1
|
Catacuzzeno L, Conti F, Franciolini F. Fifty years of gating currents and channel gating. J Gen Physiol 2023; 155:e202313380. [PMID: 37410612 PMCID: PMC10324510 DOI: 10.1085/jgp.202313380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
We celebrate this year the 50th anniversary of the first electrophysiological recordings of the gating currents from voltage-dependent ion channels done in 1973. This retrospective tries to illustrate the context knowledge on channel gating and the impact gating-current recording had then, and how it continued to clarify concepts, elaborate new ideas, and steer the scientific debate in these 50 years. The notion of gating particles and gating currents was first put forward by Hodgkin and Huxley in 1952 as a necessary assumption for interpreting the voltage dependence of the Na and K conductances of the action potential. 20 years later, gating currents were actually recorded, and over the following decades have represented the most direct means of tracing the movement of the gating charges and gaining insights into the mechanisms of channel gating. Most work in the early years was focused on the gating currents from the Na and K channels as found in the squid giant axon. With channel cloning and expression on heterologous systems, other channels as well as voltage-dependent enzymes were investigated. Other approaches were also introduced (cysteine mutagenesis and labeling, site-directed fluorometry, cryo-EM crystallography, and molecular dynamics [MD] modeling) to provide an integrated and coherent view of voltage-dependent gating in biological macromolecules. The layout of this retrospective reflects the past 50 years of investigations on gating currents, first addressing studies done on Na and K channels and then on other voltage-gated channels and non-channel structures. The review closes with a brief overview of how the gating-charge/voltage-sensor movements are translated into pore opening and the pathologies associated with mutations targeting the structures involved with the gating currents.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Franco Conti
- Department of Physics, University of Genova, Genova, Italy
| | - Fabio Franciolini
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Nsasra E, Peretz G, Orr I, Yifrach O. Regulating Shaker Kv channel clustering by hetero-oligomerization. Front Mol Biosci 2023; 9:1050942. [PMID: 36699695 PMCID: PMC9868669 DOI: 10.3389/fmolb.2022.1050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Scaffold protein-mediated voltage-dependent ion channel clustering at unique membrane sites, such as nodes of Ranvier or the post-synaptic density plays an important role in determining action potential properties and information coding. Yet, the mechanism(s) by which scaffold protein-ion channel interactions lead to channel clustering and how cluster ion channel density is regulated are mostly unknown. This molecular-cellular gap in understanding channel clustering can be bridged in the case of the prototypical Shaker voltage-activated potassium channel (Kv), as the mechanism underlying the interaction of this channel with its PSD-95 scaffold protein partner is known. According to this mechanism, changes in the length of the intrinsically disordered channel C-terminal chain, brought about by alternative splicing to yield the short A and long B chain subunit variants, dictate affinity to PSD-95 and further controls cluster homo-tetrameric Kv channel density. These results raise the hypothesis that heteromeric subunit assembly serves as a means to regulate Kv channel clustering. Since both clustering variants are expressed in similar fly tissues, it is reasonable to assume that hetero-tetrameric channels carrying different numbers of high- (A) and low-affinity (B) subunits could assemble, thereby giving rise to distinct cluster Kv channel densities. Here, we tested this hypothesis using high-resolution microscopy, combined with quantitative clustering analysis. Our results reveal that the A and B clustering variants can indeed assemble to form heteromeric channels and that controlling the number of the high-affinity A subunits within the hetero-oligomer modulates cluster Kv channel density. The implications of these findings for electrical signaling are discussed.
Collapse
|
3
|
Nilsson M, Lindström SH, Kaneko M, Wang K, Minguez-Viñas T, Angelini M, Steccanella F, Holder D, Ottolia M, Olcese R, Pantazis A. An epilepsy-associated K V1.2 charge-transfer-center mutation impairs K V1.2 and K V1.4 trafficking. Proc Natl Acad Sci U S A 2022; 119:e2113675119. [PMID: 35439054 PMCID: PMC9169947 DOI: 10.1073/pnas.2113675119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/25/2022] [Indexed: 12/19/2022] Open
Abstract
We report on a heterozygous KCNA2 variant in a child with epilepsy. KCNA2 encodes KV1.2 subunits, which form homotetrameric potassium channels and participate in heterotetrameric channel complexes with other KV1-family subunits, regulating neuronal excitability. The mutation causes substitution F233S at the KV1.2 charge transfer center of the voltage-sensing domain. Immunocytochemical trafficking assays showed that KV1.2(F233S) subunits are trafficking deficient and reduce the surface expression of wild-type KV1.2 and KV1.4: a dominant-negative phenotype extending beyond KCNA2, likely profoundly perturbing electrical signaling. Yet some KV1.2(F233S) trafficking was rescued by wild-type KV1.2 and KV1.4 subunits, likely in permissible heterotetrameric stoichiometries: electrophysiological studies utilizing applied transcriptomics and concatemer constructs support that up to one or two KV1.2(F233S) subunits can participate in trafficking-capable heterotetramers with wild-type KV1.2 or KV1.4, respectively, and that both early and late events along the biosynthesis and secretion pathway impair trafficking. These studies suggested that F233S causes a depolarizing shift of ∼48 mV on KV1.2 voltage dependence. Optical tracking of the KV1.2(F233S) voltage-sensing domain (rescued by wild-type KV1.2 or KV1.4) revealed that it operates with modestly perturbed voltage dependence and retains pore coupling, evidenced by off-charge immobilization. The equivalent mutation in the Shaker K+ channel (F290S) was reported to modestly affect trafficking and strongly affect function: an ∼80-mV depolarizing shift, disrupted voltage sensor activation and pore coupling. Our work exposes the multigenic, molecular etiology of a variant associated with epilepsy and reveals that charge-transfer-center disruption has different effects in KV1.2 and Shaker, the archetypes for potassium channel structure and function.
Collapse
Affiliation(s)
- Michelle Nilsson
- Division of Neurobiology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden
| | - Sarah H. Lindström
- Division of Neurobiology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden
| | - Maki Kaneko
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027
- Division of Genomic Medicine, Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA 90027
| | - Kaiqian Wang
- Division of Neurobiology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden
| | - Teresa Minguez-Viñas
- Division of Neurobiology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden
| | - Marina Angelini
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Federica Steccanella
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Deborah Holder
- Comprehensive Epilepsy Program, Children's Hospital Los Angeles, Los Angeles, CA 90027
| | - Michela Ottolia
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Riccardo Olcese
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Antonios Pantazis
- Division of Neurobiology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
4
|
Sokolov VS, Cherny VV, Ayuyan AG, DeCoursey TE. Analysis of an electrostatic mechanism for ΔpH dependent gating of the voltage-gated proton channel, H V1, supports a contribution of protons to gating charge. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148480. [PMID: 34363792 PMCID: PMC8432343 DOI: 10.1016/j.bbabio.2021.148480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
Voltage-gated proton channels (HV1) resemble the voltage-sensing domain of other voltage-gated ion channels, but differ in containing the conduction pathway. Essential to the functions of HV1 channels in many cells and species is a unique feature called ΔpH dependent gating. The pH on both sides of the membrane strictly regulates the voltage range of channel opening, generally resulting in exclusively outward proton current. Two types of mechanisms could produce ΔpH dependent gating. The "countercharge" mechanism proposes that protons destabilize salt bridges between amino acids in the protein that stabilize specific gating configurations (closed or open). An "electrostatic" mechanism proposes that protons bound to the channel alter the electrical field sensed by the protein. Obligatory proton binding within the membrane electrical field would contribute to measured gating charge. Estimations on the basis of the electrostatic model explain ΔpH dependent gating, but quantitative modeling requires calculations of the electric field inside the protein which, in turn, requires knowledge of its structure. We conclude that both mechanisms operate and contribute to ΔpH dependent gating of HV1.
Collapse
Affiliation(s)
- Valerij S Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - Artem G Ayuyan
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Zhu Q, Du Y, Nomura Y, Gao R, Cang Z, Wei GW, Gordon D, Gurevitz M, Groome J, Dong K. Charge substitutions at the voltage-sensing module of domain III enhance actions of site-3 and site-4 toxins on an insect sodium channel. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103625. [PMID: 34358664 PMCID: PMC9376739 DOI: 10.1016/j.ibmb.2021.103625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Scorpion α-toxins bind at the pharmacologically-defined site-3 on the sodium channel and inhibit channel inactivation by preventing the outward movement of the voltage sensor in domain IV (IVS4), whereas scorpion β-toxins bind at site-4 on the sodium channel and enhance channel activation by trapping the voltage sensor of domain II (IIS4) in its outward position. However, limited information is available on the role of the voltage-sensing modules (VSM, comprising S1-S4) of domains I and III in toxin actions. We have previously shown that charge reversing substitutions of the innermost positively-charged residues in IIIS4 (R4E, R5E) increase the activity of an insect-selective site-4 scorpion toxin, Lqh-dprIT3-c, on BgNav1-1a, a cockroach sodium channel. Here we show that substitutions R4E and R5E in IIIS4 also increase the activity of two site-3 toxins, LqhαIT from Leiurusquinquestriatus hebraeus and insect-selective Av3 from Anemonia viridis. Furthermore, charge reversal of either of two conserved negatively-charged residues, D1K and E2K, in IIIS2 also increase the action of the site-3 and site-4 toxins. Homology modeling suggests that S2-D1 and S2-E2 interact with S4-R4 and S4-R5 in the VSM of domain III (III-VSM), respectively, in the activated state of the channel. However, charge swapping between S2-D1 and S4-R4 had no compensatory effects on gating or toxin actions, suggesting that charged residue interactions are complex. Collectively, our results highlight the involvement of III-VSM in the actions of both site 3 and site 4 toxins, suggesting that charge reversing substitutions in III-VSM allosterically facilitate IIS4 or IVS4 voltage sensor trapping by these toxins.
Collapse
Affiliation(s)
- Qing Zhu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Yuzhe Du
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Yoshiko Nomura
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Rong Gao
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, China
| | - Zixuan Cang
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| | - Dalia Gordon
- Department of Plant Molecular Biology & Ecology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Michael Gurevitz
- Department of Plant Molecular Biology & Ecology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.
| | - James Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Ke Dong
- Department of Entomology, Michigan State University, East Lansing, MI, USA; Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Groome JR, Bayless-Edwards L. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Front Pharmacol 2020; 11:160. [PMID: 32180723 PMCID: PMC7059764 DOI: 10.3389/fphar.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.
Collapse
Affiliation(s)
- James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Landon Bayless-Edwards
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Oregon Health and Sciences University School of Medicine, Portland, OR, United States
| |
Collapse
|
7
|
Catacuzzeno L, Sforna L, Franciolini F. Voltage-dependent gating in K channels: experimental results and quantitative models. Pflugers Arch 2019; 472:27-47. [PMID: 31863286 DOI: 10.1007/s00424-019-02336-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
Abstract
Voltage-dependent K channels open and close in response to voltage changes across the cell membrane. This voltage dependence was postulated to depend on the presence of charged particles moving through the membrane in response to voltage changes. Recording of gating currents originating from the movement of these particles fully confirmed this hypothesis, and gave substantial experimental clues useful for the detailed understanding of the process. In the absence of structural information, the voltage-dependent gating was initially investigated using discrete Markov models, an approach only capable of providing a kinetic and thermodynamic comprehension of the process. The elucidation of the crystal structure of the first voltage-dependent channel brought in a dramatic change of pace in the understanding of channel gating, and in modeling the underlying processes. It was now possible to construct quantitative models using molecular dynamics, where all the interactions of each individual atom with the surroundings were taken into account, and its motion predicted by Newton's laws. Unfortunately, this modeling is computationally very demanding, and in spite of the advances in simulation procedures and computer technology, it is still limited in its predictive ability. To overcome these limitations, several groups have developed more macroscopic voltage gating models. Their approaches understandably require a number of approximations, which must however be physically well justified. One of these models, based on the description of the voltage sensor as a Brownian particle, that we have recently developed, is able to simultaneously describe the behavior of a single voltage sensor and to predict the macroscopic gating current originating from a population of sensors. The basics of this model are here described, and a typical application using the Kv1.2/2.1 chimera channel structure is also presented.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| |
Collapse
|
8
|
Genetic intolerance analysis as a tool for protein science. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183058. [PMID: 31494120 DOI: 10.1016/j.bbamem.2019.183058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Recent advances in whole genome and exome sequencing have dramatically increased the database of human gene variations. There are now enough sequenced human exomes and genomes to begin to identify gene variations that are notable because they are NOT observed in sequenced human genomes, apparently because they are subject to "purifying selection", exemplifying genetic intolerance. Such "dysprocreative" gene variations are embryonic lethal or prevent reproduction through any one of a number of possible mechanisms. Here we review an emerging quantitative approach, "Missense Tolerance Ratio" (MTR) analysis, that is used to assess protein-encoding gene (cDNA) sequence intolerance to missense mutations based on analysis of the >100 K and growing number of currently available human genome and exome sequences. This approach is already useful for analyzing intolerance to mutations in cDNA segments with a resolution on the order of 90 bases. Moreover, as the number of sequenced genomes/exomes increases by orders of magnitude it may eventually be possible to assess mutational tolerance in a statistically robust manner at or near single site resolution. Here we focus on how cDNA intolerance analysis complements other bioinformatic methods to illuminate structure-folding-function relationships for the encoded proteins. A set of disease-linked membrane proteins is employed to provide examples.
Collapse
|
9
|
Gating-induced large aqueous volumetric remodeling and aspartate tolerance in the voltage sensor domain of Shaker K + channels. Proc Natl Acad Sci U S A 2018; 115:8203-8208. [PMID: 30038023 DOI: 10.1073/pnas.1806578115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons encode electrical signals with critically tuned voltage-gated ion channels and enzymes. Dedicated voltage sensor domains (VSDs) in these membrane proteins activate coordinately with an unresolved structural change. Such change conveys the transmembrane translocation of four positively charged arginine side chains, the voltage-sensing residues (VSRs; R1-R4). Countercharges and lipid phosphohead groups likely stabilize these VSRs within the low-dielectric core of the protein. However, the role of hydration, a sign-independent charge stabilizer, remains unclear. We replaced all VSRs and their neighboring residues with negatively charged aspartates in a voltage-gated potassium channel. The ensuing mild functional effects indicate that hydration is also important in VSR stabilization. The voltage dependency of the VSR aspartate variants approached the expected arithmetic summation of charges at VSR positions, as if negative and positive side chains faced similar pathways. In contrast, aspartates introduced between R2 and R3 did not affect voltage dependence as if the side chains moved outside the electric field or together with it, undergoing a large displacement and volumetric remodeling. Accordingly, VSR performed osmotic work at both internal and external aqueous interfaces. Individual VSR contributions to volumetric works approached arithmetical additivity but were largely dissimilar. While R1 and R4 displaced small volumes, R2 and R3 volumetric works were massive and vectorially opposed, favoring large aqueous remodeling during VSD activation. These diverse volumetric works are, at least for R2 and R3, not compatible with VSR translocation across a unique stationary charge transfer center. Instead, VSRs may follow separated pathways across a fluctuating low-dielectric septum.
Collapse
|
10
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
11
|
DeCoursey TE, Morgan D, Musset B, Cherny VV. Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J Gen Physiol 2017; 148:97-118. [PMID: 27481712 PMCID: PMC4969798 DOI: 10.1085/jgp.201611619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated proton channel (HV1) is a widely distributed, proton-specific ion channel with unique properties. Since 2006, when genes for HV1 were identified, a vast array of mutations have been generated and characterized. Accessing this potentially useful resource is hindered, however, by the sheer number of mutations and interspecies differences in amino acid numbering. This review organizes all existing information in a logical manner to allow swift identification of studies that have characterized any particular mutation. Although much can be gained from this meta-analysis, important questions about the inner workings of HV1 await future revelation.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institut für Physiologie, PMU Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
12
|
Tu L, Deutsch C. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. J Mol Biol 2017; 429:1722-1732. [PMID: 28478285 DOI: 10.1016/j.jmb.2017.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 11/17/2022]
Abstract
Proteins begin to fold in the ribosome, and misfolding has pathological consequences. Among the earliest folding events in biogenesis is the formation of a helix, an elementary structure that is ubiquitously present and required for correct protein folding in all proteomes. The determinants underlying helix formation in the confined space of the ribosome exit tunnel are relatively unknown. We chose the second transmembrane segment, S2, of a voltage-gated potassium channel, Kv1.3, as a model to probe this issue. Since the N terminus of S2 is initially in an extended conformation in the folding vestibule of the ribosome yet ultimately emerges at the exit port as a helix, S2 is ideally suited for delineating sequential events and folding determinants of helix formation inside the ribosome. We show that S2's extended N terminus inside the tunnel is converted into a helix by a single, distant mutation in the nascent peptide. This transition depends on nascent peptide sequence at specific tunnel locations. Co-translational secondary folding of nascent chains inside the ribosome has profound physiological consequences that bear on correct membrane insertion, tertiary folding, oligomerization, and biochemical modification of the newborn protein during biogenesis.
Collapse
Affiliation(s)
- LiWei Tu
- Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA
| | - Carol Deutsch
- Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA.
| |
Collapse
|
13
|
Taylor KC, Sanders CR. Regulation of KCNQ/Kv7 family voltage-gated K + channels by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:586-597. [PMID: 27818172 DOI: 10.1016/j.bbamem.2016.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022]
Abstract
Many years of studies have established that lipids can impact membrane protein structure and function through bulk membrane effects, by direct but transient annular interactions with the bilayer-exposed surface of protein transmembrane domains, and by specific binding to protein sites. Here, we focus on how phosphatidylinositol 4,5-bisphosphate (PIP2) and polyunsaturated fatty acids (PUFAs) impact ion channel function and how the structural details of the interactions of these lipids with ion channels are beginning to emerge. We focus on the Kv7 (KCNQ) subfamily of voltage-gated K+ channels, which are regulated by both PIP2 and PUFAs and play a variety of important roles in human health and disease. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Keenan C Taylor
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Khalaj AJ, Hasselmann J, Augello C, Moore S, Tiwari-Woodruff SK. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. J Steroid Biochem Mol Biol 2016; 160:43-52. [PMID: 26776441 PMCID: PMC5233753 DOI: 10.1016/j.jsbmb.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
Abstract
Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury.
Collapse
Affiliation(s)
- Anna J Khalaj
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Jonathan Hasselmann
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Catherine Augello
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Spencer Moore
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States; Neuroscience Graduate Program, University of California, Riverside, United States.
| |
Collapse
|
15
|
The inhibitory effects of nifedipine on outward voltage-gated potassium currents in mouse neuroblastoma N2A cells. Pharmacol Rep 2016; 68:631-7. [DOI: 10.1016/j.pharep.2015.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022]
|
16
|
Abstract
The voltage gated Kv1.5 channels conduct the ultrarapid delayed rectifier current (IKur) and play critical role in repolarization of action potential duration. It is the most rapidly activated channel and has very little or no inactivated states. In human cardiac cells, these channels are expressed more extensively in atrial myocytes than ventricle. From the evidences of its localization and functions, Kv1.5 has been declared a selective drug target for the treatment of atrial fibrillation (AF). In this present study, we have tried to identify the rapidly activating property of Kv1.5 and studied its mode of inhibition using molecular modeling, docking, and simulation techniques. Channel in open conformation is found to be stabilized quickly within the dipalmitoylphosphatidylcholine membrane, whereas most of the secondary structure elements were lost in closed state conformation. The obvious reason behind its ultra-rapid property is possibly due to the amino acid alteration in S4-S5 linker; the replacement of Lysine by Glutamine and vice versa. The popular published drugs as well as newly identified lead molecules were able to inhibit the Kv1.5 in a very similar pattern, mainly through the nonpolar interactions, and formed sable complexes. V512 is found as the main contributor for the interaction along with the other important residues such as V505, I508, A509, V512, P513, and V516. Furthermore, two screened novel compounds show surprisingly better inhibitory potency and can be considered for the future perspective of antiarrhythmic survey.
Collapse
Affiliation(s)
- Rajabrata Bhuyan
- a BIF Centre, Department of Biochemistry & Biophysics , University of Kalyani , Nadia, Kalyani 741235 , West Bengal , India
| | - Alpana Seal
- b Department of Biochemistry & Biophysics , University of Kalyani , Nadia, Kalyani 741235 , West Bengal , India
| |
Collapse
|
17
|
Abstract
Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.
Collapse
Affiliation(s)
- León D Islas
- a Departamento de Fisiología, Facultad de Medicina ; National Autonomous University of Mexico (UNAM), Ciudad Universitaria , México City , México
| |
Collapse
|
18
|
Sharmin N, Gallin WJ. Intramolecular interactions that control voltage sensitivity in the jShak1 potassium channel from Polyorchis penicillatus. J Exp Biol 2016; 220:469-477. [DOI: 10.1242/jeb.144089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022]
Abstract
Voltage-gated potassium ion (Kv) channel proteins respond to changes in membrane potential by changing the probability of K+ flux through an ion-selective pore. Kv channels from different paralogous and orthologous families have widely varying V50 values. The voltage-sensing transmembrane helices (S4) of different channels contain 4-7 basic residues that are responsible for transducing changes in transmembrane potential into the energy required to shift the equilibrium between the open- and closed-channel conformations. These residues also form electrostatic interaction networks with acidic residues in the S2 and S3 helices that stabilize the open and the closed states to different extents. The length and composition of the extracellular loop connecting the S3 and S4 helices (S3-S4 loop) also shape the voltage response. We describe mutagenesis experiments on the jellyfish (Polyorchis penicillatus) Kv1 family jShak1 channel to evaluate how variants of the S3-S4 loop affect the voltage sensitivity of this channel. In combination with changes in the length and composition of the S3-S4 linker we mutated a residue on the S2 helix (N227) that in most Kv1 family channels is glutamate (E226 in mouse Kv1.2, E283 in D. melanogaster Shaker). Some individual loop replacement mutants cause major changes in voltage sensitivity, depending on a combination of length and composition. Pairwise combinations of the loop mutations and the S2 mutations interact to yield quantitatively distinct, non-additive changes in voltage sensitivity. We conclude that the S3-S4 loop interacts energetically with the residue at position N227 during the transitions between open and closed states of the channel.
Collapse
Affiliation(s)
- Nazlee Sharmin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Montreal Heart Institute, 5000 Belanger St. Est, Montreal, Quebec Canada
| | - Warren J. Gallin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
19
|
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions. J Membr Biol 2015; 248:419-30. [PMID: 25972106 DOI: 10.1007/s00232-015-9805-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/24/2015] [Indexed: 01/06/2023]
Abstract
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.
Collapse
|
20
|
Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog Neurobiol 2015; 129:1-36. [PMID: 25817891 DOI: 10.1016/j.pneurobio.2014.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve high rates of Ca(2+)-selective flux, they possess an elaborate mechanism for selection of Ca(2+) over foreign ions. It has been convincingly linked to competitive binding in the pore, but the fundamental question of how this is reconcilable with high rates of Ca(2+) transfer remains unanswered. By virtue of their similarity to Ca(2+), polyvalent cations can interfere with the function of VGCCs and have proven instrumental in probing the mechanisms underlying selective permeation. Recent emergence of crystallographic data on a set of Ca(2+)-selective model channels provides a structural framework for permeation in VGCCs, and warrants a reconsideration of their diverse modulation by polyvalent cations, which can be roughly separated into three general mechanisms: (I) long-range interactions with charged regions on the surface, affecting the local potential sensed by the channel or influencing voltage-sensor movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and in some cases (III) short-range interactions with extracellular binding sites, leading to non-electrostatic modifications of channel gating (allosteric effects). These effects, together with the underlying molecular modifications, provide valuable insights into the function of VGCCs, and have important physiological and pathophysiological implications. Allosteric suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn(2+) and Cu(2+) may play a major role for the regulation of excitability by endogenous transition metal ions. The fact that these ions can often traverse VGCCs can contribute to the detrimental intracellular accumulation of metal ions following excessive release of endogenous Cu(2+) and Zn(2+) or exposure to non-physiological toxic metal ions.
Collapse
|
21
|
Yang H, Zhang G, Cui J. BK channels: multiple sensors, one activation gate. Front Physiol 2015; 6:29. [PMID: 25705194 PMCID: PMC4319557 DOI: 10.3389/fphys.2015.00029] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/19/2015] [Indexed: 01/01/2023] Open
Abstract
Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca2+ activated BK channels, a K+ channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate.
Collapse
Affiliation(s)
- Huanghe Yang
- Ion Channel Research Unit, Duke University Medical Center Durham, NC, USA ; Department of Biochemistry, Duke University Medical Center Durham, NC, USA
| | - Guohui Zhang
- Department of Biomedical Engineering, Washington University in Saint Louis St. Louis, MO, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in Saint Louis St. Louis, MO, USA ; Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis St. Louis, MO, USA ; Center for The Investigation of Membrane Excitability Disorders, Washington University in Saint Louis St. Louis, MO, USA
| |
Collapse
|
22
|
Zaydman MA, Kasimova MA, McFarland K, Beller Z, Hou P, Kinser HE, Liang H, Zhang G, Shi J, Tarek M, Cui J. Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel. eLife 2014; 3:e03606. [PMID: 25535795 PMCID: PMC4381907 DOI: 10.7554/elife.03606] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/19/2014] [Indexed: 01/22/2023] Open
Abstract
Voltage-gated ion channels generate electrical currents that control muscle
contraction, encode neuronal information, and trigger hormonal release.
Tissue-specific expression of accessory (β) subunits causes these channels to
generate currents with distinct properties. In the heart, KCNQ1 voltage-gated
potassium channels coassemble with KCNE1 β-subunits to generate the
IKs current (Barhanin et al.,
1996; Sanguinetti et al., 1996),
an important current for maintenance of stable heart rhythms. KCNE1 significantly
modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et
al., 2012; Abbott, 2014). These
changes are essential for the physiological role of IKs (Silva and Rudy, 2005); however, after 18 years
of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here
we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent
interactions that functionally couple the voltage-sensing domains (VSDs) to the
pore. DOI:http://dx.doi.org/10.7554/eLife.03606.001 Cells are surrounded by a membrane that prevents charged molecules from flowing
directly into or out of the cell. Instead ions move through channel proteins within
the cell membrane. Most ion channel proteins are selective and only allow one or a
few types of ion to cross. Ion channels can also be ‘gated’, and have a
central pore that can open or close to allow or stop the flow of selected ions. This
gating can be affected by the channel sensing changes in conditions, such as changes
in the voltage across the cell membrane. Research conducted more than half a century ago—before the discovery of
channel proteins—led to a mathematical model of the flow of potassium ions
across a membrane in response to changes in voltage. This model made a number of
assumptions, many of which are still widely accepted. However, Zaydman et al. have
now called into question some of the assumptions of this model. Based on the original model, it has been long assumed that the voltage-sensing
domains that open or close the central pore in response to changes in voltage must be
fully activated to allow the channel to open. It had also been assumed that the
voltage-sensing domains do not affect the flow of ions once the channel is open.
Zaydman et al. have now shown that these assumptions are not valid for a specific
voltage-gated potassium channel called KCNQ1. Instead, this ion channel opens when
its voltage-sensing domains are either partially or fully activated. Zaydman found
that the intermediate-open and activated-open states had different preferences for
passing various types of ion; therefore, the gating of the channel and the flow of
ions through the open channel are both dependent on the state of the voltage-sensing
domains. This is in direct contrast to what had previously been assumed. The original model cannot reproduce the gating of KCNQ1, nor can any other
established model. Therefore, Zaydman et al. devised a new model to understand how
the interactions between different states of the voltage-sensing domains and the pore
lead to gating. Zaydman et al. then used their model to address how another protein
called KCNE1 is able to alter properties of the KCNQ1 channel. KCNE1 is a protein that is expressed in the heart muscle cell and mutations affecting
KCNQ1 or KCNE1 have been associated with potentially fatal heart conditions. Based on
the assumptions of the original model, it had been difficult to understand how KCNE1
was able to affect different properties of the KCNQ1 channel. Thus, for nearly 20
years it has been debated whether KCNE1 primarily affects the activation of the
voltage-sensing domains or the opening of the pore. Zaydman et al. found instead that
KCNE1 alters the interactions between the voltage-sensing domains and the pore, which
prevented the intermediate-open state and modified the properties of the
activated-open state. This mechanism provides one of the most complete explanations
for the action of the KCNE1 protein. DOI:http://dx.doi.org/10.7554/eLife.03606.002
Collapse
Affiliation(s)
- Mark A Zaydman
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Marina A Kasimova
- Theory, Modeling, and Simulations, UMR 7565, Université de Lorraine, Nancy, France
| | - Kelli McFarland
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Zachary Beller
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Panpan Hou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Holly E Kinser
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Hongwu Liang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Mounir Tarek
- Theory, Modeling, and Simulations, UMR 7565, Université de Lorraine, Nancy, France
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| |
Collapse
|
23
|
Pless SA, Elstone FD, Niciforovic AP, Galpin JD, Yang R, Kurata HT, Ahern CA. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains. ACTA ACUST UNITED AC 2014; 143:645-56. [PMID: 24778431 PMCID: PMC4003186 DOI: 10.1085/jgp.201311036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conserved acidic and aromatic residues in the four sodium channel voltage-sensor domains make domain-specific functional contributions. Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1.4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation–pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce functional phenotypes that are different from those observed previously in Kv VSDs. In contrast, and similar to results obtained with Kv channels, individually neutralizing acidic side chains with synthetic derivatives and with natural amino acid substitutions in the INC had little or no effect on the voltage dependence of activation in any of the four domains. Interestingly, countercharge was found to play an important functional role in the ENC of DI and DII, but not DIII and DIV. These results suggest that electrostatic interactions with S4 gating charges are unlikely in the INC and only relevant in the ENC of DI and DII. Collectively, our data highlight domain-specific functional contributions of highly conserved side chains in NaV VSDs.
Collapse
Affiliation(s)
- Stephan A Pless
- Department of Anesthesiology, Pharmacology and Therapeutics, and 2 Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Conformational dynamics of shaker-type Kv1.1 ion channel in open, closed, and two mutated states. J Membr Biol 2014; 248:241-55. [PMID: 25451198 DOI: 10.1007/s00232-014-9764-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
The dynamic properties of shaker-type Kv1.1 ion channel in its open, closed, & two mutated (E325D & V408A) states embedded in DPPC membrane have been investigated using all-atom force field-based MD simulation. Here, we represent the detailed channel stability, gating environment of charge-carrying residues, salt bridge interaction among the voltage-sensing domains (VSDs), movement of S4 helix, and ion conduction of pore. At positive potential, the S4 helix undergoes lateral fluctuations in accordance with their gating motions found in every model. During transition from closed to active state conformation, charged residues of S4 move "up" across the membrane with an average tilt angle difference of 24°, which is more consistent with the paddle model of channel gating. The E325D mutation at C-terminal end of S4-S5 helical linker leads the channel to a rapid activated state by pushing the gating charge residues upward beside the VSDs resulting in more prominent tilt of S4. Similarly in V408A mutant model, disruption of hydrophobic gate at S6 C-terminal end takes place, which causes the violation of channel-active conformation by bringing the C-terminal end of S4 to its corresponding resting state. The ion permeation is observed only in open-state conformation.
Collapse
|
25
|
Grizel AV, Glukhov GS, Sokolova OS. Mechanisms of activation of voltage-gated potassium channels. Acta Naturae 2014; 6:10-26. [PMID: 25558391 PMCID: PMC4273088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Voltage-gated potassium ion channels (Kv) play an important role in a variety of cellular processes, including the functioning of excitable cells, regulation of apoptosis, cell growth and differentiation, the release of neurotransmitters and hormones, maintenance of cardiac activity, etc. Failure in the functioning of Kv channels leads to severe genetic disorders and the development of tumors, including malignant ones. Understanding the mechanisms underlying Kv channels functioning is a key factor in determining the cause of the diseases associated with mutations in the channels, and in the search for new drugs. The mechanism of activation of the channels is a topic of ongoing debate, and a consensus on the issue has not yet been reached. This review discusses the key stages in studying the mechanisms of functioning of Kv channels and describes the basic models of their activation known to date.
Collapse
Affiliation(s)
- A. V. Grizel
- Saint Petersburg State University, 7-9, Universitetskaya nab., 199034, St. Petersburg, Russia
| | - G. S. Glukhov
- Biological Faculty of Moscow State MV Lomonosov University, 1, Leninskie Gory, Bld. 12, 119991, Moscow, Russia
| | | |
Collapse
|
26
|
Abstract
Ion channels are membrane-bound enzymes whose catalytic sites are ion-conducting pores that open and close (gate) in response to specific environmental stimuli. Ion channels are important contributors to cell signaling and homeostasis. Our current understanding of gating is the product of 60 plus years of voltage-clamp recording augmented by intervention in the form of environmental, chemical, and mutational perturbations. The need for good phenomenological models of gating has evolved in parallel with the sophistication of experimental technique. The goal of modeling is to develop realistic schemes that not only describe data, but also accurately reflect mechanisms of action. This review covers three areas that have contributed to the understanding of ion channels: traditional Eyring kinetic theory, molecular dynamics analysis, and statistical thermodynamics. Although the primary emphasis is on voltage-dependent channels, the methods discussed here are easily generalized to other stimuli and could be applied to any ion channel and indeed any macromolecule.
Collapse
|
27
|
Cheng YM, Hull CM, Niven CM, Qi J, Allard CR, Claydon TW. Functional interactions of voltage sensor charges with an S2 hydrophobic plug in hERG channels. ACTA ACUST UNITED AC 2014; 142:289-303. [PMID: 23980197 PMCID: PMC3753600 DOI: 10.1085/jgp.201310992] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human ether-à-go-go–related gene (hERG, Kv11.1) potassium channels have unusually slow activation and deactivation kinetics. It has been suggested that, in fast-activating Shaker channels, a highly conserved Phe residue (F290) in the S2 segment forms a putative gating charge transfer center that interacts with S4 gating charges, i.e., R362 (R1) and K374 (K5), and catalyzes their movement across the focused electric field. F290 is conserved in hERG (F463), but the relevant residues in the hERG S4 are reversed, i.e., K525 (K1) and R537 (R5), and there is an extra positive charge adjacent to R537 (i.e., K538). We have examined whether hERG channels possess a transfer center similar to that described in Shaker and if these S4 charge differences contribute to slow gating in hERG channels. Of five hERG F463 hydrophobic substitutions tested, F463W and F463Y shifted the conductance–voltage (G-V) relationship to more depolarized potentials and dramatically slowed channel activation. With the S4 residue reversals (i.e., K525, R537) taken into account, the closed state stabilization by F463W is consistent with a role for F463 that is similar to that described for F290 in Shaker. As predicted from results with Shaker, the hERG K525R mutation destabilized the closed state. However, hERG R537K did not stabilize the open state as predicted. Instead, we found the neighboring K538 residue to be critical for open state stabilization, as K538R dramatically slowed and right-shifted the voltage dependence of activation. Finally, double mutant cycle analysis on the G-V curves of F463W/K525R and F463W/K538R double mutations suggests that F463 forms functional interactions with K525 and K538 in the S4 segment. Collectively, these data suggest a role for F463 in mediating closed–open equilibria, similar to that proposed for F290 in Shaker channels.
Collapse
Affiliation(s)
- Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Gamal El-Din TM, Martinez GQ, Payandeh J, Scheuer T, Catterall WA. A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb. ACTA ACUST UNITED AC 2014; 142:181-90. [PMID: 23980192 PMCID: PMC3753604 DOI: 10.1085/jgp.201311012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Voltage-gated sodium channels undergo slow inactivation during repetitive depolarizations, which controls the frequency and duration of bursts of action potentials and prevents excitotoxic cell death. Although homotetrameric bacterial sodium channels lack the intracellular linker-connecting homologous domains III and IV that causes fast inactivation of eukaryotic sodium channels, they retain the molecular mechanism for slow inactivation. Here, we examine the functional properties and slow inactivation of the bacterial sodium channel NavAb expressed in insect cells under conditions used for structural studies. NavAb activates at very negative membrane potentials (V1/2 of approximately −98 mV), and it has both an early phase of slow inactivation that arises during single depolarizations and reverses rapidly, and a late use-dependent phase of slow inactivation that reverses very slowly. Mutation of Asn49 to Lys in the S2 segment in the extracellular negative cluster of the voltage sensor shifts the activation curve ∼75 mV to more positive potentials and abolishes the late phase of slow inactivation. The gating charge R3 interacts with Asn49 in the crystal structure of NavAb, and mutation of this residue to Cys causes a similar positive shift in the voltage dependence of activation and block of the late phase of slow inactivation as mutation N49K. Prolonged depolarizations that induce slow inactivation also cause hysteresis of gating charge movement, which results in a requirement for very negative membrane potentials to return gating charges to their resting state. Unexpectedly, the mutation N49K does not alter hysteresis of gating charge movement, even though it prevents the late phase of slow inactivation. Our results reveal an important molecular interaction between R3 in S4 and Asn49 in S2 that is crucial for voltage-dependent activation and for late slow inactivation of NavAb, and they introduce a NavAb mutant that enables detailed functional studies in parallel with structural analysis.
Collapse
|
29
|
Scheuer T. Bacterial sodium channels: models for eukaryotic sodium and calcium channels. Handb Exp Pharmacol 2014; 221:269-91. [PMID: 24737241 DOI: 10.1007/978-3-642-41588-3_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Eukaryotic sodium and calcium channels are made up of four linked homologous but different transmembrane domains. Bacteria express sodium channels comprised of four identical subunits, each being analogous to a single homologous domain of their eukaryotic counterparts. Key elements of primary structure are conserved between bacterial and eukaryotic sodium and calcium channels. The simple protein structure of the bacterial channels has allowed extensive structure-function probes of key regions as well as allowing determination of several X-ray crystallographic structures of these channels. The structures have revealed novel features of sodium and calcium channel pores and elucidated the structural importance of many of the conserved features of primary sequence. The structural information has also formed the basis for computational studies probing the basis for sodium and calcium selectivity and gating.
Collapse
Affiliation(s)
- Todd Scheuer
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA,
| |
Collapse
|
30
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
31
|
Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome. J Mol Biol 2013; 426:185-98. [PMID: 24055377 DOI: 10.1016/j.jmb.2013.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 11/21/2022]
Abstract
Folding of membrane proteins begins in the ribosome as the peptide is elongated. During this process, the nascent peptide navigates along 100Å of tunnel from the peptidyltransferase center to the exit port. Proximal to the exit port is a "folding vestibule" that permits the nascent peptide to compact and explore conformational space for potential tertiary folding partners. The latter occurs for cytosolic subdomains but has not yet been shown for transmembrane segments. We now demonstrate, using an accessibility assay and an improved intramolecular crosslinking assay, that the helical transmembrane S3b-S4 hairpin ("paddle") of a voltage-gated potassium (Kv) channel, a critical region of the Kv voltage sensor, forms in the vestibule. S3-S4 hairpin interactions are detected at an early stage of Kv biogenesis. Moreover, this vestibule hairpin is consistent with a closed-state conformation of the Kv channel in the plasma membrane.
Collapse
|
32
|
Schow EV, Freites JA, Nizkorodov A, White SH, Tobias DJ. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1726-36. [PMID: 22425907 DOI: 10.1016/j.bbamem.2012.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.
Collapse
Affiliation(s)
- Eric V Schow
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | | | | | | |
Collapse
|
33
|
Dou Y, Goodchild SJ, Velde RV, Wu Y, Fedida D. The neutral, hydrophobic isoleucine at position I521 in the extracellular S4 domain of hERG contributes to channel gating equilibrium. Am J Physiol Cell Physiol 2013; 305:C468-78. [PMID: 23761630 DOI: 10.1152/ajpcell.00147.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human ether-a-go-go related (hERG) potassium channel has unusual functional characteristics in that the rates of channel activation and deactivation are much slower than inactivation, which is attributed to specific structural elements within the NH2 terminus and the S1-S4 voltage-sensing domains (VSD). Although the charged residues in the VSD have been extensively modified and mutated as a result, the role and importance of specific hydrophobic residues in the S4 has been much less explored in studies of hERG gating. We found that charged, but not neutral or hydrophobic, amino acid substitution of isoleucine 521 at the outer end of the S4 transmembrane domain resulted in channels activating at much more negative voltages associated with a marked hyperpolarization of the conductance-voltage (G-V) relationship. The contributions of different physicochemical properties to this effect were probed by chemical modification of channels substituted with cysteine at position I521. When positively charged reagents including tetramethyl-rhodamine-5-maleimide (TMRM), 1-(2-maleimidylethyl)-4-[5-(4-methoxyphenyl)oxazol-2-yl] pyridinium methane-sulfonate (PyMPO), [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET), and 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) were bound to the cysteine, I521C channels activated at more negative membrane potentials. To examine the contributions to hERG gating of other residues at the outer end of S4 (520-528), we performed a cysteine scan combined with MTSET modification. Only L520C, along with I521C, shows a substantial hyperpolarizing shift of the G-V relationship upon MTSET modification. The data indicate that the neutral, hydrophobic residue I521 at the extracellular end of S4 is critical for stabilizing the closed conformation of the hERG channel relative to the open state and by comparison with Shaker supports the alignment of hERG I521 with Shaker L361.
Collapse
Affiliation(s)
- Ying Dou
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
34
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
35
|
Sand R, Sharmin N, Morgan C, Gallin WJ. Fine-tuning of voltage sensitivity of the Kv1.2 potassium channel by interhelix loop dynamics. J Biol Chem 2013; 288:9686-9695. [PMID: 23413033 DOI: 10.1074/jbc.m112.437483] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many proteins function by changing conformation in response to ligand binding or changes in other factors in their environment. Any change in the sequence of a protein, for example during evolution, which alters the relative free energies of the different functional conformations changes the conditions under which the protein will function. Voltage-gated ion channels are membrane proteins that open and close an ion-selective pore in response to changes in transmembrane voltage. The charged S4 transmembrane helix transduces changes in transmembrane voltage into a change in protein internal energy by interacting with the rest of the channel protein through a combination of non-covalent interactions between adjacent helices and covalent interactions along the peptide backbone. However, the structural basis for the wide variation in the V50 value between different voltage-gated potassium channels is not well defined. To test the role of the loop linking the S3 helix and the S4 helix in voltage sensitivity, we have constructed a set of mutants of the rat Kv1.2 channel that vary solely in the length and composition of the extracellular loop that connects S4 to S3. We evaluated the effect of these different loop substitutions on the voltage sensitivity of the channel and compared these experimental results with molecular dynamics simulations of the loop structures. Here, we show that this loop has a significant role in setting the precise V50 of activation in Kv1 family channels.
Collapse
Affiliation(s)
- Rheanna Sand
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nazlee Sharmin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Carla Morgan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Warren J Gallin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
36
|
Stock L, Souza C, Treptow W. Structural Basis for Activation of Voltage-Gated Cation Channels. Biochemistry 2013; 52:1501-13. [DOI: 10.1021/bi3013017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Letícia Stock
- Laboratório
de Biofísica Teórica
e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, Brasília, Brazil
| | - Caio Souza
- Laboratório
de Biofísica Teórica
e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, Brasília, Brazil
| | - Werner Treptow
- Laboratório
de Biofísica Teórica
e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, Brasília, Brazil
| |
Collapse
|
37
|
Molecular determinants for the tarantula toxin jingzhaotoxin-I interacting with potassium channel Kv2.1. Toxicon 2012; 63:129-36. [PMID: 23246579 DOI: 10.1016/j.toxicon.2012.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/01/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
Abstract
With high binding affinity and distinct pharmacological functions, animal toxins are powerful ligands to investigate the structure-function relationships of voltage-gated ion channels. Jingzhaotoxin-I (JZTX-I) is an important neurotoxin from the tarantula Chilobrachys jingzhao venom that inhibits both sodium and potassium channels. In our previous work, JZTX-I, as a gating modifier, is able to inhibit activation of the potassium channel subtype Kv2.1. However, its binding site on Kv2.1 remains unknown. In this study, using Ala-scanning mutagenesis strategy, we demonstrated that four residues (I273, F274, E277, and K280) in S3b-S4 motif contributed to the formation of JZTX-I binding site. The mutations I273A, F274A, E277A, and K280A reduced toxin binding affinity by 6-, 10-, 8-, and 7-fold, respectively. Taken together with our previous data that JZTX-I accelerated channel deactivation, these results suggest that JZTX-I inhibits Kv2.1 activation by docking onto the voltage sensor paddle and trapping the voltage sensor in the closed state.
Collapse
|
38
|
Zaydman MA, Silva JR, Cui J. Ion channel associated diseases: overview of molecular mechanisms. Chem Rev 2012; 112:6319-33. [PMID: 23151230 DOI: 10.1021/cr300360k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark A Zaydman
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130, United States
| | | | | |
Collapse
|
39
|
Krepkiy D, Gawrisch K, Swartz KJ. Structural interactions between lipids, water and S1-S4 voltage-sensing domains. J Mol Biol 2012; 423:632-47. [PMID: 22858867 PMCID: PMC3616881 DOI: 10.1016/j.jmb.2012.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage.
Collapse
Affiliation(s)
- Dmitriy Krepkiy
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| | - Klaus Gawrisch
- Laboratory of Membrane Biochemistry and Biophysics, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
40
|
Paldi T. RETRACTED ARTICLE: Deprotonation of Arginines in S4 is Involved in NaChBac Gating. J Membr Biol 2012; 245:761. [DOI: 10.1007/s00232-012-9430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/01/2012] [Indexed: 11/29/2022]
|
41
|
Yang H, Gao Z, Li P, Yu K, Yu Y, Xu TL, Li M, Jiang H. A theoretical model for calculating voltage sensitivity of ion channels and the application on Kv1.2 potassium channel. Biophys J 2012; 102:1815-25. [PMID: 22768937 DOI: 10.1016/j.bpj.2012.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/11/2012] [Accepted: 03/15/2012] [Indexed: 01/03/2023] Open
Abstract
Voltage sensing confers conversion of a change in membrane potential to signaling activities underlying the physiological processes. For an ion channel, voltage sensitivity is usually experimentally measured by fitting electrophysiological data to Boltzmann distributions. In our study, a two-state model of the ion channel and equilibrium statistical mechanics principle were used to test the hypothesis of empirically calculating the overall voltage sensitivity of an ion channel on the basis of its closed and open conformations, and determine the contribution of individual residues to the voltage sensing. We examined the theoretical paradigm by performing experimental measurements with Kv1.2 channel and a series of mutants. The correlation between the calculated values and the experimental values is at respective level, R(2) = 0.73. Our report therefore provides in silico prediction of key conformations and has identified additional residues critical for voltage sensing.
Collapse
Affiliation(s)
- Huaiyu Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Callenberg KM, Latorraca NR, Grabe M. Membrane bending is critical for the stability of voltage sensor segments in the membrane. ACTA ACUST UNITED AC 2012; 140:55-68. [PMID: 22732310 PMCID: PMC3382720 DOI: 10.1085/jgp.201110766] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interaction between membrane proteins and the surrounding membrane is becoming increasingly appreciated for its role in regulating protein function, protein localization, and membrane morphology. In particular, recent studies have suggested that membrane deformation is needed to stably accommodate proteins harboring charged amino acids in their transmembrane (TM) region, as it is energetically prohibitive to bury charge in the hydrophobic core of the bilayer. Unfortunately, current computational methods are poorly equipped for describing such deformations, as atomistic simulations are often too short to observe large-scale membrane reorganization and most continuum approaches assume a flat membrane. Previously, we developed a method that overcomes these shortcomings by using elasticity theory to characterize equilibrium membrane distortions in the presence of a TM protein, while using traditional continuum electrostatic and nonpolar energy models to determine the energy of the protein in the membrane. Here, we linked the elastostatics, electrostatics, and nonpolar numeric solvers to permit the calculation of energies for nontrivial membrane deformations. We then coupled this procedure to a robust search algorithm that identifies optimal membrane shapes for a TM protein of arbitrary chemical composition. This advance now permits us to explore a host of biological phenomena that were beyond the scope of our original method. We show that the energy required to embed charged residues in the membrane can be highly nonadditive, and our model provides a simple mechanical explanation for this nonadditivity. Our results also predict that isolated voltage sensor segments do not insert into rigid membranes, but membrane bending dramatically stabilizes these proteins in the bilayer despite their high charge content. Additionally, we use the model to explore hydrophobic mismatch with regard to nonpolar peptides and mechanosensitive channels. Our method is in quantitative agreement with molecular dynamics simulations at a tiny fraction of the computational cost.
Collapse
Affiliation(s)
- Keith M Callenberg
- Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
43
|
Villalba-Galea CA. Voltage-Controlled Enzymes: The New JanusBifrons. Front Pharmacol 2012; 3:161. [PMID: 22993507 PMCID: PMC3440755 DOI: 10.3389/fphar.2012.00161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/19/2012] [Indexed: 12/25/2022] Open
Abstract
The Ciona intestinalis voltage-sensitive phosphatase, Ci-VSP, was the first Voltage-controlled Enzyme (VEnz) proven to be under direct command of the membrane potential. The discovery of Ci-VSP conjugated voltage sensitivity and enzymatic activity in a single protein. These two facets of Ci-VSP activity have provided a unique model for studying how membrane potential is sensed by proteins and a novel mechanism for control of enzymatic activity. These facets make Ci-VSP a fascinating and versatile enzyme. Ci-VSP has a voltage sensing domain (VSD) that resembles those found in voltage-gated channels (VGC). The VSD resides in the N-terminus and is formed by four putative transmembrane segments. The fourth segment contains charged residues which are likely involved in voltage sensing. Ci-VSP produces sensing currents in response to changes in potential, within a defined range of voltages. Sensing currents are analogous to “gating” currents in VGC. As known, these latter proteins contain four VSDs which are entangled in a complex interaction with the pore domain – the effector domain in VGC. This complexity makes studying the basis of voltage sensing in VGC a difficult enterprise. In contrast, Ci-VSP is thought to be monomeric and its catalytic domain – the VSP’s effector domain – can be cleaved off without disrupting the basic electrical functioning of the VSD. For these reasons, VSPs are considered a great model for studying the activity of a VSD in isolation. Finally, VSPs are also phosphoinositide phosphatases. Phosphoinositides are signaling lipids found in eukaryotes and are involved in many processes, including modulation of VGC activity and regulation of cell proliferation. Understanding VSPs as enzymes has been the center of attention in recent years and several reviews has been dedicated to this area. Thus, this review will be focused instead on the other face of this true JanusBifrons and recapitulate what is known about VSPs as electrically active proteins.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
44
|
Khalili-Araghi F, Tajkhorshid E, Roux B, Schulten K. Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains. Biophys J 2012; 102:258-67. [PMID: 22339862 DOI: 10.1016/j.bpj.2011.10.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 10/14/2022] Open
Abstract
Voltage sensor domains (VSD) are transmembrane proteins that respond to changes in membrane voltage and modulate the activity of ion channels, enzymes, or in the case of proton channels allow permeation of protons across the cell membrane. VSDs consist of four transmembrane segments, S1-S4, forming an antiparallel helical bundle. The S4 segment contains several positively charged residues, mainly arginines, located at every third position along the helix. In the voltage-gated Shaker K(+) channel, the mutation of the first arginine of S4 to a smaller uncharged amino acid allows permeation of cations through the VSD. These currents, known as ω-currents, pass through the VSD and are distinct from K(+) currents passing through the main ion conduction pore. Here we report molecular dynamics simulations of the ω-current in the resting-state conformation for Kv1.2 and for four of its mutants. The four tested mutants exhibit various degrees of conductivity for K(+) and Cl(-) ions, with a slight selectivity for K(+) over Cl(-). Analysis of the ion permeation pathway, in the case of a highly conductive mutant, reveals a negatively charged constriction region near the center of the membrane that might act as a selectivity filter to prevent permeation of anions through the pore. The residues R1 in S4 and E1 in S2 are located at the narrowest region of the ω-pore for the resting state conformation of the VSD, in agreement with experiments showing that the largest increase in current is produced by the double mutation E1D and R1S.
Collapse
Affiliation(s)
- Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
45
|
Microscopic origin of gating current fluctuations in a potassium channel voltage sensor. Biophys J 2012; 102:L44-6. [PMID: 22713585 DOI: 10.1016/j.bpj.2012.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/24/2022] Open
Abstract
Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-μs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD.
Collapse
|
46
|
Cheng YM, Claydon TW. Voltage-dependent gating of HERG potassium channels. Front Pharmacol 2012; 3:83. [PMID: 22586397 PMCID: PMC3347040 DOI: 10.3389/fphar.2012.00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/16/2012] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.
Collapse
Affiliation(s)
- Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | | |
Collapse
|
47
|
Abstract
TPCs (two-pore channels) have recently been identified as targets for the Ca2+-mobilizing messenger NAADP (nicotinic acid–adenine dinucleotide phosphate). TPCs have a unique structure consisting of cytosolic termini, two hydrophobic domains (I and II) each comprising six transmembrane regions and a pore, and a connecting cytosolic loop; however, little is known concerning how these channels are assembled. In the present paper, we report that both domain I and II of human TPCs are capable of independent insertion into membranes, whereas the loop linking the domains fails to insert. Pairs of transmembrane regions within domain I of TPC1 are also capable of insertion, consistent with sequential translational integration of hydrophobic regions. Insertion of the first two transmembrane regions, however, was inefficient, indicating possible interaction between transmembrane regions during translation. Both domains, and each pair of transmembrane regions within domain I, were capable of forming oligomers, highlighting marked redundancy in the molecular determinants driving oligomer formation. Each hydrophobic domain formed dimers upon cross-linking. The first four transmembrane regions of TPC1 also formed dimers, whereas transmembrane regions 5 and 6, encompassing the pore loop, formed both dimers and tetramers. TPCs thus probably assemble as dimers through differential interactions between transmembrane regions. The present study provides new molecular insight into the membrane insertion and oligomerization of TPCs.
Collapse
|
48
|
Vargas E, Bezanilla F, Roux B. In search of a consensus model of the resting state of a voltage-sensing domain. Neuron 2012; 72:713-20. [PMID: 22153369 DOI: 10.1016/j.neuron.2011.09.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 11/19/2022]
Abstract
Voltage-sensing domains (VSDs) undergo conformational changes in response to the membrane potential and are the critical structural modules responsible for the activation of voltage-gated channels. Structural information about the key conformational states underlying voltage activation is currently incomplete. Through the use of experimentally determined residue-residue interactions as structural constraints, we determine and refine a model of the Kv channel VSD in the resting conformation. The resulting structural model is in broad agreement with results that originate from various labs using different techniques, indicating the emergence of a consensus for the structural basis of voltage sensing.
Collapse
Affiliation(s)
- Ernesto Vargas
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
49
|
Minassian NA, Lin MCA, Papazian DM. Altered Kv3.3 channel gating in early-onset spinocerebellar ataxia type 13. J Physiol 2012; 590:1599-614. [PMID: 22289912 DOI: 10.1113/jphysiol.2012.228205] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in Kv3.3 cause spinocerebellar ataxia type 13 (SCA13). Depending on the causative mutation, SCA13 is either a neurodevelopmental disorder that is evident in infancy or a progressive neurodegenerative disease that emerges during adulthood. Previous studies did not clarify the relationship between these distinct clinical phenotypes and the effects of SCA13 mutations on Kv3.3 function. The F448L mutation alters channel gating and causes early-onset SCA13. R420H and R423H suppress Kv3 current amplitude by a dominant negative mechanism. However, R420H results in the adult form of the disease whereas R423H produces the early-onset, neurodevelopmental form with significant clinical overlap with F448L. Since individuals with SCA13 have one wild type and one mutant allele of the Kv3.3 gene, we analysed the properties of tetrameric channels formed by mixtures of wild type and mutant subunits. We report that one R420H subunit and at least one R423H subunit can co-assemble with the wild type protein to form active channels. The functional properties of channels containing R420H and wild type subunits strongly resemble those of wild type alone. In contrast, channels containing R423H and wild type subunits show significantly altered gating, including a hyperpolarized shift in the voltage dependence of activation, slower activation, and modestly slower deactivation. Notably, these effects resemble the modified gating seen in channels containing a mixture of F448L and wild type subunits, although the F448L subunit slows deactivation more dramatically than the R423H subunit. Our results suggest that the clinical severity of R423H reflects its dual dominant negative and dominant gain of function effects. However, as shown by R420H, reducing current amplitude without altering gating does not result in infant onset disease. Therefore, our data strongly suggest that changes in Kv3.3 gating contribute significantly to an early age of onset in SCA13.
Collapse
Affiliation(s)
- Natali A Minassian
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA
| | | | | |
Collapse
|
50
|
Yang YC, Lin S, Chang PC, Lin HC, Kuo CC. Functional extension of amino acid triads from the fourth transmembrane segment (S4) into its external linker in Shaker K(+) channels. J Biol Chem 2011; 286:37503-14. [PMID: 21900243 DOI: 10.1074/jbc.m111.237792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved fourth transmembrane segment (S4) is the primary voltage sensor of the voltage-dependent channel and would move outward upon membrane depolarization. S4 comprises repetitive amino acid triads, each containing one basic (presumably charged and voltage-sensing) followed by two hydrophobic residues. We showed that the triad organization is functionally extended into the S3-4 linker right external to S4 in Shaker K(+) channels. The arginine (and lysine) substitutes for the third and the sixth residues (Ala-359 and Met-356, respectively) external to the outmost basic residue (Arg-362) in S4 dramatically and additively stabilize S4 in the resting conformation. Also, Leu-361 and Leu-358 play a very similar role in stabilization of S4 in the resting position, presumably by their hydrophobic side chains. Moreover, the double mutation A359R/E283A leads to a partially extruded position of S4 and consequently prominent closed-state inactivation, suggesting that Glu-283 in S2 may coordinate with the arginines in the extruded S4 upon depolarization. We conclude that the triad organization extends into the S3-4 linker for about six amino acids in terms of their microenvironment. These approximately six residues should retain the same helical structure as S4, and their microenvironment serves as part of the "gating canal" accommodating the extruding S4. Upon depolarization, S4 most likely moves initially as a sliding helix and follows the path that is set by the approximately six residues in the S3-4 linker in the resting state, whereas further S4 translocation could be more like, for example, a paddle, without orderly coordination from the contiguous surroundings.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences, Chang-Gung University, Tao-Yuan 333, Taiwan
| | | | | | | | | |
Collapse
|