1
|
Arslan M, Uluçay T, Kale S, Kalyoncu S. Engineering of conserved residues near antibody heavy chain complementary determining region 3 (HCDR3) improves both affinity and stability. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140915. [PMID: 37059314 DOI: 10.1016/j.bbapap.2023.140915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Affinity and stability are crucial parameters in antibody development and engineering approaches. Although improvement in both metrics is desirable, trade-offs are almost unavoidable. Heavy chain complementarity determining region 3 (HCDR3) is the best-known region for antibody affinity but its impact on stability is often neglected. Here, we present a mutagenesis study of conserved residues near HCDR3 to elicit the role of this region in the affinity-stability trade-off. These key residues are positioned around the conserved salt bridge between VH-K94 and VH-D101 which is crucial for HCDR3 integrity. We show that the additional salt bridge at the stem of HCDR3 (VH-K94:VH-D101:VH-D102) has an extensive impact on this loop's conformation, therefore simultaneous improvement in both affinity and stability. We find that the disruption of π-π stacking near HCDR3 (VH-Y100E:VL-Y49) at the VH-VL interface cause an irrecoverable loss in stability even if it improves the affinity. Molecular simulations of putative rescue mutants exhibit complex and often non-additive effects. We confirm that our experimental measurements agree with the molecular dynamic simulations providing detailed insights for the spatial orientation of HCDR3. VH-V102 right next to HCDR3 salt bridge might be an ideal candidate to overcome affinity-stability trade-off.
Collapse
Affiliation(s)
- Merve Arslan
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balçova, 35340 Izmir, Turkey
| | - Tuğçe Uluçay
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey
| | - Sibel Kalyoncu
- Izmir Biomedicine and Genome Center, Balçova, 35340 Izmir, Turkey.
| |
Collapse
|
2
|
Mondal S, Bobbili KB, Paul S, Swamy MJ. DSC and FCS Studies Reveal the Mechanism of Thermal and Chemical Unfolding of CIA17, a Polydisperse Oligomeric Protein from Coccinia Indica. J Phys Chem B 2021; 125:7117-7127. [PMID: 34167304 DOI: 10.1021/acs.jpcb.1c02120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of thermal and chemical unfolding of Coccinia indica agglutinin (CIA17), a chitooligosacharide-specific phloem exudate lectin, was investigated by biophysical approaches. DSC studies revealed that the unfolding thermogram of CIA17 consists of three components (Tm ∼ 98, 106, and 109 °C), which could be attributed to the dissociation of protein oligomers into constituent dimers, dissociation of the dimers into monomers, and unfolding of the monomers. Intrinsic fluorescence studies on the chemical denaturation by guanidinium thiocyanate and guanidinium chloride indicated the presence of two distinct steps in the unfolding pathway, which could be assigned to dissociation of the dimeric protein into monomers and unfolding of the monomers. Results of fluorescence correlation spectroscopic studies could be interpreted in terms of the following model: CIA17 forms oligomeric structures in a concentration dependent manner, with the protein existing as a monomer below 1 nM concentration but associating to form dimers at higher concentrations (KD ≈ 2.9 nM). The dimers associate to yield tetramers with a KD of ∼50 μM, which further associate to form higher oligomers with further increase in concentration. These results are consistent with the proposed role of CIA17 as a key player in the defense response of the plant against microbes and insects.
Collapse
Affiliation(s)
- Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| | | | - Sumanta Paul
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| |
Collapse
|
3
|
Mishra A, Patil RS, Singh S, Priyanka, Rathore AS. Mechanistic explanation of structural and functional changes induced by methionine mutation in G-CSF protein. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
4
|
Vattepu R, Klausmeyer RA, Ayella A, Yadav R, Dille JT, Saiz SV, Beck MR. Conserved tryptophan mutation disrupts structure and function of immunoglobulin domain revealing unusual tyrosine fluorescence. Protein Sci 2020; 29:2062-2074. [PMID: 32797644 DOI: 10.1002/pro.3929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022]
Abstract
Immunoglobulin (Ig) domains are the most prevalent protein domain structure and share a highly conserved folding pattern; however, this structural family of proteins is also the most diverse in terms of biological roles and tissue expression. Ig domains vary significantly in amino acid sequence but share a highly conserved tryptophan in the hydrophobic core of this beta-stranded protein. Palladin is an actin binding and bundling protein that has five Ig domains and plays an important role in normal cell adhesion and motility. Mutation of the core tryptophan in one Ig domain of palladin has been identified in a pancreatic cancer cell line, suggesting a crucial role for this sole tryptophan in palladin Ig domain structure, stability, and function. We found that actin binding and bundling was not completely abolished with removal of this tryptophan despite a partially unfolded structure and significantly reduced stability of the mutant Ig domain as shown by circular dichroism investigations. In addition, this mutant palladin domain displays a tryptophan-like fluorescence attributed to an anomalous tyrosine emission at 341 nm. Our results indicate that this emission originates from a tyrosinate that may be formed in the excited ground state by proton transfer to a nearby aspartic acid residue. Furthermore, this study emphasizes the importance of tryptophan in protein structural stability and illustrates how tyrosinate emission contributions may be overlooked during the interpretation of the fluorescence properties of proteins.
Collapse
Affiliation(s)
- Ravi Vattepu
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | | | - Allan Ayella
- Chemistry Department, Wichita State University, Wichita, Kansas, USA.,Chemistry Department, Washburn University, Topeka, Kansas, USA
| | - Rahul Yadav
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | - Joseph T Dille
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | - Stan V Saiz
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| | - Moriah R Beck
- Chemistry Department, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
5
|
Ling WL, Lua WH, Gan SKE. Sagacity in antibody humanization for therapeutics, diagnostics and research purposes: considerations of antibody elements and their roles. Antib Ther 2020; 3:71-79. [PMID: 33928226 PMCID: PMC7990220 DOI: 10.1093/abt/tbaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
The humanization of antibodies for therapeutics is a critical process that can determine the success of antibody drug development. However, the science underpinning this process remains elusive with different laboratories having very different methods. Well-funded laboratories can afford automated high-throughput screening methods to derive their best binder utilizing a very expensive initial set of equipment affordable only to a few. Often within these high-throughput processes, only standard key parameters, such as production, binding and aggregation are analyzed. Given the lack of suitable animal models, it is only at clinical trials that immunogenicity and allergy adverse effects are detected through anti-human antibodies as per FDA guidelines. While some occurrences that slip through can be mitigated by additional desensitization protocols, such adverse reactions to grafted humanized antibodies can be prevented at the humanization step. Considerations such as better antibody localization, avoidance of unspecific interactions to superantigens and the tailoring of antibody dependent triggering of immune responses, the antibody persistence on cells, can all be preemptively considered through a holistic sagacious approach, allowing for better outcomes in therapy and for research and diagnostic purposes.
Collapse
Affiliation(s)
- Wei-Li Ling
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Wai-Heng Lua
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- p53 Laboratory, ASTAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648
- Experimental Drug Development Center, ASTAR, 10 Biopolis Road, #05-01, Chromos, Singapore 138670
| |
Collapse
|
6
|
Banaszek A, Bumm TGP, Nowotny B, Geis M, Jacob K, Wölfl M, Trebing J, Kucka K, Kouhestani D, Gogishvili T, Krenz B, Lutz J, Rasche L, Hönemann D, Neuweiler H, Heiby JC, Bargou RC, Wajant H, Einsele H, Riethmüller G, Stuhler G. On-target restoration of a split T cell-engaging antibody for precision immunotherapy. Nat Commun 2019; 10:5387. [PMID: 31772172 PMCID: PMC6879491 DOI: 10.1038/s41467-019-13196-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
T cell-engaging immunotherapies are changing the landscape of current cancer care. However, suitable target antigens are scarce, restricting these strategies to very few tumor types. Here, we report on a T cell-engaging antibody derivative that comes in two complementary halves and addresses antigen combinations instead of single molecules. Each half, now coined hemibody, contains an antigen-specific single-chain variable fragment (scFv) fused to either the variable light (VL) or variable heavy (VH) chain domain of an anti-CD3 antibody. When the two hemibodies simultaneously bind their respective antigens on a single cell, they align and reconstitute the original CD3-binding site to engage T cells. Employing preclinical models for aggressive leukemia and breast cancer, we show that by the combinatorial nature of this approach, T lymphocytes exclusively eliminate dual antigen-positive cells while sparing single positive bystanders. This allows for precision targeting of cancers not amenable to current immunotherapies. The restriction of appropriate tumour-specific antigens is a current limitation for T cell-engaging immunotherapy. Here, the authors have designed a new system constituted by two halve antibodies, which engage T cells once binding to two different antigens, to specifically eliminate double positive cells in preclinical leukemia and breast cancer mouse models.
Collapse
Affiliation(s)
- Agnes Banaszek
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Thomas G P Bumm
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Boris Nowotny
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Maria Geis
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Kim Jacob
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Matthias Wölfl
- University Clinic Würzburg, Children's Hospital, Pediatric Oncology, Hematology and Stem Cell Transplantation, Würzburg, Germany
| | - Johannes Trebing
- University Clinic Würzburg, Department of Internal Medicine II, Division of Molecular Internal Medicine, Würzburg, Germany
| | - Kirstin Kucka
- University Clinic Würzburg, Department of Internal Medicine II, Division of Molecular Internal Medicine, Würzburg, Germany
| | - Dina Kouhestani
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Tea Gogishvili
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Bastian Krenz
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Justina Lutz
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Leo Rasche
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Dirk Hönemann
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, University Würzburg, Würzburg, Germany
| | - Julia C Heiby
- Department of Biotechnology and Biophysics, University Würzburg, Würzburg, Germany
| | - Ralf C Bargou
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Universitätsklinikum, Würzburg, Germany
| | - Harald Wajant
- University Clinic Würzburg, Department of Internal Medicine II, Division of Molecular Internal Medicine, Würzburg, Germany
| | - Hermann Einsele
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany
| | - Gert Riethmüller
- Ludwig-Maximilians-University, Institute for Immunology, Munich, Germany
| | - Gernot Stuhler
- University Clinic Würzburg, Department of Internal Medicine II, Hematology and Oncology, Würzburg, Germany.
| |
Collapse
|
7
|
Ballmer-Hofer K, A C Hyde C, Schleier T, Avramovic D. ScFvs as Allosteric Inhibitors of VEGFR-2: Novel Tools to Harness VEGF Signaling. Int J Mol Sci 2018; 19:E1334. [PMID: 29723982 PMCID: PMC5983656 DOI: 10.3390/ijms19051334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/04/2023] Open
Abstract
Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2) is the main mediator of angiogenic signaling in endothelial cells and a primary responder to VEGF. VEGF dependent VEGFR-2 activation regulates endothelial cell migration and proliferation, as well as vessel permeability. VEGF is presented as an antiparallel homodimer, and its binding to VEGFR-2 brings two receptors in close proximity. Downstream signaling is triggered by receptor dimerization, kinase activation, and receptor internalization. Our aim was to further investigate allosteric inhibition using binders targeting extracellular subdomains 4⁻7 of VEGFR-2 as an alternative to existing anti-angiogenic therapies, which rely on neutralizing VEGF or blocking of the ligand-binding site on the receptor. We applied phage display technology to produce single chain antibody fragments (scFvs) targeting VEGFR-2. Selected antibody fragments were characterized using biophysical and biological assays. We characterized several antibody fragments, which exert their inhibitory effect of VEGFR-2 independent of ligand binding. These reagents led to rapid clearance of VEGFR-2 from the cell surface without kinase activation, followed by an increase in intracellular receptor-positive vesicles, suggesting receptor internalization. Our highly specific VEGFR-2 binders thus represent novel tools for anti-angiogenic therapy and diagnostic applications.
Collapse
Affiliation(s)
- Kurt Ballmer-Hofer
- Laboratory of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| | - Caroline A C Hyde
- Laboratory of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| | - Thomas Schleier
- Laboratory of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| | - Dragana Avramovic
- Laboratory of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| |
Collapse
|
8
|
Li R, Zhu LN, Ren LQ, Weng JY, Sun JS. Molecular cloning and characterization of glycogen synthase in Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 214:47-56. [DOI: 10.1016/j.cbpb.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/27/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023]
|
9
|
Herold EM, John C, Weber B, Kremser S, Eras J, Berner C, Deubler S, Zacharias M, Buchner J. Determinants of the assembly and function of antibody variable domains. Sci Rep 2017; 7:12276. [PMID: 28947772 PMCID: PMC5613017 DOI: 10.1038/s41598-017-12519-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/12/2017] [Indexed: 01/17/2023] Open
Abstract
The antibody Fv module which binds antigen consists of the variable domains VL and VH. These exhibit a conserved ß-sheet structure and comprise highly variable loops (CDRs). Little is known about the contributions of the framework residues and CDRs to their association. We exchanged conserved interface residues as well as CDR loops and tested the effects on two Fvs interacting with moderate affinities (KDs of ~2.5 µM and ~6 µM). While for the rather instable domains, almost all mutations had a negative effect, the more stable domains tolerated a number of mutations of conserved interface residues. Of particular importance for Fv association are VLP44 and VHL45. In general, the exchange of conserved residues in the VL/VH interface did not have uniform effects on domain stability. Furthermore, the effects on association and antigen binding do not strictly correlate. In addition to the interface, the CDRs modulate the variable domain framework to a significant extent as shown by swap experiments. Our study reveals a complex interplay of domain stability, association and antigen binding including an unexpected strong mutual influence of the domain framework and the CDRs on stability/association on the one side and antigen binding on the other side.
Collapse
Affiliation(s)
- Eva Maria Herold
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany.,Sanofi-Aventis GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Christine John
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Benedikt Weber
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Stephan Kremser
- Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, 85747, Garching, Germany
| | - Jonathan Eras
- ETH Zürich, Otto-Stern-Weg 5, 8093, Zuerich, Switzerland
| | - Carolin Berner
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Sabrina Deubler
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany
| | - Martin Zacharias
- Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, 85747, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) at the Department Chemie, Technische Universität München, 85747, Garching, Germany.
| |
Collapse
|
10
|
Arimori T, Kitago Y, Umitsu M, Fujii Y, Asaki R, Tamura-Kawakami K, Takagi J. Fv-clasp: An Artificially Designed Small Antibody Fragment with Improved Production Compatibility, Stability, and Crystallizability. Structure 2017; 25:1611-1622.e4. [PMID: 28919443 DOI: 10.1016/j.str.2017.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/22/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
Antibody fragments are frequently used as a "crystallization chaperone" to aid structural analysis of complex macromolecules that are otherwise crystallization resistant, but conventional fragment formats have not been designed for this particular application. By fusing an anti-parallel coiled-coil structure derived from the SARAH domain of human Mst1 kinase to the variable region of an antibody, we succeeded in creating a novel chimeric antibody fragment of ∼37 kDa, termed "Fv-clasp," which exhibits excellent crystallization compatibility while maintaining the binding ability of the original IgG molecule. The "clasp" and the engineered disulfide bond at the bottom of the Fv suppressed the internal mobility of the fragment and shielded hydrophobic residues, likely contributing to the high heat stability and the crystallizability of the Fv-clasp. Finally, Fv-clasp antibodies showed superior "chaperoning" activity over conventional Fab fragments, and facilitated the structure determination of an ectodomain fragment of integrin α6β1.
Collapse
Affiliation(s)
- Takao Arimori
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu Kitago
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masataka Umitsu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Fujii
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoko Asaki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Dillon M, Yin Y, Zhou J, McCarty L, Ellerman D, Slaga D, Junttila TT, Han G, Sandoval W, Ovacik MA, Lin K, Hu Z, Shen A, Corn JE, Spiess C, Carter PJ. Efficient production of bispecific IgG of different isotypes and species of origin in single mammalian cells. MAbs 2016; 9:213-230. [PMID: 27929752 PMCID: PMC5297516 DOI: 10.1080/19420862.2016.1267089] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific IgG production in single host cells has been a much sought-after goal to support the clinical development of these complex molecules. Current routes to single cell production of bispecific IgG include engineering heavy chains for heterodimerization and redesign of Fab arms for selective pairing of cognate heavy and light chains. Here, we describe novel designs to facilitate selective Fab arm assembly in conjunction with previously described knobs-into-holes mutations for preferential heavy chain heterodimerization. The top Fab designs for selective pairing, namely variants v10 and v11, support near quantitative assembly of bispecific IgG in single cells for multiple different antibody pairs as judged by high-resolution mass spectrometry. Single-cell and in vitro-assembled bispecific IgG have comparable physical, in vitro biological and in vivo pharmacokinetics properties. Efficient single-cell production of bispecific IgG was demonstrated for human IgG1, IgG2 and IgG4 thereby allowing the heavy chain isotype to be tailored for specific therapeutic applications. Additionally, a reverse chimeric bispecific IgG2a with humanized variable domains and mouse constant domains was generated for preclinical proof-of-concept studies in mice. Efficient production of a bispecific IgG in stably transfected mammalian (CHO) cells was shown. Individual clones with stable titer and bispecific IgG composition for >120 days were readily identified. Such long-term cell line stability is needed for commercial manufacture of bispecific IgG. The single-cell bispecific IgG designs developed here may be broadly applicable to biotechnology research, including screening bispecific IgG panels, and to support clinical development.
Collapse
Affiliation(s)
- Michael Dillon
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Yiyuan Yin
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Jianhui Zhou
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Luke McCarty
- b Department of Protein Chemistry , Genentech, Inc. , South San Francisco , CA , USA
| | - Diego Ellerman
- b Department of Protein Chemistry , Genentech, Inc. , South San Francisco , CA , USA
| | - Dionysos Slaga
- c Department of Translational Oncology , Genentech, Inc. , South San Francisco , CA , USA
| | - Teemu T Junttila
- c Department of Translational Oncology , Genentech, Inc. , South San Francisco , CA , USA
| | - Guanghui Han
- d Department of Microchemistry, Proteomics and Lipidomics , Genentech, Inc. , South San Francisco , CA , USA
| | - Wendy Sandoval
- d Department of Microchemistry, Proteomics and Lipidomics , Genentech, Inc. , South San Francisco , CA , USA
| | - Meric A Ovacik
- e Department of Preclinical and Translational Pharmacokinetics , Genentech, Inc. , South San Francisco , CA , USA
| | - Kedan Lin
- e Department of Preclinical and Translational Pharmacokinetics , Genentech, Inc. , South San Francisco , CA , USA
| | - Zhilan Hu
- f Department of Early Stage Cell Culture , Genentech, Inc. , South San Francisco , CA , USA
| | - Amy Shen
- f Department of Early Stage Cell Culture , Genentech, Inc. , South San Francisco , CA , USA
| | - Jacob E Corn
- g Department of Early Discovery Biochemistry, Genentech, Inc. , South San Francisco , CA , USA
| | - Christoph Spiess
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| | - Paul J Carter
- a Department of Antibody Engineering , Genentech, Inc. , South San Francisco , CA , USA
| |
Collapse
|
12
|
Li W, Prabakaran P, Chen W, Zhu Z, Feng Y, Dimitrov DS. Antibody Aggregation: Insights from Sequence and Structure. Antibodies (Basel) 2016; 5:antib5030019. [PMID: 31558000 PMCID: PMC6698864 DOI: 10.3390/antib5030019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) are the fastest-growing biological therapeutics with important applications ranging from cancers, autoimmunity diseases and metabolic disorders to emerging infectious diseases. Aggregation of mAbs continues to be a major problem in their developability. Antibody aggregation could be triggered by partial unfolding of its domains, leading to monomer-monomer association followed by nucleation and growth. Although the aggregation propensities of antibodies and antibody-based proteins can be affected by the external experimental conditions, they are strongly dependent on the intrinsic antibody properties as determined by their sequences and structures. In this review, we describe how the unfolding and aggregation susceptibilities of IgG could be related to their cognate sequences and structures. The impact of antibody domain structures on thermostability and aggregation propensities, and effective strategies to reduce aggregation are discussed. Finally, the aggregation of antibody-drug conjugates (ADCs) as related to their sequence/structure, linker payload, conjugation chemistry and drug-antibody ratio (DAR) is reviewed.
Collapse
Affiliation(s)
- Wei Li
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | | | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Yang Feng
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Abstract
Cancer immunotherapy has recently generated much excitement after the continuing success of the immunomodulating anti-CTLA-4 and anti-PD-1 antibodies against various types of cancers. Aside from these immunomodulating antibodies, bispecific antibodies, chimeric antigen receptor T cells, and other technologies are being actively studied. Among the various approaches to cancer immunotherapy, 2 bispecific antibodies are currently approved for patient care. Many more bispecific antibodies are now in various phases of clinical development and will become the next generation of antibody-based therapies. Further understanding of immunology and advances in protein engineering will help to generate a greater variety of bispecific antibodies to fight cancer. Here, we focus on bispecific antibodies that recruit immune cells to engage and kill tumor cells.
Collapse
Affiliation(s)
- Siqi Chen
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Jing Li
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Qing Li
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| | - Zhong Wang
- a School of Pharmaceutical Sciences, Sun Yat-Sen University , Guangzhou , China.,b Center for Cellular & Structural Biology, Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
14
|
DeKosky BJ, Lungu OI, Park D, Johnson EL, Charab W, Chrysostomou C, Kuroda D, Ellington AD, Ippolito GC, Gray JJ, Georgiou G. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A 2016; 113:E2636-45. [PMID: 27114511 PMCID: PMC4868480 DOI: 10.1073/pnas.1525510113] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease.
Collapse
Affiliation(s)
- Brandon J DeKosky
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Oana I Lungu
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Daechan Park
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Erik L Johnson
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Wissam Charab
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | | | - Daisuke Kuroda
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology University of Texas at Austin, Austin, TX 78712
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
15
|
Kuroda D, Gray JJ. Shape complementarity and hydrogen bond preferences in protein-protein interfaces: implications for antibody modeling and protein-protein docking. Bioinformatics 2016; 32:2451-6. [PMID: 27153634 DOI: 10.1093/bioinformatics/btw197] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/03/2016] [Indexed: 11/12/2022] Open
Abstract
MOTIVATIONS Characterizing protein-protein interfaces and the hydrogen bonds is a first step to better understand proteins' structures and functions toward high-resolution protein design. However, there are few large-scale surveys of hydrogen bonds of interfaces. In addition, previous work of shape complementarity of protein complexes suggested that lower shape complementarity in antibody-antigen interfaces is related to their evolutionary origin. RESULTS Using 6637 non-redundant protein-protein interfaces, we revealed peculiar features of various protein complex types. In contrast to previous findings, the shape complementarity of antibody-antigen interfaces resembles that of the other interface types. These results highlight the importance of hydrogen bonds during evolution of protein interfaces and rectify the prevailing belief that antibodies have lower shape complementarity. CONTACT jgray@jhu.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Daisuke Kuroda
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA, Department of Analytical and Physical Chemistry, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA, Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
16
|
Bedouelle H. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer. Biochimie 2016; 121:29-37. [DOI: 10.1016/j.biochi.2015.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022]
|
17
|
Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015; 67:95-106. [DOI: 10.1016/j.molimm.2015.01.003] [Citation(s) in RCA: 417] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022]
|
18
|
Julian MC, Lee CC, Tiller KE, Rabia LA, Day EK, Schick AJ, Tessier PM. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies. Protein Eng Des Sel 2015; 28:339-50. [PMID: 26386257 DOI: 10.1093/protein/gzv050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aβ peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aβ residues 33-42 in CDR3. Interestingly, co-selection for improved Aβ binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aβ binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments.
Collapse
Affiliation(s)
- Mark C Julian
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Christine C Lee
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kathryn E Tiller
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lilia A Rabia
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Evan K Day
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Arthur J Schick
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M Tessier
- Center for Biotechnology & Interdisciplinary Studies, Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
19
|
Abstract
The use of monoclonal antibodies as therapeutics requires optimizing several of their key attributes. These include binding affinity and specificity, folding stability, solubility, pharmacokinetics, effector functions, and compatibility with the attachment of additional antibody domains (bispecific antibodies) and cytotoxic drugs (antibody-drug conjugates). Addressing these and other challenges requires the use of systematic design methods that complement powerful immunization and in vitro screening methods. We review advances in designing the binding loops, scaffolds, domain interfaces, constant regions, post-translational and chemical modifications, and bispecific architectures of antibodies and fragments thereof to improve their bioactivity. We also highlight unmet challenges in antibody design that must be overcome to generate potent antibody therapeutics.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Peter M Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| |
Collapse
|
20
|
Kumada Y, Ishikawa Y, Fujiwara Y, Takeda R, Miyamoto R, Niwa D, Momose S, Kang B, Kishimoto M. Efficient refolding and immobilization of PMMA-tag-fused single-chain Fv antibodies for sensitive immunological detection on a PMMA plate. J Immunol Methods 2014; 411:1-10. [PMID: 24910412 DOI: 10.1016/j.jim.2014.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the efficient refolding and site-specific immobilization of single-chain variable fragments (scFvs) genetically fused with a poly(methylmethacrylate)-binding peptide (PMMA-tag). According to the results of an aggregation test of a scFv-PM in the presence of 0.5 M urea, aggregation was hardly detectable at a weak-alkaline pH (8.5) with lower concentrations of NaCl. Consequently, more than 93% recovery of the anti-RNase scFv-PM model was attained, when it was refolded by dialysis against 50 mM TAPS (pH8.5). These results suggested that the apparent isoelectric point (pI) of a target scFv was decreased to a great extent by the genetic fusion of a PMMA-tag containing 5 acidic amino acids, and, thus, the solubility of the scFv-PM in its semi-denatured form was considerably improved. We also designed alternative peptide-tags composed of plural aspartic acid residues (D5, D10 and D15-tags) to decrease the apparent pI value of the fusion protein. As a consequence, scFv-D5, scFv-D10 and scFv-D15 were also efficiently refolded with yields of more than 95%. It is noteworthy that even scFv-PS-D15, which had both a positively charged polystyrene-binding peptide (PS-tag) and a negatively charged D15-tag, was serially connected at the C-terminal region of scFvs, and also refolded with a yield of 96.1%. These results clearly indicate that controlling the apparent pI value of scFvs by the fusion of oligo-peptides composed of acidic amino acids at the C-terminus resulted in a high degree of recovery via dialysis refolding. According to the results of a sandwich ELISA using scFv-PMs, scFv-D15 and scFv-PS-D15 as ligands, high antigen-binding signals were detected from both the PMMA and phi-PS plates immobilized with scFv-PMs. Furthermore, the high antigen-binding activity of scFv-PMs was maintained in an adsorption state when it was immobilized on the surface of not only PMMA, but also hydrophilic PS (phi-PS) and polycarbonate (PC). These results strongly suggested that a PMMA-tag introduced at the C-terminus of scFvs preferably recognizes ester and/or carboxyl groups exposed on the surface of plastics. The scFv-PM developed in the present study has advantages such as being a ligand antibody, compared with whole Ab and the conventional PS-tag-fused scFvs (scFv-PS), and, thus, it is considerably useful in a sandwich ELISA as well as in various immuno-detection and immuno-separation systems.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan.
| | - Yasuyuki Ishikawa
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Yusuke Fujiwara
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Rui Takeda
- Department of Chemistry and Materials Technology, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Ryosuke Miyamoto
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Daisuke Niwa
- Rohm Corporation, Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Shun Momose
- Rohm Corporation, Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Bongmun Kang
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| | - Michimasa Kishimoto
- Department of Biomolecular Engineering, Kyoto Institute of Technology, 1, Hashigami-cho, Matsugasaki, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
21
|
Sun H, Wu GM, Chen YY, Tian Y, Yue YH, Zhang GL. Expression, production, and renaturation of a functional single-chain variable antibody fragment (scFv) against human ICAM-1. ACTA ACUST UNITED AC 2014; 47:540-7. [PMID: 24919171 PMCID: PMC4123832 DOI: 10.1590/1414-431x20143276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is an important factor in the progression
of inflammatory responses in vivo. To develop a new
anti-inflammatory drug to block the biological activity of ICAM-1, we produced a
monoclonal antibody (Ka=4.19×10−8 M) against human
ICAM-1. The anti-ICAM-1 single-chain variable antibody fragment (scFv) was expressed
at a high level as inclusion bodies in Escherichia coli. We refolded
the scFv (Ka=2.35×10−7 M) by ion-exchange chromatography,
dialysis, and dilution. The results showed that column chromatography refolding by
high-performance Q Sepharose had remarkable advantages over conventional dilution and
dialysis methods. Furthermore, the anti-ICAM-1 scFv yield of about 60 mg/L was higher
with this method. The purity of the final product was greater than 90%, as shown by
denaturing gel electrophoresis. Enzyme-linked immunosorbent assay, cell culture, and
animal experiments were used to assess the immunological properties and biological
activities of the renatured scFv.
Collapse
Affiliation(s)
- H Sun
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - G M Wu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Y Y Chen
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Y Tian
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Y H Yue
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - G L Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
22
|
Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol 2014; 32:191-8. [PMID: 24463572 DOI: 10.1038/nbt.2797] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
Abstract
Robust generation of IgG bispecific antibodies has been a long-standing challenge. Existing methods require extensive engineering of each individual antibody, discovery of common light chains, or complex and laborious biochemical processing. Here we combine computational and rational design approaches with experimental structural validation to generate antibody heavy and light chains with orthogonal Fab interfaces. Parental monoclonal antibodies incorporating these interfaces, when simultaneously co-expressed, assemble into bispecific IgG with improved heavy chain-light chain pairing. Bispecific IgGs generated with this approach exhibit pharmacokinetic and other desirable properties of native IgG, but bind target antigens monovalently. As such, these bispecific reagents may be useful in many biotechnological applications.
Collapse
|
23
|
Maurer RW, Hunter AK, Wang X, Wang WK, Robinson AS, Roberts CJ. Folding and aggregation of a multi-domain engineered immunotoxin. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol 2013; 4:302. [PMID: 24115948 PMCID: PMC3792396 DOI: 10.3389/fimmu.2013.00302] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/12/2013] [Indexed: 11/18/2022] Open
Abstract
The function of antibodies (Abs) involves specific binding to antigens (Ags) and activation of other components of the immune system to fight pathogens. The six hypervariable loops within the variable domains of Abs, commonly termed complementarity determining regions (CDRs), are widely assumed to be responsible for Ag recognition, while the constant domains are believed to mediate effector activation. Recent studies and analyses of the growing number of available Ab structures, indicate that this clear functional separation between the two regions may be an oversimplification. Some positions within the CDRs have been shown to never participate in Ag binding and some off-CDRs residues often contribute critically to the interaction with the Ag. Moreover, there is now growing evidence for non-local and even allosteric effects in Ab-Ag interaction in which Ag binding affects the constant region and vice versa. This review summarizes and discusses the structural basis of Ag recognition, elaborating on the contribution of different structural determinants of the Ab to Ag binding and recognition. We discuss the CDRs, the different approaches for their identification and their relationship to the Ag interface. We also review what is currently known about the contribution of non-CDRs regions to Ag recognition, namely the framework regions (FRs) and the constant domains. The suggested mechanisms by which these regions contribute to Ag binding are discussed. On the Ag side of the interaction, we discuss attempts to predict B-cell epitopes and the suggested idea to incorporate Ab information into B-cell epitope prediction schemes. Beyond improving the understanding of immunity, characterization of the functional role of different parts of the Ab molecule may help in Ab engineering, design of CDR-derived peptides, and epitope prediction.
Collapse
Affiliation(s)
- Inbal Sela-Culang
- The Goodman Faculty of Life Sciences, Bar Ilan University , Ramat Gan , Israel
| | | | | |
Collapse
|
25
|
Rodríguez-Rodríguez ER, Ledezma-Candanoza LM, Contreras-Ferrat LG, Olamendi-Portugal T, Possani LD, Becerril B, Riaño-Umbarila L. A Single Mutation in Framework 2 of the Heavy Variable Domain Improves the Properties of a Diabody and a Related Single-Chain Antibody. J Mol Biol 2012; 423:337-50. [DOI: 10.1016/j.jmb.2012.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
|
26
|
Wang T, Duan Y. Probing the stability-limiting regions of an antibody single-chain variable fragment: a molecular dynamics simulation study. Protein Eng Des Sel 2011; 24:649-57. [PMID: 21729946 DOI: 10.1093/protein/gzr029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibody single-chain variable fragments (scFvs) offer particular advantages over the full-size antibodies, including easy expression, efficient local concentration and fast body clearance. However, scFvs typically show low thermal stability that limits their biomedical and biotechnological applications. In this study, we examined the thermal stability of the human and murine vascular endothelial growth factor antibody scFv fragment by molecular dynamics simulations. A consistent observation was the dissociation of the light-chain (VL) and heavy-chain (VH) domains and loss of the native structures of both domains in the simulations at the elevated temperatures. The stability-limiting structural elements in the protein were revealed from the detailed analyses on the native contacts. We found that dissociation of the VL-VH domains was the first event leading to the unfolding of the native structure of the protein and the disruption of the VL-VH interface was largely due to the break of the interfacial hydrophobic and aromatic interactions while the hydrogen-bonding interaction between Gln38 in VL and Gln39 in VH remained. Within the β-barrel structure of the VL and VH domains, β-strands β6, β2 and β11 appeared to be the least stable. In addition, we found that the VH domain was more thermally resistant than the VL domain. Based on these findings, we discussed potential strategies to improve the stability of this therapeutically important scFv fragment.
Collapse
Affiliation(s)
- Ting Wang
- Department of Applied Science, University of California, Davis, CA 95616-8816, USA
| | | |
Collapse
|
27
|
Chailyan A, Marcatili P, Tramontano A. The association of heavy and light chain variable domains in antibodies: implications for antigen specificity. FEBS J 2011; 278:2858-66. [PMID: 21651726 PMCID: PMC3562479 DOI: 10.1111/j.1742-4658.2011.08207.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antigen-binding site of immunoglobulins is formed by six regions, three from the light and three from the heavy chain variable domains, which, on association of the two chains, form the conventional antigen-binding site of the antibody. The mode of interaction between the heavy and light chain variable domains affects the relative position of the antigen-binding loops and therefore has an effect on the overall conformation of the binding site. In this article, we analyze the structure of the interface between the heavy and light chain variable domains and show that there are essentially two different modes for their interaction that can be identified by the presence of key amino acids in specific positions of the antibody sequences. We also show that the different packing modes are related to the type of recognized antigen.
Collapse
Affiliation(s)
- Anna Chailyan
- Department of Physics, Sapienza University of Rome, Italy
| | | | | |
Collapse
|
28
|
Yang T, Yang L, Chai W, Li R, Xie J, Niu B. A strategy for high-level expression of a single-chain variable fragment against TNFα by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220. Protein Expr Purif 2011; 76:109-14. [DOI: 10.1016/j.pep.2010.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
29
|
Igawa T, Tsunoda H, Kikuchi Y, Yoshida M, Tanaka M, Koga A, Sekimori Y, Orita T, Aso Y, Hattori K, Tsuchiya M. VH/VL interface engineering to promote selective expression and inhibit conformational isomerization of thrombopoietin receptor agonist single-chain diabody. Protein Eng Des Sel 2010; 23:667-77. [DOI: 10.1093/protein/gzq034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Edwardraja S, Neelamegam R, Ramadoss V, Venkatesan S, Lee SG. Redesigning of anti-c-Met single chain Fv antibody for the cytoplasmic folding and its structural analysis. Biotechnol Bioeng 2010; 106:367-75. [DOI: 10.1002/bit.22702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Arcangeli C, Cantale C, Galeffi P, Rosato V. Structure and dynamics of the anti-AMCV scFv(F8): effects of selected mutations on the antigen combining site. J Struct Biol 2008; 164:119-33. [PMID: 18662789 DOI: 10.1016/j.jsb.2008.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/16/2008] [Accepted: 06/27/2008] [Indexed: 11/26/2022]
Abstract
The recombinant antibody fragment scFv(F8), which recognizes the coat protein of the plant virus AMCV, is characterized by peculiar high in vitro stability and functional folding even in reducing environments, making it fit for designing stable antibodies with desired properties. Mutagenesis and functional analysis evidenced two residues, at positions 47 and 58 of the V(H) chain, playing a crucial role in the antigen binding recognition. Here, we used a computational procedure to assess the effects of these mutations on the stability, structure and dynamics of the antigen-binding site. Structural models of the wild type scFv(F8) and of its H47 and H58 mutants were built by homology modelling and assessed by multiple 15.5ns of molecular dynamics simulations. Computational results indicate that the 47H substitution strongly affects the CDR-H(2) conformation, destabilizes the V(H)/V(L) interface and confers high conformational flexibility to the antigen-binding site, leading the mutant to functional loss. The mutation at position H58 strenghtens the binding site, bestowing a high antigen specificity on the mutant. The essential dynamics and the analysis of the protein-solvent interface further corroborate the correspondence between the extent of the structurally-determined flexibility of the binding site with the different functional behaviours proved by the wild-type and its mutants. These results may have useful implications for structure-based design of antibody combining site.
Collapse
Affiliation(s)
- Caterina Arcangeli
- ENEA, Dipartimento FIM, Sezione Calcolo e Modellistica, CR Casaccia, Via Anguillarese 301, I-00123 Rome, Italy.
| | | | | | | |
Collapse
|
32
|
Teerinen T, Valjakka J, Rouvinen J, Takkinen K. Structure-based Stability Engineering of the Mouse IgG1 Fab Fragment by Modifying Constant Domains. J Mol Biol 2006; 361:687-97. [PMID: 16876195 DOI: 10.1016/j.jmb.2006.06.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 06/19/2006] [Accepted: 06/21/2006] [Indexed: 11/17/2022]
Abstract
A semi-rational approach based on structural data was exploited in a search for CH1 and CL domains with improved intrinsic thermodynamic stabilities. Structural and amino acid level comparisons were carried out against known biophysically well-behaving and thermodynamically beneficial scFv and Fab fragments. A number of mutant Fab fragments were constructed by site-directed mutagenesis of regions in the CH1 and CL domains expected to be most sensitive under physical stress conditions. These mutations were located on three sites in the Fab constant domains; a mobile loop in the CH1 domain, residues surrounding the two largest solvated hydrophobic cavities located in the interface of the CH1 and CL domains and the hydrophobic core regions of both CH1 and CL. Expression levels of functional Fab fragments, denaturant-induced unfolding equilibria and circular dichroism spectroscopy were used to evaluate the relative stabilities of the wild-type and the mutant Fab fragments. The highest thermodynamic stability was reached through the mutation strategy, where the hydrophobicity and the packing density of the solvated hydrophobic cavity in the CH1/CL interface was increased by the replacement of the hydrophilic Thr178 in the CL domain by a more hydrophobic residue, valine or isoleucine. The midpoint of the transition curve from native to unfolded states of the protein, measured by fluorescence emission, occurred at concentrations of guanidine hydrochloride of 2.4 M and 2.6 M for the wild-type Fab and the most stable mutants, respectively. Our results illustrate that point mutations targeted to the CH1/CL interface were advantageous for the overall thermodynamic stability of the Fab fragment.
Collapse
Affiliation(s)
- Tuija Teerinen
- VTT Biotechnology, P.O. Box 1000, 02044 VTT Espoo, Finland
| | | | | | | |
Collapse
|
33
|
Monsellier E, Bedouelle H. Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength. Protein Eng Des Sel 2005; 18:445-56. [PMID: 16087653 DOI: 10.1093/protein/gzi046] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fluorescence of tryptophan is used as a signal to monitor the unfolding of proteins, in particular the intensity of fluorescence and the wavelength of its maximum lambda(max). The law of the signal is linear with respect to the concentrations of the reactants for the intensity but not for lambda(max). Consequently, the stability of a protein and its variation upon mutation cannot be deduced directly from measurements made with lambda(max). Here, we established a rigorous law of the signal for lambda(max). We then compared the stability DeltaG(H(2)O) and coefficient of cooperativity m for a two-state equilibrium of unfolding, monitored with lambda(max), when the rigorous and empirical linear laws of the signal are applied. The corrective terms involve the curvature of the emission spectra at their lambda(max) and can be determined experimentally. The rigorous and empirical values of the cooperativity coefficient m are equal within the experimental error for this parameter. In contrast, the rigorous and empirical values of the stability DeltaG(H(2)O) generally differ. However, they are equal within the experimental error if the curvatures of the spectra for the native and unfolded states are identical. We validated this analysis experimentally using domain 3 of the envelope glycoprotein of the dengue virus and the single-chain variable fragment (scFv) of antibody mAbD1.3, directed against lysozyme.
Collapse
Affiliation(s)
- Elodie Monsellier
- Unit of Molecular Prevention and Therapy of Human Diseases (CNRS FRE 2849), Institut Pasteur, 28 rue Docteur Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
34
|
Krauss J, Arndt MAE, Vu BK, Newton DL, Seeber S, Rybak SM. Efficient killing of CD22+ tumor cells by a humanized diabody–RNase fusion protein. Biochem Biophys Res Commun 2005; 331:595-602. [PMID: 15850802 DOI: 10.1016/j.bbrc.2005.03.215] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Indexed: 11/18/2022]
Abstract
We report on the generation of a dimeric immunoenzyme capable of simultaneously delivering two ribonuclease (RNase) effector domains on one molecule to CD22(+) tumor cells. As targeting moiety a diabody derived from the previously humanized scFv SGIII with grafted specificity of the murine anti-CD22 mAb RFB4 was constructed. Further engineering the interface of this construct (V(L)36(Leu-->Tyr)) resulted in a highly robust bivalent molecule that retained the same high affinity as the murine mAb RFB4 (K(D)=0.2 nM). A dimeric immunoenzyme comprising this diabody and Rana pipiens liver ribonuclease I (rapLRI) was generated, expressed as soluble protein in bacteria, and purified to homogeneity. The dimeric fusion protein killed several CD22(+) tumor cell lines with high efficacy (IC(50)=3-20 nM) and exhibited 9- to 48-fold stronger cytotoxicity than a monovalent rapLRI-scFv counterpart. Our results demonstrate that engineering of dimeric antibody-ribonuclease fusion proteins can markedly enhance their biological efficacy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibody Specificity
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Death
- Cell Line, Tumor
- Cell Survival
- Cytotoxicity, Immunologic
- Dimerization
- Humans
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Inhibitory Concentration 50
- Lectins/immunology
- Lectins/metabolism
- Mice
- Neoplasms/immunology
- Neoplasms/pathology
- Protein Structure, Quaternary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Ribonucleases/chemistry
- Ribonucleases/genetics
- Ribonucleases/isolation & purification
- Ribonucleases/metabolism
- Sensitivity and Specificity
- Sialic Acid Binding Ig-like Lectin 2
Collapse
Affiliation(s)
- Jürgen Krauss
- Department of Medical Oncology and Cancer Research, University of Essen, D-45122 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Joshi BH, Puri RK. Optimization of expression and purification of two biologically active chimeric fusion proteins that consist of human interleukin-13 and Pseudomonas exotoxin in Escherichia coli. Protein Expr Purif 2005; 39:189-98. [PMID: 15642470 DOI: 10.1016/j.pep.2004.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/20/2004] [Indexed: 10/26/2022]
Abstract
We have previously reported that a variety of solid human tumor cell lines express a large number of receptors for interleukin-13 (IL-13). These receptors could be targeted with a chimeric fusion protein consisting of human IL-13 and a truncated form of Pseudomonas exotoxin (PE). We describe here optimization of critical steps involved in high yield expression of two recombinant chimeric fusion proteins for obtaining highly purified and biologically active cytotoxins in Escherichia coli. The chimeric constructs of human IL-13 and two 38 kDa truncated PEs: (i) PE38 and (ii) PE38QQR, (three lysine residues in PE38 at 590, 606, and 613 substituted with two glutamine and one arginine) were used for protein expression in pET prokaryotic expression vector system with kanamycin as a selection antibiotic. Our results suggest that fresh transformation of E. coli and induction by isopropyl-beta-D-thiogalactopyranoside (IPTG) for 6 h resulted in maximum protein expression. To further improve the yield, we used a genetically modified E. coli strain, BL21(DE3)pLysS, which carries a plasmid for lysozyme with a weak promoter that inhibits T7 RNA polymerase and minimizes protein production in the absence of IPTG. Use of this strain eliminated the need for lysozyme digestion of the induced bacteria to release inclusion bodies, which resulted in expression of purer protein as compared to the conventional BL21(DE3) strain. Additional protocol optimizations included 16 h solubilization of inclusion bodies, constitution of refolding buffer, and timing of dialysis. These proteins were finally purified by Q-Sepharose, mono-Q, and gel filtration chromatography. Between 14-22 and 21-28 mg highly purified and biologically active protein was obtained from 1L of BL21 (DE3) and BL21 (DE3) pLysS bacteria culture, respectively. As IL-13R targeting for brain tumor therapy offers an exciting treatment option, optimization of production of IL-13PE will enhance production of clinical grade material for Phase III clinical trials.
Collapse
Affiliation(s)
- Bharat H Joshi
- Laboratory of Molecular Tumor Biology, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Arndt MAE, Krauss J, Schwarzenbacher R, Vu BK, Greene S, Rybak SM. Generation of a highly stable, internalizing anti-CD22 single-chain Fv fragment for targeting non-Hodgkin's lymphoma. Int J Cancer 2004; 107:822-9. [PMID: 14566834 DOI: 10.1002/ijc.11451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The generation of a single chain Fv (scFv) fragment derived from the anti-CD22 monoclonal antibody LL2 resulted in a molecule with good antigen binding but very poor stability properties, thus hampering its clinical applicability. Here we report on the construction of an engineered LL2 scFv fragment by rational mutagenesis. The contribution of uncommon wild-type sequence residues for providing stability to the conserved common core structure of immunoglobulins was examined. Aided by computer homology modeling, 3 destabilizing residues within the core of the wild-type VH domain were identified. Owing to the conserved nature of the buried core structure, mutagenesis of these sites to respective consensus residues markedly stabilized the molecule but did not influence its antigen binding properties: the engineered scFv MJ-7 exhibited exceptional biophysical stability with a half-life not reached after 6 days of incubation in human serum at 37 degrees C, while fully retaining the epitope specificity of the monoclonal antibody, and antigen binding affinity of the wild-type scFv. Furthermore, both the monoclonal antibody LL2 and the engineered scFv fragment became fully internalized after only 30 min of incubation at 37 degrees C with CD22+ tumor cells. These properties predict scFv MJ-7 could become a novel powerful tool to selectively deliver cytotoxic agents to malignant CD22+ cells.
Collapse
|
37
|
Olsen RJ, Mazlo J, Koepsell SA, McKeithan TW, Hinrichs SH. Minimal structural elements of an inhibitory anti-ATF1/CREB single-chain antibody fragment (scFv41.4). HYBRIDOMA AND HYBRIDOMICS 2003; 22:65-77. [PMID: 12831531 DOI: 10.1089/153685903321947987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibody variable domains represent potential structural models for the rational design of therapeutic molecules that bind cellular proteins with high affinity and specificity. The Activating Transcription Factor 1 (ATF1)/Cyclic AMP Response Element Binding Protein (CREB) family of transcription factors are particularly relevant targets due to their strong association with melanoma and clear cell sarcoma. Biochemical and structural investigations were performed to optimize a single-chain antibody fragment (scFv), scFv41.4, that disrupts the binding of ATF1/CREB to cyclic-AMP response elements (CRE) in vitro and inhibits transcriptional activation in cells. Molecular modeling and ligand docking simulations suggested that scFv41.4 could function as a disulfide-deficient single domain scFv. Functional studies verified that deletion of the light chain did not result in reduced inhibitory activity. The isolated heavy chain was predicted to assume a relaxed structural conformation that maintained a functional antigen binding pocket. The minimal structural elements necessary for intracellular function were further analyzed by selective deletion of CDR1 and CDR2. V(H)-CDR1 and V(H)-CDR3 were shown to play a key role in antigen binding activity, but V(H)-CDR2 was dispensable. Thus, scFv41.4 represents a unique molecule with potential for use in the design of peptidomimetic derivatives having therapeutic application to human cancer.
Collapse
Affiliation(s)
- R J Olsen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | | | |
Collapse
|
38
|
Sinacola JR, Robinson AS. Rapid refolding and polishing of single-chain antibodies from Escherichia coli inclusion bodies. Protein Expr Purif 2002; 26:301-8. [PMID: 12406685 DOI: 10.1016/s1046-5928(02)00538-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An inexpensive and fast-folding strategy for single-chain antibody (scFv) recovered from Escherichia coli inclusion bodies has been developed. Two anti-fluorescein single-chain antibodies, 4-4-20 and 4M5.3, were expressed as inclusion bodies in E. coli for use in a comparative refolding study. Active protein yields as well as degree of aggregation were evaluated for scFv produced by stepwise dialysis, redox dialysis, and a newly developed controlled dilution and filtration strategy. Although all three methods produced active protein for both 4-4-20 and 4M5.3, the extent of aggregation differed greatly among the methods. For 4-4-20, the controlled dilution and filtration strategy reduced aggregation by half, allowed batch processing times of 8h (an 18-fold improvement), and significantly reduced denaturant usage while increasing active yields by 150%. A hydroxyapatite resin polishing step was used to remove completely the aggregate species and inactive monomeric scFv from active scFv.
Collapse
Affiliation(s)
- Jessica R Sinacola
- Department of Chemical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, USA
| | | |
Collapse
|
39
|
Weidenhaupt M, Khalifa MB, Hugo N, Choulier L, Altschuh D, Vernet T. Functional mapping of conserved, surface-exposed charges of antibody variable domains. J Mol Recognit 2002; 15:94-103. [PMID: 11954054 DOI: 10.1002/jmr.562] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Surface-exposed charges can affect protein structure, stability and solubility as well as the kinetics of both the folding process and interaction with binding partners. We have investigated the influence on kinetic interaction parameters of 14 conserved, surface-exposed charges located away from the paratope in the variable domains of two antibodies of different specificity. We found that conserved, surface-exposed, charged framework residues are asymmetrically distributed on opposite faces of both VH and VL domains. Some of the charges play a critical role in protein folding and stability. While electrostatic forces within or close to the binding interface can be used to optimize the association rate, we confirmed the predicted minor effects of charge modifications remote from the binding site. They had no effect on the dissociation rate parameter. Our study demonstrates the role of residues remote from the interaction site in the recognition function as well as the limited effect of surface charge modifications in antibody fragments on kinetic interaction parameters.
Collapse
Affiliation(s)
- Marianne Weidenhaupt
- Institut de Biologie Structurale Jean-Pierre Ebel, Laboratoire d'Ingénierie des Macromolécules, CEA/CNRS/UJF, 41 rue Jules Horowitz,-F-38027 Grenoble cedex 1, France
| | | | | | | | | | | |
Collapse
|
40
|
Wu AM, Tan GJ, Sherman MA, Clarke P, Olafsen T, Forman SJ, Raubitschek AA. Multimerization of a chimeric anti-CD20 single-chain Fv-Fc fusion protein is mediated through variable domain exchange. Protein Eng Des Sel 2001; 14:1025-33. [PMID: 11809933 DOI: 10.1093/protein/14.12.1025] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A series of single-chain anti-CD20 antibodies was produced by fusing single-chain Fv (scFv) with human IgG1 hinge and Fc regions, designated scFv-Fc. The initial scFv-Fc construct was assembled using an 18 amino acid (aa) linker between the antibody light- and heavy-chain variable regions, with the Cys residue in the upper hinge region (Kabat 233) mutagenized to Ser. Anti-CD20 scFv-Fc retained specific binding to CD20-positive cells and was active in mediating complement-dependent cytolysis. Size-exclusion HPLC analysis revealed that the purified scFv-Fc included multimeric as well as monomeric components. Variant scFv-Fcs were constructed incorporating four different hinges between the scFv and Fc regions, or three different linkers in the scFv domain. All formed multimers, with the highest level of multimerization found in the scFv-Fc with the shortest linker (8 aa). Elimination of an unusual salt bridge between residues L38 and H89 in the V(L)-V(H) domain interface failed to reduce the formation of higher order forms. Structural analysis of the scFv-Fc constructed with 18 or 8 aa linkers by pepsin or papain cleavage suggested the proteins contained a form in which scFv units had cross-paired to form a 'diabody'. Thus, domain exchange or cross-pairing appears to be the basis of the observed multimerization.
Collapse
Affiliation(s)
- A M Wu
- Department of Molecular Biology, Divison of Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The application of single-chain Fv fragments (scFv) in medicine and biotechnology places great demands on their stability. Only recently has attention been given to the production of highly stable scFvs, and in a number of examples it was found that such fragments indeed perform better during practical applications. The structural parameters influencing scFv stability are now beginning to be elucidated. This review summarizes progress in rational and evolutionary engineering methods, the structural implications of these results, as well as some examples where stability engineering has been successfully applied.
Collapse
Affiliation(s)
- A Wörn
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Switzerland
| | | |
Collapse
|
42
|
Khalifa MB, Weidenhaupt M, Choulier L, Chatellier J, Rauffer-Bruyère N, Altschuh D, Vernet T. Effects on interaction kinetics of mutations at the VH-VL interface of Fabs depend on the structural context. J Mol Recognit 2000; 13:127-39. [PMID: 10867708 DOI: 10.1002/1099-1352(200005/06)13:3<127::aid-jmr495>3.0.co;2-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The influence of framework residues belonging to VH and VL modules of antibody molecules on antigen binding remains poorly understood. To investigate the functional role of such residues, we have performed semi-conservative amino acid replacements at the VH-VL interface. This work was carried out with (i) variants of the same antibody and (ii) with antibodies of different specificities (Fab fragments 145P and 1F1h), in order to check if functional effects are additive and/or similar for the two antibodies. Interaction kinetics of Fab mutants with peptide and protein antigens were measured using a BIACORE instrument. The substitutions introduced at the VH-VL interface had no significant effects on k(a) but showed small, significant effects on k(d). Mutations in the VH module affected k(d) not only for the two different antibodies but also for variants of the same antibody. These effects varied both in direction and in magnitude. In the VL module, the double mutation F(L37)L-Q(L38)L, alone or in combination with other mutations, consistently decreased k(d) about two-fold in Fab 145P. Other mutations in the VL module had no effect on k(d) in 145P, but always decreased k(d) in 1F1h. Moreover, in both systems, small-magnitude non-additive effects on k(d) were observed, but affinity variations seemed to be limited by a threshold. When comparing functional effects in antibodies of different specificity, no general rules could be established. In addition, no clear relationship could be pointed out between the nature of the amino acid change and the observed functional effect. Our results show that binding kinetics are affected by alteration of framework residues remote from the binding site, although these effects are unpredictable for most of the studied changes.
Collapse
Affiliation(s)
- M B Khalifa
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA/CNRS, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Stayton PS, Hoffman AS, Murthy N, Lackey C, Cheung C, Tan P, Klumb LA, Chilkoti A, Wilbur FS, Press OW. Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics. J Control Release 2000; 65:203-20. [PMID: 10699281 DOI: 10.1016/s0168-3659(99)00236-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There are many protein and DNA based therapeutics under development in the biotechnology and pharmaceutical industries. Key delivery challenges remain before many of these biomolecular therapeutics reach the clinic. Two important barriers are the effective targeting of drugs to specific tissues and cells and the subsequent intracellular delivery to appropriate cellular compartments. In this review, we summarize protein engineering work aimed at improving the stability and refolding efficiency of antibody fragments used in targeting, and at constructing new streptavidin variants which may offer improved performance in pre-targeting delivery strategies. In addition, we review recent work with pH-responsive polymers that mimic the membrane disruptive properties of viruses and toxins. These polymers could serve as alternatives to fusogenic peptides in gene therapy formulations and to enhance the intracellular delivery of protein therapeutics that function in the cytoplasm.
Collapse
Affiliation(s)
- P S Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|