maintaining both the stability and functionality of the nAChR in the detergent solubilized complex.
Collapse
|
22
|
Carswell CL, Hénault CM, Murlidaran S, Therien JPD, Juranka PF, Surujballi JA, Brannigan G, Baenziger JE. Role of the Fourth Transmembrane α Helix in the Allosteric Modulation of Pentameric Ligand-Gated Ion Channels. Structure 2015; 23:1655-1664. [PMID: 26235032 PMCID: PMC4824752 DOI: 10.1016/j.str.2015.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/01/2015] [Accepted: 06/27/2015] [Indexed: 01/22/2023]
Abstract
The gating of pentameric ligand-gated ion channels is sensitive to a variety of allosteric modulators that act on structures peripheral to those involved in the allosteric pathway leading from the agonist site to the channel gate. One such structure, the lipid-exposed transmembrane α helix, M4, is the target of lipids, neurosteroids, and disease-causing mutations. Here we show that M4 interactions with the adjacent transmembrane α helices, M1 and M3, modulate pLGIC function. Enhanced M4 interactions promote channel function while ineffective interactions reduce channel function. The interface chemistry governs the intrinsic strength of M4-M1/M3 inter-helical interactions, both influencing channel gating and imparting distinct susceptibilities to the potentiating effects of a lipid-facing M4 congenital myasthenic syndrome mutation. Through aromatic substitutions, functional studies, and molecular dynamics simulations, we elucidate a mechanism by which M4 modulates channel function.
Collapse
Affiliation(s)
- Casey L Carswell
- Department of Biochemistry, Microbiology, and Immunology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Camille M Hénault
- Department of Biochemistry, Microbiology, and Immunology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sruthi Murlidaran
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA
| | - J P Daniel Therien
- Department of Biochemistry, Microbiology, and Immunology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Peter F Juranka
- Department of Biochemistry, Microbiology, and Immunology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Julian A Surujballi
- Department of Biochemistry, Microbiology, and Immunology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA; Department of Physics, Rutgers University-Camden, Camden, NJ 08103, USA
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
23
|
Hénault CM, Juranka PF, Baenziger JE. The M4 Transmembrane α-Helix Contributes Differently to Both the Maturation and Function of Two Prokaryotic Pentameric Ligand-gated Ion Channels. J Biol Chem 2015; 290:25118-28. [PMID: 26318456 DOI: 10.1074/jbc.m115.676833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 01/22/2023] Open
Abstract
The role of the outermost transmembrane α-helix in both the maturation and function of the prokaryotic pentameric ligand-gated ion channels, GLIC and ELIC, was examined by Ala scanning mutagenesis, deletion mutations, and mutant cycle analyses. Ala mutations at the M4-M1/M3 interface lead to loss-of-function phenotypes in GLIC, with the largest negative effects occurring near the M4 C terminus. In particular, two aromatic residues at the M4 C terminus form a network of π-π and/or cation-π interactions with residues on M3 and the β6-β7 loop that is essential for both maturation and function. M4-M1/M3 interactions appear to be optimized in GLIC with even subtle structural changes at this interface leading to detrimental effects. In contrast, mutations along the M4-M1/M3 interface of ELIC typically lead to gain-of-function phenotypes, suggesting that these interactions in ELIC are not optimized for channel function. In addition, no cluster of interacting residues involving the M4 C terminus, M3, and the β6-β7 loop was found, suggesting that the M4 C terminus plays little role in ELIC maturation or function. This study shows that M4 makes distinct contributions to the maturation and gating of these two closely related homologs, suggesting that GLIC and ELIC exhibit divergent features of channel function.
Collapse
Affiliation(s)
- Camille M Hénault
- From the Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Peter F Juranka
- From the Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - John E Baenziger
- From the Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
24
|
Barrantes FJ. Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1796-805. [PMID: 25839355 DOI: 10.1016/j.bbamem.2015.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Using the crosstalk between the nicotinic acetylcholine receptor (nAChR) and its lipid microenvironment as a paradigm, this short overview analyzes the occurrence of structural motifs which appear not only to be conserved within the nAChR family and contemporary eukaryotic members of the pentameric ligand-gated ion channel (pLGIC) superfamily, but also extend to prokaryotic homologues found in bacteria. The evolutionarily conserved design is manifested in: 1) the concentric three-ring architecture of the transmembrane region, 2) the occurrence in this region of distinct lipid consensus motifs in prokaryotic and eukaryotic pLGIC and 3) the key participation of the outer TM4 ring in conveying the influence of the lipid membrane environment to the middle TM1-TM3 ring and this, in turn, to the inner TM2 channel-lining ring, which determines the ion selectivity of the channel. The preservation of these constant structural-functional features throughout such a long phylogenetic span likely points to the successful gain-of-function conferred by their early acquisition. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
25
|
Nicotinic acetylcholine receptor-lipid interactions: Mechanistic insight and biological function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1806-17. [PMID: 25791350 DOI: 10.1016/j.bbamem.2015.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/15/2015] [Accepted: 03/09/2015] [Indexed: 01/14/2023]
Abstract
Membrane lipids are potent modulators of the nicotinic acetylcholine receptor (nAChR) from Torpedo. Lipids influence nAChR function by both conformational selection and kinetic mechanisms, stabilizing varying proportions of activatable versus non-activatable conformations, as well as influencing the transitions between these conformational states. Of note, some membranes stabilize an electrically silent uncoupled conformation that binds agonist but does not undergo agonist-induced conformational transitions. The uncoupled nAChR, however, does transition to activatable conformations in relatively thick lipid bilayers, such as those found in lipid rafts. In this review, we discuss current understanding of lipid-nAChR interactions in the context of increasingly available high resolution structural and functional data. These data highlight different sites of lipid action, including the lipid-exposed M4 transmembrane α-helix. Current evidence suggests that lipids alter nAChR function by modulating interactions between M4 and the adjacent transmembrane α-helices, M1 and M3. These interactions have also been implicated in both the folding and trafficking of nAChRs to the cell surface. We review current mechanistic understanding of lipid-nAChR interactions, and highlight potential biological roles for lipid-nAChR interactions in modulating the synaptic response. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
|
26
|
Carswell CL, Sun J, Baenziger JE. Intramembrane aromatic interactions influence the lipid sensitivities of pentameric ligand-gated ion channels. J Biol Chem 2014; 290:2496-507. [PMID: 25519904 DOI: 10.1074/jbc.m114.624395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the Torpedo nicotinic acetylcholine receptor (nAChR) reconstituted into phosphatidylcholine (PC) membranes lacking cholesterol and anionic lipids adopts a conformation where agonist binding is uncoupled from channel gating, the underlying mechanism remains to be defined. Here, we examine the mechanism behind lipid-dependent uncoupling by comparing the propensities of two prokaryotic homologs, Gloebacter and Erwinia ligand-gated ion channel (GLIC and ELIC, respectively), to adopt a similar uncoupled conformation. Membrane-reconstituted GLIC and ELIC both exhibit folded structures in the minimal PC membranes that stabilize an uncoupled nAChR. GLIC, with a large number of aromatic interactions at the interface between the outermost transmembrane α-helix, M4, and the adjacent transmembrane α-helices, M1 and M3, retains the ability to flux cations in this uncoupling PC membrane environment. In contrast, ELIC, with a level of aromatic interactions intermediate between that of the nAChR and GLIC, does not undergo agonist-induced channel gating, although it does not exhibit the expected biophysical characteristics of the uncoupled state. Engineering new aromatic interactions at the M4-M1/M3 interface to promote effective M4 interactions with M1/M3, however, increases the stability of the transmembrane domain to restore channel function. Our data provide direct evidence that M4 interactions with M1/M3 are modulated during lipid sensing. Aromatic residues strengthen M4 interactions with M1/M3 to reduce the sensitivities of pentameric ligand-gated ion channels to their surrounding membrane environment.
Collapse
Affiliation(s)
- Casey L Carswell
- From the Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa Ontario, K1H 8M5, Canada
| | - Jiayin Sun
- From the Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa Ontario, K1H 8M5, Canada
| | - John E Baenziger
- From the Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa Ontario, K1H 8M5, Canada
| |
Collapse
|
27
|
The role of the M4 lipid-sensor in the folding, trafficking, and allosteric modulation of nicotinic acetylcholine receptors. Neuropharmacology 2014; 96:157-68. [PMID: 25433148 DOI: 10.1016/j.neuropharm.2014.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 11/24/2022]
Abstract
With the availability of high resolution structural data, increasing attention has focused on the mechanisms by which drugs and endogenous compounds allosterically modulate nicotinic acetylcholine receptor (nAChR) function. Lipids are potent modulators of the nAChR from Torpedo. Membrane lipids influence nAChR function by both conformational selection and kinetic mechanisms, stabilizing varying proportions of pre-existing resting, open, desensitized, and uncoupled conformations, as well as influencing the transitions between these conformational states. Structural and functional data highlight a role for the lipid-exposed M4 transmembrane α-helix of each subunit in lipid sensing, and suggest that lipids influence gating by altering the binding of M4 to the adjacent transmembrane α-helices, M1 and M3. M4 has also been implicated in both the folding and trafficking of nAChRs to the cell surface, as well as in the potentiation of nAChR gating by neurosteroids. Here, we discuss the roles of M4 in the folding, trafficking, and allosteric modulation of nAChRs. We also consider the hypothesis that variable chemistry at the M4-M1/M3 transmembrane α-helical interface in different nAChR subunits governs the capacity for potentiation by activating lipids. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
|
28
|
Howard RJ, Trudell JR, Harris RA. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics. Pharmacol Rev 2014; 66:396-412. [PMID: 24515646 PMCID: PMC3973611 DOI: 10.1124/pr.113.007468] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.
Collapse
Affiliation(s)
- Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866.
| | | | | |
Collapse
|
29
|
Bondarenko V, Mowrey DD, Tillman TS, Seyoum E, Xu Y, Tang P. NMR structures of the human α7 nAChR transmembrane domain and associated anesthetic binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1389-95. [PMID: 24384062 DOI: 10.1016/j.bbamem.2013.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/19/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR), assembled as homomeric pentameric ligand-gated ion channels, is one of the most abundant nAChR subtypes in the brain. Despite its importance in memory, learning and cognition, no structure has been determined for the α7 nAChR TM domain, a target for allosteric modulators. Using solution state NMR, we determined the structure of the human α7 nAChR TM domain (PDB ID: 2MAW) and demonstrated that the α7 TM domain formed functional channels in Xenopus oocytes. We identified the associated binding sites for the anesthetics halothane and ketamine; the former cannot sensitively inhibit α7 function, but the latter can. The α7 TM domain folds into the expected four-helical bundle motif, but the intra-subunit cavity at the extracellular end of the α7 TM domain is smaller than the equivalent cavity in the α4β2 nAChRs (PDB IDs: 2LLY; 2LM2). Neither drug binds to the extracellular end of the α7 TM domain, but two halothane molecules or one ketamine molecule binds to the intracellular end of the α7 TM domain. Halothane and ketamine binding sites are partially overlapped. Ketamine, but not halothane, perturbed the α7 channel-gate residue L9'. Furthermore, halothane did not induce profound dynamics changes in the α7 channel as observed in α4β2. The study offers a novel high-resolution structure for the human α7 nAChR TM domain that is invaluable for developing α7-specific therapeutics. It also provides evidence to support the hypothesis: only when anesthetic binding perturbs the channel pore or alters the channel motion, can binding generate functional consequences.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - David D Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Tommy S Tillman
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - Edom Seyoum
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
30
|
Han L, Talwar S, Lynch JW. The relative orientation of the TM3 and TM4 domains varies between α1 and α3 glycine receptors. ACS Chem Neurosci 2013; 4:248-54. [PMID: 23421675 DOI: 10.1021/cn300177g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glycine receptors (GlyRs) are anion-conducting members of the pentameric ligand-gated ion channel family. We previously showed that the dramatic difference in glycine efficacies of α1 and α3 GlyRs is largely attributable to their nonconserved TM4 domains. Because mutation of individual nonconserved TM4 residues had little effect, we concluded that the efficacy difference was a distributed effect of all nonconserved TM4 residues. We therefore hypothesized that the TM4 domains of α1 and α3 GlyRs differ in structure, membrane orientation, and/or molecular dynamic properties. Here we employed voltage-clamp fluorometry to test whether their TM4 domains interact differently with their respective TM3 domains. We found a rhodamine fluorophore covalently attached to a homologous TM4 residue in each receptor interacts differentially with a conserved TM3 residue. We conclude that the α1 and α3 GlyR TM4 domains are orientated differently relative to their TM3 domains. This may underlie their differential ability to influence glycine efficacy.
Collapse
Affiliation(s)
- Lu Han
- Queensland Brain Institute and ‡School of Biomedical
Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Sahil Talwar
- Queensland Brain Institute and ‡School of Biomedical
Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute and ‡School of Biomedical
Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
31
|
Zhang X, He X, Baker J, Tama F, Chang G, Wright SH. Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein. J Biol Chem 2012; 287:27971-82. [PMID: 22722930 DOI: 10.1074/jbc.m112.386979] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The x-ray structure of the prototypic MATE family member, NorM from Vibrio cholerae, reveals a protein fold composed of 12 transmembrane helices (TMHs), confirming hydropathy analyses of the majority of (prokaryotic and plant) MATE transporters. However, the mammalian MATEs are generally predicted to have a 13(th) TMH and an extracellular C terminus. Here we affirm this prediction, showing that the C termini of epitope-tagged, full-length human, rabbit, and mouse MATE1 were accessible to antibodies from the extracellular face of the membrane. Truncation of these proteins at or near the predicted junction between the 13(th) TMH and the long cytoplasmic loop that precedes it resulted in proteins that (i) trafficked to the membrane and (ii) interacted with antibodies only after permeabilization of the plasma membrane. CHO cells expressing rbMate1 truncated at residue Gly-545 supported levels of pH-sensitive transport similar to that of cells expressing the full-length protein. Although the high transport rate of the Gly-545 truncation mutant was associated with higher levels of membrane expression (than full-length MATE1), suggesting the 13(th) TMH may influence substrate translocation, the selectivity profile of the mutant indicated that TMH13 has little impact on ligand binding. We conclude that the functional core of MATE1 consists of 12 (not 13) TMHs. Therefore, we used the x-ray structure of NorM to develop a homology model of the first 12 TMHs of MATE1. The model proved to be stable in molecular dynamic simulations and agreed with topology evident from preliminary cysteine scanning of intracellular versus extracellular loops.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
32
|
Perillo VL, Fernández-Nievas GA, Vallés AS, Barrantes FJ, Antollini SS. The position of the double bond in monounsaturated free fatty acids is essential for the inhibition of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2511-20. [PMID: 22699039 DOI: 10.1016/j.bbamem.2012.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022]
Abstract
Free fatty acids (FFAs) are non-competitive antagonists of the nicotinic acetylcholine receptor (AChR). Their site of action is supposedly located at the lipid-AChR interface. To elucidate the mechanism involved in this antagonism, we studied the effect that FFAs with a single double-bond at different positions (ω6, ω9, ω11 and ω13 cis-18:1) have on different AChR properties. Electrophysiological studies showed that only two FFAs (ω6 and ω9) reduced the duration of the channel open-state. The briefest component of the closed-time distribution remained unaltered, suggesting that ω6 and ω9 behave as allosteric blockers. Fluorescence resonance energy transfer studies indicated that all FFAs locate at the lipid-AChR interface, ω6 being restricted to annular sites and all others occupying non-annular sites. The perturbation of the native membrane order by FFAs was evaluated by DPH (1,6-diphenyl-1,3,5-hexatriene) and Laurdan fluorescence polarization studies, with the greatest decrease observed for ω9 and ω11. AChR conformational changes produced by FFAs present at the lipid bilayer were evaluated by fluorescence quenching studies of pyrene-labeled AChR and also using the AChR conformational-sensitive probe crystal violet. All cis-FFAs produced AChR conformational changes at the transmembrane level, but only ω9, ω11 and ω13 perturbed the resting state. Thus, the position and isomerism of the torsion angle of unsaturated FFAs are probably a key factor in terms of AChR blockage, suggesting that FFAs with a unique cis double bond at a superficial position inside the membrane directly inhibit AChR function by perturbing a potential conserved core structure for AChR gating at that level.
Collapse
|
33
|
Baenziger JE, daCosta CJB. Molecular mechanisms of acetylcholine receptor-lipid interactions: from model membranes to human biology. Biophys Rev 2012; 5:1-9. [PMID: 28510176 DOI: 10.1007/s12551-012-0078-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/18/2012] [Indexed: 12/27/2022] Open
Abstract
Lipids are potent modulators of the Torpedo nicotinic acetylcholine receptor. Lipids influence nicotinic receptor function by allosteric mechanisms, stabilizing varying proportions of pre-existing resting, open, desensitized, and uncoupled conformations. Recent structures reveal that lipids could alter function by modulating transmembrane α-helix/α-helix packing, which in turn could alter the conformation of the allosteric interface that links the agonist-binding and transmembrane pore domains-this interface is essential in the coupling of agonist binding to channel gating. We discuss potential mechanisms by which lipids stabilize different conformational states in the context of the hypothesis that lipid-nicotinic receptor interactions modulate receptor function at biological synapses.
Collapse
Affiliation(s)
- John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Corrie J B daCosta
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
34
|
Caballero-Rivera D, Cruz-Nieves OA, Oyola-Cintrón J, Torres-Nunez DA, Otero-Cruz JD, Lasalde-Dominicci JA. Tryptophan scanning mutagenesis reveals distortions in the helical structure of the δM4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Channels (Austin) 2012; 6:111-23. [PMID: 22622285 DOI: 10.4161/chan.19540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The lipid-protein interface is an important domain of the nicotinic acetylcholine receptor (nAChR) that has recently garnered increased relevance. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, there is still a need to gain insight into the mechanism by which lipid-protein interactions regulate the function and conformational transitions of the nAChR. In this study, we extended the tryptophan scanning mutagenesis (TrpScanM) approach to dissect secondary structure and monitor the conformational changes experienced by the δM4 transmembrane domain (TMD) of the Torpedo californica nAChR, and to identify which positions on this domain are potentially linked to the regulation of ion channel kinetics. The difference in oscillation patterns between the closed- and open-channel states suggests a substantial conformational change along this domain as a consequence of channel activation. Furthermore, TrpScanM revealed distortions along the helical structure of this TMD that are not present on current models of the nAChR. Our results show that a Thr-Pro motif at positions 462-463 markedly bends the helical structure of the TMD, consistent with the recent crystallographic structure of the GluCl Cys-loop receptor which reveals a highly bent TMD4 in each subunit. This Thr-Pro motif acts as a molecular hinge that delineates two gating blocks in the δM4 TMD. These results suggest a model in which a hinge-bending motion that tilts the helical structure is combined with a spring-like motion during transition between the closed- and open-channel states of the δM4 TMD.
Collapse
Affiliation(s)
- Daniel Caballero-Rivera
- Department of Chemistry; University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
35
|
Caballero-Rivera D, Cruz-Nieves OA, Oyola-Cintrón J, Torres-Núñez DA, Otero-Cruz JD, Lasalde-Dominicci JA. Fourier transform coupled tryptophan scanning mutagenesis identifies a bending point on the lipid-exposed δM3 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Channels (Austin) 2011; 5:345-56. [PMID: 21785268 DOI: 10.4161/chan.5.4.17082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is a member of a family of ligand-gated ion channels that mediate diverse physiological functions, including fast synaptic transmission along the peripheral and central nervous systems. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, a high-resolution atomic structure of the nAChR still remains elusive. In this study, we extended the Fourier transform coupled tryptophan scanning mutagenesis (FT-TrpScanM) approach to gain insight into the secondary structure of the δM3 transmembrane domain of the Torpedo californica nAChR, to monitor conformational changes experienced by this domain during channel gating, and to identify which lipid-exposed positions are linked to the regulation of ion channel kinetics. The perturbations produced by periodic tryptophan substitutions along the δM3 transmembrane domain were characterized by two-electrode voltage clamp and (125)I-labeled α-bungarotoxin binding assays. The periodicity profiles and Fourier transform spectra of this domain revealed similar helical structures for the closed- and open-channel states. However, changes in the oscillation patterns observed between positions Val-299 and Val-304 during transition between the closed- and open-channel states can be explained by the structural effects caused by the presence of a bending point introduced by a Thr-Gly motif at positions 300-301. The changes in periodicity and localization of residues between the closed-and open-channel states could indicate a structural transition between helix types in this segment of the domain. Overall, the data further demonstrate a functional link between the lipid-exposed transmembrane domain and the nAChR gating machinery.
Collapse
|
36
|
Colón-Sáez JO, Yakel JL. The α7 nicotinic acetylcholine receptor function in hippocampal neurons is regulated by the lipid composition of the plasma membrane. J Physiol 2011; 589:3163-74. [PMID: 21540349 DOI: 10.1113/jphysiol.2011.209494] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The α7 nicotinic acetylcholine receptors (nAChRs) play an important role in cellular events such as neurotransmitter release, second messenger cascades, cell survival and apoptosis. In addition, they are a therapeutic target for the treatment of neurological disorders such as Alzheimer's disease and schizophrenia, and drugs that potentiate α7 nAChRs through the regulation of desensitization are currently being developed. Recently, these channels were found to be localized into lipid rafts. Here we show that the disruption of lipid rafts in rat primary hippocampal neurons, through cholesterol-scavenging drugs (methyl-β-cyclodextrin) and the enzymatic breakdown of sphingomyelin (sphingomyelinase), results in significant changes in the desensitization kinetics of native and expressed α7 nAChRs. These effects can be prevented by cotreatment with cholesterol and sphingomyelin, and can be mimicked by treatment with cholesterol and sphingomyelin synthesis inhibitors (mevastatin and myriocin, respectively), suggesting that the effects on desensitization kinetics are indeed due to changes in the levels of cholesterol and sphingomyelin in the plasma membrane. These data provide new insights into themechanism of desensitization of α7 nAChRs by providing evidence that the lipid composition of the plasma membrane can modulate the activity of the α7 nAChRs.
Collapse
Affiliation(s)
- José O Colón-Sáez
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
37
|
Baenziger JE, Corringer PJ. 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology 2011; 60:116-25. [DOI: 10.1016/j.neuropharm.2010.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/26/2010] [Accepted: 08/07/2010] [Indexed: 01/09/2023]
|
38
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
39
|
NMR structure of the transmembrane domain of the n-acetylcholine receptor beta2 subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1608-14. [PMID: 20441771 DOI: 10.1016/j.bbamem.2010.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/21/2010] [Accepted: 04/26/2010] [Indexed: 11/20/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are involved in fast synaptic transmission in the central and peripheral nervous system. Among the many different types of subunits in nAChRs, the beta2 subunit often combines with the alpha4 subunit to form alpha4beta2 pentameric channels, the most abundant subtype of nAChRs in the brain. Besides computational predictions, there is limited experimental data available on the structure of the beta2 subunit. Using high-resolution NMR spectroscopy, we solved the structure of the entire transmembrane domain (TM1234) of the beta2 subunit. We found that TM1234 formed a four-helix bundle in the absence of the extracellular and intracellular domains. The structure exhibited many similarities to those previously determined for the Torpedo nAChR and the bacterial ion channel GLIC. We also assessed the influence of the fourth transmembrane helix (TM4) on the rest of the domain. Although secondary structures and tertiary arrangements were similar, the addition of TM4 caused dramatic changes in TM3 dynamics and subtle changes in TM1 and TM2. Taken together, this study suggests that the structures of the transmembrane domains of these proteins are largely shaped by determinants inherent in their sequence, but their dynamics may be sensitive to modulation by tertiary and quaternary contacts.
Collapse
|
40
|
Corradi J, Gumilar F, Bouzat C. Single-channel kinetic analysis for activation and desensitization of homomeric 5-HT(3)A receptors. Biophys J 2009; 97:1335-45. [PMID: 19720021 DOI: 10.1016/j.bpj.2009.06.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 10/25/2022] Open
Abstract
The 5-HT(3)A receptor is a member of the Cys-loop family of ligand-gated ion channels. To perform kinetic analysis, we mutated the 5-HT3A subunit to obtain a high-conductance form so that single-channel currents can be detected. At all 5-HT concentrations (> 0.1 microM), channel activity appears as openings in quick succession that form bursts, which coalesce into clusters. By combining single-channel and macroscopic data, we generated a kinetic model that perfectly describes activation, deactivation, and desensitization. The model shows that full activation arises from receptors with three molecules of agonist bound. It reveals an earlier conformational change of the fully liganded receptor that occurs while the channel is still closed. From this pre-open closed state, the receptor enters into an open-closed cycle involving three open states, which form the cluster whose duration parallels the time constant of desensitization. A similar model lacking the pre-open closed state can describe the data only if the opening rates are fixed to account for the slow activation rate. The application of the model to M4 mutant receptors shows that position 10' contributes to channel opening and closing rates. Thus, our kinetic model provides a foundation for understanding structural bases of activation and drug action.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur/Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | |
Collapse
|
41
|
Chen X, Webb TI, Lynch JW. The M4 transmembrane segment contributes to agonist efficacy differences between α1 and α3 glycine receptors. Mol Membr Biol 2009; 26:321-32. [DOI: 10.1080/09687680903120319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Antollini SS, Xu Y, Jiang H, Barrantes FJ. Fluorescence and molecular dynamics studies of the acetylcholine receptor γM4 transmembrane peptide in reconstituted systems. Mol Membr Biol 2009; 22:471-83. [PMID: 16373319 DOI: 10.1080/09687860500367915] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A combination of fluorescence spectroscopy and molecular dynamics (MD) is applied to assess the conformational dynamics of a peptide making up the outermost ring of the nicotinic acetylcholine receptor (AChR) transmembrane region and the effect of membrane thickness and cholesterol on the hydrophobic matching of this peptide. The fluorescence studies exploit the intrinsic fluorescence of the only tryptophan residue in a synthetic peptide corresponding to the fourth transmembrane domain of the AChR gamma subunit (gammaM4-Trp(6)) reconstituted in lipid bilayers of varying thickness, and combine this information with quenching studies using depth-sensitive phosphatidylcholine spin-labeled probes and acrylamide, polarization of fluorescence, and generalized polarization of Laurdan. A direct correlation was found between bilayer width and the depth of insertion of Trp(6). We further extend our recent MD study of the conformational dynamics of the AChR channel to focus on the crosstalk between M4 and the lipid-belt region. The isolated gammaM4 peptide is shown to possess considerable orientational flexibility while maintaining a linear alpha-helical structure, and to vary its tilt depending on bilayer width and cholesterol (Chol) content. MD studies also show that gammaM4 also establishes contacts with the other TM peptides on its inner face, stabilizing a shorter TM length that is still highly sensitive to the lipid environment. In the native membrane the topology of the M4 ring is likely to exhibit a similar behavior, dynamically modifying its tilt to match the hydrophobic thickness of the bilayer.
Collapse
Affiliation(s)
- Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca and UNESCO Chair of Biophysics & Molecular Neurobiology, Argentina
| | | | | | | |
Collapse
|
43
|
De Almeida RFM, Loura LMS, Prieto M, Watts A, Fedorov A, Barrantes FJ. Structure and dynamics of the γM4 transmembrane domain of the acetylcholine receptor in lipid bilayers: insights into receptor assembly and function. Mol Membr Biol 2009; 23:305-15. [PMID: 16923724 DOI: 10.1080/09687860600703613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A 28-mer peptide (gammaM4) corresponding to the fourth transmembrane segment of the nicotinic acetylcholine receptor (AChR) gamma-subunit, with a single tryptophan residue (Trp6), was reconstituted into lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), loaded with either high or low amounts of cholesterol, i.e., in the conjugated liquid-ordered and liquid-disordered phases, respectively, at room temperature. By making use of the Trp intrinsic fluorescence, both steady-state and time-resolved fluorescence techniques were employed, namely, red-edge excitation shift effect, decay-associated spectra (DAS), and time-resolved anisotropy. The results obtained here, together with previous studies on the same reconstituted peptide, indicate that: (i) Trp6 is strongly anchored in the bilayer with a defined transverse location; (ii) the modifications in the measured DAS are related to the complex result of a self-quenching process on the decay parameters; (iii) the wobbling movement of the indole moiety of Trp6 is fast but severely restricted in amplitude; and, (iv) in the liquid-ordered phase, the bilayer properties and the tilt angle of the peptide enhance peptide-peptide interactions, with the formation of peptide rich patches and possibly some anti-parallel helix-helix aggregates, showing different dynamics from that of the peptide in the liquid-disordered phase where the peptide is randomly distributed.
Collapse
Affiliation(s)
- Rodrigo F M De Almeida
- Centro de Química e Bioquímica, Faculdade de Ciências de Lisboa, Campo Grande, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
44
|
daCosta CJB, Baenziger JE. A lipid-dependent uncoupled conformation of the acetylcholine receptor. J Biol Chem 2009; 284:17819-25. [PMID: 19357079 DOI: 10.1074/jbc.m900030200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipids influence the ability of Cys-loop receptors to gate open in response to neurotransmitter binding, but the underlying mechanisms are poorly understood. With the nicotinic acetylcholine receptor (nAChR) from Torpedo, current models suggest that lipids modulate the natural equilibrium between resting and desensitized conformations. We show that the lipid-inactivated nAChR is not desensitized, instead it adopts a novel conformation where the allosteric coupling between its neurotransmitter-binding sites and transmembrane pore is lost. The uncoupling is accompanied by an unmasking of previously buried residues, suggesting weakened association between structurally intact agonist-binding and transmembrane domains. These data combined with the extensive literature on Cys-loop receptor-lipid interactions suggest that the M4 transmembrane helix plays a key role as a lipid-sensor, translating bilayer properties into altered nAChR function.
Collapse
Affiliation(s)
- Corrie J B daCosta
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| | | |
Collapse
|
45
|
Díaz-De León R, Otero-Cruz JD, Torres-Nuñez DA, Casiano A, Lasalde-Dominicci JA. Tryptophan scanning of the acetylcholine receptor's betaM4 transmembrane domain: decoding allosteric linkage at the lipid-protein interface with ion-channel gating. Channels (Austin) 2008; 2:439-48. [PMID: 19066450 DOI: 10.4161/chan.2.6.7130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel protein that mediates fast excitatory synaptic transmission in the peripheral and central nervous systems. Changes in the structure and function of the AChR can lead to serious impairment of physiological processes. In this study, we combined site-directed mutagenesis, radioligand binding assays, electrophysiological recordings and Fourier analyses to characterize the functional role and structural aspects of the betaM4 transmembrane domain of the Torpedo AChR. We performed tryptophan replacements, from residues L438 through F455, along the betaM4 transmembrane domain. Expression levels of mutants F439W-G450W and F452W-I454W produced peak currents similar to or lower than those in wild-type (WT). Tryptophan substitutions at positions L438 and T451 led to a deficiency in either subunit expression or receptor assembly. Mutations L440W, V442W, C447W and S453W produced a gain-of-function response. Mutation F455W produced a loss of ion channel function. The periodicity profile of the normalized expression level (closed state) and EC(50) (open state) revealed a minor conformational change of 0.4 residues/turn of the betaM4 domain. These findings suggest that a minor movement of the betaM4 domain occurs during channel activation.
Collapse
|
46
|
Fernández Nievas GA, Barrantes FJ, Antollini SS. Modulation of nicotinic acetylcholine receptor conformational state by free fatty acids and steroids. J Biol Chem 2008; 283:21478-86. [PMID: 18511419 DOI: 10.1074/jbc.m800345200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroids and free fatty acids (FFA) are noncompetitive antagonists of the nicotinic acetylcholine receptor (AChR). Their site of action is purportedly located at the lipid-AChR interface, but their exact mechanism of action is still unknown. Here we studied the effect of structurally different FFA and steroids on the conformational equilibrium of the AChR in Torpedo californica receptor-rich membranes. We took advantage of the higher affinity of the fluorescent AChR open channel blocker, crystal violet, for the desensitized state than for the resting state. Increasing concentrations of steroids and FFA decreased the K(D) of crystal violet in the absence of agonist; however, only cis-unsaturated FFA caused an increase in K(D) in the presence of agonist. This latter effect was also observed with treatments that caused the opposite effects on membrane polarity, such as phospholipase A(2) treatment or temperature increase (decreasing or increasing membrane polarity, respectively). Quenching by spin-labeled fatty acids of pyrene-labeled AChR reconstituted into model membranes, with the label located at the gammaM4 transmembrane segment, disclosed the occurrence of conformational changes induced by steroids and cis-unsaturated FFA. The present work is a step forward in understanding the mechanism of action of this type of molecules, suggesting that the direct contact between exogenous lipids and the AChR transmembrane segments removes the AChR from its resting state and that membrane polarity modulates the AChR activation equilibrium by an independent mechanism.
Collapse
Affiliation(s)
- Gaspar A Fernández Nievas
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Conicet, and UNESCO Chair of Biophysics and Molecular Neurobiology, Argentina
| | | | | |
Collapse
|
47
|
Báez-Pagán CA, Martínez-Ortiz Y, Otero-Cruz JD, Salgado-Villanueva IK, Velázquez G, Ortiz-Acevedo A, Quesada O, Silva WI, Lasalde-Dominicci JA. Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor's activatable pool: implications in the pathogenesis of a novel congenital myasthenic syndrome. Channels (Austin) 2008; 2:180-90. [PMID: 18836288 DOI: 10.4161/chan.2.3.6155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cholesterol modulates the plasmalemma's biophysical properties and influences the function and trafficking of membrane proteins. A fundamental phenomenon that remains obscure is how the plasmalemma's lipid composition regulates the activatable pool of membrane receptors. An outstanding model to study this phenomenon is the nicotinic acetylcholine receptor (nAChR), since the nAChR activatable pool has been estimated to be but a small fraction of the receptors present in the plasmalemma. Studies on the effect of cholesterol depletion in the function of the Torpedo californica nAChR, using the lipid-exposed nAChR mutation (alpha C418W) that produces a congenital myasthenic syndrome (CMS), demonstrated that cholesterol depletion causes a remarkable increase in the alpha C418W nAChR's macroscopic current whereas not in the wild-type (WT). A variety of approaches were used to define the mechanism responsible for the cholesterol depletion mediated-increase in the alpha C418W nAChR's macroscopic current. The present study suggests that a substantial fraction of the alpha C418W nAChRs is located in caveolin-1-positive domains, "trapped" in a non-activatable state, and that membrane cholesterol depletion results in the relocation of these receptors to the activatable pool. Co-fractionation and co-immunoprecipitation of the alpha C418W nAChR and the membrane raft protein caveolin-1 (cav1) support the notion that interactions at lipid-exposed domains regulate the partition of the receptor into membrane raft microdomains. These results have potential implications as a novel mechanism to fine-tune cholinergic transmission in the nervous system and in the pathogenesis associated to the alpha C418W nAChR.
Collapse
Affiliation(s)
- Carlos A Báez-Pagán
- Department of Chemistry, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guzmán GR, Ortiz-Acevedo A, Ricardo A, Rojas LV, Lasalde-Dominicci JA. The Polarity of Lipid-Exposed Residues Contributes to the Functional Differences between Torpedo and Muscle-Type Nicotinic Receptors. J Membr Biol 2007; 214:131-8. [PMID: 17530159 DOI: 10.1007/s00232-006-0051-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/27/2006] [Indexed: 10/23/2022]
Abstract
A comparison between the Torpedo and muscle-type acetylcholine receptors (AChRs) reveals differences in several lipid-exposed amino acids, particularly in the polarity of those residues. The goal of this study was to characterize the role of eight lipid-exposed residues in the functional differences between the Torpedo and muscle-type AChRs. To this end, residues alphaS287, alphaC412, betaY441, gammaM299, gammaS460, deltaM293, deltaS297 and deltaN305 in the Torpedo AChR were replaced with those found in the muscle-type receptor. Mutant receptor expression was measured in Xenopus oocytes using [(125)I]-alpha-bungarotoxin, and AChR ion channel function was evaluated using the two-electrode voltage clamp. Eight mutant combinations resulted in an increase (1.5- to 5.2-fold) in AChR expression. Four mutant combinations produced a significant 46% decrease in the ACh 50% inhibitory concentration (EC(50)), while three mutant combinations resulted in 1.7- to 2-fold increases in ACh EC(50). Finally, seven mutant combinations resulted in a decrease in normalized, ACh-induced currents. Our results suggest that these residues, although remote from the ion channel pore, (1) contribute to ion channel gating, (2) may affect trafficking of AChR into specialized membrane domains and (3) account for the functional differences between Torpedo and muscle-type AChR. These findings emphasize the importance of the lipid-protein interface in the functional differences between the Torpedo and muscle-type AChRs.
Collapse
Affiliation(s)
- Gisila R Guzmán
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico 00931-3360.
| | | | | | | | | |
Collapse
|
49
|
Otero-Cruz JD, Báez-Pagán CA, Caraballo-González IM, Lasalde-Dominicci JA. Tryptophan-scanning mutagenesis in the alphaM3 transmembrane domain of the muscle-type acetylcholine receptor. A spring model revealed. J Biol Chem 2007; 282:9162-71. [PMID: 17242410 DOI: 10.1074/jbc.m607492200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Membrane proteins constitute a large fraction of all proteins, yet very little is known about their structure and conformational transitions. A fundamental question that remains obscure is how protein domains that are in direct contact with the membrane lipids move during the conformational change of the membrane protein. Important structural and functional information of several lipid-exposed transmembrane domains of the acetylcholine receptor (AChR) and other ion channel membrane proteins have been provided by the tryptophan-scanning mutagenesis. Here, we use the tryptophan-scanning mutagenesis to monitor the conformational change of the alphaM3 domain of the muscle-type AChR. The perturbation produced by the systematic tryptophan substitution along the alphaM3 domain were characterized through two-electrode voltage clamp and 125I-labeled alpha-bungarotoxin binding. The periodicity profiles of the changes in AChR expression (closed state) and ACh EC50 (open-channel state) disclose two different helical structures; a thinner-elongated helix for the closed state and a thicker-shrunken helix for the open-channel state. The existence of two different helical structures suggest that the conformational transition of the alphaM3 domain between both states resembles a spring motion and reveals that the lipid-AChR interface plays a key role in the propagation of the conformational wave evoked by agonist binding. In addition, the present study also provides evidence about functional and structural differences between the alphaM3 domains of the Torpedo and muscle-type receptors AChR.
Collapse
Affiliation(s)
- José David Otero-Cruz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan P. R. 00931, Puerto Rico
| | | | | | | |
Collapse
|
50
|
Shen XM, Deymeer F, Sine SM, Engel AG. Slow-channel mutation in acetylcholine receptor alphaM4 domain and its efficient knockdown. Ann Neurol 2006; 60:128-36. [PMID: 16685696 DOI: 10.1002/ana.20861] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To identify the genetic basis of a slow-channel myasthenic syndrome, characterize functional properties of the mutant receptor, and selectively silence the mutant allele. METHODS We performed nutation analysis, cloning, and patch-clamp analysis of the functional properties of the mutant receptor; screening for a small interfering RNA with check plasmid; and assessed of the efficacy of small interfering RNA at the messenger RNA, protein, and functional levels. RESULTS We traced the cause of a slow-channel myasthenic syndrome to a C418W mutation in the M4 domain of the acetylcholine receptor alpha subunit. The mutation is the first one to occur spontaneously in an M4 domain of the receptor, and it is positioned within a stripe of hydrophobic residues facing the lipid bilayer. Kinetic analysis shows that alphaC418W enhances the channel opening equilibrium constant 26-fold without altering agonist affinity. Using a check plasmid as a screening tool, we identified a small interfering RNA that markedly suppresses the mutant but not the wild-type allele at the messenger RNA, protein, and functional levels. INTERPRETATION alphaC418W occurring in humans causes a slow-channel syndrome by enhancing the relative stability of the channel open state. Efficient and selective knockdown of the mutant allele holds promise of therapeutic gene silencing.
Collapse
MESH Headings
- Adult
- Bungarotoxins/metabolism
- Bungarotoxins/pharmacology
- Cells, Cultured
- DNA Mutational Analysis
- Down-Regulation/genetics
- Gene Expression
- Humans
- Iodine Radioisotopes
- Kidney/cytology
- Male
- Mutagenesis, Site-Directed
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/physiopathology
- Patch-Clamp Techniques
- Plasmids
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering
- Radioligand Assay
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
Collapse
Affiliation(s)
- Xin-Ming Shen
- Neuromuscular Research Laboratory and Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|