1
|
Chen H, Xia Z, Dong J, Huang B, Zhang J, Zhou F, Yan R, Shi Y, Gong J, Jiang J, Huang Z, Jiang D. Structural mechanism of voltage-gated sodium channel slow inactivation. Nat Commun 2024; 15:3691. [PMID: 38693179 PMCID: PMC11063143 DOI: 10.1038/s41467-024-48125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated sodium (NaV) channels mediate a plethora of electrical activities. NaV channels govern cellular excitability in response to depolarizing stimuli. Inactivation is an intrinsic property of NaV channels that regulates cellular excitability by controlling the channel availability. The fast inactivation, mediated by the Ile-Phe-Met (IFM) motif and the N-terminal helix (N-helix), has been well-characterized. However, the molecular mechanism underlying NaV channel slow inactivation remains elusive. Here, we demonstrate that the removal of the N-helix of NaVEh (NaVEhΔN) results in a slow-inactivated channel, and present cryo-EM structure of NaVEhΔN in a potential slow-inactivated state. The structure features a closed activation gate and a dilated selectivity filter (SF), indicating that the upper SF and the inner gate could serve as a gate for slow inactivation. In comparison to the NaVEh structure, NaVEhΔN undergoes marked conformational shifts on the intracellular side. Together, our results provide important mechanistic insights into NaV channel slow inactivation.
Collapse
Affiliation(s)
- Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhou
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Rui Yan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
2
|
Chen JL, Kuo CC. Inhibition of resurgent Na + currents by rufinamide. Neuropharmacology 2024; 247:109835. [PMID: 38228283 DOI: 10.1016/j.neuropharm.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
Na+ channels are essential for the genesis of action potentials in most neurons. After opening by membrane depolarization, Na+ channels enter a series of inactivated states (e.g. the fast, intermediate, and slow inactivated states; or If, Ii, and Is). The inactivated Na+ channel may recover via the open state upon membrane repolarization, giving rise to "resurgent" Na+ currents which could be critical for densely repetitive or burst discharges. We incubated CHO-K1 cells transfected with human NaV1.7 cDNA and measured resurgent currents with whole-cell patch recordings. We found Ii is the major inactivated state responsible for the genesis of resurgent currents. Rufinamide, in therapeutic concentrations, could selectively bind to Ii to slow the recovery process and dose-dependently inhibit resurgent currents. The other Na+ channel-inhibiting antiseizure medications (ASM), such as phenytoin and lacosamide (selectively binds to If and Is, separately), fail to show a similar inhibitory effect in clinically relevant concentrations. Resurgent currents are decreased with lengthening of the prepulse, presumably because of redistribution of the channel from Ii to If. Rufinamide could accentuate the decrease to mimic a use-dependent inhibitory effect. The molecular action of slowing of recovery from inactivation by binding to Ii also explains the highly correlative inhibitory effect of rufinamide on both transient and resurgent Na+ currents. The modest but correlative inhibition of both currents may make a novel synergistic effect and thus strong-enough suppression of pathological repetitive and especially burst discharges. Rufinamide may thus have a unique spectrum of therapeutic applications for disorders with excessive neural excitabilities.
Collapse
Affiliation(s)
- Jian-Lin Chen
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Renaud JM, Ørtenblad N, McKenna MJ, Overgaard K. Exercise and fatigue: integrating the role of K +, Na + and Cl - in the regulation of sarcolemmal excitability of skeletal muscle. Eur J Appl Physiol 2023; 123:2345-2378. [PMID: 37584745 PMCID: PMC10615939 DOI: 10.1007/s00421-023-05270-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.
Collapse
Affiliation(s)
- Jean-Marc Renaud
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia
- College of Physical Education, Southwest University, Chongqing, China
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A mechanistic reinterpretation of fast inactivation in voltage-gated Na + channels. Nat Commun 2023; 14:5072. [PMID: 37604801 PMCID: PMC10442390 DOI: 10.1038/s41467-023-40514-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
The hinged-lid model was long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif is located far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive, leaky inactivated state and decreases the selectivity for Na+ ion. Altogether, we present an alternative molecular framework to describe fast inactivation.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
5
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A Mechanistic Reinterpretation of Fast Inactivation in Voltage-Gated Na+ Channels. RESEARCH SQUARE 2023:rs.3.rs-2924505. [PMID: 37292679 PMCID: PMC10246267 DOI: 10.21203/rs.3.rs-2924505/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hinged-lid model is long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif locates far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive "leaky" inactivated state and decreases the selectivity for Na + ion. Altogether, we present an alternative molecular framework to describe fast inactivation.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Valparaiso, Chile
| |
Collapse
|
6
|
Liu Y, Bassetto CAZ, Pinto BI, Bezanilla F. A Mechanistic Reinterpretation of Fast Inactivation in Voltage-Gated Na + Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538555. [PMID: 37162849 PMCID: PMC10168311 DOI: 10.1101/2023.04.27.538555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fast Inactivation in voltage-gated Na + channels plays essential roles in numerous physiological functions. The canonical hinged-lid model has long predicted that a hydrophobic motif in the DIII-DIV linker (IFM) acts as the gating particle that occludes the permeation pathway during fast inactivation. However, the fact that the IFM motif is located far from the pore in recent high-resolution structures of Nav + channels contradicts this status quo model. The precise molecular determinants of fast inactivation gate once again, become an open question. Here, we provide a mechanistic reinterpretation of fast inactivation based on ionic and gating current data. In Nav1.4 the actual inactivation gate is comprised of two hydrophobic rings at the bottom of S6. These function in series and closing once the IFM motif binds. Reducing the volume of the sidechain in both rings led to a partially conductive inactivated state. Our experiments also point to a previously overlooked coupling pathway between the bottom of S6 and the selectivity filter.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bernardo I Pinto
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Valparaiso, Chile
| |
Collapse
|
7
|
Ghovanloo MR, Tyagi S, Zhao P, Kiziltug E, Estacion M, Dib-Hajj SD, Waxman SG. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons. CELL REPORTS METHODS 2023; 3:100385. [PMID: 36814833 PMCID: PMC9939380 DOI: 10.1016/j.crmeth.2022.100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The patch-clamp technique is the gold-standard methodology for analysis of excitable cells. However, throughput of manual patch-clamp is slow, and high-throughput robotic patch-clamp, while helpful for applications like drug screening, has been primarily used to study channels and receptors expressed in heterologous systems. We introduce an approach for automated high-throughput patch-clamping that enhances analysis of excitable cells at the channel and cellular levels. This involves dissociating and isolating neurons from intact tissues and patch-clamping using a robotic instrument, followed by using an open-source Python script for analysis and filtration. As a proof of concept, we apply this approach to investigate the biophysical properties of voltage-gated sodium (Nav) channels in dorsal root ganglion (DRG) neurons, which are among the most diverse and complex neuronal cells. Our approach enables voltage- and current-clamp recordings in the same cell, allowing unbiased, fast, simultaneous, and head-to-head electrophysiological recordings from a wide range of freshly isolated neurons without requiring culturing on coverslips.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Emre Kiziltug
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
8
|
Ghovanloo MR, Estacion M, Higerd-Rusli GP, Zhao P, Dib-Hajj S, Waxman SG. Inhibition of sodium conductance by cannabigerol contributes to a reduction of dorsal root ganglion neuron excitability. Br J Pharmacol 2022; 179:4010-4030. [PMID: 35297036 DOI: 10.1111/bph.15833] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabigerol (CBG), a non-psychotropic phytocannabinoid and a precursor of ∆9 -tetrahydrocannabinol and cannabidiol, has been suggested to act as an analgesic. A previous study reported that CBG (10 μM) blocks voltage-gated sodium (Nav ) currents in CNS neurons, although the underlying mechanism is not well understood. Genetic and functional studies have validated Nav 1.7 channels as an opportune target for analgesic drug development. The effects of CBG on Nav 1.7 channels, which may contribute to its analgesic properties, have not been previously investigated. EXPERIMENTAL APPROACH To determine the effects of CBG on Nav channels, we used stably transfected HEK cells and primary dorsal root ganglion (DRG) neurons to characterize compound effects using experimental and computational techniques. These included patch-clamp, multielectrode array, and action potential modelling. KEY RESULTS CBG is a ~10-fold state-dependent Nav channel inhibitor (KI -KR : ~2-20 μM) with an average Hill-slope of ~2. We determined that, at lower concentrations, CBG predominantly blocks sodium Gmax and slows recovery from inactivation. However, as the concentration is increased, CBG also induces a hyperpolarizing shift in the half-voltage of inactivation. Our modelling and multielectrode array recordings suggest that CBG attenuates DRG excitability. CONCLUSIONS AND IMPLICATIONS Inhibition of Nav 1.7 channels in DRG neurons may underlie CBG-induced neuronal hypoexcitability. As most Nav 1.7 channels are inactivated at the resting membrane potential of DRG neurons, they are more likely to be inhibited by lower CBG concentrations, suggesting functional selectivity against Nav 1.7 channels, compared with other Nav channels (via Gmax block).
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Grant P Higerd-Rusli
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, Connecticut, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
9
|
MacKenzie TMG, Abderemane-Ali F, Garrison CE, Minor DL, Bois JD. Differential effects of modified batrachotoxins on voltage-gated sodium channel fast and slow inactivation. Cell Chem Biol 2022; 29:615-624.e5. [PMID: 34963066 PMCID: PMC9035044 DOI: 10.1016/j.chembiol.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
Voltage-gated sodium channels (NaVs) are targets for a number of acute poisons. Many of these agents act as allosteric modulators of channel activity and serve as powerful chemical tools for understanding channel function. Herein, we detail studies with batrachotoxin (BTX), a potent steroidal amine, and three ester derivatives prepared through de novo synthesis against recombinant NaV subtypes (rNaV1.4 and hNaV1.5). Two of these compounds, BTX-B and BTX-cHx, are functionally equivalent to BTX, hyperpolarizing channel activation and blocking both fast and slow inactivation. BTX-yne-a C20-n-heptynoate ester-is a conspicuous outlier, eliminating fast but not slow inactivation. This property differentiates BTX-yne among other NaV modulators as a unique reagent that separates inactivation processes. These findings are supported by functional studies with bacterial NaVs (BacNaVs) that lack a fast inactivation gate. The availability of BTX-yne should advance future efforts aimed at understanding NaV gating mechanisms and designing allosteric regulators of NaV activity.
Collapse
Affiliation(s)
- Tim M G MacKenzie
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, Box 3122, 555 Mission Bay Boulevard South, Rm. 452Z, San Francisco, CA 94158-9001, USA
| | - Catherine E Garrison
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, Box 3122, 555 Mission Bay Boulevard South, Rm. 452Z, San Francisco, CA 94158-9001, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-9001, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158-9001, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94158-9001, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - J Du Bois
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Lin YC, Lai YC, Lin TH, Yang YC, Kuo CC. Selective stabilization of the intermediate inactivated Na+ channel by the new-generation anticonvulsant rufinamide. Biochem Pharmacol 2022; 197:114928. [DOI: 10.1016/j.bcp.2022.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
|
11
|
Ransdell JL, Moreno JD, Bhagavan D, Silva JR, Nerbonne JM. Intrinsic mechanisms in the gating of resurgent Na + currents. eLife 2022; 11:e70173. [PMID: 35076394 PMCID: PMC8824471 DOI: 10.7554/elife.70173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The resurgent component of the voltage-gated sodium current (INaR) is a depolarizing conductance, revealed on membrane hyperpolarizations following brief depolarizing voltage steps, which has been shown to contribute to regulating the firing properties of numerous neuronal cell types throughout the central and peripheral nervous systems. Although mediated by the same voltage-gated sodium (Nav) channels that underlie the transient and persistent Nav current components, the gating mechanisms that contribute to the generation of INaR remain unclear. Here, we characterized Nav currents in mouse cerebellar Purkinje neurons, and used tailored voltage-clamp protocols to define how the voltage and the duration of the initial membrane depolarization affect the amplitudes and kinetics of INaR. Using the acquired voltage-clamp data, we developed a novel Markov kinetic state model with parallel (fast and slow) inactivation pathways and, we show that this model reproduces the properties of the resurgent, as well as the transient and persistent, Nav currents recorded in (mouse) cerebellar Purkinje neurons. Based on the acquired experimental data and the simulations, we propose that resurgent Na+ influx occurs as a result of fast inactivating Nav channels transitioning into an open/conducting state on membrane hyperpolarization, and that the decay of INaR reflects the slow accumulation of recovered/opened Nav channels into a second, alternative and more slowly populated, inactivated state. Additional simulations reveal that extrinsic factors that affect the kinetics of fast or slow Nav channel inactivation and/or impact the relative distribution of Nav channels in the fast- and slow-inactivated states, such as the accessory Navβ4 channel subunit, can modulate the amplitude of INaR.
Collapse
Affiliation(s)
- Joseph L Ransdell
- Departments of Medicine, Cardiovascular Division, Washington UniversitySt. LouisUnited States
| | - Jonathan D Moreno
- Developmental Biomedical Engineering, Washington UniversitySt. LouisUnited States
| | - Druv Bhagavan
- Developmental Biomedical Engineering, Washington UniversitySt. LouisUnited States
| | - Jonathan R Silva
- Developmental Biomedical Engineering, Washington UniversitySt. LouisUnited States
| | - Jeanne M Nerbonne
- Departments of Medicine, Cardiovascular Division, Washington UniversitySt. LouisUnited States
- Developmental Biology, Washington UniversitySt. LouisUnited States
| |
Collapse
|
12
|
The insecticide deltamethrin enhances sodium channel slow inactivation of human Nav1.9, Nav1.8 and Nav1.7. Toxicol Appl Pharmacol 2021; 428:115676. [PMID: 34389319 DOI: 10.1016/j.taap.2021.115676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023]
Abstract
The insecticide deltamethrin of the pyrethroid class mainly targets voltage-gated sodium channels (Navs). Deltamethrin prolongs the opening of Navs by slowing down fast inactivation and deactivation. Pyrethroids are supposedly safe for humans, however, they have also been linked to the gulf-war syndrome, a neuropathic pain condition that can develop following exposure to certain chemicals. Inherited neuropathic pain conditions have been linked to mutations in the Nav subtypes Nav1.7, Nav1.8, and Nav1.9. Here, we examined the effect of deltamethrin on the human isoforms Nav1.7, Nav1.8, and Nav1.9_C4 (chimera containing the C-terminus of rat Nav1.4) heterologously expressed in HEK293T and ND7/23 cells using whole-cell patch-clamp electrophysiology. For all three Nav subtypes, we observed increased persistent and tail currents that are typical for Nav channels modified by deltamethrin. The most surprising finding was an enhanced slow inactivation induced by deltamethrin in all three Nav subtypes. An enhanced slow inactivation is contrary to the prolonged opening caused by pyrethroids and has not been described for deltamethrin or any other pyrethroid before. Furthermore, we found that the fraction of deltamethrin-modified channels increased use-dependently. However, for Nav1.8, the use-dependent potentiation occurred only when the holding potential was increased to -90 mV, a potential at which the tail currents decay more slowly. This indicates that use-dependent modification is due to an accumulation of tail currents. In summary, our findings support a novel mechanism whereby deltamethrin enhances slow inactivation of voltage-gated sodium channels, which may, depending on the cellular resting membrane potential, reduce neuronal excitability and counteract the well-described pyrethroid effects of prolonging channel opening.
Collapse
|
13
|
Ghovanloo MR, Choudhury K, Bandaru TS, Fouda MA, Rayani K, Rusinova R, Phaterpekar T, Nelkenbrecher K, Watkins AR, Poburko D, Thewalt J, Andersen OS, Delemotte L, Goodchild SJ, Ruben PC. Cannabidiol inhibits the skeletal muscle Nav1.4 by blocking its pore and by altering membrane elasticity. J Gen Physiol 2021; 153:211970. [PMID: 33836525 PMCID: PMC8042605 DOI: 10.1085/jgp.202012701] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/13/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is the primary nonpsychotropic phytocannabinoid found in Cannabis sativa, which has been proposed to be therapeutic against many conditions, including muscle spasms. Among its putative targets are voltage-gated sodium channels (Navs), which have been implicated in many conditions. We investigated the effects of CBD on Nav1.4, the skeletal muscle Nav subtype. We explored direct effects, involving physical block of the Nav pore, as well as indirect effects, involving modulation of membrane elasticity that contributes to Nav inhibition. MD simulations revealed CBD's localization inside the membrane and effects on bilayer properties. Nuclear magnetic resonance (NMR) confirmed these results, showing CBD localizing below membrane headgroups. To determine the functional implications of these findings, we used a gramicidin-based fluorescence assay to show that CBD alters membrane elasticity or thickness, which could alter Nav function through bilayer-mediated regulation. Site-directed mutagenesis in the vicinity of the Nav1.4 pore revealed that removing the local anesthetic binding site with F1586A reduces the block of INa by CBD. Altering the fenestrations in the bilayer-spanning domain with Nav1.4-WWWW blocked CBD access from the membrane into the Nav1.4 pore (as judged by MD). The stabilization of inactivation, however, persisted in WWWW, which we ascribe to CBD-induced changes in membrane elasticity. To investigate the potential therapeutic value of CBD against Nav1.4 channelopathies, we used a pathogenic Nav1.4 variant, P1158S, which causes myotonia and periodic paralysis. CBD reduces excitability in both wild-type and the P1158S variant. Our in vitro and in silico results suggest that CBD may have therapeutic value against Nav1.4 hyperexcitability.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada.,Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Koushik Choudhury
- Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Tagore S Bandaru
- Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Tejas Phaterpekar
- Department of Molecular Biology and Biochemistry/Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Karen Nelkenbrecher
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
| | - Abeline R Watkins
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Damon Poburko
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Jenifer Thewalt
- Department of Molecular Biology and Biochemistry/Physics, Simon Fraser University, Burnaby, BC, Canada
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Physics, Royal Institute of Technology, Solna, Sweden
| | - Samuel J Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
14
|
Miranda DR, Reed E, Jama A, Bottomley M, Ren H, Rich MM, Voss AA. Mechanisms of altered skeletal muscle action potentials in the R6/2 mouse model of Huntington's disease. Am J Physiol Cell Physiol 2020; 319:C218-C232. [PMID: 32432924 DOI: 10.1152/ajpcell.00153.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) patients suffer from progressive and debilitating motor dysfunction for which only palliative treatment is currently available. Previously, we discovered reduced skeletal muscle Cl- channel (ClC-1) and inwardly rectifying K+ channel (Kir) currents in R6/2 HD transgenic mice. To further investigate the role of ClC-1 and Kir currents in HD skeletal muscle pathology, we measured the effect of reduced ClC-1 and Kir currents on action potential (AP) repetitive firing in R6/2 mice using a two-electrode current clamp. We found that R6/2 APs had a significantly lower peak amplitude, depolarized maximum repolarization, and prolonged decay time compared with wild type (WT). Of these differences, only the maximum repolarization was accounted for by the reduction in ClC-1 and Kir currents, indicating the presence of additional ion channel defects. We found that both KV1.5 and KV3.4 mRNA levels were significantly reduced in R6/2 skeletal muscle compared with WT, which explains the prolonged decay time of R6/2 APs. Overall, we found that APs in WT and R6/2 muscle significantly and progressively change during activity to maintain peak amplitude despite buildup of Na+ channel inactivation. Even with this resilience, the persistently reduced peak amplitude of R6/2 APs is expected to result in earlier fatigue and may help explain the motor impersistence experienced by HD patients. This work lays the foundation to link electrical changes to force generation defects in R6/2 HD mice and to examine the regulatory events controlling APs in WT muscle.
Collapse
Affiliation(s)
- Daniel R Miranda
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Eric Reed
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio
| | - Michael Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, Ohio
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio
| | - Andrew A Voss
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| |
Collapse
|
15
|
Beard JM, Shockett PE, O'Reilly JP. Substituted cysteine scanning in D1-S6 of the sodium channel hNav1.4 alters kinetics and structural interactions of slow inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183129. [PMID: 31738900 DOI: 10.1016/j.bbamem.2019.183129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Slow inactivation in voltage-gated Na+ channels (Navs) plays an important physiological role in excitable tissues (muscle, heart, nerves) and mutations that disrupt Nav slow inactivation can result in pathophysiologies (myotonia, arrhythmias, epilepsy). While the molecular mechanisms responsible for slow inactivation remain elusive, previous studies have suggested a role for the pore-lining D1-S6 helix. The goals of this research were to determine if (1) cysteine substitutions in D1-S6 affect gating kinetics and (2) methanethiosulfonate ethylammonium (MTSEA) accessibility changes in different kinetic states. Site-directed mutagenesis in the human skeletal muscle isoform hNav1.4 was used to substitute cysteine for eleven amino acids in D1-S6 from L433 to L443. Mutants were expressed in HEK cells and recorded from with whole-cell patch clamp. All mutations affected one or more baseline kinetics of the sodium channel, including activation, fast inactivation, and slow inactivation. Substitution of cysteine (for nonpolar residues) adjacent to polar residues destabilized slow inactivation in G434C, F436C, I439C, and L441C. Cysteine substitution without adjacent polar residues enhanced slow inactivation in L438C and N440C, and disrupted possible H-bonds involving Y437:D4 S4-S5 and N440:D4-S6. MTSEA exposure in closed, fast-inactivated, or slow-inactivated states in most mutants had little-to-no effect. In I439C, MTSEA application in closed, fast-inactivated, and slow-inactivated states produced irreversible reduction in current, suggesting I439C accessibility to MTSEA in all three kinetic states. D1-S6 is important for Nav gating kinetics, stability of slow-inactivated state, structural contacts, and state-dependent positioning. However, prominent reconfiguration of D1-S6 may not occur in slow inactivation.
Collapse
Affiliation(s)
- Jonathan M Beard
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA.
| | - Penny E Shockett
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA.
| | - John P O'Reilly
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA.
| |
Collapse
|
16
|
Denomme N, Hull JM, Mashour GA. Role of Voltage-Gated Sodium Channels in the Mechanism of Ether-Induced Unconsciousness. Pharmacol Rev 2019; 71:450-466. [PMID: 31471460 DOI: 10.1124/pr.118.016592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite continuous clinical use for more than 170 years, the mechanism of general anesthetics has not been completely characterized. In this review, we focus on the role of voltage-gated sodium channels in the sedative-hypnotic actions of halogenated ethers, describing the history of anesthetic mechanisms research, the basic neurobiology and pharmacology of voltage-gated sodium channels, and the evidence for a mechanistic interaction between halogenated ethers and sodium channels in the induction of unconsciousness. We conclude with a more integrative perspective of how voltage-gated sodium channels might provide a critical link between molecular actions of the halogenated ethers and the more distributed network-level effects associated with the anesthetized state across species.
Collapse
Affiliation(s)
- Nicholas Denomme
- Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan
| | - Jacob M Hull
- Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan
| | - George A Mashour
- Departments of Pharmacology (N.D.) and Anesthesiology (G.A.M.), Center for Consciousness Science (N.D., G.A.M.), and Neuroscience Graduate Program (J.M.H., G.A.M.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Pharmacogenetics of myotonic hNav1.4 sodium channel variants situated near the fast inactivation gate. Pharmacol Res 2019; 141:224-235. [DOI: 10.1016/j.phrs.2019.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
|
18
|
Abstract
Lacosamide is a new-generation antiepileptic drug (AED) most commonly used adjunctively in the setting of partial-onset seizures refractory to traditional therapy. We describe the first case report, to our knowledge, of a patient who developed recurrent, sustained ventricular tachycardia with multiple administrations of lacosamide in an acute setting. A 70-year-old woman with a history significant for valvular heart disease was admitted to the inpatient cardiology service for worsening heart failure. On hospital day 7, she received a bioprosthetic aortic valve. Prior to surgery and immediately after, the patient’s electrocardiogram (ECG) was normal. After developing multiple generalized tonic–clonic seizures refractory to levetiracetam, fosphenytoin, and valproic acid, the decision was made to initiate lacosamide. Two hours following the second lacosamide dose, the patient developed a wide complex QRS that transitioned into sustained ventricular tachycardia requiring electrical cardioversion. Sustained ventricular tachycardia occurred again, just hours after the third dose of lacosamide was given. Following cessation of lacosamide, the patient’s QRS interval normalized and has since had no documented episodes of ventricular tachycardia. Clinicians should be aware of the potential for life-threatening rhythmic disturbances in patients initiated on lacosamide and the need for vigilant ECG, electrolyte, and drug–drug monitoring.
Collapse
|
19
|
Abstract
The NaV1.4 sodium channel is highly expressed in skeletal muscle, where it carries almost all of the inward Na+ current that generates the action potential, but is not present at significant levels in other tissues. Consequently, mutations of SCN4A encoding NaV1.4 produce pure skeletal muscle phenotypes that now include six allelic disorders: sodium channel myotonia, paramyotonia congenita, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, congenital myasthenia, and congenital myopathy with hypotonia. Mutation-specific alternations of NaV1.4 function explain the mechanistic basis for the diverse phenotypes and identify opportunities for strategic intervention to modify the burden of disease.
Collapse
Affiliation(s)
- Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Ghovanloo MR, Aimar K, Ghadiry-Tavi R, Yu A, Ruben PC. Physiology and Pathophysiology of Sodium Channel Inactivation. CURRENT TOPICS IN MEMBRANES 2016; 78:479-509. [PMID: 27586293 DOI: 10.1016/bs.ctm.2016.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channels are present in different tissues within the human body, predominantly nerve, muscle, and heart. The sodium channel is composed of four similar domains, each containing six transmembrane segments. Each domain can be functionally organized into a voltage-sensing region and a pore region. The sodium channel may exist in resting, activated, fast inactivated, or slow inactivated states. Upon depolarization, when the channel opens, the fast inactivation gate is in its open state. Within the time frame of milliseconds, this gate closes and blocks the channel pore from conducting any more sodium ions. Repetitive or continuous stimulations of sodium channels result in a rate-dependent decrease of sodium current. This process may continue until the channel fully shuts down. This collapse is known as slow inactivation. This chapter reviews what is known to date regarding, sodium channel inactivation with a focus on various mutations within each NaV subtype and with clinical implications.
Collapse
Affiliation(s)
- M-R Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - K Aimar
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - R Ghadiry-Tavi
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - A Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - P C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
21
|
Gawali V, Todt H. Mechanism of Inactivation in Voltage-Gated Na+ Channels. CURRENT TOPICS IN MEMBRANES 2016; 78:409-50. [DOI: 10.1016/bs.ctm.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Abdelsayed M, Peters CH, Ruben PC. Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants. J Physiol 2015; 593:4201-23. [PMID: 26131924 DOI: 10.1113/jp270139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/16/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiac arrhythmias are often associated with mutations in SCN5A the gene that encodes the cardiac paralogue of the voltage-gated sodium channel, NaV 1.5. The NaV 1.5 mutants R1193Q and E1784K give rise to both long QT and Brugada syndromes. Various environmental factors, including temperature, may unmask arrhythmia. We sought to determine whether temperature might be an arrhythmogenic trigger in these two mixed syndrome mutants. Whole-cell patch clamp was used to measure the biophysical properties of NaV 1.5 WT, E1784K and R1193Q mutants. Recordings were performed using Chinese hamster ovary (CHOk1) cells transiently transfected with the NaV 1.5 α subunit (WT, E1784K, or R1193Q), β1 subunit, and eGFP. The channels' voltage-dependent and kinetic properties were measured at three different temperatures: 10ºC, 22ºC, and 34ºC. The E1784K mutant is more thermosensitive than either WT or R1193Q channels. When temperature is elevated from 22°C to 34°C, there is a greater increase in late INa and use-dependent inactivation in E1784K than in WT or R1193Q. However, when temperature is lowered to 10°C, the two mutants show a decrease in channel availability. Action potential modelling using Q10 fit values, extrapolated to physiological and febrile temperatures, show a larger transmural voltage gradient in E1784K compared to R1193Q and WT with hyperthermia. The E1784K mutant is more thermosensitive than WT or R1193Q channels. This enhanced thermosensitivity may be a mechanism for arrhythmogenesis in patients with E1784K sodium channels.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Colin H Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| |
Collapse
|
23
|
Abstract
Prolonged depolarizing pulses that last seconds to minutes cause slow inactivation of Na(+) channels, which regulates neuron and myocyte excitability by reducing availability of inward current. In neurons, slow inactivation has been linked to memory of previous excitation and in skeletal muscle it ensures myocytes are able to contract when K(+) is elevated. The molecular mechanisms underlying slow inactivation are unclear even though it has been studied for 50+ years. This chapter reviews what is known to date regarding the definition, measurement, and mechanisms of voltage-gated Na(+) channel slow inactivation.
Collapse
Affiliation(s)
- Jonathan Silva
- Department of Biomedical Engineering, Washington University in St. Louis, Campus Box 1097, St. Louis, MO, 63116, USA,
| |
Collapse
|
24
|
Lewis AH, Raman IM. Interactions among DIV voltage-sensor movement, fast inactivation, and resurgent Na current induced by the NaVβ4 open-channel blocking peptide. ACTA ACUST UNITED AC 2013; 142:191-206. [PMID: 23940261 PMCID: PMC3753608 DOI: 10.1085/jgp.201310984] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Resurgent Na current flows as voltage-gated Na channels recover through open states from block by an endogenous open-channel blocking protein, such as the NaVβ4 subunit. The open-channel blocker and fast-inactivation gate apparently compete directly, as slowing the onset of fast inactivation increases resurgent currents by favoring binding of the blocker. Here, we tested whether open-channel block is also sensitive to deployment of the DIV voltage sensor, which facilitates fast inactivation. We expressed NaV1.4 channels in HEK293t cells and assessed block by a free peptide replicating the cytoplasmic tail of NaVβ4 (the "β4 peptide"). Macroscopic fast inactivation was disrupted by mutations of DIS6 (L443C/A444W; "CW" channels), which reduce fast-inactivation gate binding, and/or by the site-3 toxin ATX-II, which interferes with DIV movement. In wild-type channels, the β4 peptide competed poorly with fast inactivation, but block was enhanced by ATX. With the CW mutation, large peptide-induced resurgent currents were present even without ATX, consistent with increased open-channel block upon depolarization and slower deactivation after blocker unbinding upon repolarization. The addition of ATX greatly increased transient current amplitudes and further enlarged resurgent currents, suggesting that pore access by the blocker is actually decreased by full deployment of the DIV voltage sensor. ATX accelerated recovery from block at hyperpolarized potentials, however, suggesting that the peptide unbinds more readily when DIV voltage-sensor deployment is disrupted. These results are consistent with two open states in Na channels, dependent on the DIV voltage-sensor position, which differ in affinity for the blocking protein.
Collapse
Affiliation(s)
- Amanda H Lewis
- Interdepartmental Biological Sciences Program and 2 Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
25
|
Silva JR, Goldstein SAN. Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: a periodic paralysis mutation in Na(V)1.4 (L689I). ACTA ACUST UNITED AC 2013; 141:323-34. [PMID: 23401572 PMCID: PMC3581693 DOI: 10.1085/jgp.201210910] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In skeletal muscle, slow inactivation (SI) of NaV1.4 voltage-gated sodium channels prevents spontaneous depolarization and fatigue. Inherited mutations in NaV1.4 that impair SI disrupt activity-induced regulation of channel availability and predispose patients to hyperkalemic periodic paralysis. In our companion paper in this issue (Silva and Goldstein. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210909), the four voltage sensors in NaV1.4 responsible for activation of channels over microseconds are shown to slowly immobilize over 1–160 s as SI develops and to regain mobility on recovery from SI. Individual sensor movements assessed via attached fluorescent probes are nonidentical in their voltage dependence, time course, and magnitude: DI and DII track SI onset, and DIII appears to reflect SI recovery. A causal link was inferred by tetrodotoxin (TTX) suppression of both SI onset and immobilization of DI and DII sensors. Here, the association of slow sensor immobilization and SI is verified by study of NaV1.4 channels with a hyperkalemic periodic paralysis mutation; L689I produces complex changes in SI, and these are found to manifest directly in altered sensor movements. L689I removes a component of SI with an intermediate time constant (∼10 s); the mutation also impedes immobilization of the DI and DII sensors over the same time domain in support of direct mechanistic linkage. A model that recapitulates SI attributes responsibility for intermediate SI to DI and DII (10 s) and a slow component to DIII (100 s), which accounts for residual SI, not impeded by L689I or TTX.
Collapse
Affiliation(s)
- Jonathan R Silva
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | | |
Collapse
|
26
|
Silva JR, Goldstein SAN. Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4. ACTA ACUST UNITED AC 2013; 141:309-21. [PMID: 23401571 PMCID: PMC3581692 DOI: 10.1085/jgp.201210909] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The number of voltage-gated sodium (NaV) channels available to generate action potentials in muscles and nerves is adjusted over seconds to minutes by prior electrical activity, a process called slow inactivation (SI). The basis for SI is uncertain. NaV channels have four domains (DI–DIV), each with a voltage sensor that moves in response to depolarizing stimulation over milliseconds to activate the channels. Here, SI of the skeletal muscle channel NaV1.4 is induced by repetitive stimulation and is studied by recording of sodium currents, gating currents, and changes in the fluorescence of probes on each voltage sensor to assess their movements. The magnitude, voltage dependence, and time course of the onset and recovery of SI are observed to correlate with voltage-sensor movements 10,000-fold slower than those associated with activation. The behavior of each voltage sensor is unique. Development of SI over 1–160 s correlates best with slow immobilization of the sensors in DI and DII; DIII tracks the onset of SI with less fidelity. Showing linkage to the sodium conduction pathway, pore block by tetrodotoxin affects both SI and immobilization of all the sensors, with DI and DII significantly suppressed. Recovery from SI correlates best with slow restoration of mobility of the sensor in DIII. The findings suggest that voltage-sensor movements determine SI and thereby mediate NaV channel availability.
Collapse
Affiliation(s)
- Jonathan R Silva
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | | |
Collapse
|
27
|
Jones DK, Peters CH, Allard CR, Claydon TW, Ruben PC. Proton sensors in the pore domain of the cardiac voltage-gated sodium channel. J Biol Chem 2013; 288:4782-91. [PMID: 23283979 DOI: 10.1074/jbc.m112.434266] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protons impart isoform-specific modulation of inactivation in neuronal, skeletal muscle, and cardiac voltage-gated sodium (Na(V)) channels. Although the structural basis of proton block in Na(V) channels has been well described, the amino acid residues responsible for the changes in Na(V) kinetics during extracellular acidosis are as yet unknown. We expressed wild-type (WT) and two pore mutant constructs (H880Q and C373F) of the human cardiac Na(V) channel, Na(V)1.5, in Xenopus oocytes. C373F and H880Q both attenuated proton block, abolished proton modulation of use-dependent inactivation, and altered pH modulation of the steady-state and kinetic parameters of slow inactivation. Additionally, C373F significantly reduced the maximum probability of use-dependent inactivation and slow inactivation, relative to WT. H880Q also significantly reduced the maximum probability of slow inactivation and shifted the voltage dependence of activation and fast inactivation to more positive potentials, relative to WT. These data suggest that Cys-373 and His-880 in Na(V)1.5 are proton sensors for use-dependent and slow inactivation and have implications in isoform-specific modulation of Na(V) channels.
Collapse
Affiliation(s)
- David K Jones
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | |
Collapse
|
28
|
Abstract
The voltage-gated Na+ channel is a critical determinant of the action potential (AP) upstroke. Increasing Na+ conductance may speed AP propagation. In this study, we propose use of the skeletal muscle Na+ channel SkM1 as a more favorable gene than the cardiac isoform SCN5A to enhance conduction velocity in depolarized cardiac tissue. We used cells that electrically coupled with cardiac myocytes as a delivery platform to introduce the Na+ channels. Human embryonic kidney 293 cells were stably transfected with SkM1 or SCN5A. SkM1 had a more depolarized (18 mV shift) inactivation curve than SCN5A. We also found that SkM1 recovered faster from inactivation than SCN5A. When coupled with SkM1 expressing cells, cultured myocytes showed an increase in the dV/dtmax of the AP. Expression of SCN5A had no such effect. In an in vitro cardiac syncytium, coculture of neonatal cardiac myocytes with SkM1 expressing but not SCN5A expressing cells significantly increased the conduction velocity under both normal and depolarized conditions. In an in vitro reentry model induced by high-frequency stimulation, expression of SkM1 also enhanced angular velocity of the induced reentry. These results suggest that cells carrying a Na+ channel with a more depolarized inactivation curve can improve cardiac excitability and conduction in depolarized tissues.
Collapse
|
29
|
Vilin YY, Peters CH, Ruben PC. Acidosis differentially modulates inactivation in na(v)1.2, na(v)1.4, and na(v)1.5 channels. Front Pharmacol 2012; 3:109. [PMID: 22701426 PMCID: PMC3372088 DOI: 10.3389/fphar.2012.00109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/22/2012] [Indexed: 11/13/2022] Open
Abstract
Na(V) channels play a crucial role in neuronal and muscle excitability. Using whole-cell recordings we studied effects of low extracellular pH on the biophysical properties of Na(V)1.2, Na(V)1.4, and Na(V)1.5, expressed in cultured mammalian cells. Low pH produced different effects on different channel subtypes. Whereas Na(V)1.4 exhibited very low sensitivity to acidosis, primarily limited to partial block of macroscopic currents, the effects of low pH on gating in Na(V)1.2 and Na(V)1.5 were profound. In Na(V)1.2 low pH reduced apparent valence of steady-state fast inactivation, shifted the τ(V) to depolarizing potentials and decreased channels availability during onset to slow and use-dependent inactivation (UDI). In contrast, low pH delayed open-state inactivation in Na(V)1.5, right-shifted the voltage-dependence of window current, and increased channel availability during onset to slow and UDI. These results suggest that protons affect channel availability in an isoform-specific manner. A computer model incorporating these results demonstrates their effects on membrane excitability.
Collapse
Affiliation(s)
- Yury Y Vilin
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | | | | |
Collapse
|
30
|
McCavera SJ, Soderlund DM. Differential state-dependent modification of inactivation-deficient Nav1.6 sodium channels by the pyrethroid insecticides S-bioallethrin, tefluthrin and deltamethrin. Neurotoxicology 2012; 33:384-90. [PMID: 22465659 PMCID: PMC3574822 DOI: 10.1016/j.neuro.2012.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 12/19/2022]
Abstract
Pyrethroid insecticides disrupt nerve function by modifying the gating kinetics of transitions between the conducting and nonconducting states of voltage-gated sodium channels. Pyrethroids modify rat Na(v)1.6+β1+β2 channels expressed in Xenopus oocytes in both the resting state and in one or more states that require channel activation by repeated depolarization. The state dependence of modification depends on the pyrethroid examined: deltamethrin modification requires repeated channel activation, tefluthrin modification is significantly enhanced by repeated channel activation, and S-bioallethrin modification is unaffected by repeated activation. Use-dependent modification by deltamethrin and tefluthrin implies that these compounds bind preferentially to open channels. We constructed the rat Na(v)1.6Q3 cDNA, which contained the IFM/QQQ mutation in the inactivation gate domain that prevents fast inactivation and results in a persistently open channel. We expressed Na(v)1.6Q3+β1+β2 sodium channels in Xenopus oocytes and assessed the modification of open channels by pyrethroids by determining the effect of depolarizing pulse length on the normalized conductance of the pyrethroid-induced sodium tail current. Deltamethrin caused little modification of Na(v)1.6Q3 following short (10ms) depolarizations, but prolonged depolarizations (up to 150ms) caused a progressive increase in channel modification measured as an increase in the conductance of the pyrethroid-induced sodium tail current. Modification by tefluthrin was clearly detectable following short depolarizations and was increased by long depolarizations. By contrast modification by S-bioallethrin following short depolarizations was not altered by prolonged depolarization. These studies provide direct evidence for the preferential binding of deltamethrin and tefluthrin (but not S-bioallethrin) to Na(v)1.6Q3 channels in the open state and imply that the pyrethroid receptor of resting and open channels occupies different conformations that exhibit distinct structure-activity relationships.
Collapse
Affiliation(s)
- Samantha J. McCavera
- Insecticide Toxicology Laboratory, Department of Entomology, Cornell University, Geneva, NY 14456, USA
| | - David M. Soderlund
- Insecticide Toxicology Laboratory, Department of Entomology, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
31
|
Sheets PL, Jarecki BW, Cummins TR. Lidocaine reduces the transition to slow inactivation in Na(v)1.7 voltage-gated sodium channels. Br J Pharmacol 2012; 164:719-30. [PMID: 21232038 DOI: 10.1111/j.1476-5381.2011.01209.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The primary use of local anaesthetics is to prevent or relieve pain by reversibly preventing action potential propagation through the inhibition of voltage-gated sodium channels. The tetrodotoxin-sensitive voltage-gated sodium channel subtype Na(v)1.7, abundantly expressed in pain-sensing neurons, plays a crucial role in perception and transmission of painful stimuli and in inherited chronic pain syndromes. Understanding the interaction of lidocaine with Na(v)1.7 channels could provide valuable insight into the drug's action in alleviating pain in distinct patient populations. The aim of this study was to determine how lidocaine interacts with multiple inactivated conformations of Na(v)1.7 channels. EXPERIMENTAL APPROACH We investigated the interactions of lidocaine with wild-type Na(v)1.7 channels and a paroxysmal extreme pain disorder mutation (I1461T) that destabilizes fast inactivation. Whole cell patch clamp recordings were used to examine the activity of channels expressed in human embryonic kidney 293 cells. KEY RESULTS Depolarizing pulses that increased slow inactivation of Na(v)1.7 channels also reduced lidocaine inhibition. Lidocaine enhanced recovery of Na(v)1.7 channels from prolonged depolarizing pulses by decreasing slow inactivation. A paroxysmal extreme pain disorder mutation that destabilizes fast inactivation of Na(v)1.7 channels decreased lidocaine inhibition. CONCLUSIONS AND IMPLICATIONS Lidocaine decreased the transition of Na(v)1.7 channels to the slow inactivated state. The fast inactivation gate (domain III-IV linker) is important for potentiating the interaction of lidocaine with the Na(v)1.7 channel.
Collapse
Affiliation(s)
- Patrick L Sheets
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
32
|
O'Reilly JP, Shockett PE. Time- and state-dependent effects of methanethiosulfonate ethylammonium (MTSEA) exposure differ between heart and skeletal muscle voltage-gated Na(+) channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:443-7. [PMID: 22155680 DOI: 10.1016/j.bbamem.2011.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/18/2011] [Accepted: 11/24/2011] [Indexed: 11/18/2022]
Abstract
The substituted-cysteine scanning method (SCAM) is used to study conformational changes in proteins. Experiments using SCAM involve site-directed mutagenesis to replace native amino acids with cysteine and subsequent exposure to a methanethiosulfonate (MTS) reagent such as methanethiosulfonate ethylammonium (MTSEA). These reagents react with substituted-cysteines and can provide functional information about relative positions of amino acids within a protein. In the human heart voltage-gated Na(+) channel hNav1.5 there is a native cysteine at position C373 that reacts rapidly with MTS reagents resulting in a large reduction in whole-cell Na(+) current (I(Na)). Therefore, in order to use SCAM in studies in this isoform, this native cysteine is mutated to a non-reactive residue, e.g., tyrosine. This mutant, hNav1.5-C373Y, is resistant to the MTS-mediated decrease in I(Na). Here we show that this resistance is time- and state-dependent. With relatively short exposure times to MTSEA (<4min), there is little effect on I(Na). However, with longer exposures (4-8min), there is a large decrease in I(Na), but this effect is only found when hNav1.5-C373Y is inactivated (fast or slow) - MTSEA has little effect in the closed state. Additionally, this long-term, state-dependent effect is not seen in human skeletal muscle Na(+) channel isoform hNav1.4, which has a native tyrosine at the homologous site C407. We conclude that differences in molecular determinants of inactivation between hNav1.4 and hNav1.5 underlie the difference in response to MTSEA exposure.
Collapse
Affiliation(s)
- John P O'Reilly
- Department of Biological Sciences, Southeastern Louisana University, Hammond, LA, USA.
| | | |
Collapse
|
33
|
Extracellular proton modulation of the cardiac voltage-gated sodium channel, Nav1.5. Biophys J 2011; 101:2147-56. [PMID: 22067152 DOI: 10.1016/j.bpj.2011.08.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 08/09/2011] [Accepted: 08/16/2011] [Indexed: 11/24/2022] Open
Abstract
Low pH depolarizes the voltage dependence of voltage-gated sodium (Na(V)) channel activation and fast inactivation. A complete description of Na(V) channel proton modulation, however, has not been reported. The majority of Na(V) channel proton modulation studies have been completed in intact tissue. Additionally, several Na(V) channel isoforms are expressed in cardiac tissue. Characterizing the proton modulation of the cardiac Na(V) channel, Na(V)1.5, will thus help define its contribution to ischemic arrhythmogenesis, where extracellular pH drops from pH 7.4 to as low as pH 6.0 within ~10 min of its onset. We expressed the human variant of Na(V)1.5 with and without the modulating β(1) subunit in Xenopus oocytes. Lowering extracellular pH from 7.4 to 6.0 affected a range of biophysical gating properties heretofore unreported. Specifically, acidic pH destabilized the fast-inactivated and slow-inactivated states, and elevated persistent I(Na). These data were incorporated into a ventricular action potential model that displayed a reduced maximum rate of depolarization as well as disparate increases in epicardial, mid-myocardial, and endocardial action potential durations, indicative of an increased heterogeneity of repolarization. Portions of these data were previously reported in abstract form.
Collapse
|
34
|
Gur M, Kahn R, Karbat I, Regev N, Wang J, Catterall WA, Gordon D, Gurevitz M. Elucidation of the molecular basis of selective recognition uncovers the interaction site for the core domain of scorpion alpha-toxins on sodium channels. J Biol Chem 2011; 286:35209-17. [PMID: 21832067 PMCID: PMC3186375 DOI: 10.1074/jbc.m111.259507] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/05/2011] [Indexed: 12/19/2022] Open
Abstract
Neurotoxin receptor site-3 at voltage-gated Na(+) channels is recognized by various peptide toxin inhibitors of channel inactivation. Despite extensive studies of the effects of these toxins, their mode of interaction with the channel remained to be described at the molecular level. To identify channel constituents that interact with the toxins, we exploited the opposing preferences of LqhαIT and Lqh2 scorpion α-toxins for insect and mammalian brain Na(+) channels. Construction of the DIV/S1-S2, DIV/S3-S4, DI/S5-SS1, and DI/SS2-S6 external loops of the rat brain rNa(v)1.2a channel (highly sensitive to Lqh2) in the background of the Drosophila DmNa(v)1 channel (highly sensitive to LqhαIT), and examination of toxin activity on the channel chimera expressed in Xenopus oocytes revealed a substantial decrease in LqhαIT effect, whereas Lqh2 was as effective as at rNa(v)1.2a. Further substitutions of individual loops and specific residues followed by examination of gain or loss in Lqh2 and LqhαIT activities highlighted the importance of DI/S5-S6 (pore module) and the C-terminal region of DIV/S3 (gating module) of rNa(v)1.2a for Lqh2 action and selectivity. In contrast, a single substitution of Glu-1613 to Asp at DIV/S3-S4 converted rNa(v)1.2a to high sensitivity toward LqhαIT. Comparison of depolarization-driven dissociation of Lqh2 and mutant derivatives off their binding site at rNa(v)1.2a mutant channels has suggested that the toxin core domain interacts with the gating module of DIV. These results constitute the first step in better understanding of the way scorpion α-toxins interact with voltage-gated Na(+)-channels at the molecular level.
Collapse
Affiliation(s)
- Maya Gur
- Department of Plant Molecular Biology and Ecology, George S Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Molecular determination of selectivity of the site 3 modulator (BmK I) to sodium channels in the CNS: a clue to the importance of Nav1.6 in BmK I-induced neuronal hyperexcitability. Biochem J 2010; 431:289-98. [PMID: 20678086 DOI: 10.1042/bj20100517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BmK I, a site-3-specific modulator of VGSCs (voltage-gated sodium channels) from the Chinese scorpion Buthus martensi Karsch, can induce spontaneous nociception and hyperalgesia and generate epileptiform responses in rats, which is attributed to the modulation of VGSCs in the neural system. However, which VGSC subtype is targeted by BmK I remains to be identified. Using two-electrode voltage-clamp recording, we studied the efficacy and selectivity of BmK I to three neuronal VGSCs co-expressed with the auxiliary β1 subunit in Xenopus oocytes. Results revealed that BmK I induced a large increase in both transient and persistent currents in mNav1.6α/β1 (where m indicates mouse), which correlated with a prominent reduction in the fast component of inactivating current. In comparison, BmK I-increased currents of rNav1.2α/β1 (where r indicates rat) and rNav1.3α/β1 were much smaller. The EC50 values of BmK I for rNav1.2α/β1 (252±60 nM) and mNav1.6α/β1 (214±30 nM) were similar and roughly half of that for rNav1.3α/β1 (565±16 nM). Moreover, BmK I only accelerated the slow inactivation development and delay recovery of mNav1.6α/β1 through binding to the channel in the open state. Residue-swap analysis verified that an acidic residue (e.g. Asp1602 in mNav1.6) within the domain IV S3-S4 extracellular loop of VGSCs was crucial for the selectivity and modulation pattern of BmK I. Our findings thus provide the molecular determinant explaining the divergent and intriguing behaviour of neuronal VGSCs in response to site-3-specific modulators, indicating that these subtypes play different roles in BmK I-induced hyperexcitablity in rat models.
Collapse
|
36
|
Dover K, Solinas S, D'Angelo E, Goldfarb M. Long-term inactivation particle for voltage-gated sodium channels. J Physiol 2010; 588:3695-711. [PMID: 20679355 PMCID: PMC2998221 DOI: 10.1113/jphysiol.2010.192559] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/28/2010] [Indexed: 12/18/2022] Open
Abstract
Action potential generation is governed by the opening, inactivation, and recovery of voltage-gated sodium channels. A channel's voltage-sensing and pore-forming α subunit bears an intrinsic fast inactivation particle that mediates both onset of inactivation upon membrane depolarization and rapid recovery upon repolarization. We describe here a novel inactivation particle housed within an accessory channel subunit (A-type FHF protein) that mediates rapid-onset, long-term inactivation of several sodium channels. The channel-intrinsic and tethered FHF-derived particles, both situated at the cytoplasmic face of the plasma membrane, compete for induction of inactivation, causing channels to progressively accumulate into the long-term refractory state during multiple cycles of membrane depolarization. Intracellular injection of a short peptide corresponding to the FHF particle can reproduce channel long-term inactivation in a dose-dependent manner and can inhibit repetitive firing of cerebellar granule neurons. We discuss potential structural mechanisms of long-term inactivation and potential roles of A-type FHFs in the modulation of action potential generation and conduction.
Collapse
Affiliation(s)
- Katarzyna Dover
- Department of Physiology,University of Pavia and Brain Connectivity Center, IRCCS C. Mondino, Via Mondino 2, I-27100 Pavia, Italy
| | | | | | | |
Collapse
|
37
|
Biophysical costs associated with tetrodotoxin resistance in the sodium channel pore of the garter snake, Thamnophis sirtalis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:33-43. [PMID: 20820785 DOI: 10.1007/s00359-010-0582-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 12/19/2022]
Abstract
Tetrodotoxin (TTX) is a potent toxin that specifically binds to voltage-gated sodium channels (NaV). TTX binding physically blocks the flow of sodium ions through NaV, thereby preventing action potential generation and propagation. TTX has different binding affinities for different NaV isoforms. These differences are imparted by amino acid substitutions in positions within, or proximal to, the TTX-binding site in the channel pore. These substitutions confer TTX-resistance to a variety of species. The garter snake Thamnophis sirtalis has evolved TTX-resistance over the course of an arms race, allowing some populations of snakes to feed on tetrodotoxic newts, including Taricha granulosa. Different populations of the garter snake have different degrees of TTX-resistance, which is closely related to the number of amino acid substitutions. We tested the biophysical properties and ion selectivity of NaV of three garter snake populations from Bear Lake, Idaho; Warrenton, Oregon; and Willow Creek, California. We observed changes in gating properties of TTX-resistant (TTXr) NaV. In addition, ion selectivity of TTXr NaV was significantly different from that of TTX-sensitive NaV. These results suggest TTX-resistance comes at a cost to performance caused by changes in the biophysical properties and ion selectivity of TTXr NaV.
Collapse
|
38
|
Sodium channelopathies of skeletal muscle result from gain or loss of function. Pflugers Arch 2010; 460:239-48. [PMID: 20237798 PMCID: PMC2883924 DOI: 10.1007/s00424-010-0814-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 10/31/2022]
Abstract
Five hereditary sodium channelopathies of skeletal muscle have been identified. Prominent symptoms are either myotonia or weakness caused by an increase or decrease of muscle fiber excitability. The voltage-gated sodium channel NaV1.4, initiator of the muscle action potential, is mutated in all five disorders. Pathogenetically, both loss and gain of function mutations have been described, the latter being the more frequent mechanism and involving not just the ion-conducting pore, but aberrant pores as well. The type of channel malfunction is decisive for therapy which consists either of exerting a direct effect on the sodium channel, i.e., by blocking the pore, or of restoring skeletal muscle membrane potential to reduce the fraction of inactivated channels.
Collapse
|
39
|
Featherstone DE. Intercellular glutamate signaling in the nervous system and beyond. ACS Chem Neurosci 2010; 1:4-12. [PMID: 22778802 DOI: 10.1021/cn900006n] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/25/2009] [Indexed: 01/22/2023] Open
Abstract
Most intercellular glutamate signaling in the nervous system occurs at synapses. Some intercellular glutamate signaling occurs outside synapses, however, and even outside the nervous system where high ambient extracellular glutamate might be expected to preclude the effectiveness of glutamate as an intercellular signal. Here, I briefly review the types of intercellular glutamate signaling in the nervous system and beyond, with emphasis on the diversity of signaling mechanisms and fundamental unanswered questions.
Collapse
Affiliation(s)
- David E. Featherstone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
40
|
Casini S, Tan HL, Demirayak I, Remme CA, Amin AS, Scicluna BP, Chatyan H, Ruijter JM, Bezzina CR, van Ginneken ACG, Veldkamp MW. Tubulin polymerization modifies cardiac sodium channel expression and gating. Cardiovasc Res 2009; 85:691-700. [PMID: 19861310 DOI: 10.1093/cvr/cvp352] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIMS Treatment with the anticancer drug taxol (TXL), which polymerizes the cytoskeleton protein tubulin, may evoke cardiac arrhythmias based on reduced human cardiac sodium channel (Na(v)1.5) function. Therefore, we investigated whether enhanced tubulin polymerization by TXL affects Na(v)1.5 function and expression and whether these effects are beta1-subunit-mediated. METHODS AND RESULTS Human embryonic kidney (HEK293) cells, transfected with SCN5A cDNA alone (Na(v)1.5) or together with SCN1B cDNA (Na(v)1.5 + beta1), and neonatal rat cardiomyocytes (NRCs) were incubated in the presence and in the absence of 100 microM TXL. Sodium current (I(Na)) characteristics were studied using patch-clamp techniques. Na(v)1.5 membrane expression was determined by immunocytochemistry and confocal microscopy. Pre-treatment with TXL reduced peak I(Na) amplitude nearly two-fold in both Na(v)1.5 and Na(v)1.5 + beta1, as well as in NRCs, compared with untreated cells. Accordingly, HEK293 cells and NRCs stained with anti-Na(v)1.5 antibody revealed a reduced membrane-labelling intensity in the TXL-treated groups. In addition, TXL accelerated I(Na) decay of Na(v)1.5 + beta1, whereas I(Na) decay of Na(v)1.5 remained unaltered. Finally, TXL reduced the fraction of channels that slow inactivated from 31% to 18%, and increased the time constant of slow inactivation by two-fold in Na(v)1.5. Conversely, slow inactivation properties of Na(v)1.5 + beta1 were unchanged by TXL. CONCLUSION Enhanced tubulin polymerization reduces sarcolemmal Na(v)1.5 expression and I(Na) amplitude in a beta1-subunit-independent fashion and causes I(Na) fast and slow inactivation impairment in a beta1-subunit-dependent way. These changes may underlie conduction-slowing-dependent cardiac arrhythmias under conditions of enhanced tubulin polymerization, e.g. TXL treatment and heart failure.
Collapse
Affiliation(s)
- Simona Casini
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Webb J, Wu FF, Cannon SC. Slow inactivation of the NaV1.4 sodium channel in mammalian cells is impeded by co-expression of the beta1 subunit. Pflugers Arch 2008; 457:1253-63. [PMID: 18941776 DOI: 10.1007/s00424-008-0600-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
In response to sustained depolarization or prolonged bursts of activity in spiking cells, sodium channels enter long-lived non-conducting states from which recovery at hyperpolarized potentials occurs over hundreds of milliseconds to seconds. The molecular basis for this slow inactivation remains unknown, although many functional domains of the channel have been implicated. Expression studies in Xenopus oocytes and mammalian cell lines have suggested a role for the accessory beta1 subunit in slow inactivation, but the effects have been variable. We examined the effects of the beta1 subunit on slow inactivation of skeletal muscle (NaV1.4) sodium channels expressed in HEK cells. Co-expression of the beta1 subunit impeded slow inactivation elicited by a 30-s depolarization, such that the voltage dependence was right shifted (depolarized) and recovery was hastened. Mutational studies showed this effect was dependent upon the extracellular Ig-like domain, but was independent of the intracellular C-terminal tail. Furthermore, the beta1 effect on slow inactivation was shown to be independent of the negative coupling between fast and slow inactivation.
Collapse
Affiliation(s)
- Jadon Webb
- Neuroscience Program, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
42
|
Priest BT. On the Process of Finding Novel and Selective Sodium Channel Blockers for the Treatment of Diseases. TOPICS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1007/7355_2008_019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Bocchi L, Vassalle M. Characterization of the slowly inactivating sodium current INa2 in canine cardiac single Purkinje cells. Exp Physiol 2007; 93:347-61. [PMID: 17993508 DOI: 10.1113/expphysiol.2007.040881] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of our experiments was to investigate by means of a whole cell patch-clamp technique the characteristics of the slowly inactivating sodium current (I(Na2)) found in the plateau range in canine cardiac Purkinje single cells. The I(Na2) was separated from the fast-activating and -inactivating I(Na) (labelled here I(Na1)) by applying a two-step protocol. The first step, from a holding potential (V(h)) of -90 or -80 mV to -50 mV, led to the quick activation and inactivation of I(Na1). The second step consisted of depolarizations of increasing amplitude from -50 mV to less negative values, which led to the quick activation and slow inactivation of I(Na2). The I(Na2) was fitted with a double exponential function with time constants of tens and hundreds milliseconds, respectively. After the activation and inactivation of I(Na1) at -50 mV, the slope conductance was very small and did not change with time. Instead, during I(Na2), the slope conductance was larger and decreased as a function of time. Progressively longer conditioning steps at -50 mV resulted in a progressive decrease in amplitude of I(Na2) during the subsequent test steps. Gradually longer hyperpolarizing steps (increments of 100 ms up to 600 ms) from V(h) -30 mV to -100 mV were followed on return to -30 mV by a progressively larger I(Na2), as were gradually more negative 500 ms steps from V(h) -30 mV to -90 mV. At the end of a ramp to -20 mV, a sudden repolarization to approximately -35 mV fully deactivated I(Na2). The I(Na2) was markedly reduced by lignocaine (lidocaine) and by low extracellular [Na(+)], but it was little affected by low and high extracellular [Ca(2+)]. At negative potentials, the results indicate that there was little overlap between I(Na2) and the transient outward current, I(to), as well as the calcium current, I(Ca). In the absence of I(to) and I(Ca) (blocked by means of 4-aminopyridine and nickel, respectively), I(Na2) reversed at 60 mV. In conclusion, I(Na2) is a sodium current that can be initiated after the inactivation of I(Na1) and has characteristics that are quite distinct from those of I(Na1). The results have a bearing on the mechanisms underlying the long plateau of Purkinje cell action potential and its modifications in different physiological and pathological conditions.
Collapse
Affiliation(s)
- L Bocchi
- Department of Physiology, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | |
Collapse
|
44
|
Featherstone DE, Shippy SA. Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist 2007; 14:171-81. [PMID: 17947494 DOI: 10.1177/1073858407308518] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are approximately 0.5 to approximately 5 microM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 microM of glutamate is high enough to cause constitutive desensitization of most glutamate receptors. Therefore, most glutamate receptors in vivo may be constitutively desensitized, and ambient extracellular glutamate and receptor desensitization may be potent but generally unrecognized regulators of synaptic transmission. Unfortunately, the mechanisms regulating ambient extracellular glutamate and glutamate receptor desensitization remain poorly understood and understudied.
Collapse
Affiliation(s)
- David E Featherstone
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA.
| | | |
Collapse
|
45
|
Chancey JH, Shockett PE, O'Reilly JP. Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6. Am J Physiol Cell Physiol 2007; 293:C1895-905. [PMID: 17928536 DOI: 10.1152/ajpcell.00377.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transmembrane segment 6 is implicated in slow inactivation (SI) of voltage-gated Na(+) channels (Na(v)s). To further study its role and understand differences between SI phenotypes of different Na(v) isoforms, we analyzed several domain 2-segment 6 (D2-S6) mutants of the human cardiac hNa(v)1.5, which is relatively resistant to SI. Mutants were examined by transient HEK cell transfection and patch-clamp recording of whole cell Na(+) currents. Substitutions with lysine (K) included N927K, V930K, and L931K. We show recovery from short (100 ms) depolarization to 0 mV in N927K and L931K is comparable to wild type, whereas recovery in V930K is delayed and biexponential, suggesting rapid entry into a slow-inactivated state. SI protocols confirm enhanced SI phenotype (rapid development, hyperpolarized steady state, slowed recovery) for V930K, contrasting with the resistant phenotype of wild-type hNa(v)1.5. This enhancement, not found in N927K or L931K, suggests that the effect in V930K is site specific. Glutamine (Q) substituted at V930 also exhibits an enhanced SI phenotype similar to that of V930K. Therefore, K or Q substitution eliminates hNa(v)1.5 resistance to SI. Alanine (A) or cysteine (C) substitution at V930 shows no enhancement of SI, and in fact, V930A and V930C, as well as L931K, exhibit a resistance to SI, demonstrating that characteristics of specific amino acids (e.g., size, hydrophobicity) differentially affect SI gating. Thus V930 in D2-S6 appears to be an important structural determinant of SI gating in hNa(v)1.5. We suggest that conformational change involving D2-S6 is a critical component of SI in Na(v)s, which may be differentially regulated between isoforms by other isoform-specific determinants of SI phenotype.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA
| | | | | |
Collapse
|
46
|
Szendroedi J, Sandtner W, Zarrabi T, Zebedin E, Hilber K, Dudley SC, Fozzard HA, Todt H. Speeding the recovery from ultraslow inactivation of voltage-gated Na+ channels by metal ion binding to the selectivity filter: a foot-on-the-door? Biophys J 2007; 93:4209-24. [PMID: 17720727 PMCID: PMC2098733 DOI: 10.1529/biophysj.107.104794] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Slow inactivated states in voltage-gated ion channels can be modulated by binding molecules both to the outside and to the inside of the pore. Thus, external K(+) inhibits C-type inactivation in Shaker K(+) channels by a "foot-in-the-door" mechanism. Here, we explore the modulation of a very long-lived inactivated state, ultraslow inactivation (I(US)), by ligand binding to the outer vestibule in voltage-gated Na(+) channels. Blocking the outer vestibule by a mutant mu-conotoxin GIIIA substantially accelerated recovery from I(US). A similar effect was observed if Cd(2+) was bound to a cysteine engineered to the selectivity filter (K1237C). In K1237C channels, exposed to 30 microM Cd(2+), the time constant of recovery from I(US) was decreased from 145.0 +/- 10.2 s to 32.5 +/- 3.3 s (P < 0.001). Recovery from I(US) was only accelerated if Cd(2+) was added to the bath solution during recovery (V = -120 mV) from I(US), but not when the channels were selectively exposed to Cd(2+) during the development of I(US) (-20 mV). These data could be explained by a kinetic model in which Cd(2+) binds with high affinity to a slow inactivated state (I(S)), which is transiently occupied during recovery from I(US). A total of 50 microM Cd(2+) produced an approximately 8 mV hyperpolarizing shift of the steady-state inactivation curve of I(S), supporting this kinetic model. Binding of lidocaine to the internal vestibule significantly reduced the number of channels entering I(US), suggesting that I(US) is associated with a conformational change of the internal vestibule of the channel. We propose a molecular model in which slow inactivation (I(S)) occurs by a closure of the outer vestibule, whereas I(US) arises from a constriction of the internal vestibule produced by a widening of the selectivity filter region. Binding of Cd(2+) to C1237 promotes the closure of the selectivity filter region, thereby hastening recovery from I(US). Thus, Cd(2+) ions may act like a foot-on-the-door, kicking the I(S) gate to close.
Collapse
Affiliation(s)
- Julia Szendroedi
- Center for Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cohen L, Troub Y, Turkov M, Gilles N, Ilan N, Benveniste M, Gordon D, Gurevitz M. Mammalian Skeletal Muscle Voltage-Gated Sodium Channels Are Affected by Scorpion Depressant “Insect-Selective” Toxins when Preconditioned. Mol Pharmacol 2007; 72:1220-7. [PMID: 17720763 DOI: 10.1124/mol.107.039057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among scorpion beta- and alpha-toxins that modify the activation and inactivation of voltage-gated sodium channels (Na(v)s), depressant beta-toxins have traditionally been classified as anti-insect selective on the basis of toxicity assays and lack of binding and effect on mammalian Na(v)s. Here we show that the depressant beta-toxins LqhIT2 and Lqh-dprIT3 from Leiurus quinquestriatus hebraeus (Lqh) bind with nanomolar affinity to receptor site 4 on rat skeletal muscle Na(v)s, but their effect on the gating properties can be viewed only after channel preconditioning, such as that rendered by a long depolarizing prepulse. This observation explains the lack of toxicity when depressant toxins are injected in mice. However, when the muscle channel rNa(v)1.4, expressed in Xenopus laevis oocytes, was modulated by the site 3 alpha-toxin LqhalphaIT, LqhIT2 was capable of inducing a negative shift in the voltage-dependence of activation after a short prepulse, as was shown for other beta-toxins. These unprecedented results suggest that depressant toxins may have a toxic impact on mammals in the context of the complete scorpion venom. To assess whether LqhIT2 and Lqh-dprIT3 interact with the insect and rat muscle channels in a similar manner, we examined the role of Glu24, a conserved "hot spot" at the bioactive surface of beta-toxins. Whereas substitutions E24A/N abolished the activity of both LqhIT2 and Lqh-dprIT3 at insect Na(v)s, they increased the affinity of the toxins for rat skeletal muscle channels. This result implies that depressant toxins interact differently with the two channel types and that substitution of Glu24 is essential for converting toxin selectivity.
Collapse
Affiliation(s)
- Lior Cohen
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tikhonov DB, Zhorov BS. Sodium channels: ionic model of slow inactivation and state-dependent drug binding. Biophys J 2007; 93:1557-70. [PMID: 17496040 PMCID: PMC1948041 DOI: 10.1529/biophysj.106.100248] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inactivation is a fundamental property of voltage-gated ion channels. Fast inactivation of Na(+) channels involves channel block by the III-IV cytoplasmic interdomain linker. The mechanisms of nonfast types of inactivation (intermediate, slow, and ultraslow) are unclear, although the ionic environment and P-loops rearrangement appear to be involved. In this study, we employed a TTX-based P-loop domain model of a sodium channel and the MCM method to investigate a possible role of P-loop rearrangement in the nonfast inactivation. Our modeling predicts that Na(+) ions can bind between neighboring domains in the outer-carboxylates ring EEDD, forming an ordered structure with interdomain contacts that stabilize the conducting conformation of the outer pore. In this model, the permeant ions can transit between the EEDD ring and the selectivity filter ring DEKA, retaining contacts with at least two carboxylates. In the absence of Na(+), the electrostatic repulsion between the EEDD carboxylates disrupts the permeable configuration. In this Na(+)-deficient model, the region between the EEDD and DEKA rings is inaccessible for Na(+) but is accessible for TMA. Taken together, these results suggest that Na(+)-saturated models are consistent with experimental characteristics of the open channels, whereas Na(+)-deficient models are consistent with experimentally defined properties of the slow-inactivated channels. Our calculations further predict that binding of LAs to the inner pore would depend on whether Na(+) occupies the DEKA ring. In the absence of Na(+) in the DEKA ring, the cationic group of lidocaine occurs in the focus of the pore helices' macrodipoles and would prevent occupation of the ring by Na(+). Loading the DEKA ring with Na(+) results in the electrostatic repulsion with lidocaine. Thus, there are antagonistic relations between a cationic ligand bound in the inner pore and Na(+) in the DEKA ring.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
49
|
Augustin H, Grosjean Y, Chen K, Sheng Q, Featherstone DE. Nonvesicular release of glutamate by glial xCT transporters suppresses glutamate receptor clustering in vivo. J Neurosci 2007; 27:111-23. [PMID: 17202478 PMCID: PMC2193629 DOI: 10.1523/jneurosci.4770-06.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We hypothesized that cystine/glutamate transporters (xCTs) might be critical regulators of ambient extracellular glutamate levels in the nervous system and that misregulation of this glutamate pool might have important neurophysiological and/or behavioral consequences. To test this idea, we identified and functionally characterized a novel Drosophila xCT gene, which we subsequently named "genderblind" (gb). Genderblind is expressed in a previously overlooked subset of peripheral and central glia. Genetic elimination of gb causes a 50% reduction in extracellular glutamate concentration, demonstrating that xCT transporters are important regulators of extracellular glutamate. Consistent with previous studies showing that extracellular glutamate regulates postsynaptic glutamate receptor clustering, gb mutants show a large (200-300%) increase in the number of postsynaptic glutamate receptors. This increase in postsynaptic receptor abundance is not accompanied by other obvious synaptic changes and is completely rescued when synapses are cultured in wild-type levels of glutamate. Additional in situ pharmacology suggests that glutamate-mediated suppression of glutamate receptor clustering depends on receptor desensitization. Together, our results suggest that (1) xCT transporters are critical for regulation of ambient extracellular glutamate in vivo; (2) ambient extracellular glutamate maintains some receptors constitutively desensitized in vivo; and (3) constitutive desensitization of ionotropic glutamate receptors suppresses their ability to cluster at synapses.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
50
|
Kahlig KM, Misra SN, George AL. Impaired inactivation gate stabilization predicts increased persistent current for an epilepsy-associated SCN1A mutation. J Neurosci 2006; 26:10958-66. [PMID: 17065438 PMCID: PMC6674674 DOI: 10.1523/jneurosci.3378-06.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in SCN1A (encoding the neuronal voltage-gated sodium channel alpha1 subunit, Na(V)1.1, or SCN1A) are associated with genetic epilepsy syndromes including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy. Here, we present the formulation and use of a computational model for SCN1A to elucidate molecular mechanisms underlying the increased persistent sodium current exhibited by the GEFS+ mutant R1648H. Our model accurately reproduces all experimentally measured SCN1A whole-cell biophysical properties including biphasic whole-cell current decay, channel activation, and entry into and recovery from fast and slow inactivation. The model predicts that SCN1A open-state inactivation results from a two-step process that can be conceptualized as initial gate closure, followed by recruitment of a mechanism ("latch") to stabilize the inactivated state. Selective impairment of the second latching step results in an increase in whole-cell persistent current similar to that observed for the GEFS+ mutant R1648H. These results provide a deeper level of understanding of mutant SCN1A dysfunction in an inherited epilepsy syndrome, which will enable more precise computational studies of abnormal neuronal activity in epilepsy and may help guide new targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Sunita N. Misra
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0275
| | - Alfred L. George
- Division of Genetic Medicine, Department of Medicine, and
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0275
| |
Collapse
|