1
|
Kelley EG, Butler PD, Nagao M. Collective dynamics in lipid membranes containing transmembrane peptides. SOFT MATTER 2021; 17:5671-5681. [PMID: 33942045 PMCID: PMC10466476 DOI: 10.1039/d1sm00314c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological membranes are composed of complex mixtures of lipids and proteins that influence each other's structure and function. The biological activities of many channel-forming peptides and proteins are known to depend on the material properties of the surrounding lipid bilayer. However, less is known about how membrane-spanning channels affect the lipid bilayer properties, and in particular, their collective fluctuation dynamics. Here we use neutron spin echo spectroscopy (NSE) to measure the collective bending and thickness fluctuation dynamics in dimyristoylphosphatidylcholine (di 14 : 0 PC, DMPC) lipid membranes containing two different antimicrobial peptides, alamethicin (Ala) and gramicidin (gD). Ala and gD are both well-studied antimicrobial peptides that form oligomeric membrane-spanning channels with different structures. At low concentrations, the peptides did not have a measurable effect on the average bilayer structure, yet significantly changed the collective membrane dynamics. Despite both peptides forming transmembrane channels, they had opposite effects on the relaxation time of the collective bending fluctuations and associated effective bending modulus, where gD addition stiffened the membrane while Ala addition softened the membrane. Meanwhile, the lowest gD concentrations enhanced the collective thickness fluctuation dynamics, while the higher gD concentrations and all studied Ala concentrations dampened these dynamics. The results highlight the synergy between lipids and proteins in determining the collective membrane dynamics and that not all peptides can be universally treated as rigid bodies when considering their effects on the lipid bilayer fluctuations.
Collapse
Affiliation(s)
- Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| | - Paul D Butler
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA. and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA and Department of Chemistry, The University of Tennessee Knoxville, TN 37996, USA
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA. and Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
2
|
The impact of non-ideality of lipid mixing on peptide induced lipid clustering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183248. [PMID: 32145281 DOI: 10.1016/j.bbamem.2020.183248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/23/2022]
Abstract
The influence of several antimicrobial trivalent cyclic hexapeptides on the mixing behavior of bilayer lipid membranes containing phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) with varying composition was studied using DSC and ITC. The peptides contained three arginines and three aromatic amino acids and had different sequences. All of them induce clustering of PG-rich clusters with bound peptides after binding. In a previous publication we could show that a correlation between clustering efficacy and the antimicrobial activity of the peptides exists (S. Finger et al., Biochim. Biophys. Acta 1848 (2015) 2998-3006). In the current study we investigated whether the non-ideality of the lipid mixture had any effect on the clustering efficacy and the critical peptide/lipid clustering ratio. We could show that for PG/PE membranes containing 1:1 M ratios and lipids with equal or unequal chain lengths, the amount of clustered PG depended only slightly on the absolute chain length and on the chain length difference between PG and PE. Much larger differences were observed when the PG/ PE mixing ratio was changed. In mixtures of DPPG/DPPE with high PG content, the amount of clustered PG per added peptide was much higher than in PE-rich mixtures. The ITC experiments showed that the critical peptide/lipid ratio for cluster formation is also strongly dependent on the PG/PE ratio in the mixture. In the PG/PE 3:1 mixture, the formation of clusters with bound peptide is much more likely than for mixtures with less PG. For 1:1 and 1:3 lipid mixtures, the critical peptide/lipid ratio for demixing is between 0.002 and 0.004. Therefore, even in these mixtures clustering occurs way below charge saturation of the PG in the mixture and the PG-rich clusters are not charge compensated either. The peptide concentration necessary for inducing clustering amounts to ~8 μM, a value well within the range of minimal inhibitory concentration values observed for the cyclic peptides studied here. Our results show that not only the structure of the cyclic peptide influences the clustering efficacy but also the mixing behavior of the lipids in the bilayers has an influence on the amount of clustering induced by binding of cyclic peptides.
Collapse
|
3
|
Park S, Yeom MS, Andersen OS, Pastor RW, Im W. Quantitative Characterization of Protein-Lipid Interactions by Free Energy Simulation between Binary Bilayers. J Chem Theory Comput 2019; 15:6491-6503. [PMID: 31560853 PMCID: PMC7076909 DOI: 10.1021/acs.jctc.9b00815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a recently developed binary bilayer system (BBS) consisting of two patches of laterally contacting bilayers, umbrella sampling molecular dynamics (MD) simulations were performed for quantitative characterization of protein-lipid interactions. The BBS is composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with an embedded model membrane protein, a gramicidin A (gA) channel. The calculated free energy difference for the transfer of a gA channel from DLPC (hydrophobic thickness ≈ 21.5 Å) to DMPC (hydrophobic thickness ≈ 25.5 Å) bilayers, ΔG(DLPC → DMPC), is -2.2 ± 0.7 kcal/mol. This value appears at odds with the traditional view that the hydrophobic length of the gA channel is ∼22 Å. To understand this discrepancy, we first note that recent MD simulations by different groups have shown that lipid bilayer thickness profiles in the vicinity of a gA channel differ qualitatively from the deformation profile predicted from continuum elastic bilayer models. Our MD simulations at low and high gA:lipid molar ratios and different membrane compositions indicate that the gA channel's effective hydrophobic length is ∼26 Å. Using this effective hydrophobic length, ΔG(DLPC → DMPC) determined here is in excellent agreement with predictions based on continuum elastic models (-3.0 to -2.2 kcal/mol) where the bilayer deformation energy is approximated as a harmonic function of the mismatch between the channel's effective hydrophobic length and the hydrophobic thickness of the bilayer. The free energy profile for gA in the BBS includes a barrier at the interface between the two bilayers which can be attributed to the line tension at the interface between two bilayers with different hydrophobic thicknesses. This observation implies that translation of a peptide between two different regions of a cell membrane (such as between the liquid ordered and disordered phases) may include effects of a barrier at the interface in addition to the relative free energies of the species far from the interface. The BBS allows for direct transfer free energy calculations between bilayers without a need of a reference medium, such as bulk water, and thus provides an efficient simulation protocol for the quantitative characterization of protein-lipid interactions at all-atom resolution.
Collapse
Affiliation(s)
- Soohyung Park
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Min Sun Yeom
- Korean Institute of Science and Technology Information , Daejeon , Korea
| | - Olaf S Andersen
- Department of Physiology and Biophysics , Weill Cornell Medicine , New York , New York 10065 , United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States.,School of Computational Sciences , Korea Institute for Advanced Study , Seoul 02455 , Republic of Korea
| |
Collapse
|
4
|
Wu HC, Yoshioka T, Nakagawa K, Shintani T, Saeki D, Matsuyama H. Molecular simulation of a modified amphotericin B-Ergosterol artificial water channel to evaluate structure and water molecule transport performance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
6
|
Gomes B, Sanna G, Madeddu S, Hollmann A, Santos NC. Combining 25-Hydroxycholesterol with an HIV Fusion Inhibitor Peptide: Interaction with Biomembrane Model Systems and Human Blood Cells. ACS Infect Dis 2019; 5:582-591. [PMID: 30816690 DOI: 10.1021/acsinfecdis.8b00321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The fusion between the viral and the target cell membrane is a crucial step in the life cycle of enveloped viruses. The blocking of this process is a well-known therapeutic approach that led to the development of the fusion inhibitor peptide enfuvirtide, clinically used against human immunodeficiency virus (HIV) type 1. Despite this significant advance on viral treatment, the appearance of resistance has limited its clinical use. Such a limitation has led to the development of other fusion inhibitor peptides, such as C34, that present the same structural domain as enfuvirtide (heptad repeat sequence) but have different functional domains (pocket-binding domain in the case of C34 and lipid-binding domain in the case of enfuvirtide). Recently, the antiviral properties of 25-hydroxycholesterol were demonstrated, which boosted the interest in this oxysterol. The combination of two distinct antiviral molecules, C34 and 25-hydroxycholesterol, may help to suppress the emergence of resistant viruses. In this work, we characterized the interaction of the C34-25-hydroxycholesterol conjugate with biomembrane model systems and human blood cells. Lipid vesicles and monolayers with defined lipid compositions were used as biomembrane model systems. The conjugate interacts preferentially with membranes rich in sphingomyelin (a lipid enriched in lipid rafts) and presents a poor partition to membranes composed solely of phosphatidylcholine and cholesterol. We hypothesize that cholesterol causes a repulsive effect that is overcome in the presence of sphingomyelin. Importantly, the peptide shows a preference for human peripheral blood mononuclear cells relative to erythrocytes, which shows its potential to target CD4+ cells. Antiviral activity results against different wild-type and drug-resistant HIV strains further demonstrated the potential of C34-HC as a good candidate for future studies.
Collapse
Affiliation(s)
- Bárbara Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Giusepinna Sanna
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliary, Cagliari 09123, Italy
| | - Silvia Madeddu
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliary, Cagliari 09123, Italy
| | - Axel Hollmann
- Laboratory of Bioactive Compounds, CIBAAL−University of Santiago del Estero and CONICET, Santiago del Estero, Argentina
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, University of Quilmes, Bernal B1876BXD, Argentina
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| |
Collapse
|
7
|
Sugár IP, Bonanno AP, Chong PLG. Gramicidin Lateral Distribution in Phospholipid Membranes: Fluorescence Phasor Plots and Statistical Mechanical Model. Int J Mol Sci 2018; 19:E3690. [PMID: 30469389 PMCID: PMC6274966 DOI: 10.3390/ijms19113690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
When using small mole fraction increments to study gramicidins in phospholipid membranes, we found that the phasor dots of intrinsic fluorescence of gramicidin D and gramicidin A in dimyristoyl-sn-glycero-3-phosphocholine (DMPC) unilamellar and multilamellar vesicles exhibit a biphasic change with peptide content at 0.143 gramicidin mole fraction. To understand this phenomenon, we developed a statistical mechanical model of gramicidin/DMPC mixtures. Our model assumes a sludge-like mixture of fluid phase and aggregates of rigid clusters. In the fluid phase, gramicidin monomers are randomly distributed. A rigid cluster is formed by a gramicidin dimer and DMPC molecules that are condensed to the dimer, following particular stoichiometries (critical gramicidin mole fractions, Xcr including 0.143). Rigid clusters form aggregates in which gramicidin dimers are regularly distributed, in some cases, even to superlattices. At Xcr, the size of cluster aggregates and regular distributions reach a local maximum. Before a similar model was developed for cholesterol/DMPC mixtures (Sugar and Chong (2012) J. Am. Chem. Soc. 134, 1164⁻1171) and here the similarities and differences are discussed between these two models.
Collapse
Affiliation(s)
- István P Sugár
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Alexander P Bonanno
- Department of Medical Genetics and Molecular Biochemistry, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - Parkson Lee-Gau Chong
- Department of Medical Genetics and Molecular Biochemistry, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
8
|
Bories F, Constantin D, Galatola P, Fournier JB. Coupling between Inclusions and Membranes at the Nanoscale. PHYSICAL REVIEW LETTERS 2018; 120:128104. [PMID: 29694104 DOI: 10.1103/physrevlett.120.128104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 06/08/2023]
Abstract
The activity of cell membrane inclusions (such as ion channels) is influenced by the host lipid membrane, to which they are elastically coupled. This coupling concerns the hydrophobic thickness of the bilayer (imposed by the length of the channel, as per the hydrophobic matching principle) but also its slope at the boundary of the inclusion. However, this parameter has never been measured so far. We combine small-angle x-ray scattering data and a complete elastic model to measure the slope for the model gramicidin channel and show that it is surprisingly steep in two membrane systems with very different elastic properties. This conclusion is confirmed and generalized by the comparison with recent results in the simulation literature and with conductivity measurements.
Collapse
Affiliation(s)
- Florent Bories
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Doru Constantin
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Paolo Galatola
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Jean-Baptiste Fournier
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
9
|
Moss FR, Boxer SG. Atomic Recombination in Dynamic Secondary Ion Mass Spectrometry Probes Distance in Lipid Assemblies: A Nanometer Chemical Ruler. J Am Chem Soc 2016; 138:16737-16744. [PMID: 27977192 DOI: 10.1021/jacs.6b10655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The lateral organization of biological membranes is thought to take place on the nanometer length scale. However, this length scale and the dynamic nature of small lipid and protein domains have made characterization of such organization in biological membranes and model systems difficult. Here we introduce a new method for measuring the colocalization of lipids in monolayers and bilayers using stable isotope labeling. We take advantage of a process that occurs in dynamic SIMS called atomic recombination, in which atoms on different molecules combine to form diatomic ions that are detected with a NanoSIMS instrument. This process is highly sensitive to the distance between molecules. By measuring the efficiency of the formation of 13C15N- ions from 13C and 15N atoms on different lipid molecules, we measure variations in the lateral organization of bilayers even though these heterogeneities occur on a length scale of only a few nm, well below the diameter of the primary ion beam of the NanoSIMS instrument or even the best super-resolution fluorescence methods. Using this technique, we provide direct evidence for nanoscale phase separation in a model membrane, which may provide a better model for the organization of biological membranes than lipid mixtures with microscale phase separation. We expect this technique to be broadly applicable to any assembly where very short scale proximity is of interest or unknown, both in chemical and biological systems.
Collapse
Affiliation(s)
- Frank R Moss
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
10
|
Garcia-Fandiño R, Piñeiro Á, Trick JL, Sansom MSP. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study. ACS NANO 2016; 10:3693-3701. [PMID: 26943498 DOI: 10.1021/acsnano.6b00202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A macromolecular nanopore inserted into a membrane may perturb the dynamic organization of the surrounding lipid bilayer. To better understand the nature of such perturbations, we have undertaken a systematic molecular dynamics simulation study of lipid bilayer structure and dynamics around three different classes of nanopore: a carbon nanotube, three related cyclic peptide nanotubes differing in the nature of their external surfaces, and a model of a β-barrel nanopore protein. Periodic spatial distributions of several lipid properties as a function of distance from the nanopore were observed. This was especially clear for the carbon nanotube system, for which the density of lipids, the bilayer thickness, the projection of lipid head-to-tail vectors onto the membrane plane, and lipid lateral diffusion coefficients exhibited undulatory behavior as a function of the distance from the surface of the channel. Overall, the differences in lipid behavior as a function of the nanopore structure reveal local adaptation of the bilayer structure and dynamics to different embedded nanopore structures. Both the local structure and dynamic behavior of lipids around membrane-embedded nanopores are sensitive to the geometry and nature of the outer surface of the macromolecule/molecular assembly forming the pore.
Collapse
Affiliation(s)
- Rebeca Garcia-Fandiño
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela , 15782 Santiago de Compostela, Spain
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ángel Piñeiro
- Soft Matter & Molecular Biophysics Group, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - Jemma L Trick
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
11
|
Harris BJ, Cheng X, Frymier P. Structure and Function of Photosystem I–[FeFe] Hydrogenase Protein Fusions: An All-Atom Molecular Dynamics Study. J Phys Chem B 2016; 120:599-609. [DOI: 10.1021/acs.jpcb.5b07812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bradley J. Harris
- College
of Engineering and Computer Science, University of Tennessee, Chattanooga, Tennessee 37403, United States
| | - Xiaolin Cheng
- Center for
Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | |
Collapse
|
12
|
Wei C, Pohorille A. Flip-flop of oleic acid in a phospholipid membrane: rate and mechanism. J Phys Chem B 2014; 118:12919-26. [PMID: 25319959 DOI: 10.1021/jp508163e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flip-flop of protonated oleic acid molecules dissolved at two different concentrations in membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine is studied with the aid of molecular dynamics simulations at a time scale of several microseconds. Direct, single-molecule flip-flop events are observed at this time scale, and the flip-flop rate is estimated at 0.2-0.3 μs(-1). As oleic acid molecules move toward the center of the bilayer during flip-flop, they undergo gradual, correlated translational, and rotational motion. Rare, double-flipping events of two hydrogen-bonded oleic acid molecules are also observed. A two-dimensional free energy surface is obtained for the translational and rotational degree of freedom of the oleic acid molecule, and the minimum energy path on this surface is determined. A barrier to flip-flop of ~4.2 kcal/mol is found at the center of the bilayer. A two-dimensional diffusion model is found to provide a good description of the flip-flop process. The fast flip-flop rate lends support to the proposal that fatty acids permeate membranes without assistance of transport proteins. It also suggests that desorption rather than flip-flop is the rate-limiting step in fatty acid transport through membranes. The relation of flip-flop rates to the evolution of ancestral cellular systems is discussed.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center , Mail Stop 229-1, Moffett Field, California 94035, United States
| | | |
Collapse
|
13
|
Harris BJ, Cheng X, Frymier P. All-atom molecular dynamics simulation of a photosystem i/detergent complex. J Phys Chem B 2014; 118:11633-45. [PMID: 25233289 DOI: 10.1021/jp507157e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All-atom molecular dynamics (MD) simulation was used to investigate the solution structure and dynamics of the photosynthetic pigment-protein complex photosystem I (PSI) from Thermosynechococcus elongatus embedded in a toroidal belt of n-dodecyl-β-d-maltoside (DDM) detergent. Evaluation of root-mean-square deviations (RMSDs) relative to the known crystal structure show that the protein complex surrounded by DDM molecules is stable during the 200 ns simulation time, and root-mean-square fluctuation (RMSF) analysis indicates that regions of high local mobility correspond to solvent-exposed regions such as turns in the transmembrane α-helices and flexible loops on the stromal and lumenal faces. Comparing the protein-detergent complex to a pure detergent micelle, the detergent surrounding the PSI trimer is found to be less densely packed but with more ordered detergent tails, contrary to what is seen in most lipid bilayer models. We also investigated any functional implications for the observed conformational dynamics and protein-detergent interactions, discovering interesting structural changes in the psaL subunits associated with maintaining the trimeric structure of the protein. Importantly, we find that the docking of soluble electron mediators such as cytochrome c6 and ferredoxin to PSI is not significantly impacted by the solubilization of PSI in detergent.
Collapse
Affiliation(s)
- Bradley J Harris
- Department of Chemical and Biomolecular Engineering, ‡Department of Biochemistry and Cellular and Molecular Biology, §Sustainable Energy Education and Research Center, and ∥Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | |
Collapse
|
14
|
|
15
|
Abstract
In this study, we develop graphitic carbon-water nonbonded interaction parameters entirely from ab initio calculation data of interaction energies between graphene and a single water molecule. First, we employ the Møller-Plesset perturbation theory of the second order (MP2) method to compute the polycyclic aromatic hydrocarbon (PAH)-water interaction energies, with proper size of basis sets and energy component analysis to extrapolate to infinite-sized graphene limit. Then, we develop graphitic carbon-water interaction parameters based on the MP2 data from this work and the ab initio data available in the literature from other methods such as random-phase approximation (RPA), density functional theory-symmetry-adapted perturbation theory (DFT-SAPT), and coupled cluster treatment with single and double excitations and perturbative triples (CCSD(T)). The accuracy of the interaction parameters is evaluated by predicting water contact angle on graphite and carbon nanotube (CNT) radial breathing mode (RBM) frequency shift and comparing them with experimental data. The interaction parameters obtained from MP2 data predict the CNT RBM frequency shift that is in good agreement with experiments. The interaction parameters obtained from RPA and DFT-SAPT data predict the contact angles and the CNT RBM frequency shift that agree well with experiments. The interaction parameters obtained from CCSD(T) data underestimate the contact angles and overestimate the CNT RBM frequency shift probably due to the use of small basis sets in CCSD(T) calculations.
Collapse
Affiliation(s)
- Yanbin Wu
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
16
|
Molecular dynamics of water in the neighborhood of aquaporins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:223-39. [DOI: 10.1007/s00249-012-0880-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 12/19/2022]
|
17
|
Kim T, Lee KI, Morris P, Pastor RW, Andersen OS, Im W. Influence of hydrophobic mismatch on structures and dynamics of gramicidin a and lipid bilayers. Biophys J 2012; 102:1551-60. [PMID: 22500755 DOI: 10.1016/j.bpj.2012.03.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
Gramicidin A (gA) is a 15-amino-acid antibiotic peptide with an alternating L-D sequence, which forms (dimeric) bilayer-spanning, monovalent cation channels in biological membranes and synthetic bilayers. We performed molecular dynamics simulations of gA dimers and monomers in all-atom, explicit dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. The variation in acyl chain length among these different phospholipids provides a way to alter gA-bilayer interactions by varying the bilayer hydrophobic thickness, and to determine the influence of hydrophobic mismatch on the structure and dynamics of both gA channels (and monomeric subunits) and the host bilayers. The simulations show that the channel structure varied little with changes in hydrophobic mismatch, and that the lipid bilayer adapts to the bilayer-spanning channel to minimize the exposure of hydrophobic residues. The bilayer thickness, however, did not vary monotonically as a function of radial distance from the channel. In all simulations, there was an initial decrease in thickness within 4-5 Å from the channel, which was followed by an increase in DOPC and POPC or a further decrease in DLPC and DMPC bilayers. The bilayer thickness varied little in the monomer simulations-except one of three independent simulations for DMPC and all three DLPC simulations, where the bilayer thinned to allow a single subunit to form a bilayer-spanning water-permeable pore. The radial dependence of local lipid area and bilayer compressibility is also nonmonotonic in the first shell around gA dimers due to gA-phospholipid interactions and the hydrophobic mismatch. Order parameters, acyl chain dynamics, and diffusion constants also differ between the lipids in the first shell and the bulk. The lipid behaviors in the first shell around gA dimers are more complex than predicted from a simple mismatch model, which has implications for understanding the energetics of membrane protein-lipid interactions.
Collapse
Affiliation(s)
- Taehoon Kim
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
AbstractInterfacial tension is an important characteristic of a biological membrane because it determines its rigidity, thus affecting its stability. It is affected by factors such as medium pH and by the presence of certain substances, for example cholesterol, other lipids, fatty acids, amines, amino acids, or proteins, incorporated in the lipid bilayer. Here, the effects of various parameters to on interfacial tension values of bilayer lipid membranes are discussed.The mathematically derived and experimentally confirmed results presented in this paper are of importance to the interpretation of phenomena occurring in lipid bilayers. These results can lead to a better understanding of the physical properties of biological membranes. The simple interfacial tension method proposed herein may be successfully used to determine the interfacial tension values of 1:1 lipid-lipid, lipid-cholesterol, lipid-fatty acid, lipid-amine, and lipid-amino acid systems.
Collapse
|
19
|
Nanoscale structural and mechanical effects of beta-amyloid (1–42) on polymer cushioned membranes: A combined study by neutron reflectometry and AFM Force Spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2646-55. [DOI: 10.1016/j.bbamem.2011.07.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 07/06/2011] [Accepted: 07/19/2011] [Indexed: 11/20/2022]
|
20
|
Wilson MA, Wei C, Bjelkmar P, Wallace BA, Pohorille A. Molecular dynamics simulation of the antiamoebin ion channel: linking structure and conductance. Biophys J 2011; 100:2394-402. [PMID: 21575573 DOI: 10.1016/j.bpj.2011.03.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/19/2022] Open
Abstract
Molecular-dynamics simulations were carried out to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistent with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive. The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be nonconducting. The conductance of the hexamer was estimated to be 115 ± 34 pS and 74 ± 20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis, we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K⁺ and Cl⁻ with their first solvation shells intact. The free energy barrier encountered by K⁺ is only 2.2 kcal/mol whereas Cl⁻ encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics.
Collapse
Affiliation(s)
- Michael A Wilson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
21
|
Schneggenburger PE, Beerlink A, Weinhausen B, Salditt T, Diederichsen U. Peptide model helices in lipid membranes: insertion, positioning, and lipid response on aggregation studied by X-ray scattering. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:417-36. [PMID: 21181143 PMCID: PMC3070074 DOI: 10.1007/s00249-010-0645-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 11/18/2022]
Abstract
Studying membrane active peptides or protein fragments within the lipid bilayer environment is particularly challenging in the case of synthetically modified, labeled, artificial, or recently discovered native structures. For such samples the localization and orientation of the molecular species or probe within the lipid bilayer environment is the focus of research prior to an evaluation of their dynamic or mechanistic behavior. X-ray scattering is a powerful method to study peptide/lipid interactions in the fluid, fully hydrated state of a lipid bilayer. For one, the lipid response can be revealed by observing membrane thickening and thinning as well as packing in the membrane plane; at the same time, the distinct positions of peptide moieties within lipid membranes can be elucidated at resolutions of up to several angstroms by applying heavy-atom labeling techniques. In this study, we describe a generally applicable X-ray scattering approach that provides robust and quantitative information about peptide insertion and localization as well as peptide/lipid interaction within highly oriented, hydrated multilamellar membrane stacks. To this end, we have studied an artificial, designed β-helical peptide motif in its homodimeric and hairpin variants adopting different states of oligomerization. These peptide lipid complexes were analyzed by grazing incidence diffraction (GID) to monitor changes in the lateral lipid packing and ordering. In addition, we have applied anomalous reflectivity using synchrotron radiation as well as in-house X-ray reflectivity in combination with iodine-labeling in order to determine the electron density distribution ρ(z) along the membrane normal (z axis), and thereby reveal the hydrophobic mismatch situation as well as the position of certain amino acid side chains within the lipid bilayer. In the case of multiple labeling, the latter technique is not only applicable to demonstrate the peptide's reconstitution but also to generate evidence about the relative peptide orientation with respect to the lipid bilayer.
Collapse
Affiliation(s)
- Philipp E. Schneggenburger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - André Beerlink
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Britta Weinhausen
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| |
Collapse
|
22
|
The gramicidin channel ion permeation free-energy profile: direct and indirect effects of CHARMM force field improvements. Interdiscip Sci 2010; 1:113-27. [PMID: 20084184 DOI: 10.1007/s12539-009-0025-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A revised CHARMM force field for tryptophan residues is studied as well as a new grid-based correction algorithm, called CMAP, using molecular dynamics simulations of gramicidin A (1JNO) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl or KCl saline solution. The conformational stability of the interfacial side chains is studied, which shows good stability on the 10 ns time scale. The revised force field for the tryptophan side chain produces, in the decomposition, a Na(+) PMF(Trp) profile that is consonant with the prediction from the experimental results, analyzed with rate theory by Durrant et al. (2006), but in stark contrast to the prediction of the original CHARMM force field, version 22. However, the effect is diluted in the PMF profile due to indirect effects mediated by other components of the system (polypeptide, lipid molecules, ions, and water molecules). CMAP corrections to the L-amino acids help reduce the excessive translocation barrier. Decomposition demonstrates that this effect is due to effects on the K(+) PMF(H(2)O) profile rather than on the K(+) PMF(gA) profile. The results have been confirmed to be robust using an alternative umbrella-potential method. Further force field balancing efforts (direct and indirect) are required for future studies to evaluate whether these effects give rise to predictions that are consistent with those observables extracted from real experiments.
Collapse
|
23
|
Mustafa M, Henderson DJ, Busath DD. Free-energy profiles for ions in the influenza M2-TMD channel. Proteins 2009; 76:794-807. [PMID: 19296508 DOI: 10.1002/prot.22376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
M(2) transmembrane domain channel (M(2)-TMD) permeation properties are studied using molecular dynamics simulations of M(2)-TMD (1NYJ) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl or KCl saline solution. This study allows examination of spontaneous cation and anion entry into the selectivity filter. Three titration states of the M(2)-TMD tetramer are modeled for which the four His(37) residues, forming the selectivity filter, are net uncharged, +2 charged, or +3 charged. M(2)-TMD structural properties from our simulations are compared with the properties of other models extracted from NMR and X-ray studies. During 10 ns simulations, chloride ions occasionally occupy the positively-charged selectivity filter region, and from umbrella sampling simulations, Cl(-) has a lower free-energy barrier in the selectivity-filter region than either Na(+) or NH(4) (+), and NH(4) (+) has a lower free-energy barrier than Na(+). For Na(+) and Cl(-), the free-energy barriers are less than 5 kcal/mol, suggesting that the 1NYJ conformation would probably not be exquisitely proton selective. We also point out a rotameric configuration of Trp(41) that could fully occlude the channel.
Collapse
Affiliation(s)
- Morad Mustafa
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | | | | |
Collapse
|
24
|
Sek S, Laredo T, Dutcher JR, Lipkowski J. Molecular resolution imaging of an antibiotic peptide in a lipid matrix. J Am Chem Soc 2009; 131:6439-44. [PMID: 19368392 DOI: 10.1021/ja808180m] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we show molecular resolution scanning tunneling microscopy (STM) images of gramicidin, a model antibacterial peptide, inserted into a phospholipid matrix. The resolution of the images is superior to that obtained in previous attempts to image gramicidin in a lipid environment using atomic force microscopy (AFM). This breakthrough has allowed visualization of individual peptide molecules surrounded by lipid molecules. We have observed several important features: the peptide molecules do not aggregate, the peptide molecules adopt a single conformation corresponding to a specific ion channel form, and the lipid molecules adjacent to the peptide molecules are systematically longer than those in the lipid matrix. These results constitute a new approach to obtain structural characteristics of antibiotic peptides in lipid assemblies that is necessary for the understanding of their biological activity.
Collapse
Affiliation(s)
- Slawomir Sek
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
26
|
Mustafa M, Henderson DJ, Busath DD. Computational studies of gramicidin permeation: an entry way sulfonate enhances cation occupancy at entry sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1404-12. [PMID: 19361485 DOI: 10.1016/j.bbamem.2009.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/15/2009] [Accepted: 03/29/2009] [Indexed: 11/15/2022]
Abstract
The impact on the cation-transport free-energy profile of replacing the C-terminal ethanolamine in the gramicidin A channel with a taurine residue is studied using molecular dynamics simulations of gramicidin A (1JNO) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl saline solution. The potential of mean force for ion transport is obtained by umbrella sampling. The presence of a negatively charged sulfonate group at the entrance of the gramicidin channel affects the depth and the location of the binding sites, producing a strong attraction for the cations in the bulk. The potential of mean force by the sulfonate acting directly through electrostatics and van der Waals interactions on the test ion is highly modulated by indirect effects (i.e., sulfonate effects on other components of the system that, in turn, affect the ion free-energy profile in the channel). Because the "entry" sites are located symmetrically at both entry and exit of the channel, the deeper free-energy wells should inhibit exit. Given that the channel has increased conductance experimentally, the simulation results suggest that the channel conductance is normally entry limited.
Collapse
Affiliation(s)
- Morad Mustafa
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA.
| | | | | |
Collapse
|
27
|
Mashl RJ, Jakobsson E. End-point targeted molecular dynamics: large-scale conformational changes in potassium channels. Biophys J 2008; 94:4307-19. [PMID: 18310251 PMCID: PMC2480670 DOI: 10.1529/biophysj.107.118778] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 01/17/2008] [Indexed: 11/18/2022] Open
Abstract
Large-scale conformational changes in proteins that happen often on biological time scales may be relatively rare events on the molecular dynamics time scale. We have implemented an approach to targeted molecular dynamics called end-point targeted molecular dynamics that transforms proteins between two specified conformational states through the use of nonharmonic "soft" restraints. A key feature of the method is that the protein is free to discover its own conformational pathway through the plethora of possible intermediate states. The method is applied to the Shaker K(v)1.2 potassium channel in implicit solvent. The rate of cycling between the open and closed states was varied to explore how slow the cycling rate needed to be to ensure that microscopic reversibility along the transition pathways was well approximated. Results specific to the K(+) channel include: 1), a variation in backbone torsion angles of residues near the Pro-Val-Pro motif in the inner helix during both opening and closing; 2), the identification of possible occlusion sites in the closed channel located among Pro-Val-Pro residues and downstream; 3), a difference in the opening and closing pathways of the channel; and 4), evidence of a transient intermediate structural substate. The results also show that likely intermediate conformations during the opening-closing process can be generated in computationally tractable simulation times.
Collapse
Affiliation(s)
- R J Mashl
- National Center for Supercomputing Applications, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | |
Collapse
|
28
|
Parisi M, Dorr RA, Ozu M, Toriano R. From membrane pores to aquaporins: 50 years measuring water fluxes. J Biol Phys 2008; 33:331-43. [PMID: 19669522 DOI: 10.1007/s10867-008-9064-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 03/13/2008] [Indexed: 12/01/2022] Open
Abstract
This review focuses on studies of water movement across biological membranes performed over the last 50 years. Different scientific approaches had tried to elucidate such intriguing mechanism, from hypotheses emphasizing the role of the lipid bilayer to the cloning of aquaporins, the ubiquitous proteins described as specific water channels. Pioneering and clarifying biophysical work are reviewed beside results obtained with the help of recent sophisticated techniques, to conclude that great advances in the subject live together with old questions without definitive answers.
Collapse
Affiliation(s)
- Mario Parisi
- Unidad de Biomembranas, Universidad Favaloro, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
29
|
Huang HW. Peptide-Lipid Interactions and Mechanisms of Antimicrobial Peptides. NOVARTIS FOUNDATION SYMPOSIUM 225 - GRAMICIDIN AND RELATED ION CHANNEL-FORMING PEPTIDES 2007. [DOI: 10.1002/9780470515716.ch12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Kelkar DA, Chattopadhyay A. The gramicidin ion channel: A model membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2011-25. [PMID: 17572379 DOI: 10.1016/j.bbamem.2007.05.011] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 02/07/2023]
Abstract
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid-protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media.
Collapse
Affiliation(s)
- Devaki A Kelkar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
31
|
Qin Z, Tepper HL, Voth GA. Effect of Membrane Environment on Proton Permeation through Gramicidin A Channels. J Phys Chem B 2007; 111:9931-9. [PMID: 17672487 DOI: 10.1021/jp0708998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multistate empirical valence bond simulations were employed to study proton transport through gramicidin A channels embedded in two different lipid bilayers, glycerol 1-monooleate (GMO) and diphytanolphosphatidylcholine (DiPhPC). Free energy barriers to proton permeation were derived using a new internal reaction coordinate describing the proton permeation process. The large quantitative and qualitative differences between the two systems are discussed in terms of local bilayer structures, ordering of interfacial water, and channel flexibility in the two environments.
Collapse
Affiliation(s)
- Zhen Qin
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
32
|
Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN. Infectious Disease: Connecting Innate Immunity to Biocidal Polymers. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2007; 57:28-64. [PMID: 18160969 PMCID: PMC2153456 DOI: 10.1016/j.mser.2007.03.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Infectious disease is a critically important global healthcare issue. In the U.S. alone there are 2 million new cases of hospital-acquired infections annually leading to 90,000 deaths and 5 billion dollars of added healthcare costs. Couple these numbers with the appearance of new antibiotic resistant bacterial strains and the increasing occurrences of community-type outbreaks, and clearly this is an important problem. Our review attempts to bridge the research areas of natural host defense peptides (HDPs), a component of the innate immune system, and biocidal cationic polymers. Recently discovered peptidomimetics and other synthetic mimics of HDPs, that can be short oligomers as well as polymeric macromolecules, provide a unique link between these two areas. An emerging class of these mimics are the facially amphiphilic polymers that aim to emulate the physicochemical properties of HDPs but take advantage of the synthetic ease of polymers. These mimics have been designed with antimicrobial activity and, importantly, selectivity that rivals natural HDPs. In addition to providing some perspective on HDPs, selective mimics, and biocidal polymers, focus is given to the arsenal of biophysical techniques available to study their mode of action and interactions with phospholipid membranes. The issue of lipid type is highlighted and the important role of negative curvature lipids is illustrated. Finally, materials applications (for instance, in the development of permanently antibacterial surfaces) are discussed as this is an important part of controlling the spread of infectious disease.
Collapse
Affiliation(s)
- Gregory J Gabriel
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003
| | | | | | | | | |
Collapse
|
33
|
Siu SWI, Böckmann RA. Electric field effects on membranes: Gramicidin A as a test ground. J Struct Biol 2007; 157:545-56. [PMID: 17116406 DOI: 10.1016/j.jsb.2006.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/25/2006] [Accepted: 10/03/2006] [Indexed: 11/19/2022]
Abstract
Electric fields due to transmembrane potential differences or ionic gradients across the membrane are presumably crucial for many reactions across membranes or close to membranes like signal transduction, control of ion channels or the generation of neural impulses. Molecular dynamics simulations have been used to study the influence of external electric fields on a mixed gramicidin/phospholipid bilayer system. At high field strengths, formation of membrane electropores occurred both close and distal to the gramicidin. Gramicidin was found to stabilize the membrane adjacent to the protein but also at larger distances of up to 2-3 nm. As a result, membrane pore formation was found to be significantly suppressed for the mixed gramicidin/DMPC system. Moderate field strengths only weakly affected the structure and dynamics of the gramicidin. Spontaneous potassium passage events in external electric fields were observed for both the head-to-head helical conformation as well as for the double helical conformation of gramicidin A. The double-helical conformation was found to facilitate ion passage compared to the head-to-head helical dimer.
Collapse
Affiliation(s)
- Shirley W I Siu
- Saarland University, Center for Bioinformatics Saar, Theoretical and Computational Membrane Biology, P.O. Box 15 11 50, 66041 Saarbrücken, Germany
| | | |
Collapse
|
34
|
Weis M, Vanco M, Vitovic P, Hianik T, Cirák J. Study of gramicidin A--phospholipid interactions in Langmuir monolayers: analysis of their mechanical, thermodynamical, and electrical properties. J Phys Chem B 2007; 110:26272-8. [PMID: 17181285 DOI: 10.1021/jp064555d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms of interactions between gramicidin A (gA) and dimyristoylphosphatidylcholine (DMPC) in monolayers formed at the air-water interface were studied by analyzing their mechanical, thermodynamical, and electrical properties evaluated from measurements of pressure-area isotherms and of Maxwell displacement currents (MDC). A contactless method of recording MDC enabled us to monitor changes in the charge state of the monolayer-constituting molecules and to find the relation between a phase state of the monolayer and structural transitions of gA. The peptide-lipid interactions were quantified in terms of the excess of Gibbs free energy, excess entropy, as well as the molecular dipole moments at various gA/DMPC molar ratios, at various temperatures (in the gel phase and also in the liquid-crystalline phase of DMPC molecule), and at various surface pressures. It was found that the strongest interactions between gA and DMPC took place at the gA/DMPC molar ratio at around 0.25. At this monolayer composition, the phospholipids, via their carbonyl moieties, dominantly interact with the single helical gA, which mostly stands upright on the surface and is anchored by its C-terminus to the water surface, and prevent the formation of the intertwined helical gA dimers. The optimum ratio was confirmed also by anomalous electrical behavior of electrical dipole moments derived from MDC measurements.
Collapse
Affiliation(s)
- Martin Weis
- Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19 Bratislava, Slovak Republic. Martin.Weis@ stuba.sk
| | | | | | | | | |
Collapse
|
35
|
Weidemann T, Höfinger S, Müller K, Auer M. Beyond dimerization: a membrane-dependent activation model for interleukin-4 receptor-mediated signalling. J Mol Biol 2006; 366:1365-73. [PMID: 17223132 DOI: 10.1016/j.jmb.2006.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Class I cytokine receptors efficiently transfer activation signals from the extracellular space to the cytoplasm and play a dominant role in growth control and differentiation of human tissues. Although a significant body of literature is devoted to this topic, a consistent mechanistic picture for receptor activation in the membrane environment is still missing. Using the interleukin-4 receptor (IL-4R) as an example, we propose that the membrane-proximal stem-loop of the extracellular domains contains pivotal elements of a rotational switch. Interfacial energies of amino acid side-chains contained in the highly conserved WSXWS at the surface of the lipid bilayer suggest a new functional role for this motif. A generic activation mechanism for this receptor class is presented, which may impact the design of a new generation of biophysical assay systems.
Collapse
Affiliation(s)
- Thomas Weidemann
- Innovative Screening Technologies, Novartis Institutes for BioMedical Research, Brunnerstr 59, A-1235 Vienna, Austria.
| | | | | | | |
Collapse
|
36
|
Aller P, Garnier N, Genest M. Transmembrane Helix Packing of ErbB/Neu Receptor in Membrane Environment: A Molecular Dynamics Study. J Biomol Struct Dyn 2006; 24:209-28. [PMID: 17054379 DOI: 10.1080/07391102.2006.10507114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dimerization or oligomerization of the ErbB/Neu receptors are necessary but not sufficient for initiation of receptor signaling. The two intracellular domains must be properly oriented for the juxtaposition of the kinase domains allowing trans-phosphorylation. This suggests that the transmembrane (TM) domain acts as a guide for defining the proper orientation of the intracellular domains. Two structural models, with the two helices either in left-handed or in right-handed coiling have been proposed as the TM domain structure of the active receptor. Because experimental data do not distinguish clearly helix-helix packing, molecular dynamics (MD) simulations are used to investigate the energetic factors that drive Neu TM-TM interactions of the wild and the oncogenic receptor (Val664/Glu mutation) in DMPC or in POPC environments. MD results indicate that helix-lipid interactions in the bilayer core are extremely similar in the two environments and raise the role of the juxtamembrane residues in helix insertion and helix-helix packing. The TM domain shows a greater propensity to adopt a left-handed structure in DMPC, with helices in optimal position for strong inter-helical Hbonds induced by the Glu mutation. In POPC, the right-handed structure is preferentially formed with the participation of water in inter-helical Hbonds. The two structural arrangements of the Neu(TM) helices both with GG4 residue motif in close contact at the interface are permissible in the membrane environment. According to the hypothesis of a monomer-dimer equilibrium of the proteins it is likely that the bilayer imposes structural constraints that favor dimerization-competent structure responsible of the proper topology necessary for receptor activation.
Collapse
Affiliation(s)
- Pierre Aller
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Affiliated to the University of Orléans and to INSERM, rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | |
Collapse
|
37
|
Zhang A, Xu LX, Sandison GA, Cheng S. Morphological study of endothelial cells during freezing. Phys Med Biol 2006; 51:6047-60. [PMID: 17110769 DOI: 10.1088/0031-9155/51/23/007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microvascular injury is recognized as a major tissue damage mechanism of ablative cryosurgery. Endothelial cells lining the vessel wall are thought to be the initial target of freezing. However, details of this injury mechanism are not yet completely understood. In this study, ECMatrix 625 was used to mimic the tumour environment and to allow the endothelial cells cultured in vitro to form the tube-like structure of the vasculature. The influence of water dehydration on the integrity of this structure was investigated. It was found that the initial cell shape change was mainly controlled by water dehydration, dependent on the cooling rate, resulting in the shrinkage of cells in the direction normal to the free surface. As the cooling was prolonged and temperature was lowered, further cell shape change could be induced by the chilling effects on intracellular proteins, and focal adhesions to the basement membrane. Quantitative analysis showed that the freezing induced dehydration greatly enhanced the cell surface stresses, especially in the axial direction. This could be one of the major causes of the final breaking of the cell junction and cell detachment.
Collapse
Affiliation(s)
- A Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 200240, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Lei S, Tero R, Misawa N, Yamamura S, Wan L, Urisu T. AFM characterization of gramicidin-A in tethered lipid membrane on silicon surface. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.07.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Vitovic P, Weis M, Tomcík P, Cirák J, Hianik T. Maxwell displacement current allows to study structural changes of gramicidin A in monolayers at the air-water interface. Bioelectrochemistry 2006; 70:469-80. [PMID: 16938494 DOI: 10.1016/j.bioelechem.2006.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/29/2006] [Accepted: 07/15/2006] [Indexed: 11/22/2022]
Abstract
We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.
Collapse
Affiliation(s)
- Pavol Vitovic
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Computer Sciences, Comenius University, 842 48 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
40
|
Caracciolo G, Pozzi D, Amenitsch H, Caminiti R. One-dimensional thermotropic dilatation area of lipid headgroups within lamellar lipid/DNA complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:4267-73. [PMID: 16618174 DOI: 10.1021/la0534423] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using simultaneous synchrotron small- and wide-angle X-ray diffraction (SWAXD), we investigated the thermotropic behavior of a cationic lipid mixture of DOTAP-DOPC (1,2-dioleoyl-3-trimethylammonium-propane-dioleoylphosphatidylcholine) liposomes complexed with calf thymus DNA. The DOTAP-DOPC/DNA complex reacts to temperature change by a bilayer compression normal to its surface and an expansion of the DNA in the plane of the rod lattice. By applying two independent recently developed models, we show here for the first time that the thermotropic dilatation area of lipid headgroups within the complexes is not isotropic but occurs parallel to the 1D DNA lattice (i.e., along the direction perpendicular to the DNA axis). Our results shed light on the role of spatial dimensionality in the DNA packing density within lamellar lipoplexes and provide experimental evidence that the interaction between DNA molecules confined between lipid bilayers can be regarded as a 1D problem.
Collapse
Affiliation(s)
- Giulio Caracciolo
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy.
| | | | | | | |
Collapse
|
41
|
Sperotto MM, May S, Baumgaertner A. Modelling of proteins in membranes. Chem Phys Lipids 2006; 141:2-29. [PMID: 16620797 DOI: 10.1016/j.chemphyslip.2006.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/20/2006] [Indexed: 11/17/2022]
Abstract
This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly affected by the lipid environment. Theoretical predictions are pointed out, and compared to experimental findings, if available. Among others, the following phenomena are discussed: interactions of interfacially adsorbed peptides, pore-forming amphipathic peptides, adsorption of charged proteins onto oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins.
Collapse
|
42
|
Petersen FNR, Jensen MØ, Nielsen CH. Interfacial tryptophan residues: a role for the cation-pi effect? Biophys J 2005; 89:3985-96. [PMID: 16150973 PMCID: PMC1366964 DOI: 10.1529/biophysj.105.061804] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 08/11/2005] [Indexed: 11/18/2022] Open
Abstract
Integral membrane proteins are characterized by having a preference for aromatic residues, e.g., tryptophan (W), at the interface between the lipid bilayer core and the aqueous phase. The reason for this is not clear, but it seems that the preference is related to a complex interplay between steric and electrostatic forces. The flat rigid paddle-like structure of tryptophan, associated with a quadrupolar moment (aromaticity) arising from the pi-electron cloud of the indole, interacts primarily with moieties in the lipid headgroup region hardly penetrating into the bilayer core. We have studied the interaction between the nitrogen moiety of lipid molecule headgroups and the pi-electron distribution of gramicidin (gA) tryptophan residues (W9, W11, W13, and W15) using molecular dynamics (MD) simulations of gA embedded in two hydrated lipid bilayers composed of 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoylphosphatidyl-choline (POPC), respectively. We use a force field model for tryptophan in which polarizability is only implicit, but we believe that classical molecular dynamics force fields are sufficient to capture the most prominent features of the cation-pi interaction. Our criteria for cation-pi interactions are based on distance and angular requirements, and the results from our model suggest that cation-pi interactions are relevant for W(PE)1), W(PE)13, W(PE)15, and, to some extent, W(PC)11 and W(PC)13. In our model, W9 does not seem to engage in cation-pi interactions with lipids, neither in POPE nor POPC. The criteria for the cation-pi effect are satisfied more often in POPE than in POPC, whereas the H-bonding ability between the indole donor and the carbonyl acceptor is similar in POPE and POPC. This suggests an increased affinity for lipids with ethanolamine headgroups to transmembrane proteins enriched in interfacial tryptophans.
Collapse
|
43
|
Candler A, Featherstone M, Ali R, Maloney L, Watts A, Fischer WB. Computational analysis of mutations in the transmembrane region of Vpu from HIV-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1716:1-10. [PMID: 16154109 DOI: 10.1016/j.bbamem.2005.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 06/27/2005] [Accepted: 07/28/2005] [Indexed: 11/27/2022]
Abstract
Vpu is an 81 amino acid integral membrane protein encoded by HIV-1. Its alpha-helical transmembrane (TM) domain (residues approximately 6-28) enhances virion release by oligomerizing into bundles and forming ion-conducting channels across the plasma membrane. Its cytoplasmic domain (residues approximately 29-81) is also alpha-helical and binds to the transmembrane protein CD4, inducing its degradation. Mutations within the TM domain have been found to abrogate enhanced particle release from the infected cell (Tiganos et al. Virology (1998) 251 96-107). A series of computational models of monomeric, pentameric and hexameric Vpu(1-31) mutants have been constructed, embedded in fully hydrated lipid bilayers and subjected to a 3 ns molecular dynamics (MD) simulation. None of the mutations has any destabilizing effect on the secondary and tertiary structure. One of the mutants, in which the position of a tryptophan residue within the TM domain is altered, is known not to induce CD4 degradation; an extended kinked model of this mutant has been generated (Vpu(1-52)IVW-k) and during subsequent MD simulations, the bend between the TM and a part of the cytoplasmic domain is found to unwind and a complex salt bridge involving Lys-37 is formed.
Collapse
Affiliation(s)
- Andrew Candler
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|
44
|
Venturoli M, Smit B, Sperotto MM. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J 2005; 88:1778-98. [PMID: 15738466 PMCID: PMC1305233 DOI: 10.1529/biophysj.104.050849] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological membranes are complex and highly cooperative structures. To relate biomembrane structure to their biological function it is often necessary to consider simpler systems. Lipid bilayers composed of one or two lipid species, and with embedded proteins, provide a model system for biological membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions in membranes, we considered proteins of different hydrophobic length (as well as different sizes). We studied the cooperative behavior of the lipid-protein system at mesoscopic time- and lengthscales. In particular, we correlated in a systematic way the protein-induced bilayer perturbation, and the lipid-induced protein tilt, with the hydrophobic mismatch (positive and negative) between the protein hydrophobic length and the pure lipid bilayer hydrophobic thickness. The protein-induced bilayer perturbation was quantified in terms of a coherence length, xi(P), of the lipid bilayer hydrophobic thickness profile around the protein. The dependence on temperature of xi(P), and the protein tilt-angle, were studied above the main-transition temperature of the pure system, i.e., in the fluid phase. We found that xi(P) depends on mismatch, i.e., the higher the mismatch is, the longer xi(P) becomes, at least for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting (or overshooting) region where the bilayer hydrophobic thickness is locally lower (or higher) than in the unperturbed bilayer, depending on whether the protein hydrophobic length is longer (or shorter) than the pure lipid bilayer hydrophobic thickness. Proteins may tilt when embedded in a too-thin bilayer. Our simulation data suggest that, when the embedded protein has a small size, the main mechanism to compensate for a large hydrophobic mismatch is the tilt, whereas large proteins react to negative mismatch by causing an increase of the hydrophobic thickness of the nearby bilayer. Furthermore, for the case of small, peptidelike proteins, we found the same type of functional dependence of the protein tilt-angle on mismatch, as was recently detected by fluorescence spectroscopy measurements.
Collapse
Affiliation(s)
- Maddalena Venturoli
- Department of Chemical Engineering, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
45
|
Petelska AD, Naumowicz M, Figaszewski ZA. The effect of interaction between K+ ions and gramicidin D on the lecithin membrane interfacial tension. Bioelectrochemistry 2005; 65:143-8. [PMID: 15713565 DOI: 10.1016/j.bioelechem.2004.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 08/12/2004] [Accepted: 10/04/2004] [Indexed: 11/17/2022]
Abstract
The effect of the presence of gramicidin D in a lecithin membrane on its interfacial tension has been studied. The studies have been carried out at various forming solution compositions and at various potassium ion concentrations in the electrolyte solution. Potassium chloride was used as the electrolyte. The complex was formed between the gramicidin molecule and K(+) ion. The following parameters describing the complex were determined: the surface area occupied by GK(+) complex (A(GK(+))), the interfacial tension of the GK(+) membrane complex (gamma(GK+)), and the stability constant of the gramicidin-K(+) complex (K). These values are 156 A(2), 1.89 mN m(-1) and 0.033 m(3) mol(-1), respectively.
Collapse
Affiliation(s)
- Aneta D Petelska
- Institute of Chemistry, University of Bialystok, Al. J. Pilsudskiego 11/4, 15-443 Bialystok, Poland
| | | | | |
Collapse
|
46
|
Lee AG. How lipids affect the activities of integral membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:62-87. [PMID: 15519309 DOI: 10.1016/j.bbamem.2004.05.012] [Citation(s) in RCA: 892] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 05/28/2004] [Indexed: 11/30/2022]
Abstract
The activities of integral membrane proteins are often affected by the structures of the lipid molecules that surround them in the membrane. One important parameter is the hydrophobic thickness of the lipid bilayer, defined by the lengths of the lipid fatty acyl chains. Membrane proteins are not rigid entities, and deform to ensure good hydrophobic matching to the surrounding lipid bilayer. The structure of the lipid headgroup region is likely to be important in defining the structures of those parts of a membrane protein that are located in the lipid headgroup region. A number of examples are given where the conformation of the headgroup-embedded region of a membrane protein changes during the reaction cycle of the protein; activities of such proteins might be expected to be particularly sensitive to lipid headgroup structure. Differences in hydrogen bonding potential and hydration between the headgroups of phosphatidycholines and phosphatidylethanolamines could be important factors in determining the effects of these lipids on protein activities, as well as any effects related to the tendency of the phosphatidylethanolamines to form a curved, hexagonal H(II) phase. Effects of lipid structure on protein aggregation and helix-helix interactions are also discussed, as well as the effects of charged lipids on ion concentrations close to the surface of the bilayer. Interpretations of lipid effects in terms of changes in protein volume, lipid free volume, and curvature frustration are also described. Finally, the role of non-annular, or 'co-factor' lipids, tightly bound to membrane proteins, is described.
Collapse
Affiliation(s)
- Anthony G Lee
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK.
| |
Collapse
|
47
|
Lee AG. How lipids and proteins interact in a membrane: a molecular approach. MOLECULAR BIOSYSTEMS 2005; 1:203-12. [PMID: 16880984 DOI: 10.1039/b504527d] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane proteins in a biological membrane are surrounded by a shell or annulus of 'solvent' lipid molecules. These lipid molecules in general interact rather non-specifically with the protein molecules, although a few 'hot-spots' may be present on the protein where anionic lipids bind with high affinity. Because of the low structural specificity of most of the annular sites, the composition of the lipid annulus will be rather similar to the bulk lipid composition of the membrane. The structures of the solvent lipid molecules are important in determining the conformational state of a membrane protein, and hence its activity, through charge and hydrogen bonding interactions between the lipid headgroups and residues in the protein, and through hydrophobic matching between the protein and the surrounding lipid bilayer. Evidence is also accumulating for the presence of 'co-factor' lipid molecules binding with high specificity to membrane proteins, often between transmembrane alpha-helices, and often being essential for activity.
Collapse
Affiliation(s)
- Anthony G Lee
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
48
|
Jordan JB, Easton PL, Hinton JF. Effects of phenylalanine substitutions in gramicidin A on the kinetics of channel formation in vesicles and channel structure in SDS micelles. Biophys J 2004; 88:224-34. [PMID: 15501932 PMCID: PMC1305000 DOI: 10.1529/biophysj.104.047456] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The common occurrence of Trp residues at the aqueous-lipid interface region of transmembrane channels is thought to be indicative of its importance for insertion and stabilization of the channel in membranes. To further investigate the effects of Trp-->Phe substitution on the structure and function of the gramicidin channel, four analogs of gramicidin A have been synthesized in which the tryptophan residues at positions 9, 11, 13, and 15 are sequentially replaced with phenylalanine. The three-dimensional structure of each viable analog has been determined using a combination of two-dimensional NMR techniques and distance geometry-simulated annealing structure calculations. These phenylalanine analogs adopt a homodimer motif, consisting of two beta6.3 helices joined by six hydrogen bonds at their NH2-termini. The replacement of the tryptophan residues does not have a significant effect on the backbone structure of the channels when compared to native gramicidin A, and only small effects are seen on side-chain conformations. Single-channel conductance measurements have shown that the conductance and lifetime of the channels are significantly affected by the replacement of the tryptophan residues (Wallace, 2000; Becker et al., 1991). The variation in conductance appears to be caused by the sequential removal of a tryptophan dipole, thereby removing the ion-dipole interaction at the channel entrance and at the ion binding site. Channel lifetime variations appear to be related to changing side chain-lipid interactions. This is supported by data relating to transport and incorporation kinetics.
Collapse
Affiliation(s)
- J B Jordan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | |
Collapse
|
49
|
Abstract
Gramicidin A was studied by continuous wave electron spin resonance (CW-ESR) and by double-quantum coherence electron spin resonance (DQC-ESR) in several lipid membranes (using samples that were macroscopically aligned by isopotential spin-dry ultracentrifugation) and vesicles. As a reporter group, the nitroxide spin-label was attached at the C-terminus yielding the spin-labeled product (GAsl). ESR spectra of aligned membranes containing GAsl show strong orientation dependence. In DPPC and DSPC membranes at room temperature the spectral shape is consistent with high ordering, which, in conjunction with the observed high polarity of the environment of the nitroxide, is interpreted in terms of the nitroxide moiety being close to the membrane surface. In contrast, spectra of GAsl in DMPC membranes indicate deeper embedding and tilt of the NO group. The GAsl spectrum in the DPPC membrane at 35 degrees C (the gel to Pbeta phase transition) exhibits sharp changes, and above this temperature becomes similar to that of DMPC. The dipolar spectrum from DQC-ESR clearly indicates the presence of pairs in DMPC membranes. This is not the case for DPPC, rapidly frozen from the gel phase; however, there are hints of aggregation. The interspin distance in the pairs is 30.9 A, in good agreement with estimates for the head-to-head GAsl dimer (the channel-forming conformation), which matches the hydrophobic thickness of the DMPC bilayer. Both DPPC and DSPC, apparently as a result of hydrophobic mismatch between the dimer length and bilayer thickness, do not favor the channel formation in the gel phase. In the Pbeta and Lalpha phases of DPPC (above 35 degrees C) the channel dimer forms, as evidenced by the DQC-ESR dipolar spectrum after rapid freezing. It is associated with a lateral expansion of lipid molecules and a concomitant decrease in bilayer thickness, which reduces the hydrophobic mismatch. A comparison with studies of dimer formation by other physical techniques indicates the desirability of using low concentrations of GA (approximately 0.4-1 mol %) accessible to the ESR methods employed in the study, since this yields non-interacting dimer channels.
Collapse
Affiliation(s)
- Boris G Dzikovski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14583-1301, USA
| | | | | |
Collapse
|
50
|
Sankararamakrishnan R, Weinstein H. Surface Tension Parameterization in Molecular Dynamics Simulations of a Phospholipid-bilayer Membrane: Calibration and Effects. J Phys Chem B 2004. [DOI: 10.1021/jp048969n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramasubbu Sankararamakrishnan
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029 and Weill Medical College of Cornell University, New York, New York 10021
| | - Harel Weinstein
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029 and Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|