1
|
Ignatova II, Frolov RV. Distinct mechanisms of light adaptation of elementary responses in photoreceptors of Dipteran flies and American cockroach. J Neurophysiol 2022; 128:263-277. [PMID: 35730751 DOI: 10.1152/jn.00519.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Of many light adaptation mechanisms optimizing photoreceptor functioning in the compound eyes of insects, those modifying the single photon response, the quantum bump (QB), remain least studied. Here, by recording from photoreceptors of the blow fly Protophormia terraenovae, the hover fly Volucella pellucens and the cockroach Periplaneta americana, we investigated mechanisms of rapid light adaptation by examining how properties of QBs change after light stimulation and multiquantal impulse responses during repetitive stimulation. In P. terraenovae, light stimulation reduced latencies, characteristic durations and amplitudes of QBs in the intensity- and duration-dependent manner. In P. americana, only QB amplitudes decreased consistently. In both species, time constants of QB parameters' recovery increased with the strength and duration of stimulation, reaching about 30 s after bright prolonged 10 s pulses. In the blow fly, changes in QB amplitudes during recovery correlated with changes in half-widths but not latencies, suggesting at least two separate mechanisms of light adaptation: acceleration of QB onset by sensitizing transduction channels, and acceleration of transduction channel inactivation causing QB shortening and diminishment. In the cockroach, light adaptation reduced QB amplitude by apparently lowering the transduction channel availability. Impulse response data in the blow fly and cockroach were consistent with the mechanistic inferences from the QB recovery experiments. However, in the hover fly V. pellucens, impulse response latencies and durations decreased simultaneously whereas amplitudes decreased little, even when bright flashes were applied at high frequencies. These findings indicate existence of dissimilar mechanisms of light adaptation in the microvilli of different species.
Collapse
Affiliation(s)
- Irina I Ignatova
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Roman V Frolov
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
2
|
The Role of Membrane Lipids in Light-Activation of Drosophila TRP Channels. Biomolecules 2022; 12:biom12030382. [PMID: 35327573 PMCID: PMC8945425 DOI: 10.3390/biom12030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to play a fundamental role in channel activation and regulation. A prominent example is the Drosophila TRP and TRP-like (TRPL) channels, which are predominantly expressed in the visual system of Drosophila. Light activation of the TRP and TRPL channels, the founding members of the TRP channel superfamily, requires activation of phospholipase Cβ (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into Diacylglycerol (DAG) and Inositol 1, 4,5-trisphosphate (IP3). However, the events required for channel gating downstream of PLC activation are still under debate and led to several hypotheses regarding the mechanisms by which lipids gate the channels. Despite many efforts, compelling evidence of the involvement of DAG accumulation, PIP2 depletion or IP3-mediated Ca2+ release in light activation of the TRP/TRPL channels are still lacking. Exogeneous application of poly unsaturated fatty acids (PUFAs), a product of DAG hydrolysis was demonstrated as an efficient way to activate the Drosophila TRP/TRPL channels. However, compelling evidence for the involvement of PUFAs in physiological light-activation of the TRP/TRPL channels is still lacking. Light-induced mechanical force generation was measured in photoreceptor cells prior to channel opening. This mechanical force depends on PLC activity, suggesting that the enzymatic activity of PLC converting PIP2 into DAG generates membrane tension, leading to mechanical gating of the channels. In this review, we will present the roles of membrane lipids in light activation of Drosophila TRP channels and present the many advantages of this model system in the exploration of TRP channel activation under physiological conditions.
Collapse
|
3
|
Ca2+ Signaling in Drosophila Photoreceptor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:857-879. [DOI: 10.1007/978-3-030-12457-1_34] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Katz B, Minke B. The Drosophila light-activated TRP and TRPL channels - Targets of the phosphoinositide signaling cascade. Prog Retin Eye Res 2018; 66:200-219. [DOI: 10.1016/j.preteyeres.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/28/2023]
|
5
|
Honkanen A, Immonen EV, Salmela I, Heimonen K, Weckström M. Insect photoreceptor adaptations to night vision. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0077. [PMID: 28193821 DOI: 10.1098/rstb.2016.0077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 01/25/2023] Open
Abstract
Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Anna Honkanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Iikka Salmela
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Kyösti Heimonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Matti Weckström
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Song Z, Juusola M. A biomimetic fly photoreceptor model elucidates how stochastic adaptive quantal sampling provides a large dynamic range. J Physiol 2017; 595:5439-5456. [PMID: 28369994 PMCID: PMC5556150 DOI: 10.1113/jp273614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/10/2017] [Indexed: 11/08/2022] Open
Abstract
Light intensities (photons s-1 μm-2 ) in a natural scene vary over several orders of magnitude from shady woods to direct sunlight. A major challenge facing the visual system is how to map such a large dynamic input range into its limited output range, so that a signal is neither buried in noise in darkness nor saturated in brightness. A fly photoreceptor has achieved such a large dynamic range; it can encode intensity changes from single to billions of photons, outperforming man-made light sensors. This performance requires powerful light adaptation, the neural implementation of which has only become clear recently. A computational fly photoreceptor model, which mimics the real phototransduction processes, has elucidated how light adaptation happens dynamically through stochastic adaptive quantal information sampling. A Drosophila R1-R6 photoreceptor's light sensor, the rhabdomere, has 30,000 microvilli, each of which stochastically samples incoming photons. Each microvillus employs a full G-protein-coupled receptor signalling pathway to adaptively transduce photons into quantum bumps (QBs, or samples). QBs then sum the macroscopic photoreceptor responses, governed by four quantal sampling factors (limitations): (i) the number of photon sampling units in the cell structure (microvilli), (ii) sample size (QB waveform), (iii) latency distribution (time delay between photon arrival and emergence of a QB), and (iv) refractory period distribution (time for a microvillus to recover after a QB). Here, we review how these factors jointly orchestrate light adaptation over a large dynamic range.
Collapse
Affiliation(s)
- Zhuoyi Song
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mikko Juusola
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Asteriti S, Liu CH, Hardie RC. Calcium signalling in Drosophila photoreceptors measured with GCaMP6f. Cell Calcium 2017; 65:40-51. [PMID: 28238353 PMCID: PMC5472182 DOI: 10.1016/j.ceca.2017.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/30/2022]
Abstract
Drosophila phototransduction is mediated by phospholipase C leading to activation of cation channels (TRP and TRPL) in the 30000 microvilli forming the light-absorbing rhabdomere. The channels mediate massive Ca2+ influx in response to light, but whether Ca2+ is released from internal stores remains controversial. We generated flies expressing GCaMP6f in their photoreceptors and measured Ca2+ signals from dissociated cells, as well as in vivo by imaging rhabdomeres in intact flies. In response to brief flashes, GCaMP6f signals had latencies of 10-25ms, reached 50% Fmax with ∼1200 effectively absorbed photons and saturated (ΔF/F0∼10-20) with 10000-30000 photons. In Ca2+ free bath, smaller (ΔF/F0 ∼4), long latency (∼200ms) light-induced Ca2+ rises were still detectable. These were unaffected in InsP3 receptor mutants, but virtually eliminated when Na+ was also omitted from the bath, or in trpl;trp mutants lacking light-sensitive channels. Ca2+ free rises were also eliminated in Na+/Ca2+ exchanger mutants, but greatly accelerated in flies over-expressing the exchanger. These results show that Ca2+ free rises are strictly dependent on Na+ influx and activity of the exchanger, suggesting they reflect re-equilibration of Na+/Ca2+ exchange across plasma or intracellular membranes following massive Na+ influx. Any tiny Ca2+ free rise remaining without exchanger activity was equivalent to <10nM (ΔF/F0 ∼0.1), and unlikely to play any role in phototransduction.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Che-Hsiung Liu
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Roger C Hardie
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
8
|
Functional cooperation between the IP3 receptor and phospholipase C secures the high sensitivity to light of Drosophila photoreceptors in vivo. J Neurosci 2015; 35:2530-46. [PMID: 25673847 DOI: 10.1523/jneurosci.3933-14.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drosophila phototransduction is a model system for the ubiquitous phosphoinositide signaling. In complete darkness, spontaneous unitary current events (dark bumps) are produced by spontaneous single Gqα activation, while single-photon responses (quantum bumps) arise from synchronous activation of several Gqα molecules. We have recently shown that most of the spontaneous single Gqα activations do not produce dark bumps, because of a critical phospholipase Cβ (PLCβ) activity level required for bump generation. Surpassing the threshold of channel activation depends on both PLCβ activity and cellular [Ca(2+)], which participates in light excitation via a still unclear mechanism. We show here that in IP3 receptor (IP3R)-deficient photoreceptors, both light-activated Ca(2+) release from internal stores and light sensitivity were strongly attenuated. This was further verified by Ca(2+) store depletion, linking Ca(2+) release to light excitation. In IP3R-deficient photoreceptors, dark bumps were virtually absent and the quantum-bump rate was reduced, indicating that Ca(2+) release from internal stores is necessary to reach the critical level of PLCβ catalytic activity and the cellular [Ca(2+)] required for excitation. Combination of IP3R knockdown with reduced PLCβ catalytic activity resulted in highly suppressed light responses that were partially rescued by cellular Ca(2+) elevation, showing a functional cooperation between IP3R and PLCβ via released Ca(2+). These findings suggest that in contrast to the current dogma that Ca(2+) release via IP3R does not participate in light excitation, we show that released Ca(2+) plays a critical role in light excitation. The positive feedback between PLCβ and IP3R found here may represent a common feature of the inositol-lipid signaling.
Collapse
|
9
|
Speed and sensitivity of phototransduction in Drosophila depend on degree of saturation of membrane phospholipids. J Neurosci 2015; 35:2731-46. [PMID: 25673862 DOI: 10.1523/jneurosci.1150-14.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drosophila phototransduction is mediated via a G-protein-coupled PLC cascade. Recent evidence, including the demonstration that light evokes rapid contractions of the photoreceptors, suggested that the light-sensitive channels (TRP and TRPL) may be mechanically gated, together with protons released by PLC-mediated PIP2 hydrolysis. If mechanical gating is involved we predicted that the response to light should be influenced by altering the physical properties of the membrane. To achieve this, we used diet to manipulate the degree of saturation of membrane phospholipids. In flies reared on a yeast diet, lacking polyunsaturated fatty acids (PUFAs), mass spectrometry showed that the proportion of polyunsaturated phospholipids was sevenfold reduced (from 38 to ∼5%) but rescued by adding a single species of PUFA (linolenic or linoleic acid) to the diet. Photoreceptors from yeast-reared flies showed a 2- to 3-fold increase in latency and time to peak of the light response, without affecting quantum bump waveform. In the absence of Ca(2+) influx or in trp mutants expressing only TRPL channels, sensitivity to light was reduced up to ∼10-fold by the yeast diet, and essentially abolished in hypomorphic G-protein mutants (Gαq). PLC activity appeared little affected by the yeast diet; however, light-induced contractions measured by atomic force microscopy or the activation of ectopic mechanosensitive gramicidin channels were also slowed ∼2-fold. The results are consistent with mechanosensitive gating and provide a striking example of how dietary fatty acids can profoundly influence sensory performance in a classical G-protein-coupled signaling cascade.
Collapse
|
10
|
Abstract
The Drosophila "transient receptor potential" channel is the prototypical TRP channel, belonging to and defining the TRPC subfamily. Together with a second TRPC channel, trp-like (TRPL), TRP mediates the transducer current in the fly's photoreceptors. TRP and TRPL are also implicated in olfaction and Malpighian tubule function. In photoreceptors, TRP and TRPL are localised in the ~30,000 packed microvilli that form the photosensitive "rhabdomere"-a light-guiding rod, housing rhodopsin and the rest of the phototransduction machinery. TRP (but not TRPL) is assembled into multimolecular signalling complexes by a PDZ-domain scaffolding protein (INAD). TRPL (but not TRP) undergoes light-regulated translocation between cell body and rhabdomere. TRP and TRPL are also found in photoreceptor synapses where they may play a role in synaptic transmission. Like other TRPC channels, TRP and TRPL are activated by a G protein-coupled phospholipase C (PLCβ4) cascade. Although still debated, recent evidence indicates the channels can be activated by a combination of PIP2 depletion and protons released by the PLC reaction. PIP2 depletion may act mechanically as membrane area is reduced by cleavage of PIP2's bulky inositol headgroup. TRP, which dominates the light-sensitive current, is Ca(2+) selective (P Ca:P Cs >50:1), whilst TRPL has a modest Ca(2+) permeability (P Ca:P Cs ~5:1). Ca(2+) influx via the channels has profound positive and negative feedback roles, required for the rapid response kinetics, with Ca(2+) rapidly facilitating TRP (but not TRPL) and also inhibiting both channels. In trp mutants, stimulation by light results in rapid depletion of microvillar PIP2 due to lack of Ca(2+) influx required to inhibit PLC. This accounts for the "transient receptor potential" phenotype that gives the family its name and, over a period of days, leads to light-dependent retinal degeneration. Gain-of-function trp mutants with uncontrolled Ca(2+) influx also undergo retinal degeneration due to Ca(2+) cytotoxicity. In vertebrate retina, mice knockout studies suggest that TRPC6 and TRPC7 mediate a PLCβ4-activated transducer current in intrinsically photosensitive retinal ganglion cells, expressing melanopsin. TRPA1 has been implicated as a "photo-sensing" TRP channel in human melanocytes and light-sensitive neurons in the body wall of Drosophila.
Collapse
|
11
|
Chu B, Postma M, Hardie R. Fractional Ca(2+) currents through TRP and TRPL channels in Drosophila photoreceptors. Biophys J 2013; 104:1905-16. [PMID: 23663833 PMCID: PMC3647204 DOI: 10.1016/j.bpj.2013.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 01/29/2023] Open
Abstract
Light responses in Drosophila photoreceptors are mediated by two Ca(2+) permeable cation channels, transient receptor potential (TRP) and TRP-like (TRPL). Although Ca(2+) influx via these channels is critical for amplification, inactivation, and light adaptation, the fractional contribution of Ca(2+) to the currents (Pf) has not been measured. We describe a slow (τ ∼ 350 ms) tail current in voltage-clamped light responses and show that it is mediated by electrogenic Na(+)/Ca(2+) exchange. Assuming a 3Na:1Ca stoichiometry, we derive empirical estimates of Pf by comparing the charge integrals of the exchanger and light-induced currents. For TRPL channels, Pf was ∼17% as predicted by Goldman-Hodgkin-Katz (GHK) theory. Pf for TRP (29%) and wild-type flies (26%) was higher, but lower than the GHK prediction (45% and 42%). As predicted by GHK theory, Pf for both channels increased with extracellular [Ca(2+)], and was largely independent of voltage between -100 and -30 mV. A model incorporating intra- and extracellular geometry, ion permeation, diffusion, extrusion, and buffering suggested that the deviation from GHK predictions was largely accounted for by extracellular ionic depletion during the light-induced currents, and the time course of the Na(+)/Ca(2+) exchange current could be used to obtain estimates of cellular Ca(2+) buffering capacities.
Collapse
Affiliation(s)
- Brian Chu
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Marten Postma
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Roger C. Hardie
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| |
Collapse
|
12
|
Hardie RC. Phototransduction mechanisms in Drosophila microvillar photoreceptors. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Nikolic K, Loizu J, Degenaar P, Toumazou C. A stochastic model of the single photon response in Drosophila photoreceptors. Integr Biol (Camb) 2010; 2:354-70. [PMID: 20648395 DOI: 10.1039/c0ib00031k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a quantitative model for the phototransduction cascade in Drosophila photoreceptors. The process consists of four stages: (1) light absorption by Rhodopsin, (2) signal amplification phase mediated by a G-protein coupled cascade, (3) closed/open state kinetics of the transient receptor potential (TRP) ion channels which regulate the ionic current in/out of the cell and (4) Ca regulated positive and negative feedbacks. The model successfully reproduces the experimental results for: single photon absorption "quantum bump" (QB), statistical features for QB (average shape, peak current average value and variance, the latency distribution, etc.), arrestin mutant behaviour, low extracellular Ca(2+) cases, etc. The TRP channel activity is modeled by a Monod-Wyman-Changeux (MWC) model for allosteric interaction, instead of using the usual ad hoc Hill equation. This approach allows for a plausible physical explanation of how Ca/calmodulin regulate the protein activity. The cooperative nature of the TRP channel activation leads to "dark current" suppression at the output allowing for reliable detection of a single photon. Stochastic simulations were produced by using the standard rate equations combined with the Poisson distribution for generating random events from the forward and reverse reaction rates. Noise is inherent to the system but appears to be crucial for producing such reliable responses in this complex, highly non-linear system. The approach presented here may serve as a useful example how to treat complex cellular mechanisms underlying sensory processes.
Collapse
Affiliation(s)
- Konstantin Nikolic
- Institute of Biomedical Engineering, Imperial College London, London, UK
| | | | | | | |
Collapse
|
14
|
Lange K. Fundamental role of microvilli in the main functions of differentiated cells: Outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol 2010; 226:896-927. [PMID: 20607764 DOI: 10.1002/jcp.22302] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Liu CH, Satoh AK, Postma M, Huang J, Ready DF, Hardie RC. Ca2+-dependent metarhodopsin inactivation mediated by calmodulin and NINAC myosin III. Neuron 2008; 59:778-89. [PMID: 18786361 DOI: 10.1016/j.neuron.2008.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/03/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
Phototransduction in flies is the fastest known G protein-coupled signaling cascade, but how this performance is achieved remains unclear. Here, we investigate the mechanism and role of rhodopsin inactivation. We determined the lifetime of activated rhodopsin (metarhodopsin = M( *)) in whole-cell recordings from Drosophila photoreceptors by measuring the time window within which inactivating M( *) by photoreisomerization to rhodopsin could suppress responses to prior illumination. M( *) was inactivated rapidly (tau approximately 20 ms) under control conditions, but approximately 10-fold more slowly in Ca2+-free solutions. This pronounced Ca2+ dependence of M( *) inactivation was unaffected by mutations affecting phosphorylation of rhodopsin or arrestin but was abolished in mutants of calmodulin (CaM) or the CaM-binding myosin III, NINAC. This suggests a mechanism whereby Ca2+ influx acting via CaM and NINAC accelerates the binding of arrestin to M( *). Our results indicate that this strategy promotes quantum efficiency, temporal resolution, and fidelity of visual signaling.
Collapse
Affiliation(s)
- Che-Hsiung Liu
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB23DY, UK
| | | | | | | | | | | |
Collapse
|
16
|
Krause Y, Krause S, Huang J, Liu CH, Hardie RC, Weckström M. Light-dependent modulation of Shab channels via phosphoinositide depletion in Drosophila photoreceptors. Neuron 2008; 59:596-607. [PMID: 18760696 DOI: 10.1016/j.neuron.2008.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 05/08/2008] [Accepted: 07/11/2008] [Indexed: 11/26/2022]
Abstract
The Drosophila phototransduction cascade transforms light into depolarizations that are further shaped by activation of voltage-dependent K+ (Kv) channels. In whole-cell recordings of isolated photoreceptors, we show that light selectively modulated the delayed rectifier (Shab) current. Shab currents were increased by light with similar kinetics to the light-induced current itself (latency approximately 20 ms), recovering to control values with a t(1/2) of approximately 60 s in darkness. Genetic disruption of PLCbeta4, responsible for light-induced PIP(2) hydrolysis, abolished this light-dependent modulation. In mutants of CDP-diaclyglycerol synthase (cds(1)), required for PIP(2) resynthesis, the modulation became irreversible, but exogenously applied PIP(2) restored reversibility. The modulation was accurately and reversibly mimicked by application of PIP(2) to heterologously expressed Shab channels in excised inside-out patches. The results indicate a functionally implemented mechanism of Kv channel modulation by PIP(2) in photoreceptors, which enables light-dependent regulation of signal processing by direct coupling to the phototransduction cascade.
Collapse
Affiliation(s)
- Yani Krause
- University of Oulu, Department of Physical Sciences, Division of Biophysics, 90014 Oulun Yliopisto, Finland
| | | | | | | | | | | |
Collapse
|
17
|
Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 2007; 454:821-47. [PMID: 17487503 DOI: 10.1007/s00424-007-0251-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/05/2007] [Indexed: 01/05/2023]
Abstract
Drosophila visual transduction is the fastest known G-protein-coupled signaling cascade and has therefore served as a genetically tractable animal model for characterizing rapid responses to sensory stimulation. Mutations in over 30 genes have been identified, which affect activation, adaptation, or termination of the photoresponse. Based on analyses of these genes, a model for phototransduction has emerged, which involves phosphoinoside signaling and culminates with opening of the TRP and TRPL cation channels. Many of the proteins that function in phototransduction are coupled to the PDZ containing scaffold protein INAD and form a supramolecular signaling complex, the signalplex. Arrestin, TRPL, and G alpha(q) undergo dynamic light-dependent trafficking, and these movements function in long-term adaptation. Other proteins play important roles either in the formation or maturation of rhodopsin, or in regeneration of phosphatidylinositol 4,5-bisphosphate (PIP2), which is required for the photoresponse. Mutation of nearly any gene that functions in the photoresponse results in retinal degeneration. The underlying bases of photoreceptor cell death are diverse and involve mechanisms such as excessive endocytosis of rhodopsin due to stable rhodopsin/arrestin complexes and abnormally low or high levels of Ca2+. Drosophila visual transduction appears to have particular relevance to the cascade in the intrinsically photosensitive retinal ganglion cells in mammals, as the photoresponse in these latter cells appears to operate through a remarkably similar mechanism.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
18
|
Rosenbaum EE, Hardie RC, Colley NJ. Calnexin is essential for rhodopsin maturation, Ca2+ regulation, and photoreceptor cell survival. Neuron 2006; 49:229-41. [PMID: 16423697 PMCID: PMC3414428 DOI: 10.1016/j.neuron.2005.12.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 10/07/2005] [Accepted: 12/02/2005] [Indexed: 11/27/2022]
Abstract
In sensory neurons, successful maturation of signaling molecules and regulation of Ca2+ are essential for cell function and survival. Here, we demonstrate a multifunctional role for calnexin as both a molecular chaperone uniquely required for rhodopsin maturation and a regulator of Ca2+ that enters photoreceptor cells during light stimulation. Mutations in Drosophila calnexin lead to severe defects in rhodopsin (Rh1) expression, whereas other photoreceptor cell proteins are expressed normally. Mutations in calnexin also impair the ability of photoreceptor cells to control cytosolic Ca2+ levels following activation of the light-sensitive TRP channels. Finally, mutations in calnexin lead to retinal degeneration that is enhanced by light, suggesting that calnexin's function as a Ca2+ buffer is important for photoreceptor cell survival. Our results illustrate a critical role for calnexin in Rh1 maturation and Ca2+ regulation and provide genetic evidence that defects in calnexin lead to retinal degeneration.
Collapse
Affiliation(s)
- Erica E. Rosenbaum
- Department of Ophthalmology and Visual Sciences and Department of Genetics University of Wisconsin Madison, Wisconsin 53792
| | - Roger C. Hardie
- Department of Anatomy Cambridge University Downing Street Cambridge CB2 3DY United Kingdom
| | - Nansi J. Colley
- Department of Ophthalmology and Visual Sciences and Department of Genetics University of Wisconsin Madison, Wisconsin 53792
- Correspondence:
| |
Collapse
|
19
|
Gu Y, Oberwinkler J, Postma M, Hardie RC. Mechanisms of light adaptation in Drosophila photoreceptors. Curr Biol 2005; 15:1228-34. [PMID: 16005297 DOI: 10.1016/j.cub.2005.05.058] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/27/2005] [Accepted: 05/23/2005] [Indexed: 11/20/2022]
Abstract
Phototransduction in Drosophila is mediated by a phospholipase C (PLC) cascade culminating in activation of transient receptor potential (TRP) channels. Ca(2+) influx via these channels is required for light adaptation, but although several molecular targets of Ca(2+)-dependent feedback have been identified, their contribution to adaptation is unclear. By manipulating cytosolic Ca(2+) via the Na(+)/Ca(2+) exchange equilibrium, we found that Ca(2+) inhibited the light-induced current (LIC) over a range corresponding to steady-state light-adapted Ca(2+) levels (0.1-10 microM Ca(2+)) and accurately mimicked light adaptation. However, PLC activity monitored with genetically targeted PIP(2)-sensitive ion channels (Kir2.1) was first inhibited by much higher (>/= approximately 50 microM) Ca(2+) levels, which occur only transiently in vivo. Ca(2+)-dependent inhibition of PLC, but not the LIC, was impaired in mutants (inaC) of protein kinase C (PKC). The results indicate that light adaptation is primarily mediated downstream of PLC and independently of PKC by Ca(2+)-dependent inhibition of TRP channels. This is interpreted as a strategy to prevent inhibition of PLC by global steady-state light-adapted Ca(2+) levels, whereas rapid inhibition of PLC by local Ca(2+) transients is required to terminate the response and ensures that PIP(2) reserves are not depleted during stimulation.
Collapse
Affiliation(s)
- Yuchun Gu
- Department of Anatomy, Cambridge University, Downing Street, Cambridge CB2 3DY, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Pangrsic T, Stusek P, Belusic G, Zupancic G. Light dependence of oxygen consumption by blowfly eyes recorded with a magnetic diver balance. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 191:75-84. [PMID: 15558288 DOI: 10.1007/s00359-004-0571-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/23/2004] [Accepted: 09/24/2004] [Indexed: 11/30/2022]
Abstract
We measured the oxygen (O2) consumption of isolated blowfly eyes using a magnetic diver balance, a device for high-resolution volumetric O2 consumption measurements. The light-induced O2 consumption is at most three times the value of the dark consumption, which is 0.6 nl O2 s(-1) eye(-1), and is in good agreement with the estimates based on electrophysiological data. With longer stimuli the increase follows a double exponential time course. The respective time constants are approximately 2 and 20 s and show no dependence on light intensity, whereas the dependence of amplitudes can be fitted by a Hill equation. Decreasing the stimulus duration reveals that the peak in O2 consumption overshoots the time course induced by long stimuli. We suggest this may be a general feature of mitochondrial activation. The dependence of the O2 consumption peak on stimulus duration at high light intensity has a hump with stimulus durations of 10-20 ms, coinciding with the stimulus durations that start to induce the adaptation of the receptor potential.
Collapse
Affiliation(s)
- Tina Pangrsic
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Vecna pot 111, P.O. Box 2995, 1001 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
21
|
Oberwinkler J. Calcium homeostasis in fly photoreceptor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:539-83. [PMID: 12596943 DOI: 10.1007/978-1-4615-0121-3_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange. Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and the Ca2+-extruding exchangers are located in or close to the rhabdomeric microvilli, small protrusions of the plasma membrane. The microvilli also contain the molecular machinery necessary for generating quantum bumps, short electrical responses caused by the absorption of a single photon. Due to this anatomical arrangement, the light-induced Ca2+ influx results in two separate Ca2+ signals that have different functions: a global, homogeneous increase of the Ca2+ concentration in the cell body, and rapid but large amplitude Ca2+ transients in the microvilli. The global rise of the Ca2+ concentration mediates light adaptation, via regulatory actions on the phototransduction cascade, the voltage-gated K+ channels and small pigment granules controlling the light intensity. The local Ca2+ transients in the microvilli are responsible for shaping the quantum bumps into fast, all-or-nothing events. They achieve this by facilitating strongly the phototransduction cascade at early stages ofthe light response and subsequently inhibiting it. Many molecular targets of these feedback mechanisms have been identified and characterized due to the availability of numerous Drosophila mutant showing defects in the phototransduction.
Collapse
|
22
|
Abstract
In Drosophila photoreceptors, the light-sensitive current is mediated downstream of phospholipase C by TRP (transient receptor potential) channels. Recent evidence suggests that Drosophila TRP channels are activated by diacylglycerol (DAG) or its metabolites (polyunsaturated fatty acids), possibly in combination with the reduction in phosphatidyl inositol 4,5 bisphosphate (PIP2). Consistent with this view, diacylglycerol kinase is identified as a key enzyme required for response termination. Signaling is critically dependent upon efficient PIP2 synthesis; mutants of this pathway in combination with genetically targeted PIP2 reporters provide unique insights into the kinetics and regulation of PIP2 turnover. Recent evidence indicates that a growing number of mammalian TRP homologues are also regulated by lipid messengers, including DAG, arachidonic acid, and PIP2.
Collapse
Affiliation(s)
- Roger C Hardie
- Department of Anatomy, Cambridge University, Downing St Cambridge CB2 3DY, United Kingdom.
| |
Collapse
|
23
|
Abstract
The light-sensitive current in Drosophila photoreceptors is mediated by transient receptor potential (TRP) channels, at least two members of which (TRP and TRPL) are activated downstream of phospholipase C (PLC) in response to light. Recent evidence is reviewed suggesting that Drosophila TRP channels are activated by one or more lipid products of PLC activity: namely diacylglycerol (DAG), its metabolites (polyunsaturated fatty acids) or the reduction in phosphatidylinositol 4,5-bisphosphate (PIP(2)). The most compelling evidence for this view comes from analysis of rdgA mutants which are unable to effectively metabolise DAG due to a defect in DAG kinase. The rdgA mutation leads to constitutive activation of both TRP and TRPL channels and dramatically increases sensitivity to light in hypomorphic mutations of PLC and G protein.
Collapse
Affiliation(s)
- Roger C Hardie
- Department of Anatomy, Cambridge University, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
24
|
Lange K. Role of microvillar cell surfaces in the regulation of glucose uptake and organization of energy metabolism. Am J Physiol Cell Physiol 2002; 282:C1-26. [PMID: 11742794 DOI: 10.1152/ajpcell.2002.282.1.c1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental evidence suggesting a type of glucose uptake regulation prevailing in resting and differentiated cells was surveyed. This type of regulation is characterized by transport-limited glucose metabolism and depends on segregation of glucose transporters on microvilli of differentiated or resting cells. Earlier studies on glucose transport regulation and a recently presented general concept of influx regulation for ions and metabolic substrates via microvillar structures provide the basic framework for this theory. According to this concept, glucose uptake via transporters on microvilli is regulated by changes in the structural organization of the microfilament bundle, which is acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. Both microvilli formation and the switch of glucose metabolism from "metabolic regulation" to "transport limitation" occur during differentiation. The formation of microvillar cell surfaces creates the essential preconditions to establish the characteristic functions of specialized tissue cells including the coordination between glycolysis and oxidative phosphorylation, regulation of cellular functions by external signals, and Ca(2+) signaling. The proposed concept integrates various aspects of glucose uptake regulation into a ubiquitous cellular mechanism involved in regulation of transmembrane ion and substrate fluxes.
Collapse
|
25
|
Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST. Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 2001; 30:149-59. [PMID: 11343651 DOI: 10.1016/s0896-6273(01)00269-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The trp (transient receptor potential) gene encodes a Ca2+ channel responsible for the major component of the phospholipase C (PLC) mediated light response in Drosophila. In trp mutants, maintained light leads to response decay and temporary total loss of sensitivity (inactivation). Using genetically targeted PIP2-sensitive inward rectifier channels (Kir2.1) as biosensors, we provide evidence that trp decay reflects depletion of PIP2. Two independent mutations in the PIP2 recycling pathway (rdgB and cds) prevented recovery from inactivation. Abolishing Ca2+ influx in wild-type photoreceptors mimicked inactivation, while raising Ca2+ by blocking Na+/Ca2+ exchange prevented inactivation in trp. The results suggest that Ca2+ influx prevents PIP2 depletion by inhibiting PLC activity and facilitating PIP2 recycling. Without this feedback one photon appears sufficient to deplete the phosphoinositide pool of approximately 4 microvilli.
Collapse
Affiliation(s)
- R C Hardie
- Department of Anatomy, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
26
|
Juusola M, Hardie RC. Light adaptation in Drosophila photoreceptors: II. Rising temperature increases the bandwidth of reliable signaling. J Gen Physiol 2001; 117:27-42. [PMID: 11134229 PMCID: PMC2232470 DOI: 10.1085/jgp.117.1.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is known that an increase in both the mean light intensity and temperature can speed up photoreceptor signals, but it is not known whether a simultaneous increase of these physical factors enhances information capacity or leads to coding errors. We studied the voltage responses of light-adapted Drosophila photoreceptors in vivo from 15 to 30 degrees C, and found that an increase in temperature accelerated both the phototransduction cascade and photoreceptor membrane dynamics, broadening the bandwidth of reliable signaling with an effective Q(10) for information capacity of 6.5. The increased fidelity and reliability of the voltage responses was a result of four factors: (1) an increased rate of elementary response, i.e., quantum bump production; (2) a temperature-dependent acceleration of the early phototransduction reactions causing a quicker and narrower dispersion of bump latencies; (3) a relatively temperature-insensitive light-adapted bump waveform; and (4) a decrease in the time constant of the light-adapted photoreceptor membrane, whose filtering matched the dynamic properties of the phototransduction noise. Because faster neural processing allows faster behavioral responses, this improved performance of Drosophila photoreceptors suggests that a suitably high body temperature offers significant advantages in visual performance.
Collapse
Affiliation(s)
- M Juusola
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, UK.
| | | |
Collapse
|
27
|
Abstract
A novel mechanism of cellular volume regulation is presented, which ensues from the recently introduced concept of transport and ion channel regulation via microvillar structures (Lange K, 1999, J Cell Physiol 180:19-35). According to this notion, the activity of ion channels and transporter proteins located on microvilli of differentiated cells is regulated by changes in the structural organization of the bundle of actin filaments in the microvillar shaft region. Cells with microvillar surfaces represent two-compartment systems consisting of the cytoplasm on the one side and the sum of the microvillar tip (or, entrance) compartments on the other side. The two compartments are separated by the microvillar actin filament bundle acting as diffusion barrier ions and other solutes. The specific organization of ion and water channels on the surface of microvillar cell types enables this two-compartment system to respond to hypo- and hyperosmotic conditions by activation of ionic fluxes along electrochemical gradients. Hypotonic exposure results in swelling of the cytoplasmic compartment accompanied by a corresponding reduction in the length of the microvillar diffusion barrier, allowing osmolyte efflux and regulatory volume decrease (RVD). Hypertonic conditions, which cause shortening of the diffusion barrier via swelling of the entrance compartment, allow osmolyte influx for regulatory volume increase (RVI). Swelling of either the cytoplasmic or the entrance compartment, by using membrane portions of the microvillar shafts for surface enlargement, activates ion fluxes between the cytoplasm and the entrance compartment by shortening of microvilli. The pool of available membrane lipids used for cell swelling, which is proportional to length and number of microvilli per cell, represents the sensor system that directly translates surface enlargements into activation of ion channels. Thus, the use of additional membrane components for osmotic swelling or other types of surface-expanding shape changes (such as the volume-invariant cell spreading or stretching) directly regulates influx and efflux activities of microvillar ion channels. The proposed mechanism of ion flux regulation also applies to the physiological main functions of epithelial cells and the auxiliary action of swelling-induced ATP release. Furthermore, the microvillar entrance compartment, as a finely dispersed ion-accessible peripheral space, represents a cellular sensor for environmental ionic/osmotic conditions able to detect concentration gradients with high lateral resolution. Volume regulation via microvillar surfaces is only one special aspect of the general property of mechanosensitivity of microvillar ionic pathways.
Collapse
|
28
|
Oberwinkler J, Stavenga DG. Calcium imaging demonstrates colocalization of calcium influx and extrusion in fly photoreceptors. Proc Natl Acad Sci U S A 2000; 97:8578-83. [PMID: 10900015 PMCID: PMC26990 DOI: 10.1073/pnas.97.15.8578] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During illumination, Ca(2+) enters fly photoreceptor cells through light-activated channels that are located in the rhabdomere, the compartment specialized for phototransduction. From the rhabdomere, Ca(2+) diffuses into the cell body. We visualize this process by rapidly imaging the fluorescence in a cross section of a photoreceptor cell injected with a fluorescent Ca(2+) indicator in vivo. The free Ca(2+) concentration in the rhabdomere shows a very fast and large transient shortly after light onset. The free Ca(2+) concentration in the cell body rises more slowly and displays a much smaller transient. After approximately 400 ms of light stimulation, the Ca(2+) concentration in both compartments reaches a steady state, indicating that thereafter an amount of Ca(2+), equivalent to the amount of Ca(2+) flowing into the cell, is extruded. Quantitative analysis demonstrates that during the steady state, the free Ca(2+) concentration in the rhabdomere and throughout the cell body is the same. This shows that Ca(2+) extrusion takes place very close to the location of Ca(2+) influx, the rhabdomere, because otherwise gradients in the steady-state distribution of Ca(2+) should be measured. The close colocalization of Ca(2+) influx and Ca(2+) extrusion ensures that, after turning off the light, Ca(2+) removal from the rhabdomere is faster than from the cell body. This is functionally significant because it ensures rapid dark adaptation.
Collapse
Affiliation(s)
- J Oberwinkler
- Department of Neurobiophysics, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | |
Collapse
|
29
|
Abstract
The light response of fly photoreceptor cells is modulated by changes in free Ca(2+) concentration. Fly phototransduction and most processes regulating it take place in or very close to the rhabdomere. We therefore measured the kinetics and the absolute values of the free Ca(2+) concentration in the rhabdomere of fly photoreceptor cells in vivo by making use of the natural optics of the fly's eye. We show that Ca(2+) flowing into the rhabdomere after light stimulation of dark-adapted cells causes fast Ca(2+) transients that reach peak values higher than 200 microM in <20 msec. Approximately 500 msec later, the free Ca(2+) concentration has declined again to approximately 20 microM. The duration of the Ca(2+) transients becomes still shorter, and their size reduced, when the photoreceptor cell is light-adapted. This reduction in duration and size of the Ca(2+) transients is graded with the intensity of the adapting light. The kinetics and absolute values of the free calcium concentration found to occur in the rhabdomere are suitable to mediate the fast feedback signals known to act on the fly phototransduction cascade.
Collapse
|
30
|
Oberwinkler J, Stavenga DG. Calcium transients in the rhabdomeres of dark- and light-adapted fly photoreceptor cells. J Neurosci 2000; 20:1701-9. [PMID: 10684872 PMCID: PMC6772907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The light response of fly photoreceptor cells is modulated by changes in free Ca(2+) concentration. Fly phototransduction and most processes regulating it take place in or very close to the rhabdomere. We therefore measured the kinetics and the absolute values of the free Ca(2+) concentration in the rhabdomere of fly photoreceptor cells in vivo by making use of the natural optics of the fly's eye. We show that Ca(2+) flowing into the rhabdomere after light stimulation of dark-adapted cells causes fast Ca(2+) transients that reach peak values higher than 200 microM in <20 msec. Approximately 500 msec later, the free Ca(2+) concentration has declined again to approximately 20 microM. The duration of the Ca(2+) transients becomes still shorter, and their size reduced, when the photoreceptor cell is light-adapted. This reduction in duration and size of the Ca(2+) transients is graded with the intensity of the adapting light. The kinetics and absolute values of the free calcium concentration found to occur in the rhabdomere are suitable to mediate the fast feedback signals known to act on the fly phototransduction cascade.
Collapse
Affiliation(s)
- J Oberwinkler
- Department of Neurobiophysics, University of Groningen, NL-9747 AG Groningen, The Netherlands.
| | | |
Collapse
|
31
|
Chapter 10 Modeling primary visual processes in insect photoreceptors. HANDBOOK OF BIOLOGICAL PHYSICS 2000. [DOI: 10.1016/s1383-8121(00)80013-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
32
|
Chapter 8 Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates. HANDBOOK OF BIOLOGICAL PHYSICS 2000. [DOI: 10.1016/s1383-8121(00)80011-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|