1
|
Cai W, Grosh K. Rate-dependent cochlear outer hair cell force generation: Models and parameter estimation. Biophys J 2024; 123:3421-3432. [PMID: 39148291 PMCID: PMC11480764 DOI: 10.1016/j.bpj.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
The outer hair cells (OHCs) of the mammalian cochlea are the mediators of an active, nonlinear electromechanical process necessary for sensitive, frequency-specific hearing. The membrane protein prestin conveys to the OHC a piezoelectric-like behavior hypothesized to actuate a high frequency, cycle-by-cycle conversion of electrical to mechanical energy to boost cochlear responses to low-level sound. This hypothesis has been debated for decades, with two key remaining issues: the influence of the rate dependence of conformal changes in prestin and the OHC transmembrane impedance. In this paper, we mainly focus on the rate dependence of the conformal change in prestin. A theoretical electromechanical model of the OHC that explicitly includes rate dependence of conformal transitions, viscoelasticity, and piezoelectricity. Using this theory, we show the influence of rate dependence and viscoelasticity on electromechanical force generation and transmembrane impedance. Furthermore, we stress the importance of using the correct mechanical boundary conditions when estimating the transmembrane capacitance. Finally, a set of experiments is described to uniquely estimate the constitutive properties of the OHC from whole-cell measurements.
Collapse
Affiliation(s)
- Wen Cai
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Karl Grosh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Kresge Hearing Research Institute, University of Michigan, 4605 Medical Science Unit II, Ann Arbor, Michigan.
| |
Collapse
|
2
|
Cai W, Grosh K. Rate Dependent Cochlear Outer Hair Cell Force Generation: Models and Parameter Estimation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571371. [PMID: 38168239 PMCID: PMC10760109 DOI: 10.1101/2023.12.13.571371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The outer hair cells (OHCs) of the mammalian cochlea are the mediators of an active, nonlinear electromechanical process necessary for sensitive, frequency specific hearing. The membrane protein prestin conveys to the OHC a piezoelectric-like behavior hypothesized to actuate a high frequency, cycle-by-cycle conversion of electrical to mechanical energy to boost cochlear responses to low-level sound. This hypothesis has been debated for decades, and we address two key remaining issues: the influence of the rate dependence of conformal changes in prestin and the OHC transmembrane impedance. We develop a theoretical electromechanical model of the OHC that explicitly includes rate dependence of conformal transitions, viscoelasticity, and piezoelectricity. Using this theory, we show the influence of rate dependence and viscoelasticity on electromechanical force generation. Further, we stress the importance of using the correct mechanical boundary conditions when estimating the transmembrane capacitance. Finally, a set of experiments is described to uniquely estimate the constitutive properties of the OHC from whole-cell measurements.
Collapse
|
3
|
Tan WJT, Santos-Sacchi J, Tonello J, Shanker A, Ivanova AV. Pharmacological Modulation of Energy and Metabolic Pathways Protects Hearing in the Fus1/Tusc2 Knockout Model of Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2023; 12:1225. [PMID: 37371955 DOI: 10.3390/antiox12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Tightly regulated and robust mitochondrial activities are critical for normal hearing. Previously, we demonstrated that Fus1/Tusc2 KO mice with mitochondrial dysfunction exhibit premature hearing loss. Molecular analysis of the cochlea revealed hyperactivation of the mTOR pathway, oxidative stress, and altered mitochondrial morphology and quantity, suggesting compromised energy sensing and production. Here, we investigated whether the pharmacological modulation of metabolic pathways using rapamycin (RAPA) or 2-deoxy-D-glucose (2-DG) supplementation can protect against hearing loss in female Fus1 KO mice. Additionally, we aimed to identify mitochondria- and Fus1/Tusc2-dependent molecular pathways and processes critical for hearing. We found that inhibiting mTOR or activating alternative mitochondrial energetic pathways to glycolysis protected hearing in the mice. Comparative gene expression analysis revealed the dysregulation of critical biological processes in the KO cochlea, including mitochondrial metabolism, neural and immune responses, and the cochlear hypothalamic-pituitary-adrenal axis signaling system. RAPA and 2-DG mostly normalized these processes, although some genes showed a drug-specific response or no response at all. Interestingly, both drugs resulted in a pronounced upregulation of critical hearing-related genes not altered in the non-treated KO cochlea, including cytoskeletal and motor proteins and calcium-linked transporters and voltage-gated channels. These findings suggest that the pharmacological modulation of mitochondrial metabolism and bioenergetics may restore and activate processes critical for hearing, thereby protecting against hearing loss.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jane Tonello
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anil Shanker
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
4
|
Liang J, Wang J, Yao W, Zhou L, Huang X. Behavioral characteristics in sensing mechanism of the Corti. Comput Struct Biotechnol J 2023; 21:1797-1806. [PMID: 36915377 PMCID: PMC10006463 DOI: 10.1016/j.csbj.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Some experiments can't be realized because the cochlea's Corti is the most delicate and complex sensory organ. In this paper, some typical and special behavioral characteristics in the process of sensation were found in medical clinic. Based on the interdisciplinary principles of medicine, physics and biology, a real numerical simulation model of Corti is established. On the basis of verifying the correctness of the model, the mechanism corresponding to these typical and special behavior characteristics in the process of sensation is explored through simulation calculation and analysis. This study provides theoretical and applied basis for people to better understand the sound sensing mechanism, and provides a numerical simulation platform for further analyzing Corti's sensing mechanism and good clinical application.
Collapse
Affiliation(s)
- Junyi Liang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Jiakun Wang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, PR China
| | - Wenjuan Yao
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, PR China
- Corresponding authors.
| | - Lei Zhou
- Department of Otorhinolaryngology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xinsheng Huang
- Department of Otorhinolaryngology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
- Corresponding authors.
| |
Collapse
|
5
|
Farrell B, Skidmore BL, Rajasekharan V, Brownell WE. A novel theoretical framework reveals more than one voltage-sensing pathway in the lateral membrane of outer hair cells. J Gen Physiol 2021; 152:151746. [PMID: 32384538 PMCID: PMC7335013 DOI: 10.1085/jgp.201912447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/18/2020] [Indexed: 11/20/2022] Open
Abstract
Outer hair cell (OHC) electromotility amplifies acoustic vibrations throughout the frequency range of hearing. Electromotility requires that the lateral membrane protein prestin undergo a conformational change upon changes in the membrane potential to produce an associated displacement charge. The magnitude of the charge displaced and the mid-reaction potential (when one half of the charge is displaced) reflects whether the cells will produce sufficient gain at the resting membrane potential to boost sound in vivo. Voltage clamp measurements performed under near-identical conditions ex vivo show the charge density and mid-reaction potential are not always the same, confounding interpretation of the results. We compare the displacement charge measurements in OHCs from rodents with a theory shown to exhibit good agreement with in silico simulations of voltage-sensing reactions in membranes. This model equates the charge density to the potential difference between two pseudo-equilibrium states of the sensors when they are in a stable conformation and not contributing to the displacement current. The model predicts this potential difference to be one half of its value midway into the reaction, when one equilibrium conformation transforms to the other pseudo-state. In agreement with the model, we find the measured mid-reaction potential to increase as the charge density decreases to exhibit a negative slope of ∼1/2. This relationship suggests that the prestin sensors exhibit more than one stable hyperpolarized state and that voltage sensing occurs by more than one pathway. We determine the electric parameters for prestin sensors and use the analytical expressions of the theory to estimate the energy barriers for the two voltage-dependent pathways. This analysis explains the experimental results, supports the theoretical approach, and suggests that voltage sensing occurs by more than one pathway to enable amplification throughout the frequency range of hearing.
Collapse
Affiliation(s)
- Brenda Farrell
- Bobby R. Alford Department of Otolaryngology and Head & Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Benjamin L Skidmore
- Bobby R. Alford Department of Otolaryngology and Head & Neck Surgery, Baylor College of Medicine, Houston, TX
| | - Vivek Rajasekharan
- Bobby R. Alford Department of Otolaryngology and Head & Neck Surgery, Baylor College of Medicine, Houston, TX
| | - William E Brownell
- Bobby R. Alford Department of Otolaryngology and Head & Neck Surgery, Baylor College of Medicine, Houston, TX
| |
Collapse
|
6
|
Triffo WJ, Palsdottir H, Song J, Morgan DG, McDonald KL, Auer M, Raphael RM. 3D Ultrastructure of the Cochlear Outer Hair Cell Lateral Wall Revealed By Electron Tomography. Front Cell Neurosci 2019; 13:560. [PMID: 31920560 PMCID: PMC6933316 DOI: 10.3389/fncel.2019.00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022] Open
Abstract
Outer Hair Cells (OHCs) in the mammalian cochlea display a unique type of voltage-induced mechanical movement termed electromotility, which amplifies auditory signals and contributes to the sensitivity and frequency selectivity of mammalian hearing. Electromotility occurs in the OHC lateral wall, but it is not fully understood how the supramolecular architecture of the lateral wall enables this unique form of cellular motility. Employing electron tomography of high-pressure frozen and freeze-substituted OHCs, we visualized the 3D structure and organization of the membrane and cytoskeletal components of the OHC lateral wall. The subsurface cisterna (SSC) is a highly prominent feature, and we report that the SSC membranes and lumen possess hexagonally ordered arrays of particles. We also find the SSC is tightly connected to adjacent actin filaments by short filamentous protein connections. Pillar proteins that join the plasma membrane to the cytoskeleton appear as variable structures considerably thinner than actin filaments and significantly more flexible than actin-SSC links. The structurally rich organization and rigidity of the SSC coupled with apparently weaker mechanical connections between the plasma membrane (PM) and cytoskeleton reveal that the membrane-cytoskeletal architecture of the OHC lateral wall is more complex than previously appreciated. These observations are important for our understanding of OHC mechanics and need to be considered in computational models of OHC electromotility that incorporate subcellular features.
Collapse
Affiliation(s)
- William Jeffrey Triffo
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States.,Department of Radiology, Geisinger, Danville, PA, United States
| | - Hildur Palsdottir
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Junha Song
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Gene Morgan
- Interdisciplinary Center for Electron Microscopy, University of California, Davis, Davis, CA, United States
| | - Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA, United States
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert M Raphael
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
7
|
Aguilar Gutierrez OF, Herrera Valencia EE, Rey AD. Generalized Boussinesq-Scriven surface fluid model with curvature dissipation for liquid surfaces and membranes. J Colloid Interface Sci 2017; 503:103-114. [PMID: 28505495 DOI: 10.1016/j.jcis.2017.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Curvature dissipation is relevant in synthetic and biological processes, from fluctuations in semi-flexible polymer solutions, to buckling of liquid columns, tomembrane cell wall functioning. We present a micromechanical model of curvature dissipation relevant to fluid membranes and liquid surfaces based on a parallel surface parameterization and a stress constitutive equation appropriate for anisotropic fluids and fluid membranes.The derived model, aimed at high curvature and high rate of change of curvature in liquid surfaces and membranes, introduces additional viscous modes not included in the widely used 2D Boussinesq-Scriven rheological constitutive equation for surface fluids.The kinematic tensors that emerge from theparallel surface parameterization are the interfacial rate of deformation and the surface co-rotational Zaremba-Jaumann derivative of the curvature, which are used to classify all possibledissipative planar and non-planar modes. The curvature dissipation function that accounts for bending, torsion and twist rates is derived and analyzed under several constraints, including the important inextensional bending mode.A representative application of the curvature dissipation model to the periodic oscillation in nano-wrinkled outer hair cells show how and why curvature dissipation decreases with frequency, and why the 100kHz frequency range is selected. These results contribute to characterize curvature dissipation in membranes and liquid surfaces.
Collapse
Affiliation(s)
- Oscar F Aguilar Gutierrez
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Edtson E Herrera Valencia
- Departamento de Ingeniería Química, FES Zaragoza UNAM, Av. Guelatao No. 66 Col. Ejército de Oriente, Iztapalapa CP 09230, Mexico
| | - Alejandro D Rey
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada.
| |
Collapse
|
8
|
YAO WENJUAN, CHEN YIQIANG. NUMERICAL SIMULATION ON THE MECHANICAL BEHAVIOR OF OUTER STEREOCILIA IN CORTI. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519417500452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, a two-dimensional model of the organ of Corti (OC) which includes basilar membrane (BM), tectorial membrane (TM), inner and outer hair cells and reticular lamina (RL) is established by Comsol. Based on experimental data that sinusoidal excitation was applied on the pectinate zone of the BM, the incentives are added to the corresponding position of the model. Transient analysis is made and the displacement of six different positions is achieved. The results are in good agreement with experimental data, which confirms the validity of the FE model. Based on time-domain and frequency-domain analysis, the relative motion between stereocilia and TM and RL is studied under sinusoidal excitation. The results show that, under time-domain analysis, the whole trend of relative displacement and velocity difference of Inner is similar to that of Outer, while there is little different when comparing with Middle. The relative velocity difference of Middle and Inner lag behind Outer with roughly 0.01[Formula: see text]s. Under frequency-domain analysis, at characteristic frequency, the deviation of each stereocilium is the largest. In the meantime, the frequency that the maximum value of outer stereocilia achieved is different. This new finding may cause the difference of lateral vibration of BM and indicate the frequency sensitivity of BM.
Collapse
Affiliation(s)
- WENJUAN YAO
- Department of Civil Engineering, Shanghai University, P.O. Box 47, No 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - YIQIANG CHEN
- Department of Civil Engineering, Shanghai University, P.O. Box 47, No 149 Yanchang Road, Shanghai, 200072, P. R. China
| |
Collapse
|
9
|
Fakhravar Z, Ebrahimnejad P, Daraee H, Akbarzadeh A. Nanoliposomes: Synthesis methods and applications in cosmetics. J COSMET LASER THER 2016; 18:174-81. [DOI: 10.3109/14764172.2015.1039040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Wang Y, Steele CR, Puria S. Cochlear Outer-Hair-Cell Power Generation and Viscous Fluid Loss. Sci Rep 2016; 6:19475. [PMID: 26792556 PMCID: PMC4726291 DOI: 10.1038/srep19475] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022] Open
Abstract
Since the discovery of otoacoustic emissions and outer hair cell (OHC) motility, the fundamental question of whether the cochlea produces mechanical power remains controversial. In the present work, direct calculations are performed on power loss due to fluid viscosity and power generated by the OHCs. A three-dimensional box model of the mouse cochlea is used with a feed-forward/feed-backward approximation representing the organ of Corti cytoarchitecture. The model is fit to in vivo basilar membrane motion with one free parameter for the OHCs. The calculations predict that the total power output from the three rows of OHCs can be over three orders of magnitude greater than the acoustic input power at 10 dB sound pressure level (SPL). While previous work shows that the power gain, or the negative damping, diminishes with intensity, we show explicitly based on our model that OHC power output increases and saturates with SPL. The total OHC power output is about 2 pW at 80 dB SPL, with a maximum of about 10 fW per OHC.
Collapse
Affiliation(s)
- Yanli Wang
- Mechanical Engineering, Stanford University, Stanford, CA, USA
| | | | - Sunil Puria
- Mechanical Engineering, Stanford University, Stanford, CA, USA.,Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Jung YW, Mascagni M. Constriction model of actomyosin ring for cytokinesis by fission yeast using a two-state sliding filament mechanism. J Chem Phys 2015; 141:125101. [PMID: 25273478 DOI: 10.1063/1.4896164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres. Ring contraction tension was generated via the same fundamental mechanism used to generate muscle tension, but some physicochemical parameters were adjusted to be consistent with the proposed ring structure. Simulations allowed an estimate of ring constriction tension that reproduced the observed ring constriction velocity using a physiologically possible, self-consistent set of parameters. Proposed molecular-level properties responsible for the thousand-fold slower constriction velocity of the ring relative to that of muscle sarcomeres include fewer myosin molecules involved, a less organized contractile configuration, a low α-actinin concentration, and a high resistance membrane tension. Ring constriction velocity is demonstrated as an exponential function of time despite a near linear appearance. We proposed a hypothesis to explain why excess myosin heads inhibit constriction velocity rather than enhance it. The model revealed how myosin concentration and elastic resistance tension are balanced during cytokinesis in S. pombe.
Collapse
Affiliation(s)
- Yong-Woon Jung
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA
| | - Michael Mascagni
- Departments of Computer Science, Mathematics and Scientific Computing, and Graduate Program in Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4530, USA
| |
Collapse
|
12
|
Nam JH. Microstructures in the organ of Corti help outer hair cells form traveling waves along the cochlear coil. Biophys J 2015; 106:2426-33. [PMID: 24896121 DOI: 10.1016/j.bpj.2014.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
According to the generally accepted theory of mammalian cochlear mechanics, the fluid in the cochlear scalae interacts with the elastic cochlear partition to generate transversely oscillating displacement waves that propagate along the cochlear coil. Using a computational model of cochlear segments, a different type of propagating wave is reported, an elastic propagating wave that is independent of the fluid-structure interaction. The characteristics of the propagating wave observed in the model, such as the wavelength, speed, and phase lag, are similar to those observed in the living cochlea. Three conditions are required for the existence of the elastic propagating wave in the cochlear partition without fluid-interaction: 1), the stiffness gradient of the cochlear partition; 2), the elastic longitudinal coupling; and 3), the Y-shaped structure in the organ of Corti formed by the outer hair cell, the Deiters cell, and the Deiters cell phalangeal process. The elastic propagating waves in the cochlear partition disappeared without the push-pull action provided by the outer hair cell and Deiters cell phalangeal process. The results suggest that the mechanical feedback of outer hair cells, facilitated by the organ of Corti microstructure, can control the tuning and amplification by modulating the cochlear traveling wave.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Mechanical Engineering and Department of Biomedical Engineering, University of Rochester, Rochester, New York.
| |
Collapse
|
13
|
Morell M, Lenoir M, Shadwick RE, Jauniaux T, Dabin W, Begeman L, Ferreira M, Maestre I, Degollada E, Hernandez-Milian G, Cazevieille C, Fortuño JM, Vogl W, Puel JL, André M. Ultrastructure of the Odontocete organ of Corti: scanning and transmission electron microscopy. J Comp Neurol 2014; 523:431-48. [PMID: 25269663 DOI: 10.1002/cne.23688] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/26/2014] [Indexed: 11/11/2022]
Abstract
The morphological study of the Odontocete organ of Corti, together with possible alterations associated with damage from sound exposure, represents a key conservation approach to assess the effects of acoustic pollution on marine ecosystems. By collaborating with stranding networks from several European countries, 150 ears from 13 species of Odontocetes were collected and analyzed by scanning (SEM) and transmission (TEM) electron microscopy. Based on our analyses, we first describe and compare Odontocete cochlear structures and then propose a diagnostic method to identify inner ear alterations in stranded individuals. The two species analyzed by TEM (Phocoena phocoena and Stenella coeruleoalba) showed morphological characteristics in the lower basal turn of high-frequency hearing species. Among other striking features, outer hair cell bodies were extremely small and were strongly attached to Deiters cells. Such morphological characteristics, shared with horseshoe bats, suggest that there has been convergent evolution of sound reception mechanisms among echolocating species. Despite possible autolytic artifacts due to technical and experimental constraints, the SEM analysis allowed us to detect the presence of scarring processes resulting from the disappearance of outer hair cells from the epithelium. In addition, in contrast to the rapid decomposition process of the sensory epithelium after death (especially of the inner hair cells), the tectorial membrane appeared to be more resistant to postmortem autolysis effects. Analysis of the stereocilia imprint pattern at the undersurface of the tectorial membrane may provide a way to detect possible ultrastructural alterations of the hair cell stereocilia by mirroring them on the tectorial membrane.
Collapse
Affiliation(s)
- Maria Morell
- Laboratory of Applied Bio-Acoustics, Technological Center of Vilanova i la Geltrú, Technical University of Catalonia-Barcelona Tech, 08800, Vilanova i la Geltrú, Barcelona, Spain; Zoology Department, The University of British Columbia, V6T 1Z4 Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zagadou BF, Barbone PE, Mountain DC. Elastic properties of organ of Corti tissues from point-stiffness measurement and inverse analysis. J Biomech 2014; 47:1270-7. [PMID: 24629928 DOI: 10.1016/j.jbiomech.2014.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 11/28/2022]
Abstract
We describe a method to use point-stiffness (PtSt) measurements, i.e., indentation measurements, to obtain elastic moduli of different organ of Corti (OC) tissues. A detailed finite element (FE) model of the OC is used to account for geometric effects in the indentation measurements. We also present a sensitivity analysis, performed within a Bayesian estimation framework, that can be used to improve experimental design. The sensitivity analysis shows that the basilar membrane (BM) PtSt is most sensitive to changes in the BM properties and to changes in the pillar cells (PC) properties. This result suggests that the BM and the PC dominate the macromechanics of the OC. The most likely values of the Young׳s modulus predicted for the middle turn for the BM arcuate, BM pectinate, and the PC are found to be 935 KPa (range 640-1360 KPa), 300 KPa (range 190-460 KPa), and 3 GPa (range 1-9 GPa), respectively.
Collapse
Affiliation(s)
- B F Zagadou
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA; Hearing Research Center, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
| | - P E Barbone
- Department of Mechanical Engineering, Boston University, 110 Cummington Street, Boston, MA 02215, USA.
| | - D C Mountain
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA; Hearing Research Center, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
| |
Collapse
|
15
|
Selective ablation of pillar and deiters' cells severely affects cochlear postnatal development and hearing in mice. J Neurosci 2013; 33:1564-76. [PMID: 23345230 DOI: 10.1523/jneurosci.3088-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mammalian auditory hair cells (HCs) are inserted into a well structured environment of supporting cells (SCs) and acellular matrices. It has been proposed that when HCs are irreversibly damaged by noise or ototoxic drugs, surrounding SCs seal the epithelial surface and likely extend the survival of auditory neurons. Because SCs are more resistant to damage than HCs, the effects of primary SC loss on HC survival and hearing have received little attention. We used the Cre/loxP system in mice to specifically ablate pillar cells (PCs) and Deiters' cells (DCs). In Prox1CreER(T2)+/-;Rosa26(DTA/+) (Prox1DTA) mice, Cre-estrogen receptor (CreER) expression is driven by the endogenous Prox1 promoter and, in presence of tamoxifen, removes a stop codon in the Rosa26(DTA/+) allele and induces diphtheria toxin fragment A (DTA) expression. DTA produces cell-autonomous apoptosis. Prox1DTA mice injected with tamoxifen at postnatal days 0 (P0) and P1 show significant DC and outer PC loss at P2-P4, that reaches ∼70% by 1 month. Outer HC loss follows at P14 and is almost complete at 1 month, while inner HCs remain intact. Neural innervation to the outer HCs is disrupted in Prox1DTA mice and auditory brainstem response thresholds in adults are 40-50 dB higher than in controls. The hearing deficit correlates with loss of cochlear amplification. Remarkably, in Prox1DTA mice, the auditory epithelium preserves the ability to seal the reticular lamina and spiral ganglion neuron counts are normal, a key requirement for cochlear implant success. In addition, our results show that cochlear SC pools should be appropriately replenished during HC regeneration strategies.
Collapse
|
16
|
Nagaki T, Kakehata S, Kitani R, Abe T, Shinkawa H. Effects of cholesterol alterations are mediated via G-protein-related pathways in outer hair cells. Pflugers Arch 2013; 465:1041-9. [PMID: 23417602 DOI: 10.1007/s00424-013-1230-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 01/13/2023]
Abstract
Cholesterol is an essential component of cell membranes, and determines their rigidity and fluidity. Alterations in membrane cholesterol by MβCD or water-soluble cholesterol affect the stiffness, capacitance, motility, and cell length of outer hair cells (OHCs). This suggests that reconstruction of the cytoskeleton may be induced by cholesterol alterations. In this study, we investigated intracellular signaling pathways involving G proteins to determine whether they modulate the changes in voltage-dependent capacitance caused by cholesterol alterations. Membrane capacitance of isolated guinea pig OHCs were assessed using a two-sine voltage stimulus protocol superimposed onto a voltage ramp (200 ms duration) from -150 to +140 mV. One group of OHCs was treated with 100 μM guanosine 5'-O-(3-thiotriphosphate) tetralithium salt (GTPγS), the GTP analog, administrated into individual cells via patch pipettes. Another group of OHCs was internally perfused with 600 μM guanosine 5'-(β-thio) diphosphate trilithium salt (GDPβS), the GDP analog. A third group was perfused with internal solution only as a control. Application of 1 mM MβCD shifted non-linear capacitance curves to the depolarized direction of the control group with reduction of the peak capacitance (C mpeak). After the 10-min application of MβCD, shifts of voltage at C mpeak (V cmpeak) and reduction of C mpeak were 73.32 ± 11.09 mV and 9.09 ± 2.10 pF, respectively (n = 4). On the other hand, in the GTPγS-treated group, the shift of V cmpeak and reduction of C mpeak were attenuated remarkably. The shift of V cmpeak and reduction of C mpeak in the 10-min application of MβCD were 9.73 ± 10.92 mV and 3.08 ± 1.91 pF, respectively (n = 7). MβCD decreased the cell length by 16.53 ± 4.27 % in the control group and by 6.45 ± 6.22 % in the GTPγS group. In addition, we investigated the effects of GDPβS on cholesterol-treated OHCs. One millimolar cholesterol was externally applied after the 4-min application of 1 mM MβCD because the shift of V-C m function caused by cholesterol alone was small. Application of cholesterol shifted V-C m curves of the control group to the hyperpolarized direction with increase of the C mpeak. After the 10-min application of cholesterol, changes of V cmpeak and C mpeak were -9.19 ± 6.68 mV and 2.14 ± 0.44 pF, respectively (n = 4). On the other hand, in the GDPβS-treated OHCs, the shift of V cmpeak and increase of C mpeak were attenuated markedly. The shift of V cmpeak and increase of C mpeak after 10 min were 5.13 ± 10.46 mV and -0.55 ± 1.39 pF, respectively (n = 6). This study demonstrated that internally perfused GTPγS inhibited the MβCD effects and GDPβS inhibited the cholesterol effects, raising the possibility that G proteins may be involved in outer hair cell homeostasis as well as the possibility that cholesterol response may be G protein mediated. More study is required to clarify the detailed role of G proteins in the relation between cholesterol and the OHC cytoskeleton.
Collapse
Affiliation(s)
- Takahiko Nagaki
- Department of Otorhinolaryngology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | | | | | |
Collapse
|
17
|
Structure and mechanics of supporting cells in the guinea pig organ of Corti. PLoS One 2012; 7:e49338. [PMID: 23145154 PMCID: PMC3492263 DOI: 10.1371/journal.pone.0049338] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022] Open
Abstract
The mechanical properties of the mammalian organ of Corti determine its sensitivity to sound frequency and intensity, and the structure of supporting cells changes progressively with frequency along the cochlea. From the apex (low frequency) to the base (high frequency) of the guinea pig cochlea inner pillar cells decrease in length incrementally from 75–55 µm whilst the number of axial microtubules increases from 1,300–2,100. The respective values for outer pillar cells are 120–65 µm and 1,500–3,000. This correlates with a progressive decrease in the length of the outer hair cells from >100 µm to 20 µm. Deiters'cell bodies vary from 60–50 µm long with relatively little change in microtubule number. Their phalangeal processes reflect the lengths of outer hair cells but their microtubule numbers do not change systematically. Correlations between cell length, microtubule number and cochlear location are poor below 1 kHz. Cell stiffness was estimated from direct mechanical measurements made previously from isolated inner and outer pillar cells. We estimate that between 200 Hz and 20 kHz axial stiffness, bending stiffness and buckling limits increase, respectively,∼3, 6 and 4 fold for outer pillar cells, ∼2, 3 and 2.5 fold for inner pillar cells and ∼7, 20 and 24 fold for the phalangeal processes of Deiters'cells. There was little change in the Deiters'cell bodies for any parameter. Compensating for effective cell length the pillar cells are likely to be considerably stiffer than Deiters'cells with buckling limits 10–40 times greater. These data show a clear relationship between cell mechanics and frequency. However, measurements from single cells alone are insufficient and they must be combined with more accurate details of how the multicellular architecture influences the mechanical properties of the whole organ.
Collapse
|
18
|
Szarama KB, Gavara N, Petralia RS, Kelley MW, Chadwick RS. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea. Development 2012; 139:2187-97. [PMID: 22573615 DOI: 10.1242/dev.073734] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure.
Collapse
Affiliation(s)
- Katherine B Szarama
- Section on Auditory Mechanics, Laboratory of Cellular Biology, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
19
|
Kazmierczak P, Müller U. Sensing sound: molecules that orchestrate mechanotransduction by hair cells. Trends Neurosci 2011; 35:220-9. [PMID: 22177415 DOI: 10.1016/j.tins.2011.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 01/19/2023]
Abstract
Animals use acoustic signals to communicate and to obtain information about their environment. The processing of acoustic signals is initiated at auditory sense organs, where mechanosensory hair cells convert sound-induced vibrations into electrical signals. Although the biophysical principles underlying the mechanotransduction process in hair cells have been characterized in much detail over the past 30 years, the molecular building-blocks of the mechanotransduction machinery have proved to be difficult to determine. We review here recent studies that have both identified some of these molecules and established the mechanisms by which they regulate the activity of the still-elusive mechanotransduction channel.
Collapse
Affiliation(s)
- Piotr Kazmierczak
- Dorris Neuroscience Center, Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
20
|
Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI. Atomic force microscopy probing of cell elasticity. Micron 2007; 38:824-33. [PMID: 17709250 DOI: 10.1016/j.micron.2007.06.011] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Atomic force microscopy (AFM) has recently provided the great progress in the study of micro- and nanostructures including living cells and cell organelles. Modern AFM techniques allow solving a number of problems of cell biomechanics due to simultaneous evaluation of the local mechanical properties and the topography of the living cells at a high spatial resolution and force sensitivity. Particularly, force spectroscopy is used for mapping mechanical properties of a single cell that provides information on cellular structures including cytoskeleton structure. This entry is aimed to review the recent AFM applications for the study of dynamics and mechanical properties of intact cells associated with different cell events such as locomotion, differentiation and aging, physiological activation and electromotility, as well as cell pathology. Local mechanical characteristics of different cell types including muscle cells, endothelial and epithelial cells, neurons and glial cells, fibroblasts and osteoblasts, blood cells and sensory cells are analyzed in this paper.
Collapse
|
21
|
Jensen-Smith H, Hallworth R. Lateral wall protein content mediates alterations in cochlear outer hair cell mechanics before and after hearing onset. ACTA ACUST UNITED AC 2007; 64:705-17. [PMID: 17615570 PMCID: PMC1992524 DOI: 10.1002/cm.20217] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Specialized outer hair cells (OHCs) housed within the mammalian cochlea exhibit active, nonlinear, mechanical responses to auditory stimulation termed electromotility. The extraordinary frequency resolution capacity of the cochlea requires an exquisitely equilibrated mechanical system of sensory and supporting cells. OHC electromotile length change, stiffness, and force generation are responsible for a 100-fold increase in hearing sensitivity by augmenting vibrational input to non-motile sensory inner hair cells. Characterization of OHC mechanics is crucial for understanding and ultimately preventing permanent functional deficits due to overstimulation or as a consequence of various cochlear pathologies. The OHCs' major structural assembly is a highly-specialized lateral wall. The lateral wall consists of three structures; a plasma membrane highly-enriched with the motor-protein prestin, an actin-spectrin cortical lattice, and one or more layers of subsurface cisternae. Technical difficulties in independently manipulating each lateral wall constituent have constrained previous attempts to analyze the determinants of OHCs' mechanical properties. Temporal separations in the accumulation of each lateral wall constituent during postnatal development permit associations between lateral wall structure and OHC mechanics. We compared developing and adult gerbil OHC axial stiffness using calibrated glass fibers. Alterations in each lateral wall component and OHC stiffness were correlated as a function of age. Reduced F-actin labeling was correlated with reduced OHC stiffness before hearing onset. Prestin incorporation into the PM was correlated with increased OHC stiffness at hearing onset. Our data indicate lateral wall F-actin and prestin are the primary determinants of OHC mechanical properties before and after hearing onset, respectively.
Collapse
Affiliation(s)
- Heather Jensen-Smith
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, USA.
| | | |
Collapse
|
22
|
Liao Z, Feng S, Popel AS, Brownell WE, Spector AA. Outer hair cell active force generation in the cochlear environment. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:2215-25. [PMID: 17902857 DOI: 10.1121/1.2776154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Outer hair cells are critical to the amplification and frequency selectivity of the mammalian ear acting via a fine mechanism called the cochlear amplifier, which is especially effective in the high-frequency region of the cochlea. How this mechanism works under physiological conditions and how these cells overcome the viscous (mechanical) and electrical (membrane) filtering has yet to be fully understood. Outer hair cells are electromotile, and they are strategically located in the cochlea to generate an active force amplifying basilar membrane vibration. To investigate the mechanism of this cell's active force production under physiological conditions, a model that takes into account the mechanical, electrical, and mechanoelectrical properties of the cell wall (membrane) and cochlear environment is proposed. It is shown that, despite the mechanical and electrical filtering, the cell is capable of generating a frequency-tuned force with a maximal value of about 40 pN. It is also found that the force per unit basilar membrane displacement stays essentially the same (40 pNnm) for the entire linear range of the basilar membrane responses, including sound pressure levels close to hearing threshold. Our findings can provide a better understanding of the outer hair cell's role in the cochlear amplifier.
Collapse
Affiliation(s)
- Zhijie Liao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
The hearing organ contains sensory hair cells, which convert sound-evoked vibration into action potentials in the auditory nerve. This process is greatly enhanced by molecular motors that reside within the outer hair cells, but the performance also depends on passive mechanical properties, such as the stiffness, mass, and friction of the structures within the organ of Corti. We used resampled confocal imaging to study the mechanical properties of the low-frequency regions of the cochlea. The data allowed us to estimate an important mechanical parameter, the radial strain, which was found to be 0.1% near the inner hair cells and 0.3% near the third row of outer hair cells during moderate-level sound stimulation. The strain was caused by differences in the motion trajectories of inner and outer hair cells. Motion perpendicular to the reticular lamina was greater at the outer hair cells, but inner hair cells showed greater radial vibration. These differences led to deformation of the reticular lamina, which connects the apex of the outer and inner hair cells. These results are important for understanding how the molecular motors of the outer hair cells can so profoundly affect auditory sensitivity.
Collapse
Affiliation(s)
- Igor Tomo
- Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Neuroscience, M1, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Abstract
The inner ear contains delicate sensory receptors that have adapted to detect the minutest mechanical disturbances. Ca(2+) ions are implicated in all steps of the transduction process, as well as in its regulation by an impressive ensemble of finely tuned feedback control mechanisms. Recent studies have unveiled some of the key players, but things do not sound quite right yet.
Collapse
Affiliation(s)
- Fabio Mammano
- Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, Padua, Italy.
| | | | | | | |
Collapse
|
25
|
Chen GD, Zhao HB. Effects of intense noise exposure on the outer hair cell plasma membrane fluidity. Hear Res 2007; 226:14-21. [PMID: 16870367 DOI: 10.1016/j.heares.2006.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/06/2006] [Accepted: 06/12/2006] [Indexed: 11/28/2022]
Abstract
Outer hair cells (OHCs) play an important role in cochlear amplification via their length changes (electromotility). A noise-induced cochlear amplification loss leading to a permanent threshold shift (PTS) was observed without a significant hair cell loss in rats [Chen, G.D., Liu, Y., 2005. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear. Res. 200, 1-9.]. Since motor proteins are inserted in the OHC lateral membrane, any change in the OHC plasma membrane may result in a loss of OHC electromotility, leading to a loss of cochlear amplification. In this study, the lateral diffusion in the OHC plasma membrane was determined in vitro in guinea pigs by fluorescent recovery after photobleaching (FRAP) after an in vivo noise exposure. The lateral diffusion in the OHC plasma membrane demonstrated a length-dependence, which increased as OHC length increased. A reduction in the lateral diffusion was observed in those OHCs with lengths of 50-70 microm after exposure to an 8-kHz octave band noise at 110 dB SPL for 3h. This membrane fluidity change was associated with the selective PTS at frequencies around 8 kHz. The reduction of the lateral diffusion in the OHC lateral wall indicated that noise could impair the micromechanics of the OHC lateral wall and might consequently impair OHC electromotility to induce threshold shift.
Collapse
Affiliation(s)
- Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, 3435 Main Street, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | | |
Collapse
|
26
|
Chen GD. Prestin gene expression in the rat cochlea following intense noise exposure. Hear Res 2006; 222:54-61. [PMID: 17005342 DOI: 10.1016/j.heares.2006.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 08/09/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
Noise-induced permanent loss of cochlear amplification was observed previously with the majority of outer hair cells (OHCs) still surviving in the cochlea and even with a normal OHC receptor potential, indicated by CM (cochlear microphonics) recording [Chen, G.D., Fechter, L.D., 2003. The relationship between noise-induced hearing loss and hair cell loss in rats. Hear. Res. 177(1-2), 81-90; Chen, G.D., Liu, Y., 2005. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear. Res. 200, 1-9]. This study focused on effects of an intense noise exposure (10-20 kHz at a level of 110 dB SPL for 4 h) on the OHC motor protein (prestin) and structural proteins in the OHC membrane skeleton. The noise exposure significantly disrupted CM and CAP (cochlear compound action potential). The injured CM recovered after 1-week resting period. The impaired CAP at frequencies lower than the noise band also recovered. However, the CAP recovery at frequencies of the noise band stopped at a linear line one week after the noise exposure, indicating a permanent loss of cochlear amplification. Gene expression of prestin, beta-spectrin, and beta-actin was significantly up-regulated after the noise exposure. The elevated gene expression peaked at the 3rd post-exposure day and returned to baseline 4 weeks after the noise exposure. The up-regulated gene expression may be in response to injury of the proteins, which may be responsible for the loss of cochlear amplification.
Collapse
Affiliation(s)
- Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, 3435 Main Street, SUNY at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
27
|
Abstract
Mechanosensory outer hair cells play an essential role in the amplification of sound-induced vibrations within the mammalian cochlea due to their ability to contract or elongate following changes of the intracellular potential. This unique property of outer hair cells is known as electromotility. Selective efferent innervation of these cells within the organ of Corti suggests that regulation of outer hair cell electromotility may be the primary function of the efferent control in the cochlea. A number of studies demonstrate that outer hair cell electromotility is indeed modulated by the efferent neurotransmitter, acetylcholine. The effects of acetylcholine on outer hair cells include cell hyperpolarization and a decrease of the axial stiffness, both mediated by intracellular Ca(2+). This article reviews these results and considers other potential mechanisms that may regulate electromotility, such as direct modification of the plasma membrane molecular motors, alteration of intracellular pressure, and modification of intracellular chloride concentration.
Collapse
Affiliation(s)
- Gregory I Frolenkov
- Department of Physiology, University of Kentucky, MS508, Chandler Medical Center, 800 Rose Street, Lexington, 40536, USA.
| |
Collapse
|
28
|
Lim KM, Li H. A two-layer outer hair cell model with orthotropic piezoelectric properties: correlation of cell resonant frequencies with tuning in the cochlea. J Biomech 2006; 40:1362-71. [PMID: 16824534 DOI: 10.1016/j.jbiomech.2006.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 05/08/2006] [Indexed: 11/25/2022]
Abstract
The frequency response of outer hair cells (OHCs) of different lengths is studied using a mathematical model of a two-layer cylindrical shell with orthotropic properties. Material properties in the model are determined from experimental measurements reported in the literature, and the variation of material properties with the cell length is studied. The cortical lattice's Poisson ratios are found to remain fairly constant with cell length, while its stiffness changes significantly with cell length. The natural frequencies corresponding to several modes of deformation of an OHC with intracellular and extracellular fluids are calculated from this model. Our results suggest that the best frequency in the cochlea at the position where the OHC is located corresponds to different modes of deformation of the OHC, depending on the OHC length. For short OHCs, the best frequency is close to the natural frequency of the axisymmetric mode; for long OHCs, it is close to the natural frequencies of the beam-like bending and pinched modes. Such a difference in resonant modes for short and long OHCs at the best frequency suggests that different modes of OHC elongation motility may be present in amplifying the basilar membrane motion in the high and low frequency regions of the cochlea.
Collapse
Affiliation(s)
- Kian-Meng Lim
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | | |
Collapse
|
29
|
Spector AA, Deo N, Grosh K, Ratnanather JT, Raphael RM. Electromechanical models of the outer hair cell composite membrane. J Membr Biol 2006; 209:135-52. [PMID: 16773498 DOI: 10.1007/s00232-005-0843-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Indexed: 10/24/2022]
Abstract
The outer hair cell (OHC) is an extremely specialized cell and its proper functioning is essential for normal mammalian hearing. This article reviews recent developments in theoretical modeling that have increased our knowledge of the operation of this fascinating cell. The earliest models aimed at capturing experimental observations on voltage-induced cellular length changes and capacitance were based on isotropic elasticity and a two-state Boltzmann function. Recent advances in modeling based on the thermodynamics of orthotropic electroelastic materials better capture the cell's voltage-dependent stiffness, capacitance, interaction with its environment and ability to generate force at high frequencies. While complete models are crucial, simpler continuum models can be derived that retain fidelity over small changes in transmembrane voltage and strains occurring in vivo. By its function in the cochlea, the OHC behaves like a piezoelectric-like actuator, and the main cellular features can be described by piezoelectric models. However, a finer characterization of the cell's composite wall requires understanding the local mechanical and electrical fields. One of the key questions is the relative contribution of the in-plane and bending modes of electromechanical strains and forces (moments). The latter mode is associated with the flexoelectric effect in curved membranes. New data, including a novel experiment with tethers pulled from the cell membrane, can help in estimating the role of different modes of electromechanical coupling. Despite considerable progress, many problems still confound modelers. Thus, this article will conclude with a discussion of unanswered questions and highlight directions for future research.
Collapse
Affiliation(s)
- A A Spector
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
30
|
He DZZ, Zheng J, Kalinec F, Kakehata S, Santos-Sacchi J. Tuning in to the amazing outer hair cell: membrane wizardry with a twist and shout. J Membr Biol 2006; 209:119-34. [PMID: 16773497 DOI: 10.1007/s00232-005-0833-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Indexed: 11/29/2022]
Affiliation(s)
- D Z Z He
- Hair Cell Biophysics Laboratory, Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
31
|
Murakoshi M, Yoshida N, Iida K, Kumano S, Kobayashi T, Wada H. Local mechanical properties of mouse outer hair cells: atomic force microscopic study. Auris Nasus Larynx 2006; 33:149-57. [PMID: 16436324 DOI: 10.1016/j.anl.2005.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 10/07/2005] [Accepted: 11/11/2005] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Outer hair cells (OHCs) are capable of altering their cell length in response to changes in membrane potential. Due to this electromotility, OHCs probably subject the basilar membrane to force, resulting in cochlear amplification. To understand the mechanism of such amplification, knowledge of the mechanical properties of OHCs is required since the force produced by OHC electromotility is thought to depend on such properties. Various studies have been conducted to investigate the mechanical properties of guinea pig OHCs. With regard to mice, however, although various kinds of transgenic and knockout mice possess great potential as research models, the mechanical properties of mouse OHCs have not as yet been reported since the cells and/or tissues in the mouse hearing organ are relatively small and vulnerable to external stimuli, rendering sample preparation difficult. In this study, therefore, to establish indicators of the mechanical properties of OHCs in mice, such properties were measured by atomic force microscopy (AFM). METHODS CBA/JNCrj strain male mice aged 10-12 weeks (25-30 g) were used. Cochleae were dissected out from the animal and both the basilar membrane and the organ of Corti were simultaneously unwrapped from the modiolus with forceps. Dissected coiled tissue was then incubated with an enzymatic digestion medium for 15 min. After digestion, OHCs were isolated by gently triturating the coiled tissue. Local mechanical properties of the OHCs were then measured by an indentation test using an AFM. RESULTS Young's modulus and stiffness of the OHC in the apical turn of the mouse cochlea were 2.1+/-0.5 kPa and 4.4+/-1.2 mN/m, respectively. CONCLUSIONS Young's modulus of the OHC in the apical turn of the cochlea in mice was roughly the same as that in the apical turn of the cochlea in guinea pigs; however, the stiffness of the former was about two times greater than that of the latter because the cell length of the former was shorter than that of the latter.
Collapse
Affiliation(s)
- Michio Murakoshi
- Department of Bioengineering and Robotics, Tohoku University, 6-6-01 Aoba-yama, Sendai 980-8579, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The voltage-dependent activity of prestin, the outer hair cell (OHC) motor protein essential for its electromotility, enhances the mammalian inner ear's auditory sensitivity. We investigated the effect of prestin's activity on the plasma membrane's (PM) susceptibility to electroporation (EP) via cell-attached patch-clamping. Guinea pig OHCs, TSA201 cells, and prestin-transfected TSA cells were subjected to incremental 50 mus and/or 50 ms voltage pulse trains, or ramps, at rates from 10 V/s to 1 kV/s, to a maximum transmembrane potential of +/-1000 mV. EP was determined by an increase in capacitance to whole-cell levels. OHCs were probed at the prestin-rich lateral PM or prestin-devoid basal portion; TSA cells were patched at random points. OHCs were consistently electroporated with 50 ms pulses, with significant resistance to depolarizing pulses. Although EP rarely occurred with 50 mus pulses, prior stimulation with this protocol had a significant effect on the sensitivity to EP with 50 ms pulses, regardless of polarity or PM domain. Consistent with these results, resistance to EP with depolarizing 10-V/s ramps was also found. Our findings with TSA cells were comparable, showing resistance to EP with both depolarizing 50-ms pulses and 10 V/s ramps. We conclude prestin significantly affects susceptibility to EP, possibly via known biophysical influences on specific membrane capacitance and/or membrane stiffness.
Collapse
Affiliation(s)
- Enrique G Navarrete
- Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California, USA
| | | |
Collapse
|
33
|
Zelenskaya A, de Monvel JB, Pesen D, Radmacher M, Hoh JH, Ulfendahl M. Evidence for a highly elastic shell-core organization of cochlear outer hair cells by local membrane indentation. Biophys J 2005; 88:2982-93. [PMID: 15653728 PMCID: PMC1305392 DOI: 10.1529/biophysj.104.052225] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 01/03/2005] [Indexed: 11/18/2022] Open
Abstract
Cochlear outer hair cells (OHCs) are thought to play an essential role in the high sensitivity and sharp frequency selectivity of the hearing organ by generating forces that amplify the vibrations of this organ at frequencies up to several tens of kHz. This tuning process depends on the mechanical properties of the cochlear partition, which OHC activity has been proposed to modulate on a cycle-by-cycle basis. OHCs have a specialized shell-core ultrastructure believed to be important for the mechanics of these cells and for their unique electromotility properties. Here we use atomic force microscopy to investigate the mechanical properties of isolated living OHCs and to show that indentation mechanics of their membrane is consistent with a shell-core organization. Indentations of OHCs are also found to be highly nonhysteretic at deformation rates of more than 40 microm/s, which suggests the OHC lateral wall is a highly elastic structure, with little viscous dissipation, as would appear to be required in view of the very rapid changes in shape and mechanics OHCs are believed to undergo in vivo.
Collapse
Affiliation(s)
- Alexandra Zelenskaya
- Department of Clinical Neuroscience and Center for Hearing and Communication Research, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The outer hair cell (OHC) lateral wall is a unique trilaminate structure consisting of the plasma membrane, the cortical lattice, and subsurface cisternae. OHCs are capable of altering their length in response to transmembrane voltage change. This so-called electromotile response is presumed to result from conformational changes of membrane-bound protein molecules, named prestin. OHC motility is accompanied by axial stiffness changes when the membrane potential of the cell is altered. During length changes, intracellular anions (mainly Cl-) act as extrinsic voltage sensors. In this study, we inquired whether the motor proteins are responsible for the voltage-dependent axial stiffness of OHCs, and whether ACh, the neurotransmitter of efferent neurons, modulates the stiffness of the cortical lattice and/or the stiffness of the motor protein. The experiments were done on isolated guinea pig OHCs in the whole-cell voltage-clamp mode. Axial stiffness was determined by loading a fiber of known stiffness onto the apical surface of the cells. Voltage-dependent stiffness and cell motility disappeared, and the axial stiffness of the cells significantly decreased after removal of intracellular Cl-. The result suggests that the stiffness of the motor protein is a major contributor to the global axial stiffness of OHCs. ACh was found to affect both the motor protein and other lateral wall stiffness components.
Collapse
|
35
|
Batta TJ, Panyi G, Gáspár R, Sziklai I. Active and passive behaviour in the regulation of stiffness of the lateral wall in outer hair cells of the guinea-pig. Pflugers Arch 2003; 447:328-36. [PMID: 14586657 DOI: 10.1007/s00424-003-1186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 08/18/2003] [Accepted: 09/09/2003] [Indexed: 10/26/2022]
Abstract
The stiffness of the outer hair cell (OHC) lateral wall, measured by the micropipette aspiration technique, is non-linear, decreasing from the ciliary pole (stiffness parameter Sp 1.83+/-0.13 nN/microm n=10) towards the cell base (Sp 1.14+/-0.16 nN/microm, n=10) irrespective of the cochleoapical or cochleobasal origin of the cells. The length of the aspirated lateral wall segment was related exponentially to the duration of the applied negative pressure (6 cm H2O) in the synaptic region of the OHCs whereas an active, sigmoid component was observed between 30 and 60 s in the supranuclear regions. A significant increase of the midlateral wall stiffness (to 1.91+/-0.23 nN/microm; n=10) was observed in calcium-free medium and the sigmoid component of the response of the lateral wall was abolished. Salicylate (5 mM) had no significant effect on the active sigmoid behaviour of the lateral wall (n=10). Gadolinium (5 mM), a non-specific cation channel blocker, increased the stiffness of the lateral wall and attenuated the active component (n=10). The motor protein prestin thus does not seem to be involved in the active stiffness regulation seen in this study. A role for the cortical cytoskeleton in the regulation of stiffness seems reasonable according to our model. The mechanism may involve calcium-dependent metabolic modification of cytoskeletal or membrane proteins.
Collapse
Affiliation(s)
- Tamás József Batta
- ORL Clinic, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98., 4012 Debrecen, Hungary
| | | | | | | |
Collapse
|
36
|
He DZZ, Jia S, Dallos P. Prestin and the dynamic stiffness of cochlear outer hair cells. J Neurosci 2003; 23:9089-96. [PMID: 14534242 PMCID: PMC6740818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
The outer hair cell (OHC) lateral wall is a unique trilaminate structure consisting of the plasma membrane, the cortical lattice, and subsurface cisternae. OHCs are capable of altering their length in response to transmembrane voltage change. This so-called electromotile response is presumed to result from conformational changes of membrane-bound protein molecules, named prestin. OHC motility is accompanied by axial stiffness changes when the membrane potential of the cell is altered. During length changes, intracellular anions (mainly Cl-) act as extrinsic voltage sensors. In this study, we inquired whether the motor proteins are responsible for the voltage-dependent axial stiffness of OHCs, and whether ACh, the neurotransmitter of efferent neurons, modulates the stiffness of the cortical lattice and/or the stiffness of the motor protein. The experiments were done on isolated guinea pig OHCs in the whole-cell voltage-clamp mode. Axial stiffness was determined by loading a fiber of known stiffness onto the apical surface of the cells. Voltage-dependent stiffness and cell motility disappeared, and the axial stiffness of the cells significantly decreased after removal of intracellular Cl-. The result suggests that the stiffness of the motor protein is a major contributor to the global axial stiffness of OHCs. ACh was found to affect both the motor protein and other lateral wall stiffness components.
Collapse
Affiliation(s)
- David Z Z He
- Department of Biomedical Sciences, Creighton University Medical School, Omaha, Nebraska 68175, USA.
| | | | | |
Collapse
|
37
|
Abstract
The role of the cochlea is to transduce complex sound waves into electrical neural activity in the auditory nerve. Hair cells of the organ of Corti are the sensory cells of hearing. The inner hair cells perform the transduction and initiate the depolarization of the spiral ganglion neurons. The outer hair cells are accessory sensory cells that enhance the sensitivity and selectivity of the cochlea. Neural feedback loops that bring efferent signals to the outer hair cells assist in sharpening and amplifying the signals. The stria vascularis generates the endocochlear potential and maintains the ionic composition of the endolymph, the fluid in which the apical surface of the hair cells is bathed. The mechanical characteristics of the basilar membrane and its related structures further enhance the frequency selectivity of the auditory transduction mechanism. The tectorial membrane is an extracellular matrix, which provides mass loading on top of the organ of Corti, facilitating deflection of the stereocilia. This review deals with the structure of the normal mature mammalian cochlea and includes recent data on the molecular organization of the main cell types within the cochlea.
Collapse
Affiliation(s)
- Yehoash Raphael
- Kresge Hearing Research Institute, The University of Michigan, MSRB 3, Rm 9303, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0648, USA.
| | | |
Collapse
|
38
|
Sugawara M, Ishida Y, Wada H. Local mechanical properties of guinea pig outer hair cells measured by atomic force microscopy. Hear Res 2002; 174:222-9. [PMID: 12433412 DOI: 10.1016/s0378-5955(02)00696-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, mechanical properties of guinea pig outer hair cells (OHCs) were measured by atomic force microscopy (AFM). First, in order to confirm the availability of AFM for measurement of the mechanical properties of the OHC, Young's moduli of the OHCs measured in this study were converted into stiffnesses using a one-dimensional model of the cell and then compared with the values reported in the literature. Next, the difference in local mechanical properties of the OHC along the cell axis was measured. Finally, the relationship between Young's modulus in the middle region of the OHC and the cell length was evaluated. The results were as follows. (1) AFM is an adequate tool for the measurement of mechanical properties of the OHC. (2) Mechanical properties in the apical region of the OHC are a maximum of three times larger than those in the basal and middle regions of the cell. (3) Young's modulus in the middle region of a long OHC obtained from the apical turn of the cochlea and that of a short OHC obtained from the basal turn or the second turn are 2.0+/-0.81 kPa (n=10) and 3.7+/-0.96 kPa (n=10), respectively. In addition, it was found that Young's modulus decreases with an increase in the cell length.
Collapse
Affiliation(s)
- Michiko Sugawara
- Department of Mechanical Engineering, Tohoku University, Aoba-yama 01, 980-8579, Sendai, Japan
| | | | | |
Collapse
|
39
|
Abstract
The vibration of the hearing organ that occurs during sound stimulation is based on mechanical interactions between different cellular structures inside the organ of Corti. The exact nature of these interactions is unclear and subject to debate. In this study, dynamic structural changes were produced by stepwise alterations of scala tympani pressure in an in vitro preparation of the guinea pig temporal bone. Confocal images were acquired at each level of pressure. In this way, the motion of several structures could be observed simultaneously with high resolution in a nearly intact system. Images were analyzed using a novel wavelet-based optical flow estimation algorithm. Under these conditions, the reticular lamina moved as a stiff plate with a center of rotation in the region of the inner hair cells. Despite being enclosed in several types of supporting cells, the inner hair cells, together with the adjacent inner pillar cells, moved in a manner signifying high compliance. The outer hair cells displayed radial motion indicative of cellular bending. Together, these results show that shearing motion occurs between several parts of the organ, and that structural relationships within the organ change dynamically during displacement of the basilar membrane.
Collapse
|
40
|
Fridberger A, Boutet de Monvel J, Ulfendahl M. Internal shearing within the hearing organ evoked by basilar membrane motion. J Neurosci 2002; 22:9850-7. [PMID: 12427841 PMCID: PMC6757837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
The vibration of the hearing organ that occurs during sound stimulation is based on mechanical interactions between different cellular structures inside the organ of Corti. The exact nature of these interactions is unclear and subject to debate. In this study, dynamic structural changes were produced by stepwise alterations of scala tympani pressure in an in vitro preparation of the guinea pig temporal bone. Confocal images were acquired at each level of pressure. In this way, the motion of several structures could be observed simultaneously with high resolution in a nearly intact system. Images were analyzed using a novel wavelet-based optical flow estimation algorithm. Under these conditions, the reticular lamina moved as a stiff plate with a center of rotation in the region of the inner hair cells. Despite being enclosed in several types of supporting cells, the inner hair cells, together with the adjacent inner pillar cells, moved in a manner signifying high compliance. The outer hair cells displayed radial motion indicative of cellular bending. Together, these results show that shearing motion occurs between several parts of the organ, and that structural relationships within the organ change dynamically during displacement of the basilar membrane.
Collapse
MESH Headings
- Animals
- Basilar Membrane/cytology
- Basilar Membrane/physiology
- Guinea Pigs
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/physiology
- In Vitro Techniques
- Microscopy, Confocal
- Motion
- Organ of Corti/cytology
- Organ of Corti/physiology
- Perfusion
- Pressure
- Scala Tympani/cytology
- Scala Tympani/physiology
- Stress, Mechanical
Collapse
Affiliation(s)
- Anders Fridberger
- Department of Clinical Neuroscience and Center for Hearing and Communication Research, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
41
|
Le Grimellec C, Giocondi MC, Lenoir M, Vater M, Sposito G, Pujol R. High-resolution three-dimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy. J Comp Neurol 2002; 451:62-9. [PMID: 12209841 DOI: 10.1002/cne.10338] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The outer hair cells (OHCs) from the mammalian organ of Corti are assumed to enhance the sensitivity and the selectivity of the cochlea via an electromotile response to sound stimulation. These OHC mechanical changes feed energy back into the cochlea before completion of the transduction process by inner hair cells. OHC electromotility is thought to depend on specific transmembrane motor proteins. Electron microscopy has been used previously to image the OHC lateral plasma membrane, where voltage sensors and motors are located. A very specific and regular organization of membrane particles has been described, together with an equally specific submembraneous meshwork of cytoskeleton anchored to the plasma membrane. To confirm and extend these observations, we have used, for the first time on the OHC lateral wall, atomic force microscopy (AFM). As a result of an improved tapping mode technique as well as the unique ultrastructural organization of the OHC plasma membrane, we have obtained high-resolution three-dimensional (3D) images of a markedly enhanced quality, allowing high-resolution 3D imaging. Tapping-mode AFM confirmed the presence of regularly aligned particles (presumably transmembrane proteins) on both faces of the OHC plasma membrane. It also revealed the presence of markedly different membrane domains, smooth and undulating. The differences between these zones probably are due to local differences in cytoskeleton-membrane interactions. Moreover, 3D reconstructions allowed us to distinguish between globular and pore-like particles, a distinction that may be of great functional significance.
Collapse
|
42
|
Spector AA, Ameen M, Charalambides PG, Popel AS. Nanostructure, effective properties, and deformation pattern of the cochlear outer hair cell cytoskeleton. J Biomech Eng 2002; 124:180-7. [PMID: 12002127 DOI: 10.1115/1.1448521] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We consider the mechanical properties of the outer hair cell cytoskeleton. The cytoskeleton is represented as a set of microdomains of different sizes and orientations composed of actin filaments and spectrin crosslinks. An intermediate material between domains is also introduced. The domain characteristics are randomly generated and the histograms of the cytoskeleton stiffness moduli are obtained. We solve an inverse problem and estimate the stiffness of the crosslink and connective molecule in the intermediate material. We discovered a pattern of highly inhomogeneous deformation of the cytoskeleton where the circumferential strain is primarily determined by the deformation of the intermediate material.
Collapse
Affiliation(s)
- Alexander A Spector
- Department of Biomedical Engineering and Center for Computational Medicine and Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
43
|
Brownell WE, Spector AA, Raphael RM, Popel AS. Micro- and nanomechanics of the cochlear outer hair cell. Annu Rev Biomed Eng 2002; 3:169-94. [PMID: 11447061 DOI: 10.1146/annurev.bioeng.3.1.169] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Outer hair cell electromotility is crucial for the amplification, sharp frequency selectivity, and nonlinearities of the mammalian cochlea. Current modeling efforts based on morphological, physiological, and biophysical observations reveal transmembrane potential gradients and membrane tension as key independent variables controlling the passive and active mechanics of the cell. The cell's mechanics has been modeled on the microscale using a continuum approach formulated in terms of effective (cellular level) mechanical and electric properties. Another modeling approach is nanostructural and is based on the molecular organization of the cell's membranes and cytoskeleton. It considers interactions between the components of the composite cell wall and the molecular elements within each of its components. The methods and techniques utilized to increase our understanding of the central role outer hair cell mechanics plays in hearing are also relevant to broader research questions in cell mechanics, cell motility, and cell transduction.
Collapse
Affiliation(s)
- W E Brownell
- Bobby R. Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine and Department of Bioengineering, Rice University, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
44
|
Lee JC, Discher DE. Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding. Biophys J 2001; 81:3178-92. [PMID: 11720984 PMCID: PMC1301778 DOI: 10.1016/s0006-3495(01)75954-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To assess local elasticity in the red cell's spectrin-actin network, nano-particles were tethered to actin nodes and their constrained thermal motions were tracked. Cells were both immobilized and controllably deformed by aspiration into a micropipette. Since the network is well-appreciated as soft, thermal fluctuations even in an unstressed portion of network were expected to be many tens of nanometers based on simple equipartition ideas. Real-time particle tracking indeed reveals such root-mean-squared motions for 40-nm fluorescent beads either tethered to actin directly within a cell ghost or connected to actin from outside a cell via glycophorin. Moreover, the elastically constrained displacements are significant on the scale of the network's internodal distance of approximately 60-80 nm. Surprisingly, along the aspirated projection-where the network is axially extended by as much as twofold or more-fluctuations in the axial direction are increased by almost twofold relative to motions in the unstressed network. The molecular basis for such strain softening is discussed broadly in terms of force-driven transitions. Specific considerations are given to 1) protein dissociations that reduce network connectivity, and 2) unfolding kinetics of a localized few of the red cell's approximately 10(7) spectrin repeats.
Collapse
Affiliation(s)
- J C Lee
- School of Engineering and Applied Science, and Structural Biology Program-The Wistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
45
|
Abstract
In this study, the mechanical properties of the lateral wall of the outer hair cell (OHC) are determined theoretically. First, the cell is modeled as a cylindrical two-layer shell consisting of the plasma membrane and the cortical lattice. When the stiffness of the plasma membrane is set to be 1.0 mN/m based on the estimated value of Tolomeo et al. [Biophys. J. 71 (1996) 421-429], and Poisson's ratio of the plasma membrane is assumed to be 0.90, the relationships between the stiffness, Poisson's ratio and the orthotropism of the cortical lattice are obtained by comparing the measurement results of cell inflation by Iwasa and Chadwick [J. Acoust. Soc. Am. 92 (1992) 3169-3173] with the numerical ones obtained with our model. Next, the obtained relationships between these mechanical properties of the cell are applied to the model, and the result of the cell length change due to the axial compression measured by Hallworth [J. Neurophysiol. 74 (1995) 2319-2329] is compared with that obtained from our numerical analysis. As a result, the axial and circumferential stiffnesses of the cortical lattice are evaluated to be 4.6 mN/m and 13 mN/m, respectively. Then, the contribution of the cortical lattice to the stiffness of the OHC lateral wall is examined. When the stiffness of the plasma membrane is less than 1.0 mN/m, the mechanical properties of the cortical lattice obtained from the two-layer shell model are nearly the same as those of the cell lateral wall obtained from the one-layer orthotropic shell model. Therefore, it is concluded that the stiffness of the cortical lattice is responsible for that of the whole lateral wall of the OHC. Moreover, the mechanical properties of the OHC obtained in this study are compared with those reported previously, and it is suggested that the one-layer orthotropic shell model is sufficient for further analyses of the motility and force production of the OHC.
Collapse
Affiliation(s)
- M Sugawara
- Department of Mechanical Engineering, Tohoku University, Aoba-yama 01, Sendai 980-8579, Japan.
| | | |
Collapse
|
46
|
Abstract
We propose a three-dimensional (3D) model to simulate outer hair cell electromotility. In our model, the major components of the composite cell wall are explicitly represented. We simulate the activity of the particles/motor complexes in the plasma membrane by generating active strains inside them and compute the overall response of the cell. We also consider the constrained wall and compute the generated active force. We estimate the parameters of our model by matching the predicted longitudinal and circumferential electromotile strains with those observed in the microchamber experiment. In addition, we match the earlier estimated values of the active force and cell wall stiffness. The computed electromotile strains in the plasma membrane and other components of the wall are in agreement with experimental observations in trypsinized cells and in nonmotile cells transfected with Prestin. We discover several features of the 3D mechanism of outer hair cell electromotilty. Because of the constraints under which the motors operate, the motor-related strains have to be 2-3 times larger than the observable strains. The motor density has a strong effect on the electromotile strain. Such effect on the active force is significantly lower because of the interplay between the active and passive properties of the cell wall.
Collapse
Affiliation(s)
- A A Spector
- Department of Biomedical Engineering, Center for Computational Medicine and Biology and Center for Hearing Sciences, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
47
|
Frolenkov GI, Mammano F, Kachar B. Action of 2,3-butanedione monoxime on capacitance and electromotility of guinea-pig cochlear outer hair cells. J Physiol 2001; 531:667-76. [PMID: 11251049 PMCID: PMC2278492 DOI: 10.1111/j.1469-7793.2001.0667h.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Whole-cell patch-clamp recordings were obtained from isolated cochlear outer hair cells (OHCs) while applying 2,3-butanedione monoxime (BDM) by pressure. BDM (5 mM) shifted the range of voltage sensitivity of membrane capacitance and cell length in the hyperpolarised direction by -49.6 +/- 4.0 mV (n = 12; mean +/- S.E.M.), without appreciable effects on membrane conductance. The shift was completely reversible and dose dependent, with a Hill coefficient of 1.8 /- 0.4 and a half-maximal dose of 3.0 +/- 0.8 mM (values +/- S.D). 2. The shift of the capacitance curve was also reproducible in cells whose natural turgor had been removed. BDM had no detectable effect on the capacitance of Deiters' cells, a non-sensory cell type of the organ of Corti. 3. The effect of BDM on membrane capacitance was faster than that of salicylate. At similar saturating concentrations (20 mM), the time constant of the capacitance changes was 1.8 +/- 0.3 s (n = 3) for salicylate and 0.75 +/- 0.06 s (n = 3) for BDM. The recovery periods were 13 +/- 1 s and 1.7 +/- 0.4 s, respectively (means +/- S.E.M.). 4. The effect of BDM, a known inorganic phosphatase, was compared to the effects of okadaic acid, trifluoperazine and W-7, which are commonly used in studies of protein phosphorylation. Incubation of OHCs with okadaic acid (1 microM, 30-60 min) shifted the voltage sensitivity of the membrane capacitance in the hyperpolarised direction. Incubation with trifluoperazine (30 microM) and W-7 (150 microM) shifted it in the opposite, depolarised direction. BDM induced hyperpolarising shifts even in the presence of W-7. 5. Simultaneous measurement of membrane capacitance and intracellular free Ca2+ concentration ([Ca2+]i) showed that BDM action on OHC voltage-dependent capacitance and electromotility is not mediated by changes of [Ca2+]i. 6. Our results suggest that: (a) the effects of BDM are unrelated to its inorganic phosphatase properties, cell turgor conditions or Ca2+ release from intracellular stores; and (b) BDM may target directly the voltage sensor of the OHC membrane motor protein.
Collapse
Affiliation(s)
- G I Frolenkov
- Section on Structural Cell Biology, Laboratory of Cellular Biology, NIDCD-NIH, Bethesda, MD 20892-4163, USA
| | | | | |
Collapse
|
48
|
Abstract
The distinguishing feature of the mammalian outer hair cells (OHCs) is to elongate and shorten at acoustic frequencies, when their intracellular potential is changed. This "electromotility" or "electromechanics" depends critically on positive intracellular pressure (turgor), maintained by the inflow of water through yet uncharacterized water pathways. We measured the water volume flow, J(v), across the plasma membrane of isolated guinea pig and rat OHCs after osmotic challenges and estimated the osmotic water permeability coefficient, P(f), to be approximately 10(-2) cm/sec. This value is within the range reported for osmotic flow mediated by the water channel proteins, aquaporins. J(v) was inhibited by HgCl(2), which is known to block aquaporin-mediated water transport. P(f) values that were estimated for OHCs from neonatal rats were of the order of approximately 2 x 10(-3) cm/sec, equivalent to that of membranes lacking water channel proteins. In an immunofluorescence assay we showed that an anti-peptide antibody specific for aquaporins labels the lateral plasma membrane of the OHC in the region in which electromotility is generated. Using patch-clamp recording, we found that water influx into the OHC is regulated by intracellular voltage. We also found that the most pronounced increases of the electromotility-associated charge movement and of the expression of OHC water channels occur between postnatal days 8 and 12, preceding the onset of hearing function in the rat. Our data indicate that electromotility and water transport in OHCs may influence each other structurally and functionally.
Collapse
|
49
|
Belyantseva IA, Frolenkov GI, Wade JB, Mammano F, Kachar B. Water permeability of cochlear outer hair cells: characterization and relationship to electromotility. J Neurosci 2000; 20:8996-9003. [PMID: 11124975 PMCID: PMC6773017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The distinguishing feature of the mammalian outer hair cells (OHCs) is to elongate and shorten at acoustic frequencies, when their intracellular potential is changed. This "electromotility" or "electromechanics" depends critically on positive intracellular pressure (turgor), maintained by the inflow of water through yet uncharacterized water pathways. We measured the water volume flow, J(v), across the plasma membrane of isolated guinea pig and rat OHCs after osmotic challenges and estimated the osmotic water permeability coefficient, P(f), to be approximately 10(-2) cm/sec. This value is within the range reported for osmotic flow mediated by the water channel proteins, aquaporins. J(v) was inhibited by HgCl(2), which is known to block aquaporin-mediated water transport. P(f) values that were estimated for OHCs from neonatal rats were of the order of approximately 2 x 10(-3) cm/sec, equivalent to that of membranes lacking water channel proteins. In an immunofluorescence assay we showed that an anti-peptide antibody specific for aquaporins labels the lateral plasma membrane of the OHC in the region in which electromotility is generated. Using patch-clamp recording, we found that water influx into the OHC is regulated by intracellular voltage. We also found that the most pronounced increases of the electromotility-associated charge movement and of the expression of OHC water channels occur between postnatal days 8 and 12, preceding the onset of hearing function in the rat. Our data indicate that electromotility and water transport in OHCs may influence each other structurally and functionally.
Collapse
Affiliation(s)
- I A Belyantseva
- Section on Structural Cell Biology, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
50
|
Two distinct Ca(2+)-dependent signaling pathways regulate the motor output of cochlear outer hair cells. J Neurosci 2000. [PMID: 10934241 DOI: 10.1523/jneurosci.20-16-05940.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The outer hair cells (OHCs) of the cochlea have an electromotility mechanism, based on conformational changes of voltage-sensitive "motor" proteins in the lateral plasma membrane. The translocation of electrical charges across the membrane that accompanies electromotility imparts a voltage dependency to the membrane capacitance. We used capacitance measurements to investigate whether electromotility may be influenced by different manipulations known to affect intracellular Ca(2+) or Ca(2+)-dependent protein phosphorylation. Application of acetylcholine (ACh) to the synaptic pole of isolated OHCs evoked a Ca(2+)-activated apamin-sensitive outward K(+) current. It also enhanced electromotility, probably because of a phosphorylation-dependent decrease of the cell's axial stiffness. However, ACh did not change the voltage-dependent capacitance either in conventional whole-cell experiments or under perforated-patch conditions. The effects produced by the Ca(2+) ionophore ionomycin mimicked those produced by ACh. Hyperpolarizing shifts of the voltage dependence of capacitance and electromotility were induced by okadaic acid, a promoter of protein phosphorylation, whereas trifluoperazine and W-7, antagonists of calmodulin, caused opposite depolarizing shifts. Components of the protein phosphorylation cascade-IP(3) receptors and calmodulin-dependent protein kinase type IV-were immunolocalized to the lateral wall of the OHC. Our results suggest that two different Ca(2+)-dependent pathways may control the OHC motor output. The first pathway modulates cytoskeletal stiffness and can be activated by ACh. The second pathway shifts the voltage sensitivity of the OHC electromotile mechanism and may be activated by the release of Ca(2+) from intracellular stores located in the proximity of the lateral plasma membrane.
Collapse
|