1
|
Elementary calcium release events in the skeletal muscle cells of the honey bee Apis mellifera. Sci Rep 2021; 11:16731. [PMID: 34408196 PMCID: PMC8373864 DOI: 10.1038/s41598-021-96028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Calcium sparks are involved in major physiological and pathological processes in vertebrate muscles but have never been characterized in invertebrates. Here, dynamic confocal imaging on intact skeletal muscle cells isolated enzymatically from the adult honey bee legs allowed the first spatio-temporal characterization of subcellular calcium release events (CREs) in an insect species. The frequency of CREs, measured in x–y time lapse series, was higher than frequencies usually described in vertebrates. Honey bee CREs had a larger spatial spread at half maximum than their vertebrate counterparts and a slightly ellipsoidal shape, two characteristics that may be related to ultrastructural features specific to invertebrate cells. In line-scan experiments, the histogram of CREs’ duration followed a bimodal distribution, supporting the existence of both sparks and embers. Unlike in vertebrates, embers and sparks had similar amplitudes, a difference that could be related to genomic differences and/or excitation–contraction coupling specificities in honey bee skeletal muscle fibres. The first characterization of CREs from an arthropod which shows strong genomic, ultrastructural and physiological differences with vertebrates may help in improving the research field of sparkology and more generally the knowledge in invertebrates cell Ca2+ homeostasis, eventually leading to a better understanding of their roles and regulations in muscles but also the myotoxicity of new insecticides targeting ryanodine receptors.
Collapse
|
2
|
Li A, Zhou J, Widelitz RB, Chow RH, Chuong CM. Integrating Bioelectrical Currents and Ca 2+ Signaling with Biochemical Signaling in Development and Pathogenesis. Bioelectricity 2020; 2:210-220. [PMID: 34476353 PMCID: PMC8370337 DOI: 10.1089/bioe.2020.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Roles of bioelectrical signals are increasingly recognized in excitable and nonexcitable non-neural tissues. Diverse ion-selective channels, pumps, and gap junctions participate in bioelectrical signaling, including those transporting calcium ions (Ca2+). Ca2+ is the most versatile transported ion, because it serves as an electrical charge carrier and a biochemical regulator for multiple molecular binding, enzyme, and transcription activities. We aspire to learn how bioelectrical signals crosstalk to biochemical/biomechanical signals. In this study, we review four recent studies showing how bioelectrical currents and Ca2+ signaling affect collective dermal cell migration during feather bud elongation, affect chondrogenic differentiation in limb development, couple with mechanical tension in aligning gut smooth muscle, and affect mitochondrial function and skeletal muscle atrophy. We observe bioelectrical signals involved in several developmental and pathological conditions in chickens and mice at multiple spatial scales: cellular, cellular collective, and subcellular. These examples inspire novel concept and approaches for future basic and translational studies.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| | - Randall B. Widelitz
- Department of Pathology and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Robert H. Chow
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Cheng-Ming Chuong
- Department of Pathology and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Lotteau S, Ivarsson N, Yang Z, Restagno D, Colyer J, Hopkins P, Weightman A, Himori K, Yamada T, Bruton J, Steele D, Westerblad H, Calaghan S. A Mechanism for Statin-Induced Susceptibility to Myopathy. JACC Basic Transl Sci 2019; 4:509-523. [PMID: 31468006 PMCID: PMC6712048 DOI: 10.1016/j.jacbts.2019.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to identify a mechanism for statin-induced myopathy that explains its prevalence and selectivity for skeletal muscle, and to understand its interaction with moderate exercise. Statin-associated adverse muscle symptoms reduce adherence to statin therapy; this limits the effectiveness of statins in reducing cardiovascular risk. The issue is further compounded by perceived interactions between statin treatment and exercise. This study examined muscles from individuals taking statins and rats treated with statins for 4 weeks. In skeletal muscle, statin treatment caused dissociation of the stabilizing protein FK506 binding protein (FKBP12) from the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, the ryanodine receptor 1, which was associated with pro-apoptotic signaling and reactive nitrogen species/reactive oxygen species (RNS/ROS)-dependent spontaneous SR Ca2+ release events (Ca2+ sparks). Statin treatment had no effect on Ca2+ spark frequency in cardiac myocytes. Despite potentially deleterious effects of statins on skeletal muscle, there was no impact on force production or SR Ca2+ release in electrically stimulated muscle fibers. Statin-treated rats with access to a running wheel ran further than control rats; this exercise normalized FKBP12 binding to ryanodine receptor 1, preventing the increase in Ca2+ sparks and pro-apoptotic signaling. Statin-mediated RNS/ROS-dependent destabilization of SR Ca2+ handling has the potential to initiate skeletal (but not cardiac) myopathy in susceptible individuals. Importantly, although exercise increases RNS/ROS, it did not trigger deleterious statin effects on skeletal muscle. Indeed, our results indicate that moderate exercise might benefit individuals who take statins.
Collapse
Key Words
- Ca2+, calcium
- FDB, flexor digitorum brevis
- FKBP12, FK506 binding protein (calstabin)
- GAS, gastrocnemius
- HADHA, hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase
- HMG CoA, 3-hydroxy-3-methylglutaryl coenzyme A
- L-NAME, N(ω)-nitro-L-arginine methyl ester
- NOS, nitric oxide synthase
- PGC1α, peroxisome proliferator-activated receptor γ co-activator 1α
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- RyR, ryanodine receptor
- SOD, superoxide dismutase
- SR, sarcoplasmic reticulum
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- calcium leak
- exercise
- myopathy
- ryanodine receptor
- statin
Collapse
Affiliation(s)
- Sabine Lotteau
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Niklas Ivarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Zhaokang Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Damien Restagno
- VetAgro Sup, APCSe, Université de Lyon, Marcy l’Etoile, France
| | - John Colyer
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Philip Hopkins
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
| | - Andrew Weightman
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Joseph Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Calaghan
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Perni S, Marsden KC, Escobar M, Hollingworth S, Baylor SM, Franzini-Armstrong C. Structural and functional properties of ryanodine receptor type 3 in zebrafish tail muscle. ACTA ACUST UNITED AC 2015; 145:173-84. [PMID: 25667412 PMCID: PMC4338155 DOI: 10.1085/jgp.201411303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ryanodine receptor (RyR)1 isoform of the sarcoplasmic reticulum (SR) Ca(2+) release channel is an essential component of all skeletal muscle fibers. RyR1s are detectable as "junctional feet" (JF) in the gap between the SR and the plasmalemma or T-tubules, and they are required for excitation-contraction (EC) coupling and differentiation. A second isoform, RyR3, does not sustain EC coupling and differentiation in the absence of RyR1 and is expressed at highly variable levels. Anatomically, RyR3 expression correlates with the presence of parajunctional feet (PJF), which are located on the sides of the SR junctional cisternae in an arrangement found only in fibers expressing RyR3. In frog muscle fibers, the presence of RyR3 and PJF correlates with the occurrence of Ca(2+) sparks, which are elementary SR Ca(2+) release events of the EC coupling machinery. Here, we explored the structural and functional roles of RyR3 by injecting zebrafish (Danio rerio) one-cell stage embryos with a morpholino designed to specifically silence RyR3 expression. In zebrafish larvae at 72 h postfertilization, fast-twitch fibers from wild-type (WT) tail muscles had abundant PJF. Silencing resulted in a drop of the PJF/JF ratio, from 0.79 in WT fibers to 0.03 in the morphants. The frequency with which Ca(2+) sparks were detected dropped correspondingly, from 0.083 to 0.001 sarcomere(-1) s(-1). The few Ca(2+) sparks detected in morphant fibers were smaller in amplitude, duration, and spatial extent compared with those in WT fibers. Despite the almost complete disappearance of PJF and Ca(2+) sparks in morphant fibers, these fibers looked structurally normal and the swimming behavior of the larvae was not affected. This paper provides important evidence that RyR3 is the main constituent of the PJF and is the main contributor to the SR Ca(2+) flux underlying Ca(2+) sparks detected in fully differentiated frog and fish fibers.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Kurt C Marsden
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Matias Escobar
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Stephen Hollingworth
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Stephen M Baylor
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
5
|
Myoplasmic resting Ca2+ regulation by ryanodine receptors is under the control of a novel Ca2+-binding region of the receptor. Biochem J 2014; 460:261-71. [PMID: 24635445 PMCID: PMC4019983 DOI: 10.1042/bj20131553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Passive SR (sarcoplasmic reticulum) Ca2+ leak through the RyR (ryanodine receptor) plays a critical role in the mechanisms that regulate [Ca2+]rest (intracellular resting myoplasmic free Ca2+ concentration) in muscle. This process appears to be isoform-specific as expression of either RyR1 or RyR3 confers on myotubes different [Ca2+]rest. Using chimaeric RyR3–RyR1 receptors expressed in dyspedic myotubes, we show that isoform-dependent regulation of [Ca2+]rest is primarily defined by a small region of the receptor encompassing amino acids 3770–4007 of RyR1 (amino acids 3620–3859 of RyR3) named as the CLR (Ca2+ leak regulatory) region. [Ca2+]rest regulation by the CLR region was associated with alteration of RyRs’ Ca2+-activation profile and changes in SR Ca2+-leak rates. Biochemical analysis using Tb3+-binding assays and intrinsic tryptophan fluorescence spectroscopy of purified CLR domains revealed that this determinant of RyRs holds a novel Ca2+-binding domain with conformational properties that are distinctive to each isoform. Our data suggest that the CLR region provides channels with unique functional properties that modulate the rate of passive SR Ca2+ leak and confer on RyR1 and RyR3 distinctive [Ca2+]rest regulatory properties. The identification of a new Ca2+-binding domain of RyRs with a key modulatory role in [Ca2+]rest regulation provides new insights into Ca2+-mediated regulation of RyRs. This paper reports the finding of a new class of Ca2+-binding domain of intracellular Ca2+ channels from muscle cells. This domain provides channels with distinctive properties that result in channel-specific modulation of the intracellular resting Ca2+ concentration.
Collapse
|
6
|
Ferrante C, Szappanos H, Csernoch L, Weisleder N. Analysis of osmotic stress induced Ca2+ spark termination in mammalian skeletal muscle. INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS 2013; 50:411-418. [PMID: 24772962 PMCID: PMC4082817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ca2+ sparks represent synchronous opening of the ryanodine receptor (RyR) Ca2+ release channels located at the sarcoplasmic reticulum (SR) membrane. Whereas a quantal nature of Ca2+ sparks has been defined in cardiac muscle, the regulation of Ca2+ sparks in skeletal muscle has not been well-studied. Osmotic-stress applied to an intact skeletal muscle fiber can produce brief Ca2+ sparks and prolonged Ca2+ burst events. Here, we show that termination of Ca2+ bursts occurs in a step wise and quantal manner. Ca2+ burst events display kinetic features that are consistent with the involvement of both stochastic attrition and coordinated closure of RyR channels in the termination of SR Ca2+ release. Elemental unitary transition steps could be defined with a mean deltaF/F0 of approximately 0.28. corresponding to the gating of 1-2 RyR channels. Moreover, the amplitude of the elemental transition steps declines at the later stage of the burst event. In tandem Ca2+ burst events where two Ca2+ bursts occur at the same position within a fiber in rapid succession, the trailing event is consistently of lower amplitude than the initial event. These two complementary results suggest that SR Ca2+ release may be associated with local depletion of SR Ca2+ stores in mammalian skeletal muscle.
Collapse
Affiliation(s)
- Christopher Ferrante
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, 675 Hoes Lane Piscataway, NJ 08854, USA
| | - Henrietta Szappanos
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, 675 Hoes Lane Piscataway, NJ 08854, USA
| | - László Csernoch
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, Debrecen, Hungary
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Weisleder N, Zhou J, Ma J. Detection of calcium sparks in intact and permeabilized skeletal muscle fibers. Methods Mol Biol 2012; 798:395-410. [PMID: 22130850 DOI: 10.1007/978-1-61779-343-1_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca(2+) sparks are the elementary units of Ca(2+) signaling in striated muscle fibers that appear as highly localized Ca(2+) release events through ryanodine receptor (RyR) Ca(2+) release channels in the sarcoplasmic reticulum (SR). While these events are commonly observed in resting cardiac myocytes, they are rarely seen in resting skeletal muscle fibers. Since Ca(2+) spark analysis can provide extensive data on the Ca(2+) handling characteritsics of normal and diseased striated muscle, there has been interest in developing methods for observing Ca(2+) sparks in skeletal muscle. Previously, we discovered that stress generated by osmotic pressure changes induces a robust Ca(2+) spark response confined in close spatial proximity to the sarcolemmal membrane in wild-type intact mammalian muscles. Our studies showed these peripheral Ca(2+) sparks (PCS) were altered in dystrophic or aged skeletal muscles. Other methods to induce Ca(2+) sparks include permeabilization of the sarcolemmal membrane with detergents, such as saponin. In this chapter, we will discuss the methods for isolation of muscle fibers, the techniques for inducing Ca(2+) sparks in these isolated fibers, and provide guidance on the analysis of data from these experiments.
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | | | | |
Collapse
|
8
|
Webb SE, Miller AL. Visualization of Ca²+ signaling during embryonic skeletal muscle formation in vertebrates. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004325. [PMID: 21421918 DOI: 10.1101/cshperspect.a004325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dynamic changes in cytosolic and nuclear Ca(2+) concentration are reported to play a critical regulatory role in different aspects of skeletal muscle development and differentiation. Here we review our current knowledge of the spatial dynamics of Ca(2+) signals generated during muscle development in mouse, rat, and Xenopus myocytes in culture, in the exposed myotome of dissected Xenopus embryos, and in intact normally developing zebrafish. It is becoming clear that subcellular domains, either membrane-bound or otherwise, may have their own Ca(2+) signaling signatures. Thus, to understand the roles played by myogenic Ca(2+) signaling, we must consider: (1) the triggers and targets within these signaling domains; (2) interdomain signaling, and (3) how these Ca(2+) signals integrate with other signaling networks involved in myogenesis. Imaging techniques that are currently available to provide direct visualization of these Ca(2+) signals are also described.
Collapse
Affiliation(s)
- Sarah E Webb
- Section of Biochemistry and Cell Biology, and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PRC
| | | |
Collapse
|
9
|
Murayama T, Kurebayashi N. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:134-44. [PMID: 21029746 DOI: 10.1016/j.pbiomolbio.2010.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/13/2010] [Accepted: 10/19/2010] [Indexed: 01/13/2023]
Abstract
The ryanodine receptor (RyR) is a Ca(2+) release channel in the sarcoplasmic reticulum in vertebrate skeletal muscle and plays an important role in excitation-contraction (E-C) coupling. Whereas mammalian skeletal muscle predominantly expresses a single RyR isoform, RyR1, skeletal muscle of many nonmammalian vertebrates expresses equal amounts of two distinct isoforms, α-RyR and β-RyR, which are homologues of mammalian RyR1 and RyR3, respectively. In this review we describe our current understanding of the functions of these two RyR isoforms in nonmammalian vertebrate skeletal muscle. The Ca(2+) release via the RyR channel can be gated by two distinct modes: depolarization-induced Ca(2+) release (DICR) and Ca(2+)-induced Ca(2+) release (CICR). In frog muscle, α-RyR acts as the DICR channel, whereas β-RyR as the CICR channel. However, several lines of evidence suggest that CICR by β-RyR may make only a minor contribution to Ca(2+) release during E-C coupling. Comparison of frog and mammalian RyR isoforms highlights the marked differences in the patterns of Ca(2+) release mediated by RyR1 and RyR3 homologues. Interestingly, common features in the Ca(2+) release patterns are noticed between β-RyR and RyR1. We will discuss possible roles and significance of the two RyR isoforms in E-C coupling and other processes in nonmammalian vertebrate skeletal muscle.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
10
|
Abstract
Calcium-induced calcium release (CICR) was first discovered in skeletal muscle. CICR is defined as Ca2+ release by the action of Ca2+ alone without the simultaneous action of other activating processes. CICR is biphasically dependent on Ca2+ concentration; is inhibited by Mg2+, procaine, and tetracaine; and is potentiated by ATP, other adenine compounds, and caffeine. With depolarization of the sarcoplasmic reticulum (SR), a potential change of the SR membrane in which the luminal side becomes more negative, CICR is activated for several seconds and is then inactivated. All three types of ryanodine receptors (RyRs) show CICR activity. At least one RyR, RyR1, also shows non-CICR Ca2+ release, such as that triggered by the t-tubule voltage sensor, by clofibric acid, and by SR depolarization. Maximum rates of CICR, at the optimal Ca2+ concentration in the presence of physiological levels of ATP and Mg2+ determined in skinned fibers and fragmented SR, are much lower than the rate of physiological Ca2+ release. The primary event of physiological Ca2+ release, the Ca2+ spark, is the simultaneous opening of multiple channels, the coordinating mechanism of which does not appear to be CICR because of the low probability of CICR opening under physiological conditions. The coordination may require Ca2+, but in that case, some other stimulus or stimuli must be provided simultaneously, which is not CICR by definition. Thus CICR does not appear to contribute significantly to physiological Ca2+ release. On the other hand, CICR appears to play a key role in caffeine contracture and malignant hyperthermia. The potentiation of voltage-activated Ca2+ release by caffeine, however, does not seem to occur through secondary CICR, although the site where caffeine potentiates voltage-activated Ca2+ release might be the same site where caffeine potentiates CICR.
Collapse
|
11
|
Abstract
The calcium ion (Ca(2+)) is the simplest and most versatile intracellular messenger known. The discovery of Ca(2+) sparks and a related family of elementary Ca(2+) signaling events has revealed fundamental principles of the Ca(2+) signaling system. A newly appreciated "digital" subsystem consisting of brief, high Ca(2+) concentration over short distances (nanometers to microns) comingles with an "analog" global Ca(2+) signaling subsystem. Over the past 15 years, much has been learned about the theoretical and practical aspects of spark formation and detection. The quest for the spark mechanisms [the activation, coordination, and termination of Ca(2+) release units (CRUs)] has met unexpected challenges, however, and raised vexing questions about CRU operation in situ. Ample evidence shows that Ca(2+) sparks catalyze many high-threshold Ca(2+) processes involved in cardiac and skeletal muscle excitation-contraction coupling, vascular tone regulation, membrane excitability, and neuronal secretion. Investigation of Ca(2+) sparks in diseases has also begun to provide novel insights into hypertension, cardiac arrhythmias, heart failure, and muscular dystrophy. An emerging view is that spatially and temporally patterned activation of the digital subsystem confers on intracellular Ca(2+) signaling an exquisite architecture in space, time, and intensity, which underpins signaling efficiency, stability, specificity, and diversity. These recent advances in "sparkology" thus promise to unify the simplicity and complexity of Ca(2+) signaling in biology.
Collapse
Affiliation(s)
- Heping Cheng
- Institute of Molecular Medicine, National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | |
Collapse
|
12
|
Csernoch L, Pouvreau S, Ronjat M, Jacquemond V. Voltage-activated elementary calcium release events in isolated mouse skeletal muscle fibers. J Membr Biol 2008; 226:43-55. [PMID: 19015802 PMCID: PMC2796304 DOI: 10.1007/s00232-008-9138-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
Abstract
The elementary Ca(2+)-release events underlying voltage-activated myoplasmic Ca(2+) transients in mammalian muscle remain elusive. Here, we looked for such events in confocal line-scan (x,t) images of fluo-3 fluorescence taken from isolated adult mouse skeletal muscle fibers held under voltage-clamp conditions. In response to step depolarizations, spatially segregated fluorescence signals could be detected that were riding on a global increase in fluorescence. These discrete signals were separated using digital filtering in the spatial domain; mean values for their spatial half-width and amplitude were 1.99 +/- 0.09 microm and 0.16 +/- 0.005 DeltaF/F(0) (n = 151), respectively. Under control conditions, the duration of the events was limited by the pulse duration. In contrast, in the presence of maurocalcine, a scorpion toxin suspected to disrupt the process of repolarization-induced ryanodine receptor (RyR) closure, events uninterrupted by the end of the pulse were readily detected. Overall results establish these voltage-activated low-amplitude local Ca(2+) signals as inherent components of the physiological Ca(2+)-release process of mammalian muscle and suggest that they result from the opening of either one RyR or a coherently operating group of RyRs, under the control of the plasma membrane polarization.
Collapse
Affiliation(s)
- Laszlo Csernoch
- Department of Physiology
Medical and Health Science CentreUniversity of DebrecenDebrecen,HU
| | - Sandrine Pouvreau
- PICM, Physiologie intégrative, cellulaire et moléculaire
CNRS : UMR5123Université Claude Bernard - Lyon IBât. R. Dubois 43, Bvd du 11 Novembre 1918 69622 VILLEURBANNE CEDEX,FR
| | - Michel Ronjat
- GIN, Grenoble Institut des Neurosciences
INSERM : U836CEAUniversité Joseph Fourier - Grenoble ICHU GrenobleUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9,FR
| | - Vincent Jacquemond
- PICM, Physiologie intégrative, cellulaire et moléculaire
CNRS : UMR5123Université Claude Bernard - Lyon IBât. R. Dubois 43, Bvd du 11 Novembre 1918 69622 VILLEURBANNE CEDEX,FR
| |
Collapse
|
13
|
Weisleder N, Ma J. Altered Ca2+ sparks in aging skeletal and cardiac muscle. Ageing Res Rev 2008; 7:177-88. [PMID: 18272434 DOI: 10.1016/j.arr.2007.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/26/2022]
Abstract
Ca2+ sparks are the fundamental units that comprise Ca2+-induced Ca2+ release (CICR) in striated muscle cells. In cardiac muscle, spontaneous Ca2+ sparks underlie the rhythmic CICR activity during heart contraction. In skeletal muscle, Ca2+ sparks remain quiescent during the resting state and are activated in a plastic fashion to accommodate various levels of stress. With aging, the plastic Ca2+ spark signal becomes static in skeletal muscle, whereas loss of CICR control leads to leaky Ca2+ spark activity in aged cardiomyocytes. Ca2+ spark responses reflect the integrated function of the intracellular Ca2+ regulatory machinery centered around the triad or dyad junctional complexes of striated muscles, which harbor the principal molecular players of excitation-contraction coupling. This review highlights the contribution of age-related modification of the Ca2+ release machinery and the effect of membrane structure and membrane cross-talk on the altered Ca2+ spark signaling during aging of striated muscles.
Collapse
|
14
|
Legrand C, Giacomello E, Berthier C, Allard B, Sorrentino V, Jacquemond V. Spontaneous and voltage-activated Ca2+ release in adult mouse skeletal muscle fibres expressing the type 3 ryanodine receptor. J Physiol 2008; 586:441-57. [PMID: 18006577 PMCID: PMC2375597 DOI: 10.1113/jphysiol.2007.145862] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/01/2007] [Accepted: 11/09/2007] [Indexed: 11/08/2022] Open
Abstract
The physiological properties and role of the type 3 ryanodine receptor (RyR3), a calcium release channel expressed in a wide variety of cell types, remain mysterious. We forced, in vivo, the expression of RyR3 in adult mouse skeletal muscle fibres using a GFP-RyR3 DNA construct. GFP fluorescence was found within spatially restricted regions of muscle fibres where it exhibited a sarcomere-related banded pattern consistent with a localization within or near the junctional sarcoplasmic reticulum membrane. Immunostaining confirmed the presence of RyR3 together with RyR1 within the GFP-positive areas. In approximately 90% of RyR3-positive fibres microinjected with the calcium indicator fluo-3, we detected repetitive spontaneous transient elevations of intracellular Ca2+ that persisted when fibres were voltage-clamped at -80 mV. These Ca2+ transients remained essentially confined to the RyR3 expression region. They ranged from wide local events to propagating Ca2+ waves and were in some cases associated with local contractile activity. When voltage-clamp depolarizations were applied while fluo-3 or rhod-2 fluorescence was measured within the RyR3-expressing region, no voltage-evoked 'spark-like' elementary Ca2+ release event could be detected. Still global voltage-activated Ca2+ release exhibited a prominent early peak within the RyR3-expressing regions. Measurements were also taken from muscles fibres expressing a GFP-RyR1 construct; positive fibres also yielded a local banded pattern of GFP fluorescence but exhibited no spontaneous Ca2+ release. Results demonstrate that RyR3 is a very potent source of voltage-independent Ca2+ release activity. Conversely we find no evidence that it could contribute to the production of discrete voltage-activated Ca2+ release events in differentiated mammalian skeletal muscle.
Collapse
Affiliation(s)
- Claude Legrand
- Physiologie Intégrative Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
15
|
Weisleder N, Ferrante C, Hirata Y, Collet C, Chu Y, Cheng H, Takeshima H, Ma J. Systemic ablation of RyR3 alters Ca2+ spark signaling in adult skeletal muscle. Cell Calcium 2007; 42:548-55. [PMID: 17412417 PMCID: PMC2095780 DOI: 10.1016/j.ceca.2007.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
Ca2+ sparks are localized intracellular Ca2+ release events from the sarcoplasmic reticulum in muscle cells that result from synchronized opening of ryanodine receptors (RyR). In mammalian skeletal muscle, RyR1 is the predominant isoform present in adult skeletal fibers, while some RyR3 is expressed during development. Functional studies have revealed a differential role for RyR1 and RyR3 in the overall Ca2+ signaling in skeletal muscle, but the contribution of these two isoforms to Ca2+ sparks in adult mammalian skeletal muscle has not been fully examined. When enzyme-disassociated, individual adult skeletal muscle fibers are exposed to an osmotic shock, the resting fiber converts from a quiescent to a highly active Ca2+ release state where Ca2+ sparks appear proximal to the sarcolemmal membrane. These osmotic shock-induced Ca2+ sparks occur in ryr3(-/-) muscle with a spatial distribution similar to that seen in wild type muscle. Kinetic analysis reveals that systemic ablation of RyR3 results in significant changes to the initiation, duration and amplitude of individual Ca2+ sparks in muscle fibers. These changes may reflect the adaptation of the muscle Ca2+ signaling or contractile machinery due to the loss of RyR3 expression in distal tissues, as biochemical assays identify significant changes in expression of myosin heavy chain protein in ryr3(-/-) muscle.
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Christopher Ferrante
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Yutaka Hirata
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Claude Collet
- Dept Ecologie des Invertebres, INRA, Avignon, France
| | - Yi Chu
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Heping Cheng
- The Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Jianjie Ma
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
- * Address correspondence to Dr. Jianjie Ma, Tel. (732) 235-4494, Fax. (732) 235-4483,
| |
Collapse
|
16
|
Kong H, Wang R, Chen W, Zhang L, Chen K, Shimoni Y, Duff HJ, Chen SRW. Skeletal and cardiac ryanodine receptors exhibit different responses to Ca2+ overload and luminal ca2+. Biophys J 2007; 92:2757-70. [PMID: 17259277 PMCID: PMC1831700 DOI: 10.1529/biophysj.106.100545] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spontaneous Ca(2+) release occurs in cardiac cells during sarcoplasmic reticulum Ca(2+) overload, a process we refer to as store-overload-induced Ca(2+) release (SOICR). Unlike cardiac cells, skeletal muscle cells exhibit little SOICR activity. The molecular basis of this difference is not well defined. In this study, we investigated the SOICR properties of HEK293 cells expressing RyR1 or RyR2. We found that HEK293 cells expressing RyR2 exhibited robust SOICR activity, whereas no SOICR activity was observed in HEK293 cells expressing RyR1. However, in the presence of low concentrations of caffeine, SOICR could be triggered in these RyR1-expressing cells. At the single-channel level, we showed that RyR2 is much more sensitive to luminal Ca(2+) than RyR1. To identify the molecular determinants responsible for these differences, we constructed two chimeras between RyR1 and RyR2, N-RyR1(1-4006)/C-RyR2(3962-4968) and N-RyR2(1-3961)/C-RyR1(4007-5037). We found that replacing the C-terminal region of RyR1 with the corresponding region of RyR2 (N-RyR1/C-RyR2) dramatically enhanced the propensity for SOICR and the response to luminal Ca(2+), whereas replacing the C-terminal region of RyR2 with the corresponding region of RyR1 (N-RyR2/C-RyR1) reduced the propensity for SOICR and the luminal Ca(2+) response. These observations indicate that the C-terminal region of RyR is a critical determinant of both SOICR and the response to luminal Ca(2+). These chimeric studies also reveal that the N-terminal region of RyR plays an important role in regulating SOICR and luminal Ca(2+) response. Taken together, our results demonstrate that RyR1 differs markedly from RyR2 with respect to their responses to Ca(2+) overload and luminal Ca(2+), and suggest that the lack of spontaneous Ca(2+) release in skeletal muscle cells is, in part, attributable to the unique intrinsic properties of RyR1.
Collapse
Affiliation(s)
- Huihui Kong
- Cardiovascular Research Group, Department of Physiology and Biophysics, and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The study of Ca2+ sparks has led to extensive new information regarding the gating of the Ca2+ release channels underlying these events in skeletal, cardiac and smooth muscle cells, as well as the possible roles of these local Ca2+ release events in muscle function. Here we review basic procedures for studying Ca2+ sparks in skeletal muscle, primarily from frog, as well as the basic results concerning the properties of these events, their pattern and frequency of occurrence during fiber depolarization and the mechanisms underlying their termination. Finally, we also consider the contribution of different ryanodine receptor (RyR) isoforms to Ca2+ sparks and the number of RyR Ca2+ release channels that may contribute to the generation of a Ca2+ spark. Over the decade since their discovery, Ca2+ sparks have provided a wealth of information concerning the function of Ca2+ release channels within their intracellular environment.
Collapse
Affiliation(s)
- Michael G Klein
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
18
|
Brown LD, Rodney GG, Hernández-Ochoa E, Ward CW, Schneider MF. Ca2+ sparks and T tubule reorganization in dedifferentiating adult mouse skeletal muscle fibers. Am J Physiol Cell Physiol 2006; 292:C1156-66. [PMID: 17065203 PMCID: PMC2654399 DOI: 10.1152/ajpcell.00397.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+) sparks are rare in healthy adult mammalian skeletal muscle but may appear when adult fiber integrity is compromised, and occur in embryonic muscle but decline as the animal develops. Here we used cultured adult mouse flexor digitorum brevis muscle fibers to monitor occurrence of Ca(2+) sparks during maintenance of adult fiber morphology and during eventual fiber morphological dedifferentiation after various times in culture. Fibers cultured for up to 3 days retain normal morphology and striated appearance. Ca(2+) sparks were rare in these fibers. At 5-7 days in culture, many of the original muscle fibers exhibit sprouting and loss of striations, as well as the occurrence of spontaneous Ca(2+) sparks. The average rate of occurrence of Ca(2+) sparks is >10-fold higher after 5-7 days in culture than in days 1-3. With the use of fibers cultured for 7 days, application of the Ca(2+) channel blockers Co(2+) or nifedipine almost completely suppressed the occurrence of Ca(2+) sparks, as previously shown in embryonic fibers, suggesting that Ca(2+) sparks may be generated by similar mechanisms in dedifferentiating cultured adult fibers and in embryonic fibers before final differentiation. The sarcomeric disruption observed under transmitted light microscopy in dedifferentiating fibers was accompanied by morphological changes in the transverse (T) tubular system, as observed by fluorescence confocal imaging of both an extracellular marker dye and membrane staining dyes. Changes in T tubule morphology coincided with the appearance of Ca(2+) sparks, suggesting that Ca(2+) sparks may either be a signal for, or the result of, disruption of DHPR-ryanodine receptor 1 coupling.
Collapse
Affiliation(s)
- Lisa D Brown
- Biology Department, Morgan State University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
19
|
Zayas R, Groshong JS, Gomez CM. Inositol-1,4,5-triphosphate receptors mediate activity-induced synaptic Ca2+ signals in muscle fibers and Ca2+ overload in slow-channel syndrome. Cell Calcium 2006; 41:343-52. [PMID: 16973214 DOI: 10.1016/j.ceca.2006.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 06/03/2006] [Accepted: 07/15/2006] [Indexed: 11/21/2022]
Abstract
Strict control of calcium entry through excitatory synaptic receptors is important for shaping synaptic responses, gene expression, and cell survival. Disruption of this control may lead to pathological accumulation of Ca2+. The slow-channel congenital myasthenic syndrome (SCS), due to mutations in muscle acetylcholine receptor (AChR), perturbs the kinetics of synaptic currents, leading to post-synaptic Ca2+ accumulation. To understand the regulation of calcium signaling at the neuromuscular junction (NMJ) and the etiology of Ca2+ overload in SCS we studied the role of sarcoplasmic Ca2+ stores in SCS. Using fura-2 loaded dissociated fibers activated with acetylcholine puffs, we confirmed that Ca2+ accumulates around wild type NMJ and discovered that Ca2+ accumulates significantly faster around the NMJ of SCS transgenic dissociated muscle fibers. Additionally, we determined that this process is dependant on the activation, altered kinetics, and movement of Ca2+ ions through the AChR, although, surprisingly, depletion of intracellular stores also prevents the accumulation of this cation around the NMJ. Finally, we concluded that the sarcoplasmic reticulum is the main source of Ca2+ and that inositol-1,4,5-triphosphate receptors (IP3R), and to a lesser degree L-type voltage gated Ca2+ channels, are responsible for the efflux of this cation from intracellular stores. These results suggest that a signaling system mediated by the activation of AChR, Ca2+, and IP3R is responsible for localized Ca2+ signals observed in muscle fibers and the Ca2+ overload observed in SCS.
Collapse
Affiliation(s)
- Roberto Zayas
- Department of Neuroscience and Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
20
|
Weisleder N, Ma JJ. Ca2+ sparks as a plastic signal for skeletal muscle health, aging, and dystrophy. Acta Pharmacol Sin 2006; 27:791-8. [PMID: 16787561 DOI: 10.1111/j.1745-7254.2006.00384.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ca2+ sparks are the elementary units of intracellular Ca2+ signaling in striated muscle cells revealed as localized Ca2+ release events from sarcoplasmic reticulum (SR) by confocal microscopy. While Ca2+ sparks are well defined in cardiac muscle, there has been a general belief that these localized Ca2+ release events are rare in intact adult mammalian skeletal muscle. Several laboratories determined that Ca2+ sparks in mammalian skeletal muscle could only be observed in large numbers when the sarcolemmal membranes are permeabilized or the SR Ca2+ content is artificially manipulated, thus the cellular and molecular mechanisms underlying the regulation of Ca2+ sparks in skeletal muscle remain largely unexplored. Recently, we discovered that membrane deformation generated by osmotic stress induced a robust Ca2+ spark response confined in close spatial proximity to the sarcolemmal membrane in intact mouse muscle fibers. In addition to Ca2+ sparks, prolonged Ca2+ transients, termed Ca2+ bursts, are also identified in intact skeletal muscle. These induced Ca2+ release events are reversible and repeatable, revealing a plastic nature in young muscle fibers. In contrast, induced Ca2+ sparks in aged muscle are transient and cannot be re-stimulated. Dystrophic muscle fibers display uncontrolled Ca2+ sparks, where osmotic stress-induced Ca2+ sparks are not reversible and they are no longer spatially restricted to the sarcolemmal membrane. An understanding of the mechanisms that underlie generation of osmotic stress-induced Ca2+ sparks in skeletal muscle, and how these mechanisms are altered in pathology, will contribute to our understanding of the regulation of Ca2+ homeostasis in muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
21
|
Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86:369-408. [PMID: 16371601 DOI: 10.1152/physrev.00004.2005] [Citation(s) in RCA: 885] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calcium ions are ubiquitous and versatile signaling molecules, capable of decoding a variety of extracellular stimuli (hormones, neurotransmitters, growth factors, etc.) into markedly different intracellular actions, ranging from contraction to secretion, from proliferation to cell death. The key to this pleiotropic role is the complex spatiotemporal organization of the [Ca(2+)] rise evoked by extracellular agonists, which allows selected effectors to be recruited and specific actions to be initiated. In this review, we discuss the structural and functional bases that generate the subcellular heterogeneity in cellular Ca(2+) levels at rest and under stimulation. This complex choreography requires the concerted action of many different players; the central role is, of course, that of the calcium ion, with the main supporting characters being all the entities responsible for moving Ca(2+) between different compartments, while the cellular architecture provides a determining framework within which all the players have their exits and their entrances. In particular, we concentrate on the molecular mechanisms that lead to the generation of cytoplasmic Ca(2+) microdomains, focusing on their different subcellular location, mechanism of generation, and functional role.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
22
|
Campbell NR, Podugu SP, Ferrari MB. Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. Dev Biol 2006; 292:253-64. [PMID: 16460724 DOI: 10.1016/j.ydbio.2005.11.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 11/10/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Intracellular calcium (Ca(2+)) signals are essential for several aspects of muscle development, including myofibrillogenesis-the terminal differentiation of the sarcomeric lattice. Ryanodine receptor (RyR) Ca(2+) stores must be operative during this period and contribute to the production of spontaneous global Ca(2+) transients of long duration (LDTs; mean duration approximately 80 s). In this study, high-speed confocal imaging of intracellular Ca(2+) in embryonic myocytes reveals a novel class of spontaneous Ca(2+) transient. These short duration transients (SDTs; mean duration approximately 2 s) are blocked by ryanodine, independent of extracellular Ca(2+), insensitive to changes in membrane potential, and propagate in the subsarcolemmal space. SDTs arise from RyR stores localized to the subsarcolemmal space during myofibrillogenesis. While both LDTs and SDTs occur prior to myofibrillogenesis, LDT production ceases and only SDTs persist during a period of rapid sarcomere assembly. However, eliminating SDTs during this period results in only minor myofibril disruption. On the other hand, artificial extension of LDT production completely inhibits sarcomere assembly. In conjunction with earlier work, these results suggest that LDTs have at least two roles during myofibrillogenesis-activation of sarcoplasmic regulatory cascades and regulation of gene expression. The distinct spatiotemporal patterns of LDTs versus SDTs may be utilized for differential regulation of cytosolic cascades, control of nuclear gene expression, and localized activation of assembly events at the sarcolemma.
Collapse
Affiliation(s)
- Nolan R Campbell
- School of Biological Sciences, University of Missouri, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA.
| | | | | |
Collapse
|
23
|
Conti A, Reggiani C, Sorrentino V. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits. Biochem Biophys Res Commun 2005; 337:195-200. [PMID: 16176801 DOI: 10.1016/j.bbrc.2005.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/05/2005] [Indexed: 11/30/2022]
Abstract
The expression pattern of the RyR3 isoform of Ca2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform.
Collapse
Affiliation(s)
- Antonio Conti
- DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
24
|
Zhou J, Yi J, Royer L, Launikonis BS, González A, García J, Ríos E. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am J Physiol Cell Physiol 2005; 290:C539-53. [PMID: 16148029 DOI: 10.1152/ajpcell.00592.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To activate skeletal muscle contraction, action potentials must be sensed by dihydropyridine receptors (DHPRs) in the T tubule, which signal the Ca(2+) release channels or ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) to open. We demonstrate here an inhibitory effect of the T tubule on the production of sparks of Ca(2+) release. Murine primary cultures were confocally imaged for Ca(2+) detection and T tubule visualization. After 72 h of differentiation, T tubules extended from the periphery for less than one-third of the myotube radius. Spontaneous Ca(2+) sparks were found away from the region of cells where tubules were found. Immunostaining showed RyR1 and RyR3 isoforms in all areas, implying inhibition of both isoforms by a T tubule component. To test for a role of DHPRs in this inhibition, we imaged myotubes from dysgenic mice (mdg) that lack DHPRs. These exhibited T tubule development similar to that of normal myotubes, but produced few sparks, even in regions where tubules were absent. To increase spark frequency, a high-Ca(2+) saline with 1 mM caffeine was used. Wild-type cells in this saline plus 50 microM nifedipine retained the topographic suppression pattern of sparks, but dysgenic cells in high-Ca(2+) saline did not. Shifted excitation and emission ratios of indo-1 in the cytosol or mag-indo-1 in the SR were used to image [Ca(2+)] in these compartments. Under the conditions of interest, wild-type and mdg cells had similar levels of free [Ca(2+)] in cytosol and SR. These data suggest that DHPRs play a critical role in reducing the rate of spontaneous opening of Ca(2+) release channels and/or their susceptibility to Ca(2+)-induced activation, thereby suppressing the production of Ca(2+) sparks.
Collapse
Affiliation(s)
- Jingsong Zhou
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Ca(2+) sparks monitor transient local releases of Ca(2+) from the sarcoplasmic reticulum (SR) into the myoplasm. The release takes place through ryanodine receptors (RYRs), the Ca(2+)-release channels of the SR. In intact fibers from frog skeletal muscle, the temporal and spatial properties of voltage-activated Ca(2+) sparks are well simulated by a model that assumes that the Ca(2+) flux underlying a spark is 2.5 pA (units of Ca(2+) current) for 4.6 ms (18 degrees C). This flux amplitude suggests that 1-5 active RYRs participate in the generation of a typical voltage-activated spark under physiological conditions. A major goal of future experiments is to estimate this number more precisely and, if it is two or more, to investigate the communication mechanism that allows multiple RYRs to be co-activated in a rapid but self-limited fashion.
Collapse
Affiliation(s)
- Stephen M Baylor
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6085, USA.
| |
Collapse
|
26
|
Shiels HA, White E. Temporal and spatial properties of cellular Ca2+flux in trout ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1756-66. [PMID: 15650128 DOI: 10.1152/ajpregu.00510.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Confocal microscopy was used to investigate the temporal and spatial properties of Ca2+transients and Ca2+sparks in ventricular myocytes of the rainbow trout ( Oncorhynchus mykiss). Confocal imaging confirmed the absence of T tubules and the long (∼160 μm), thin (∼8 μm) morphology of trout myocytes. Line scan imaging of Ca2+transients evoked by electrical stimulation in cells loaded with fluo 4 revealed spatial inhomogeneities in the temporal properties of Ca2+transients across the width of the myocytes. The Ca2+wavefront initiated faster, rose faster, and reached larger peak amplitudes in the periphery of the myocyte compared with the center. These differences were exacerbated by stimulation with the L-type Ca2+channel agonist (−)BAY K 8644 or by sarcoplasmic reticulum (SR) inhibition with ryanodine and thapsigargin. Results reveal that the shape of the trout myocyte allows for rapid diffusion of Ca2+from the cell periphery to the cell center, with SR Ca2+release contributing to the cytosolic Ca2+rise in a time-dependent manner. Spontaneous Ca2+sparks were exceedingly rare in trout myocytes under control conditions (1 sparking cell from 238 cells examined). This is in marked contrast to the rat where a total of 56 spontaneous Ca2+sparks were observed in 9 of 11 myocytes examined. Ca2+sparklike events were observed in a very small number of trout myocytes (15 sparks from 9 of 378 cells examined) after stimulation with either (−)BAY K 8644 or high Ca2+(6 mM). Reducing temperature to 15°C in intact myocytes or permeabilizing myocytes to adjust intracellular conditions to favor Ca2+spark detection was without significant effects. Possible reasons for the rarity of Ca2+sparks in a cardiac myocyte with an active SR are discussed.
Collapse
|
27
|
|
28
|
Isaeva EV, Shkryl VM, Shirokova N. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. J Physiol 2005; 565:855-72. [PMID: 15845582 PMCID: PMC1464560 DOI: 10.1113/jphysiol.2005.086280] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intact skeletal muscle fibres from adult mammals exhibit neither spontaneous nor stimulated Ca(2+) sparks. Mechanical or chemical skinning procedures have been reported to unmask sparks. The present study investigates the mechanisms that determine the development of Ca(2+) spark activity in permeabilized fibres dissected from muscles with different metabolic capacity. Spontaneous Ca(2+) sparks were detected with fluo-3 and single photon confocal microscopy; mitochondrial redox potential was evaluated from mitochondrial NADH signals recorded with two-photon confocal microscopy, and Ca(2+) load of the sarcoplasmic reticulum (SR) was estimated from the amplitude of caffeine-induced Ca(2+) transients recorded with fura-2 and digital photometry. In three fibre types studied, there was a time lag between permeabilization and spark development. Under all experimental conditions, the delay was the longest in slow-twitch oxidative fibres, intermediate in fast-twitch glycolytic-oxidative fibres, and the shortest in fast-twitch glycolytic cells. The temporal evolution of Ca(2+) spark frequencies was bell-shaped, and the maximal spark frequency was reached slowly in mitochondria-rich oxidative cells but quickly in mitochondria-poor glycolytic fibres. The development of spontaneous Ca(2+) sparks did not correlate with the SR Ca(2+) content of the fibre, but did correlate with the redox potential of their mitochondria. Treatment of fibres with scavengers of reactive oxygen species (ROS), such as superoxide dismutase (SOD) and catalase, dramatically and reversibly reduced the spark frequency and also delayed their appearance. In contrast, incubation of fibres with 50 microm H(2)O(2) sped up the development of Ca(2+) sparks and increased their frequency. These results indicate that the appearance of Ca(2+) sparks in permeabilized skeletal muscle cells depends on the fibre's oxidative strength and that misbalance between mitochondrial ROS production and the fibre's ability to fight oxidative stress is likely to be responsible for unmasking Ca(2+) sparks in skinned preparations. They also suggest that under physiological and pathophysiological conditions the appearance of Ca(2+) sparks may be, at least in part, limited by the fine-tuned equilibrium between mitochondrial ROS production and cellular ROS scavenging mechanisms.
Collapse
Affiliation(s)
- Elena V Isaeva
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
29
|
Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, Zhao X, Pan Z, Brotto M, Cheng H, Ma J. Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 2005; 7:525-30. [PMID: 15834406 DOI: 10.1038/ncb1254] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 03/31/2005] [Indexed: 11/08/2022]
Abstract
Most excitable cells maintain tight control of intracellular Ca(2+) through coordinated interaction between plasma membrane and endoplasmic or sarcoplasmic reticulum. Quiescent sarcoplasmic reticulum Ca(2+) release machinery is essential for the survival and normal function of skeletal muscle. Here we show that subtle membrane deformations induce Ca(2+) sparks in intact mammalian skeletal muscle. Spontaneous Ca(2+) sparks can be reversibly induced by osmotic shock, and participate in a normal physiological response to exercise. In dystrophic muscle with fragile membrane integrity, stress-induced Ca(2+) sparks are essentially irreversible. Moreover, moderate exercise in mdx muscle alters the Ca(2+) spark response. Thus, membrane-deformation-induced Ca(2+) sparks have an important role in physiological and pathophysiological regulation of Ca(2+) signalling, and uncontrolled Ca(2+) spark activity in connection with chronic activation of store-operated Ca(2+) entry may function as a dystrophic signal in mammalian skeletal muscle.
Collapse
Affiliation(s)
- Xu Wang
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sebille S, Cantereau A, Vandebrouck C, Balghi H, Constantin B, Raymond G, Cognard C. Calcium sparks in muscle cells: interactive procedures for automatic detection and measurements on line-scan confocal images series. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2005; 77:57-70. [PMID: 15639710 DOI: 10.1016/j.cmpb.2004.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 06/15/2004] [Indexed: 05/24/2023]
Abstract
In muscle cells, force development is controlled by Ca2+ ions, which are rapidly released from the sarcoplasmic reticulum (SR) during sarcolemmal depolarization. In addition to this synchronized spatially homogeneous calcium signal, localized quantal Ca2+ release events (sparks) have been recorded using laser scanning confocal fluorescence microscopy. Previously, algorithms without user intervention have been developed to automatically detect and analyse sparks on confocal line-scan (space-time: 512 x 512 pixels) single images. Here we present a computer program that we called "HARVest of Elementary Events" (HARVELE) developed to both analyse events on series of confocal images and follow sparks morphology from one site during several seconds. HARVELE, coded in the image-processing language IDL 5.3., can be applied on series of n images (512 x 512 x n) obtained from the same scanning line. Computing simultaneously entire series of images allows to measure, for each release site, the frequency and the morphology of release with the conventional amplitude, size, time and duration parameters defined for sparks analysis. The use of these procedures rapidly provides much information about the properties of calcium release sites in muscle cells population and can be applied on any elementary calcium events whatever the type of cell.
Collapse
Affiliation(s)
- S Sebille
- Institut de Physiologie et Biologie Cellulaires, UMR CNRS 6187, Université de Poitiers, F-86022 Poitiers cedex, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Perez CF, López JR, Allen PD. Expression levels of RyR1 and RyR3 control resting free Ca2+ in skeletal muscle. Am J Physiol Cell Physiol 2004; 288:C640-9. [PMID: 15548569 DOI: 10.1152/ajpcell.00407.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the role of the transient expression of ryanodine receptor (RyR) type 3 (RyR3) on Ca(2+) homeostasis during the development of skeletal muscle, we have analyzed the effect of expression levels of RyR3 and RyR1 on the overall physiology of cultured myotubes and muscle fibers. Dyspedic myotubes were infected with RyR1 or RyR3 containing virions at 0.2, 0.4, 1.0, and 4.0 moieties of infection (MOI), and analysis of their pattern of expression, caffeine sensitivity, and resting free Ca(2+) concentration ([Ca(2+)](r)) was performed. Although increased MOI resulted in increased expression of each receptor isoform, it did not significantly affect the immunopattern of RyRs or the expression levels of calsequestrin, triadin, or FKBP-12. Interestingly, myotubes expressing RyR3 always had significantly higher [Ca(2+)](r) and lower caffeine EC(50) than did cells expressing RyR1. Although some of the increased sensitivity of RyR3 to caffeine could be attributed to the higher [Ca(2+)](r) in RyR3-expressing cells, studies of [(3)H]ryanodine binding demonstrated intrinsic differences in caffeine sensitivity between RyR1 and RyR3. Tibialis anterior (TA) muscle fibers at different stages of postnatal development exhibited a transient increase in [Ca(2+)](r) coordinately with their level of RyR3 expression. Similarly, adult soleus fibers, which also express RyR3, had higher [Ca(2+)](r) than did adult TA fibers, which exclusively express RyR1. These data show that in skeletal muscle, RyR3 increases [Ca(2+)](r) more than RyR1 does at any expression level. These data suggest that the coexpression of RyR1 and RyR3 at different levels may constitute a novel mechanism by which to regulate [Ca(2+)](r) in skeletal muscle.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biomarkers
- Caffeine/pharmacology
- Calcium/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Homeostasis
- Humans
- Mice
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/drug effects
- Myoblasts/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Ryanodine/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum/metabolism
- Virion/genetics
- Virion/metabolism
Collapse
Affiliation(s)
- Claudio F Perez
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 20 Shattuck St., Rm. SR 153, Boston, MA 02115, USA.
| | | | | |
Collapse
|
32
|
Kunerth S, Langhorst MF, Schwarzmann N, Gu X, Huang L, Yang Z, Zhang L, Mills SJ, Zhang LH, Potter BVL, Guse AH. Amplification and propagation of pacemaker Ca2+ signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells. J Cell Sci 2004; 117:2141-9. [PMID: 15054112 DOI: 10.1242/jcs.01063] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ligation of the T-cell receptor/CD3 complex results in global Ca(2+) signals that are essential for T-cell activation. We have recently reported that these global Ca(2+) signals are preceded by localized pacemaker Ca(2+) signals. Here, we demonstrate for the first time for human T cells that an increase in signal frequency of subcellular pacemaker Ca(2+) signals at sites close to the plasma membrane, in the cytosol and in the nucleus depends on the type 3 ryanodine receptor (RyR) and its modulation by cyclic ADP-ribose. The spatial distribution of D-myo-inositol 1,4,5-trisphosphate receptors and RyRs indicates a concerted action of both of these receptors/Ca(2+) channels in the generation of initial pacemaker signals localized close to the plasma membrane. Inhibition or knockdown of RyRs resulted in significant decreases in (1) the frequency of initial pacemaker signals localized close to the plasma membrane, and (2) the frequency of localized pacemaker Ca(2+) signals in the inner cytosol. Moreover, upon microinjection of cyclic ADP-ribose or upon extracellular addition of its novel membrane-permeant mimic N-1-ethoxymethyl-substituted cyclic inosine diphosphoribose, similarly decreased Ca(2+) signals were observed in both type 3 RyR-knockdown cells and in control cells microinjected with the RyR antagonist Ruthenium Red. Taken together, our results show that, under physiological conditions in human T cells, RyRs play crucial roles in the local amplification and the spatiotemporal development of subcellular Ca(2+) pacemaker signals.
Collapse
Affiliation(s)
- Svenja Kunerth
- University Hospital Hamburg-Eppendorf, Center for Experimental Medicine, Institute of Biochemistry and Molecular Biology I: Cellular Signal Transduction, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Csernoch L, Zhou J, Stern MD, Brum G, Ríos E. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle. J Physiol 2004; 557:43-58. [PMID: 14990680 PMCID: PMC1665048 DOI: 10.1113/jphysiol.2003.059154] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytosolic [Ca(2+)] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca(2+) sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near -50 mV) or at -20 mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to 'lone embers' observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 microm. Other parameters depended on voltage. At -50 mV average duration was 111 ms and latency 185 ms. At -20 mV duration was 203 ms and latency 24 ms. Ca(2+) release current, calculated on an average of events, was nearly steady at 0.5-0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at -20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca(2+) release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells.
Collapse
Affiliation(s)
- L Csernoch
- Department of Physiology, University of Debrecen, Hungary
| | | | | | | | | |
Collapse
|
34
|
Chun LG, Ward CW, Schneider MF. Ca2+ sparks are initiated by Ca2+ entry in embryonic mouse skeletal muscle and decrease in frequency postnatally. Am J Physiol Cell Physiol 2003; 285:C686-97. [PMID: 12724135 DOI: 10.1152/ajpcell.00072.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
"Spontaneous" Ca2+ sparks and ryanodine receptor type 3 (RyR3) expression are readily detected in embryonic mammalian skeletal muscle but not in adult mammalian muscle, which rarely exhibits Ca2+ sparks and expresses predominantly RyR1. We have used confocal fluorescence imaging and systematic sampling of enzymatically dissociated single striated muscle fibers containing the Ca2+ indicator dye fluo 4 to show that the frequency of spontaneous Ca2+ sparks decreases dramatically from embryonic day 18 (E18) to postnatal day 14 (P14) in mouse diaphragm and from P1 to P14 in mouse extensor digitorum longus fibers. In contrast, the relative levels of RyR3 to RyR1 protein remained constant in diaphragm muscles from E18 to P14, indicating that changes in relative levels of RyR isoform expression did not cause the decline in Ca2+ spark frequency. E18 diaphragm fibers were used to investigate possible mechanisms underlying spark initiation in embryonic fibers. Spark frequency increased or decreased, respectively, when E18 diaphragm fibers were exposed to 8 or 0 mM Ca2+ in the extracellular Ringer solution, with no change in either the average resting fiber fluo 4 fluorescence or the average properties of the sparks. Either CoCl2 (5 mM) or nifedipine (30 microM) markedly decreased spark frequency in E18 diaphragm fibers. These results indicate that Ca2+ sparks may be triggered by locally elevated [Ca2+] due to Ca2+ influx via dihydropyridine receptor L-type Ca2+ channels in embryonic mammalian skeletal muscle.
Collapse
Affiliation(s)
- Lois G Chun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
35
|
Zhou J, Brum G, Gonzalez A, Launikonis BS, Stern MD, Rios E. Ca2+ sparks and embers of mammalian muscle. Properties of the sources. J Gen Physiol 2003; 122:95-114. [PMID: 12835473 PMCID: PMC2234470 DOI: 10.1085/jgp.200308796] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Revised: 05/27/2003] [Accepted: 05/28/2003] [Indexed: 12/27/2022] Open
Abstract
Ca2+ sparks of membrane-permeabilized rat muscle cells were analyzed to derive properties of their sources. Most events identified in longitudinal confocal line scans looked like sparks, but 23% (1,000 out of 4,300) were followed by long-lasting embers. Some were preceded by embers, and 48 were "lone embers." Average spatial width was approximately 2 microm in the rat and 1.5 microm in frog events in analogous solutions. Amplitudes were 33% smaller and rise times 50% greater in the rat. Differences were highly significant. The greater spatial width was not a consequence of greater open time of the rat source, and was greatest at the shortest rise times, suggesting a wider Ca2+ source. In the rat, but not the frog, spark width was greater in scans transversal to the fiber axis. These features suggested that rat spark sources were elongated transversally. Ca2+ release was calculated in averages of sparks with long embers. Release current during the averaged ember started at 3 or 7 pA (depending on assumptions), whereas in lone embers it was 0.7 or 1.3 pA, which suggests that embers that trail sparks start with five open channels. Analysis of a spark with leading ember yielded a current ratio ranging from 37 to 160 in spark and ember, as if 37-160 channels opened in the spark. In simulations, 25-60 pA of Ca2+ current exiting a point source was required to reproduce frog sparks. 130 pA, exiting a cylindric source of 3 microm, qualitatively reproduced rat sparks. In conclusion, sparks of rat muscle require a greater current than frog sparks, exiting a source elongated transversally to the fiber axis, constituted by 35-260 channels. Not infrequently, a few of those remain open and produce the trailing ember.
Collapse
Affiliation(s)
- J Zhou
- Department of Molecular Biophysics and Physiology, Rush University School of Medicine, 1750 W. Harrison St. Suite 1279JS, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
36
|
Isaeva EV, Shirokova N. Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres. J Physiol 2003; 547:453-62. [PMID: 12562922 PMCID: PMC2342647 DOI: 10.1113/jphysiol.2002.036129] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the present study, the link between cellular metabolism and Ca2+ signalling was investigated in permeabilized mammalian skeletal muscle. Spontaneous events of Ca2+ release from the sarcoplasmic reticulum were detected with fluo-3 and confocal scanning microscopy. Mitochondrial functions were monitored by measuring local changes in mitochondrial membrane potential (with the potential-sensitive dye tetramethylrhodamine ethyl ester) and in mitochondrial [Ca2+] (with the Ca2+ indicator mag-rhod-2). Digital fluorescence imaging microscopy was used to quantify changes in the mitochondrial autofluorescence of NAD(P)H. When fibres were immersed in a solution without mitochondrial substrates, Ca2+ release events were readily observed. The addition of L-glutamate or pyruvate reversibly decreased the frequency of Ca2+ release events and increased mitochondrial membrane potential and NAD(P)H production. Application of various mitochondrial inhibitors led to the loss of mitochondrial [Ca2+] and promoted spontaneous Ca2+ release from the sarcoplasmic reticulum. In many cases, the increase in the frequency of Ca2+ release events was not accompanied by a rise in global [Ca2+]i. Our results suggest that mitochondria exert a negative control over Ca2+ signalling in skeletal muscle by buffering Ca2+ near Ca2+ release channels.
Collapse
Affiliation(s)
- Elena V Isaeva
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
37
|
Abstract
The family of ryanodine receptor (RyR) genes encodes three highly related Ca(2+)-release channels: RyR1, RyR2 and RyR3. RyRs are known as the Ca(2+)-release channels that participate to the mechanism of excitation-contraction coupling in striated muscles, but they are also expressed in many other cell types. Actually, in several cells two or three RyR isoforms can be co-expressed and interactive feedbacks among them may be important for generation of intracellular Ca(2+) signals and regulation of specific cellular functions. Important developments have been obtained in understanding the biochemical complexity underlying the process of Ca(2+) release through RyRs. The 3-D structure of these large molecules has been obtained and some regulatory regions have been mapped within these 3-D reconstructions. Recent studies have clarified the role of protein kinases and phosphatases that, by physically interacting with RyRs, appear to play a role in the regulation of these Ca(2+)-release channels. These and other recent advancements in understanding RyR biology will be the object of this review.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Neuroscience, University of Siena, via Aldo Moro 5, Siena, Italy
| | | |
Collapse
|
38
|
Abstract
Ryanodine receptor (RyR) is a Ca(2)(+) release channel in the sarcoplasmic reticulum and plays an important role in excitation-contraction coupling in skeletal muscle. The Ca(2)(+) release through the RyR channel can be gated by two distinct modes: depolarization-induced Ca(2)(+) release (DICR) and Ca(2)(+)-induced Ca(2)(+) release (CICR). Two different RyR isoforms, RyR1 (or alpha-RyR) and RyR3 (or beta-RyR), have been found to be expressed in skeletal muscle. Most adult mammalian muscles express primarily RyR1, whereas almost equal amounts of the two RyR isoforms exist in many nonmammalian vertebrate muscles. RyR1 is believed to be responsible for both DICR and CICR, whereas RyR3 may function as the CICR channel. Recent findings demonstrate that alpha-RyR is selectively and markedly suppressed in CICR activity in frog skeletal muscle. This selective suppression of RyR1, although to a lesser extent, also was found to occur in mammalian skeletal muscle. This short review describes the biological meanings of this selective suppression and discusses physiological roles and significance of the two RyR isoforms in vertebrate skeletal muscle.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
39
|
Caputo C. Calcium release in skeletal muscle: from K+ contractures to Ca2+ sparks. J Muscle Res Cell Motil 2002; 22:485-504. [PMID: 12038583 DOI: 10.1023/a:1015062914947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C Caputo
- Labortorio Biofísica del Músculo, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
| |
Collapse
|
40
|
Rossi D, Simeoni I, Micheli M, Bootman M, Lipp P, Allen PD, Sorrentino V. RyR1 and RyR3 isoforms provide distinct intracellular Ca2+ signals in HEK 293 cells. J Cell Sci 2002; 115:2497-504. [PMID: 12045220 DOI: 10.1242/jcs.115.12.2497] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ryanodine receptors (RyRs) are expressed on the endoplasmic reticulum of many cells, where they form intracellular Ca2+-release channels that participate in the generation of intracellular Ca2+ signals. Here we report studies on the intracellular localisation and functional properties of transfected RyR1 or RyR3 channels in HEK 293 cells. Immunofluorescence studies indicated that both RyR1 and RyR3 did not form clusters but were homogeneously distributed throughout the endoplasmic reticulum. Ca2+ release experiments showed that transfected RyR1 and RyR3 channels responded to caffeine, although with different sensitivity, generating a global release of Ca2+ from the entire endoplasmic reticulum. However, video imaging and confocal microscopy analysis revealed that, in RyR3-expressing cells, local spontaneous Ca2+ release events were observed. No such spontaneous activity was observed in RyR1-expressing cells or in control cells. Interestingly, the spontaneous release events observed in RyR3-expressing cells were restricted to one or two regions of the endoplasmic reticulum, suggesting the formation of a further subcellular organisation of RyR3 in Ca2+ release units. These results demonstrate that different RyR isoforms can engage in the generation of distinct intracellular Ca2+ signals in HEK 293 cells.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Neuroscience, University of Siena, via Aldo Moro 5, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Nabhani T, Zhu X, Simeoni I, Sorrentino V, Valdivia HH, García J. Imperatoxin a enhances Ca(2+) release in developing skeletal muscle containing ryanodine receptor type 3. Biophys J 2002; 82:1319-28. [PMID: 11867448 PMCID: PMC1301934 DOI: 10.1016/s0006-3495(02)75487-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most adult mammalian skeletal muscles contain only one isoform of ryanodine receptor (RyR1), whereas neonatal muscles contain two isoforms (RyR1 and RyR3). Membrane depolarization fails to evoke calcium release in muscle cells lacking RyR1, demonstrating an essential role for this isoform in excitation-contraction coupling. In contrast, the role of RyR3 is unknown. We studied the participation of RyR3 in calcium release in wild type (containing both RyR1 and RyR3 isoforms) and RyR3-/- (containing only RyR1) myotubes in the presence or absence of imperatoxin A (IpTxa), a high-affinity agonist of ryanodine receptors. IpTxa significantly increased the amplitude and the rate of release only in wild-type myotubes. Calcium currents, recorded simultaneously with the transients, were not altered with IpTxa treatment. [(3)H]ryanodine binding to RyR1 or RyR3 was significantly increased in the presence of IpTxa. Additionally, IpTxa modified the gating and conductance level of single RyR1 or RyR3 channels when studied in lipid bilayers. Our data show that IpTxa can interact with both RyRs and that RyR3 is functional in myotubes and it can amplify the calcium release signal initiated by RyR1, perhaps through a calcium-induced mechanism. In addition, our data indicate that when RyR3-/- myotubes are voltage-clamped, the effect of IpTxa is not detected because RyR1s are under the control of the dihydropyridine receptor.
Collapse
Affiliation(s)
- Thomas Nabhani
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
42
|
Felder E, Franzini-Armstrong C. Type 3 ryanodine receptors of skeletal muscle are segregated in a parajunctional position. Proc Natl Acad Sci U S A 2002; 99:1695-700. [PMID: 11818557 PMCID: PMC122253 DOI: 10.1073/pnas.032657599] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key event in skeletal muscle activation is the rapid release of Ca(2+) from the sarcoplasmic reticulum (SR), the Ca(2+) storage organelle in the muscle cell. The surface membrane/transverse tubules and the SR form functional units (calcium release units containing one or two couplons or junctions), where the voltage-sensing dihydropyridine receptor of the surface membrane interacts with the SR Ca(2+) release channel [ryanodine receptor (RyR)] and depolarization of the cell membrane is converted into Ca(2+) release from the SR. Although RyR1 is the most important isoform in skeletal muscle, some muscles also express high levels of RyR3, an isoform with a wide tissue distribution. The cytoplasmic domains of RyRs are visible in the electron microscope as periodically disposed feet. We find that, in muscles containing only RyR1, feet are exclusively located over the junctional SR surface facing the surface membrane/transverse tubule. In muscles containing RyR1 as well as RyR3, additional feet are located in lateral parajunctional regions immediately adjacent to junctional SR. Biochemical content of RyR3 and content of parajunctional feet are highly correlated in different muscles and the disposition of parajunctional versus junctional feet are notably different. On the basis of these two observations, we postulate that RyR3s are restricted to the parajunctional region, and thus their activation must be indirect and derivative during excitation-contraction coupling.
Collapse
Affiliation(s)
- Edward Felder
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| | | |
Collapse
|
43
|
Kirsch WG, Uttenweiler D, Fink RH. Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle. J Physiol 2001; 537:379-89. [PMID: 11731572 PMCID: PMC2278952 DOI: 10.1111/j.1469-7793.2001.00379.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Using laser scanning confocal microscopy, we show for the first time elementary Ca2+ release events (ECRE) from the sarcoplasmic reticulum in chemically and mechanically skinned fibres from adult mammalian muscle and compare them with ECRE from amphibian skinned fibres. 2. Hundreds of spontaneously occurring events could be measured from individual single skinned mammalian fibres. In addition to spark-like events, we found ember-like events, i.e. long-lasting events of steady amplitude. These two different fundamental release types in mammalian muscle could occur in combination at the same location. 3. The two peaks of the frequency of occurrence for ECRE of mammalian skeletal muscle coincided with the expected locations of the transverse tubular system within the sarcomere, suggesting that ECRE mainly originate at triadic junctions. 4. ECRE in adult mammalian muscle could also be identified at the onset of the global Ca2+ release evoked by membrane depolarisation in mechanically skinned fibres. In addition, the frequency of ECRE was significantly increased by application of 0.5 mM caffeine and reduced by application of 2 mM tetracaine. 5. We conclude that the excitation-contraction coupling process in adult mammalian muscle involves the activation of both spark- and ember-like elementary Ca2+ release events.
Collapse
Affiliation(s)
- W G Kirsch
- Institute of Physiology and Pathophysiology, Medical Biophysics, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
44
|
Ward CW, Protasi F, Castillo D, Wang Y, Chen SR, Pessah IN, Allen PD, Schneider MF. Type 1 and type 3 ryanodine receptors generate different Ca(2+) release event activity in both intact and permeabilized myotubes. Biophys J 2001; 81:3216-30. [PMID: 11720987 PMCID: PMC1301781 DOI: 10.1016/s0006-3495(01)75957-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this investigation we use a "dyspedic" myogenic cell line, which does not express any ryanodine receptor (RyR) isoform, to examine the local Ca(2+) release behavior of RyR3 and RyR1 in a homologous cellular system. Expression of RyR3 restored caffeine-sensitive, global Ca(2+) release and causes the appearance of relatively frequent, spontaneous, spatially localized elevations of [Ca(2+)], as well as occasional spontaneous, propagating Ca(2+) release, in both intact and saponin-permeabilized myotubes. Intact myotubes expressing RyR3 did not, however, respond to K(+) depolarization. Expression of RyR1 restored depolarization-induced global Ca(2+) release in intact myotubes and caffeine-induced global release in both intact and permeabilized myotubes. Both intact and permeabilized RyR1-expressing myotubes exhibited relatively infrequent spontaneous Ca(2+) release events. In intact myotubes, the frequency of occurrence and properties of these RyR1-induced events were not altered by partial K(+) depolarization or by application of nifedipine, suggesting that these RyR1 events are independent of the voltage sensor. The events seen in RyR1-expressing myotubes were spatially more extensive than those seen in RyR3-expressing myotubes; however, when analysis was limited to spatially restricted "Ca(2+) spark"-like events, events in RyR3-expressing myotubes were larger in amplitude and duration compared with those in RyR1. Thus, in this skeletal muscle context, differences exist in the spatiotemporal properties and frequency of occurrence of spontaneous release events generated by RyR1 and RyR3. These differences underscore functional differences between the Ca(2+) release behavior of RyR1 and RyR3 in this homologous expression system.
Collapse
Affiliation(s)
- C W Ward
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hollingworth S, Peet J, Chandler W, Baylor S. Calcium sparks in intact skeletal muscle fibers of the frog. J Gen Physiol 2001; 118:653-78. [PMID: 11723160 PMCID: PMC2229509 DOI: 10.1085/jgp.118.6.653] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2001] [Accepted: 10/01/2001] [Indexed: 12/21/2022] Open
Abstract
Calcium sparks were studied in frog intact skeletal muscle fibers using a home-built confocal scanner whose point-spread function was estimated to be approximately 0.21 microm in x and y and approximately 0.51 microm in z. Observations were made at 17-20 degrees C on fibers from Rana pipiens and Rana temporaria. Fibers were studied in two external solutions: normal Ringer's ([K(+)] = 2.5 mM; estimated membrane potential, -80 to -90 mV) and elevated [K(+)] Ringer's (most frequently, [K(+)] = 13 mM; estimated membrane potential, -60 to -65 mV). The frequency of sparks was 0.04-0.05 sarcomere(-1) s(-1) in normal Ringer's; the frequency increased approximately tenfold in 13 mM [K(+)] Ringer's. Spark properties in each solution were similar for the two species; they were also similar when scanned in the x and the y directions. From fits of standard functional forms to the temporal and spatial profiles of the sparks, the following mean values were estimated for the morphological parameters: rise time, approximately 4 ms; peak amplitude, approximately 1 DeltaF/F (change in fluorescence divided by resting fluorescence); decay time constant, approximately 5 ms; full duration at half maximum (FDHM), approximately 6 ms; late offset, approximately 0.01 DeltaF/F; full width at half maximum (FWHM), approximately 1.0 microm; mass (calculated as amplitude x 1.206 x FWHM(3)), 1.3-1.9 microm(3). Although the rise time is similar to that measured previously in frog cut fibers (5-6 ms; 17-23 degrees C), cut fiber sparks have a longer duration (FDHM, 9-15 ms), a wider extent (FWHM, 1.3-2.3 microm), and a strikingly larger mass (by 3-10-fold). Possible explanations for the increase in mass in cut fibers are a reduction in the Ca(2+) buffering power of myoplasm in cut fibers and an increase in the flux of Ca(2+) during release.
Collapse
Affiliation(s)
- S. Hollingworth
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085
| | - J. Peet
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085
| | - W.K Chandler
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine, New Haven, CT 06520
| | - S.M. Baylor
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085
| |
Collapse
|
46
|
Löhn M, Jessner W, Fürstenau M, Wellner M, Sorrentino V, Haller H, Luft FC, Gollasch M. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res 2001; 89:1051-7. [PMID: 11717163 DOI: 10.1161/hh2301.100250] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracellular Ca(2+) levels control both contraction and relaxation in vascular smooth muscle cells (VSMCs). Ca(2+)-dependent relaxation is mediated by discretely localized Ca(2+) release events through ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). These local increases in Ca(2+) concentration, termed sparks, stimulate nearby Ca(2+)-activated K(+) (BK) channels causing BK currents (spontaneous transient outward currents or STOCs). STOCs are hyperpolarizing currents that oppose vasoconstriction. Several RyR isoforms are coexpressed in VSMCs; however, their role in Ca(2+) spark generation is unknown. To provide molecular information on RyR cluster function and assembly, we examined Ca(2+) sparks and STOCs in RyR3-deficient freshly isolated myocytes of resistance-sized cerebral arteries from knockout mice and compared them to Ca(2+) sparks in cells from wild-type mice. We used RT-PCR to identify RyR1, RyR2, and RyR3 mRNA in cerebral arteries. Ca(2+) sparks in RyR3-deficient cells were similar in peak amplitude (measured as F/F(0)), width at half-maximal amplitude, and duration compared with wild-type cell Ca(2+) sparks. However, the frequency of STOCs (between -60 mV and -20 mV) was significantly higher in RyR3-deficient cells than in wild-type cells. Ca(2+) sparks and STOCs in both RyR3-deficient and wild-type cells were inhibited by ryanodine (10 micromol/L), external Ca(2+) removal, and depletion of SR Ca(2+) stores by caffeine (1 mmol/L). Isolated, pressurized cerebral arteries of RyR3-deficient mice developed reduced myogenic tone. Our results suggest that RyR3 is part of the SR Ca(2+) spark release unit and plays a specific molecular role in the regulation of STOCs frequency in mouse cerebral artery VSMCs after decreased arterial tone.
Collapse
Affiliation(s)
- M Löhn
- HELIOS Klinikum-Berlin, Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Medical Faculty of the Charité, Humboldt University Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Simeoni I, Rossi D, Zhu X, García J, Valdivia HH, Sorrentino V. Imperatoxin A (IpTx(a)) from Pandinus imperator stimulates [(3)H]ryanodine binding to RyR3 channels. FEBS Lett 2001; 508:5-10. [PMID: 11707258 DOI: 10.1016/s0014-5793(01)03013-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of imperatoxin A (IpTx(a)) on the ryanodine receptor type 3 (RyR3) was studied. IpTx(a) stimulates [(3)H]ryanodine binding to RyR3-containing microsomes, but this effect requires toxin concentrations higher than those required to stimulate RyR1 channels. The effect of IpTx(a) on RyR3 channels was observed at calcium concentrations in the range 0.1 microM to 10 mM. By contrast, RyR2 channels were not significantly affected by IpTx(a) in the same calcium ranges. Single channel current measurements indicated that IpTx(a) induced subconductance state in RyR3 channels that was similar to those observed with RyR1 and RyR2 channels. These results indicate that IpTx(a) is capable of inducing similar subconductance states in all three RyR isoforms, while stimulation of [(3)H]ryanodine binding by this toxin results in isoform-specific responses, with RyR1 being the most sensitive channel, RyR3 displaying an intermediate response and RyR2 the least responsive ones.
Collapse
Affiliation(s)
- I Simeoni
- Molecular Medicine Section, Department of Neuroscience, University of Siena, via Aldo Moro 5, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Ahern CA, Powers PA, Biddlecome GH, Roethe L, Vallejo P, Mortenson L, Strube C, Campbell KP, Coronado R, Gregg RG. Modulation of L-type Ca2+ current but not activation of Ca2+ release by the gamma1 subunit of the dihydropyridine receptor of skeletal muscle. BMC PHYSIOLOGY 2001; 1:8. [PMID: 11495636 PMCID: PMC37314 DOI: 10.1186/1472-6793-1-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Accepted: 07/24/2001] [Indexed: 11/25/2022]
Abstract
BACKGROUND The multisubunit (alpha1S,alpha2-delta, beta1a and gamma1) skeletal muscle dihydropyridine receptor (DHPR) transduces membrane depolarization into release of Ca2+ from the sarcoplasmic reticulum (SR) and also acts as an L-type Ca2+ channel. To more fully investigate the function of the gamma1 subunit in these two processes, we produced mice lacking this subunit by gene targeting. RESULTS Mice lacking the DHPR gamma1 subunit (gamma1 null) survive to adulthood, are fertile and have no obvious gross phenotypic abnormalities. The gamma1 subunit is expressed at approximately half the normal level in heterozygous mice (gamma1 het). The density of the L-type Ca2+ current in gamma1 null and gamma1 het myotubes was higher than in controls. Inactivation of the Ca2+ current produced by a long depolarization was slower and incomplete in gamma1 null and gamma1 het myotubes, and was shifted to a more positive potential than in controls. However, the half-activation potential of intramembrane charge movements was not shifted, and the maximum density of the total charge was unchanged. Also, no shift was observed in the voltage-dependence of Ca2+ transients. gamma1 null and gamma1 het myotubes had the same peak Ca2+ amplitude vs. voltage relationship as control myotubes. CONCLUSIONS The L-type Ca2+ channel function, but not the SR Ca2+ release triggering function of the skeletal muscle dihydropyridine receptor, is modulated by the gamma1 subunit.
Collapse
Affiliation(s)
- Chris A Ahern
- Department of Physiology, University of Wisconsin School of Medicine, and
| | - Patricia A Powers
- Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Gloria H Biddlecome
- Howard Hughes Medical Institute, and
- Departments of Physiology and Biophysics, and Neurology, The University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Laura Roethe
- Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Paola Vallejo
- Department of Physiology, University of Wisconsin School of Medicine, and
| | - Lindsay Mortenson
- Department of Physiology, University of Wisconsin School of Medicine, and
| | - Caroline Strube
- Laboratoire de Physiologie des Elements Excitables, Universite Claude Bernard - Lyon 1, France; and
| | - Kevin P Campbell
- Howard Hughes Medical Institute, and
- Departments of Physiology and Biophysics, and Neurology, The University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | - Roberto Coronado
- Department of Physiology, University of Wisconsin School of Medicine, and
| | - Ronald G Gregg
- Department of Biochemistry and Molecular Biology, and Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
49
|
Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. J Neurosci 2001. [PMID: 11356874 DOI: 10.1523/jneurosci.21-11-03860.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Investigating how calcium release from the endoplasmic reticulum (ER) is triggered and coordinated is crucial to our understanding of how oligodendrocyte progenitor cells (OPs) develop into myelinating cells. Sparks and puffs represent highly localized Ca(2+) release from the ER through ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP(3)Rs), respectively. To study whether sparks or puffs trigger Ca(2+) waves in OPs, we performed rapid high-resolution line scan recordings in fluo-4-loaded OP processes. We found spontaneous and evoked sparks and puffs, and we have identified functional cross talk between IP(3)Rs and RyRs. Local events evoked using the IP(3)-linked agonist methacholine (MeCh) showed significantly different morphology compared with events evoked using the caffeine analog 3,7-dimethyl-1-propargylxanthine (DMPX). Pretreatment with MeCh potentiated DMPX-evoked events, whereas inhibition of RyRs potentiated events evoked by low concentrations of MeCh. Furthermore, activation of IP(3)Rs but not RyRs was critical for Ca(2+) wave initiation. Using immunocytochemistry, we show OPs express the specific Ca(2+) release channel subtypes RyR3 and IP(3)R2 in patches along OP processes. RyRs are coexpressed with IP(3)Rs in some patches, but IP(3)Rs are also found alone. This differential distribution pattern may underlie the differences in local and global Ca(2+) signals mediated by these two receptors. Thus, in OPs, interactions between IP(3)Rs and RyRs determine the spatial and temporal characteristics of calcium signaling, from microdomains to intracellular waves.
Collapse
|
50
|
Haak LL, Song LS, Molinski TF, Pessah IN, Cheng H, Russell JT. Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. J Neurosci 2001; 21:3860-70. [PMID: 11356874 PMCID: PMC6762718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Investigating how calcium release from the endoplasmic reticulum (ER) is triggered and coordinated is crucial to our understanding of how oligodendrocyte progenitor cells (OPs) develop into myelinating cells. Sparks and puffs represent highly localized Ca(2+) release from the ER through ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP(3)Rs), respectively. To study whether sparks or puffs trigger Ca(2+) waves in OPs, we performed rapid high-resolution line scan recordings in fluo-4-loaded OP processes. We found spontaneous and evoked sparks and puffs, and we have identified functional cross talk between IP(3)Rs and RyRs. Local events evoked using the IP(3)-linked agonist methacholine (MeCh) showed significantly different morphology compared with events evoked using the caffeine analog 3,7-dimethyl-1-propargylxanthine (DMPX). Pretreatment with MeCh potentiated DMPX-evoked events, whereas inhibition of RyRs potentiated events evoked by low concentrations of MeCh. Furthermore, activation of IP(3)Rs but not RyRs was critical for Ca(2+) wave initiation. Using immunocytochemistry, we show OPs express the specific Ca(2+) release channel subtypes RyR3 and IP(3)R2 in patches along OP processes. RyRs are coexpressed with IP(3)Rs in some patches, but IP(3)Rs are also found alone. This differential distribution pattern may underlie the differences in local and global Ca(2+) signals mediated by these two receptors. Thus, in OPs, interactions between IP(3)Rs and RyRs determine the spatial and temporal characteristics of calcium signaling, from microdomains to intracellular waves.
Collapse
Affiliation(s)
- L L Haak
- National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|