1
|
Li K, Cao JF, Gong Y, Xiong L, Wu M, Qi Y, Ying X, Liu D, Ma X, Zhang X. Rapamycin improves the survival of epilepsy model cells by blocking phosphorylation of mTOR base on computer simulations and cellular experiments. Neurochem Int 2024; 176:105746. [PMID: 38641027 DOI: 10.1016/j.neuint.2024.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.
Collapse
Affiliation(s)
- Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu, China; Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jun-Feng Cao
- Chengdu Medical College, Chengdu, China; College of Medicine, Southwest Jiaotong University, Chengdu, China
| | | | - Li Xiong
- Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Chengdu Medical College, Chengdu, China
| | - Yue Qi
- Chengdu Medical College, Chengdu, China
| | | | | | - Xuntai Ma
- Chengdu Medical College, Chengdu, China; The First Affiliated Hospital of Clinical Medical College of Chengdu Medical College, Chengdu, China.
| | - Xiao Zhang
- Chengdu Medical College, Chengdu, China.
| |
Collapse
|
2
|
Ramakrishnan P, Joshi A, Fazil M, Yadav P. A comprehensive review on therapeutic potentials of photobiomodulation for neurodegenerative disorders. Life Sci 2024; 336:122334. [PMID: 38061535 DOI: 10.1016/j.lfs.2023.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
A series of experimental trials over the past two centuries has put forth Photobiomodulation (PBM) as a treatment modality that utilizes colored lights for various conditions. While in its cradle, PBM was used for treating simple conditions such as burns and wounds, advancements in recent years have extended the use of PBM for treating complex neurodegenerative diseases (NDDs). PBM has exhibited the potential to curb several symptoms and signs associated with NDDs. While several of the currently used therapeutics cause adverse side effects alongside being highly invasive, PBM on the contrary, seems to be broad-acting, less toxic, and non-invasive. Despite being projected as an ideal therapeutic for NDDs, PBM still isn't considered a mainstream treatment modality due to some of the challenges and knowledge gaps associated with it. Here, we review the advantages of PBM summarized above with an emphasis on the common mechanisms that underlie major NDDs and how PBM helps tackle them. We also discuss important questions such as whether PBM should be considered a mainstay treatment modality for these conditions and if PBM's properties can be harnessed to develop prophylactic therapies for high-risk individuals and also highlight important animal studies that underscore the importance of PBM and the challenges associated with it. Overall, this review is intended to bring the major advances made in the field to the spotlight alongside addressing the practicalities and caveats to develop PBM as a major therapeutic for NDDs.
Collapse
Affiliation(s)
- Pooja Ramakrishnan
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Aradhana Joshi
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Mohamed Fazil
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
3
|
Díaz A, Diab M, Mata-Espinosa D, Bini E, D'Attilio L, Bottasso O, Hernández-Pando R, Bay ML, Bongiovanni B. The relationship between host defense peptides and adrenal steroids. An account of reciprocal influences. Cytokine 2023; 168:156229. [PMID: 37244247 DOI: 10.1016/j.cyto.2023.156229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
AIM β-defensins 2 and -3 (HBD-2 and HBD-3) and cathelicidin LL-37 are host defense peptides (HDPs) that play a crucial role in the immune response against mycobacteria. Given our former studies in tuberculosis patients wherein their plasma levels of such peptides correlated with steroid hormone concentrations, we now studied the reciprocal influence of cortisol and/or dehydroepiandrosterone (DHEA) on HDPs biosynthesis and LL-37 on adrenal steroidogenesis. MAIN METHODS Cultures of macrophages derived from the THP-1 line were treated with cortisol (10-6M) and/or DHEA (10-6M and 10-7M) and stimulated with irradiated M. tuberculosis (Mi) or infected M. tuberculosis strain H37Rv to assess cytokine production, HDPs, reactive oxygen species (ROS) and colony forming units. Cultures of NCI-H295-R adrenal line were treated with LL37 (5, 10, and 15 µg/ml) for 24 h to further measure cortisol and DHEA levels together with steroidogenic enzyme transcripts. KEY FINDINGS In macrophages, M. tuberculosis produced an increase of IL-1β, TNFα, IL-6, IL-10, LL-37, HBD-2, and HBD-3 levels, irrespective of DHEA treatment. Adding cortisol to M. tuberculosis-stimulated cultures (with or without DHEA) decreased the amounts of these mediators, compared to only stimulated cultures. Although M. tuberculosis reduced ROS levels, DHEA increased these values in addition to diminishing intracellular mycobacterial growth (no matter cortisol treatment). In turn, studies on adrenal cells showed that LL-37 reduced the production of cortisol and DHEA besides modifying transcripts for some steroidogenic enzymes. SIGNIFICANCE while adrenal steroids seem to influence the production of HDPs, the former compounds are also likely to modulate adrenal biogenesis.
Collapse
Affiliation(s)
- Ariana Díaz
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Magdalena Diab
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina.
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco De Quiroga 15, Tlalpan, México D.F (CP14080), México.
| | - Estela Bini
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco De Quiroga 15, Tlalpan, México D.F (CP14080), México.
| | - Luciano D'Attilio
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco De Quiroga 15, Tlalpan, México D.F (CP14080), México.
| | - María Luisa Bay
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Bettina Bongiovanni
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 570 (S2002LRL), Rosario, Argentina.
| |
Collapse
|
4
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
5
|
Neumann NR, Thompson DC, Vasiliou V. AMPK activators for the prevention and treatment of neurodegenerative diseases. Expert Opin Drug Metab Toxicol 2021; 17:1199-1210. [PMID: 34632898 DOI: 10.1080/17425255.2021.1991308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION As the global population ages at an unprecedented rate, the burden of neurodegenerative diseases is expected to grow. Given the profound impact illness like dementia exert on individuals and society writ large, researchers, physicians, and scientific organizations have called for increased investigation into their treatment and prevention. Both metformin and aspirin have been associated with improved cognitive outcomes. These agents are related in their ability to stimulate AMP kinase (AMPK). Momordica charantia, another AMPK activator, is a component of traditional medicines and a novel agent for the treatment of cancer. It is also being evaluated as a nootropic agent. AREAS COVERED This article is a comprehensive review which examines the role of AMPK activation in neuroprotection and the role that AMPK activators may have in the management of dementia and cognitive impairment. It evaluates the interaction of metformin, aspirin, and Momordica charantia, with AMPK, and reviews the literature characterizing these agents' impact on neurodegeneration. EXPERT OPINION We suggest that AMPK activators should be considered for the treatment and prevention of neurodegenerative diseases. We identify multiple areas of future investigation which may have a profound impact on patients worldwide.
Collapse
Affiliation(s)
- Natalie R Neumann
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Jing S, Wang Z, Zhang J, Li X, Huang R. Neuroprotective effect of neferine, an alkaloid against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease mouse model. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_291_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Poly TN, Islam MMR, Yang HC, Li YCJ. Non-steroidal anti-inflammatory drugs and risk of Parkinson's disease in the elderly population: a meta-analysis. Eur J Clin Pharmacol 2018; 75:99-108. [PMID: 30280208 DOI: 10.1007/s00228-018-2561-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Several studies have explored the impact of non-steroidal anti-inflammatory drugs (NSAIDs) and the risk of Parkinson disease (PD). However, the extent to which NSAIDs may increase or decrease the risk of PD remains unresolved. We, therefore, performed a meta-analysis of relevant studies to quantify the magnitude of the association between NSAID use and PD risk in the elderly population. METHODS The electronic databases such as PubMed, EMBASE, Scopus, Google Scholar, and Web of Science were used to search the relevant articles published between January 1990 and December 2017. Large (n ≥ 1000) observational design studies with a follow-up at least 1 year were considered. Two authors independently extracted information from the included studies. Random effect model was used to calculate risk ratios (RRs) with 95% confidence interval (Cl). RESULTS A total of 17 studies with 2,498,258 participants and nearly 14,713 PD patients were included in the final analysis. The overall pooled RR of PD was 0.95 (95%CI 0.860-1.048) with significant heterogeneity (I2 = 63.093, Q = 43.352, p < 0.0001). In the subgroup analysis, the overall pooled RR of PD was 0.90 (95%CI 0.738-1.109), 0.96 (95%CI 0.882-1.055), and 0.99 (95%CI 0.841-0.982) from the studies of North America, Europe, and Asia. Additionally, long-term use, study design, individual NSAID use, and risk of PD were also evaluated. CONCLUSION Despite the neuroprotective potential of NSAIDs demonstrated in some experimental studies, our findings suggest that there is no association between NSAIDs and the risk of Parkinson disease at the population level. Until further evidence is established, clinicians need to be vigilant ensuring that the use of NSAIDs remains restricted to their approved anti-inflammatory and analgesic effect.
Collapse
Affiliation(s)
- Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Md Mohaimenul Rubel Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Hsuan-Chia Yang
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan. .,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan. .,Department of Dermatology, Wan Fang Hospital, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
8
|
Ramesh S, Bhattacharya D, Majrashi M, Morgan M, Prabhakar Clement T, Dhanasekaran M. Evaluation of behavioral parameters, hematological markers, liver and kidney functions in rodents exposed to Deepwater Horizon crude oil and Corexit. Life Sci 2018; 199:34-40. [PMID: 29474811 DOI: 10.1016/j.lfs.2018.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022]
Abstract
The 2010 Deepwater Horizon (DWH) oil spill is the largest marine oil spill in US history. In the aftermath of the spill, the response efforts used a chemical dispersant, Corexit, to disperse the oil spill. The health impacts of crude oil and Corexit mixture to humans, mammals, fishes, and birds are mostly unknown. The purpose of this study is to investigate the in vivo effects of DWH oil, Corexit, and oil-Corexit mixture on the general behavior, hematological markers, and liver and kidney functions of rodents. C57 Bl6 mice were treated with DWH oil (80 mg/kg) and/or Corexit (95 mg/kg), and several hematological markers, lipid profile, liver and kidney functions were monitored. The results show that both DWH oil and Corexit altered the white blood cells and platelet counts. Moreover, they also impacted the lipid profile and induced toxic effects on the liver and kidney functions. The impacts were more pronounced when the mice were treated with a mixture of DWH-oil and Corexit. This study provides preliminary data to elucidate the potential toxicological effects of DWH oil, Corexit, and their mixtures on mammalian health. Residues from the DWH spill continue to remain trapped along various Gulf Coast beaches and therefore further studies are needed to fully understand their long-term impacts on coastal ecosystems.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | | | - Mohammed Majrashi
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA; Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, 23881, Saudi Arabia
| | - Marlee Morgan
- Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, USA
| | - T Prabhakar Clement
- Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, USA
| | | |
Collapse
|
9
|
Huang SN, Ruan HZ, Chen MYJ, Zhou G, Qian ZM. Aspirin increases ferroportin 1 expression by inhibiting hepcidin via the JAK/STAT3 pathway in interleukin 6-treated PC-12 cells. Neurosci Lett 2018; 662:1-5. [DOI: 10.1016/j.neulet.2017.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
|
10
|
Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 2017; 96:379-390. [DOI: 10.1002/jnr.24185] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Neeraj Joshi
- Department of Biochemistry and Biophysics; Helen Diller Comprehensive Cancer Center; San Francisco California
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
11
|
Bhatnagar M, Goel I, Roy T, Shukla SD, Khurana S. Complete Comparison Display (CCD) evaluation of ethanol extracts of Centella asiatica and Withania somnifera shows that they can non-synergistically ameliorate biochemical and behavioural damages in MPTP induced Parkinson's model of mice. PLoS One 2017; 12:e0177254. [PMID: 28510600 PMCID: PMC5433711 DOI: 10.1371/journal.pone.0177254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/25/2017] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease remains as one of the most common debilitating neurodegenerative disorders. With the hopes of finding agents that can cure or reduce the pace of progression of the disease, we studied two traditional medicinal plants: Centella asiatica and Withania somnifera that have been explored in some recent studies. In agreement with the previous work on ethanol extracts of these two plants in mice model, we saw an improvement in oxidative stress profile as well as behavioral performance in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced Parkinson-like symptoms in Balb/c mice. Given the known potential of both the herbal extracts in improving Parkinson-like symptoms, we expected the combination of the two to show better results than either of the two but surprisingly there was no additivity in either oxidative stress or behavioural recovery. In fact, in some assays, the combination performed worse than either of the two individual constituents. This effect of mixtures highlights the need of testing mixtures in supplements market using enthomedicine. The necessity of comparing multiple groups in this study to get most information from the experiments motivated us to design a ladder-like visualization to show comparison with different groups that we call complete comparison display (CCD). In summary, we show the potential of Centella asiatica and Withania somnifera to ameliorate Parkinson's disorder.
Collapse
Affiliation(s)
- Maheep Bhatnagar
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ishan Goel
- Pharmacology Department, Central Drug Research Institute - Lucknow, Uttar Pradesh, India
| | - Tathagato Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Haringhata Farm, West Bengal, India
| | - Sunil Dutt Shukla
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
- Government Meera Girl's College, Udaipur, Rajasthan, India
- * E-mail: (SS); (SK)
| | - Sukant Khurana
- Pharmacology Department, Central Drug Research Institute - Lucknow, Uttar Pradesh, India
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Haringhata Farm, West Bengal, India
- * E-mail: (SS); (SK)
| |
Collapse
|
12
|
Li WY, Li FM, Zhou YF, Wen ZM, Ma J, Ya K, Qian ZM. Aspirin down Regulates Hepcidin by Inhibiting NF-κB and IL6/JAK2/STAT3 Pathways in BV-2 Microglial Cells Treated with Lipopolysaccharide. Int J Mol Sci 2016; 17:ijms17121921. [PMID: 27999284 PMCID: PMC5187761 DOI: 10.3390/ijms17121921] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022] Open
Abstract
Aspirin down regulates transferrin receptor 1 (TfR1) and up regulates ferroportin 1 (Fpn1) and ferritin expression in BV-2 microglial cells treated without lipopolysaccharides (LPS), as well as down regulates hepcidin and interleukin 6 (IL-6) in cells treated with LPS. However, the relevant mechanisms are unknown. Here, we investigate the effects of aspirin on expression of hepcidin and iron regulatory protein 1 (IRP1), phosphorylation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3) and P65 (nuclear factor-κB), and the production of nitric oxide (NO) in BV-2 microglial cells treated with and without LPS. We demonstrated that aspirin inhibited hepcidin mRNA as well as NO production in cells treated with LPS, but not in cells without LPS, suppresses IL-6, JAK2, STAT3, and P65 (nuclear factor-κB) phosphorylation and has no effect on IRP1 in cells treated with or without LPS. These findings provide evidence that aspirin down regulates hepcidin by inhibiting IL6/JAK2/STAT3 and P65 (nuclear factor-κB) pathways in the cells under inflammatory conditions, and imply that an aspirin-induced reduction in TfR1 and an increase in ferritin are not associated with IRP1 and NO.
Collapse
Affiliation(s)
- Wan-Ying Li
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Fei-Mi Li
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
| | - Yu-Fu Zhou
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
| | - Zhong-Min Wen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Juan Ma
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Ke Ya
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai 201203, China.
| |
Collapse
|
13
|
Relationship Between Obesity, Alzheimer’s Disease, and Parkinson’s Disease: an Astrocentric View. Mol Neurobiol 2016; 54:7096-7115. [PMID: 27796748 DOI: 10.1007/s12035-016-0193-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
|
14
|
Mazumder MK, Giri A, Kumar S, Borah A. A highly reproducible mice model of chronic kidney disease: Evidences of behavioural abnormalities and blood-brain barrier disruption. Life Sci 2016; 161:27-36. [PMID: 27493078 DOI: 10.1016/j.lfs.2016.07.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/20/2016] [Accepted: 07/30/2016] [Indexed: 12/23/2022]
Abstract
AIMS In the present study, a novel mice model of chronic kidney disease (CKD) was developed, and psycho-motor behavioural abnormalities, blood-brain barrier (BBB) integrity and brain histology were studied. MAIN METHODS Swiss albino female mice were given high adenine diet (0.3% w/w mixed with feed) for 4weeks. Serum urea and creatinine levels and renal histological studies were performed to validate the model. Psycho-motor behavioural abnormalities and neurological severity were studied. BBB integrity was assessed using Evans blue extravasation method. Nissl staining was performed to see possible morphological aberrations in brain. KEY FINDINGS There was a significant increase in serum urea and creatinine levels in mice given high adenine diet, and the mice had abnormal kidney morphology. Deposition of adenine and 2,8-dihydroxyadenine crystals, and increased collagen deposits in the renal tissues were found, which validate induction of CKD in the mice. Motor behavioural abnormalities, depression-like and anxiolytic behaviour and increase in neurological severity were prevalent in mice with CKD. Evans Blue dye extravasation was found to occur in the brain, which signifies disruption of BBB. However, Nissl staining did not reveal any morphological aberration in brain tissue. SIGNIFICANCE The present study puts forward a highly reproducible mice model of CKD validated with serum parameters and renal histopathological changes. The mice showed psycho-motor behavioural abnormalities and BBB disruption. It is a convenient model to study the disease pathology, and understanding the associated disorders, and their therapeutic interventions.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anirudha Giri
- Environmental Toxicology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Sanjeev Kumar
- Microbial and Molecular Immunology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anupom Borah
- Cellular & Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
15
|
Botsakis K, Theodoritsi S, Grintzalis K, Angelatou F, Antonopoulos I, Georgiou C, Margarity M, Matsokis N, Panagopoulos N. 17β-Estradiol/N-acetylcysteine interaction enhances the neuroprotective effect on dopaminergic neurons in the weaver model of dopamine deficiency. Neuroscience 2016; 320:221-9. [DOI: 10.1016/j.neuroscience.2016.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/30/2016] [Indexed: 11/28/2022]
|
16
|
Thrash-Williams B, Karuppagounder SS, Bhattacharya D, Ahuja M, Suppiramaniam V, Dhanasekaran M. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid. Life Sci 2016; 154:24-9. [PMID: 26926078 DOI: 10.1016/j.lfs.2016.02.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
Abstract
AIMS Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. MAIN METHODS The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. KEY FINDINGS Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. SIGNIFICANCE One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the stimulants or drugs of abuse.
Collapse
Affiliation(s)
- Bessy Thrash-Williams
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | | | - Dwipayan Bhattacharya
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Manuj Ahuja
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.
| |
Collapse
|
17
|
Effects of aspirin on expression of iron transport and storage proteins in BV-2 microglial cells. Neurochem Int 2015; 91:72-7. [DOI: 10.1016/j.neuint.2015.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022]
|
18
|
Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson's disease and its potential as therapeutic target. Transl Neurodegener 2015; 4:19. [PMID: 26464797 PMCID: PMC4603346 DOI: 10.1186/s40035-015-0042-0] [Citation(s) in RCA: 619] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 01/19/2023] Open
Abstract
Parkinson’s disease (PD), the second most common age-associated neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons and the presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc). Chronic neuroinflammation is one of the hallmarks of PD pathophysiology. Post-mortem analyses of human PD patients and experimental animal studies indicate that activation of glial cells and increases in pro-inflammatory factor levels are common features of the PD brain. Chronic release of pro-inflammatory cytokines by activated astrocytes and microglia leads to the exacerbation of DA neuron degeneration in the SNpc. Besides, peripheral immune system is also implicated in the pathogenesis of PD. Infiltration and accumulation of immune cells from the periphery are detected in and around the affected brain regions of PD patients. Moreover, inflammatory processes have been suggested as promising interventional targets for PD and even other neurodegenerative diseases. A better understanding of the role of inflammation in PD will provide new insights into the pathological processes and help to establish effective therapeutic strategies. In this review, we will summarize recent progresses in the neuroimmune aspects of PD and highlight the potential therapeutic interventions targeting neuroinflammation.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yingjun Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Jiawei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
19
|
Cetin D, Hacımuftuoglu A, Tatar A, Turkez H, Togar B. The in vitro protective effect of salicylic acid against paclitaxel and cisplatin-induced neurotoxicity. Cytotechnology 2015. [PMID: 26199062 DOI: 10.1007/s10616-015-9896-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Paclitaxel (PAC) and cisplatin (CIS) are two established chemotherapeutic drugs used in combination for the treatment of various solid tumors. However, the usage of PAC and CIS are limited because of the incidence of their moderate or severe neurotoxic side effects. In this study, we aimed to assess the protective role of salicylic acid (SA) against neurotoxicity caused by PAC and CIS. For this purpose, newborn Sprague Dawley rats were decapitated in sterile atmosphere and primary cortex neuron cultures were established. On the 10th day SA was added into culture plates. PAC and CIS were added on the 12th day. The cytotoxicity was determined by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Oxidative alterations were assessed using total antioxidant capacity and total oxidative stress assays in rat primary neuron cell cultures. It was shown that both concentrations of PAC and CIS treatments caused neurotoxicity. Although SA decreased the neurotoxicity by CIS and PAC, it was more effective against the toxicity caused by CIS rather than the toxicity caused by PAC. In conclusion it was clearly revealed that SA decreased the neurotoxic effect of CIS and PAC in vitro.
Collapse
Affiliation(s)
- Damla Cetin
- Department of Medical Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey.,Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Basak Togar
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
20
|
A computational study for the antioxidant capacity increases in hydroxy-derivatives of paracetamol and salicylic acid. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1393-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP. Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. J Pineal Res 2015; 58:262-74. [PMID: 25626558 DOI: 10.1111/jpi.12212] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/23/2015] [Indexed: 12/13/2022]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) reduces symptoms of Parkinson's disease (PD), but suffers from serious side effects on long-term use. Melatonin (10-30 mg/kg, 6 doses at 10 hr intervals) was investigated to potentiate L-DOPA therapeutic effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice. Striatal tyrosine hydroxylase (TH) immunoreactivity, TH, and phosphorylated ser 40 TH (p-TH) protein levels were assayed on 7th day. Nigral TH-positive neurons stereology was conducted on serial sections 2.8 mm from bregma rostrally to 3.74 mm caudally. MPTP caused 39% and 58% decrease, respectively, in striatal fibers and TH protein levels, but 2.5-fold increase in p-TH levels. About 35% TH neurons were lost between 360 and 600 μm from 940 μm of the entire nigra analyzed, but no neurons were lost between 250 μm rostrally and 220 μm caudally. When L-DOPA in small doses (5-8 mg/kg) failed to affect MPTP-induced akinesia or catalepsy, co-administration of melatonin with L-DOPA attenuated these behaviors. Melatonin administration significantly attenuated MPTP-induced loss in striatal TH fibers (82%), TH (62%) and p-TH protein (100%) levels, and nigral neurons (87-100%). Melatonin failed to attenuate MPTP-induced striatal dopamine depletion. L-DOPA administration (5 mg/kg, once 40 min prior to sacrifice, p.o.) in MPTP- and melatonin-treated mice caused significant increase in striatal dopamine (31%), as compared to L-DOPA and MPTP-treated mice. This was equivalent to 8 mg/kg L-DOPA administration in parkinsonian mouse. Therefore, prolonged, effective use of L-DOPA in PD with lesser side effects could be achieved by treating with 60% lower doses of L-DOPA along with melatonin.
Collapse
Affiliation(s)
- Amit Naskar
- Laboratory of Clinical & Experimental Neuroscience, Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | | | | | | | | |
Collapse
|
22
|
Swiątkiewicz M, Zaremba M, Joniec I, Członkowski A, Kurkowska-Jastrzębska I. Potential neuroprotective effect of ibuprofen, insights from the mice model of Parkinson's disease. Pharmacol Rep 2014; 65:1227-36. [PMID: 24399718 DOI: 10.1016/s1734-1140(13)71480-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/10/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative diseases. An inflammatory reaction seems to be involved in the pathological process in PD. Prospective clinical studies with various nonsteroidal anti-inflammatory drugs (NSAIDs) have shown that ibuprofen decreases the risk of PD. In the present study we investigated the influence of ibuprofen on dopaminergic neuron injury in the mice model of PD. METHODS Twelve-month-old male C57Bl mice were injected with MPTP together with various doses of ibuprofen (10, 30 or 50 mg/kg), administered 1 h before MPTP injection for 7 consecutive days. Evaluation concerned dopamine content in the striatum, tyrosine hydroxylase (TH) protein and α-synuclein expression measured 7 and 21 days post MPTP administration (dpa). RESULTS MPTP caused injury to dopaminergic neuron endings in the striatum: dopamine content decreased by about 0% 7 dpa and by 85% 21 dpa; TH protein expression diminished by 21% 7 dpa; α-synuclein level decreased by 10 and 26% 7 and 21 dpa, respectively. Ibuprofen administration to mice treated with MPTP significantly increased the level of dopamine in the striatum 7 and 21 dpa. It also prevented TH protein decrease and increased α-synuclein level 21 dpa. CONCLUSIONS Ibuprofen was shown to protect neurons against MPTP-induced injury in the striatum. The possible mechanism of the neuroprotective effect of ibuprofen might be associated with decreased dopamine turnover and cyclooxygenases inhibition resulting in lower reactive oxygen species formation.
Collapse
Affiliation(s)
- Maciej Swiątkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, PL 00-927 Warszawa, Poland.
| | | | | | | | | |
Collapse
|
23
|
Thakur P, Nehru B. Modulatory effects of sodium salicylate on the factors affecting protein aggregation during rotenone induced Parkinson's disease pathology. Neurochem Int 2014; 75:1-10. [PMID: 24852355 DOI: 10.1016/j.neuint.2014.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 01/20/2023]
Abstract
Sodium salicylate (SS) confers neuroprotection in various models of Parkinson's disease (PD) but the mechanisms behind its protective actions are not clear. PD pathology is multifactorial involving numerous processes such as protein aggregation, dysfunction of protein degradation machinery and apoptosis. Detailed evaluation of effects of SS on these processes can provide an insight into the mechanism of neuroprotection by SS in PD pathology. In a rotenone (2mg/kg b.w.) based rat model of PD, SS (100mg/kg b.w.) was administered in conjunction. Drug treatments continued for 5 weeks after which various analyses were conducted using mid-brain tissue. IHC analysis revealed a decline in the aggregation of α-synuclein and ubiquitin with SS supplementation. These effects might be mediated by the elevation in HSF-1, HSP-40, and HSP-27 expression following SS co-treatment. This HSP upregulation helped in the improvement in proteasome activity as well as expression. Further, IHC analysis revealed that SS co-treatment prevented the activation of astrocytes caused by rotenone. Since astrocytes are involved in maintenance of glutathione (GSH) homeostasis, it resulted in a concomitant improvement in the GSH levels. As a result, decrease in apoptosis as indicated by caspase-9 and caspase-3 expression as well as TUNEL assay was also observed in the SS conjunction group. Our results indicate that besides being a known free radical scavenger and anti-inflammatory compound, SS can provide neuroprotection by differently upregulating the HSPs and reducing the protein aggregation burden.
Collapse
Affiliation(s)
- Poonam Thakur
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| | - Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
24
|
Abstract
It is well known that the death of dopaminergic neurons of the substantia nigra pars compacta (SNc) is the pathological hallmark of Parkinson's disease (PD), the second most common and disabling condition in the expanding elderly population. Nevertheless, the intracellular cascade of events leading to dopamine cell death is still unknown and, consequently, treatment is largely symptomatic rather than preventive. Moreover, the mechanisms whereby nigral dopaminergic neurons may degenerate still remain controversial. Hitherto, several data have shown that the earlier cellular disturbances occurring in dopaminergic neurons include oxidative stress, excitotoxicity, inflammation, mitochondrial dysfunction and altered proteolysis. These alterations, rather than killing neurons, trigger subsequent death-related molecular pathways, including elements of apoptosis. In rare incidences, PD may be inherited; this evidence has opened a new and exciting area of research, attempting to shed light on the nature of the more common idiopathic PD form. In this review, the characteristics of the SNc dopaminergic neurons and their lifecycle from birth to death are reviewed. In addition, of the mechanisms by which the aforementioned alterations cause neuronal dopaminergic death, particular emphasis will be given to the role played by inflammation, and the relevance of the possible use of anti-inflammatory drugs in the treatment of PD. Finally, new evidence of a possible de novo neurogenesis in the SNc of adult animals and in PD patients will also be examined.
Collapse
Affiliation(s)
- Ennio Esposito
- Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale 8, 66030 Santa Maria Imbaro (Chieti), Italy.
| | | | | |
Collapse
|
25
|
Pretorius E, Bester J, Vermeulen N, Lipinski B, Gericke GS, Kell DB. Profound morphological changes in the erythrocytes and fibrin networks of patients with hemochromatosis or with hyperferritinemia, and their normalization by iron chelators and other agents. PLoS One 2014; 9:e85271. [PMID: 24416376 PMCID: PMC3887013 DOI: 10.1371/journal.pone.0085271] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022] Open
Abstract
It is well-known that individuals with increased iron levels are more prone to thrombotic diseases, mainly due to the presence of unliganded iron, and thereby the increased production of hydroxyl radicals. It is also known that erythrocytes (RBCs) may play an important role during thrombotic events. Therefore the purpose of the current study was to assess whether RBCs had an altered morphology in individuals with hereditary hemochromatosis (HH), as well as some who displayed hyperferritinemia (HF). Using scanning electron microscopy, we also assessed means by which the RBC and fibrin morphology might be normalized. An important objective was to test the hypothesis that the altered RBC morphology was due to the presence of excess unliganded iron by removing it through chelation. Very striking differences were observed, in that the erythrocytes from HH and HF individuals were distorted and had a much greater axial ratio compared to that accompanying the discoid appearance seen in the normal samples. The response to thrombin, and the appearance of a platelet-rich plasma smear, were also markedly different. These differences could largely be reversed by the iron chelator desferal and to some degree by the iron chelator clioquinol, or by the free radical trapping agents salicylate or selenite (that may themselves also be iron chelators). These findings are consistent with the view that the aberrant morphology of the HH and HF erythrocytes is caused, at least in part, by unliganded (‘free’) iron, whether derived directly via raised ferritin levels or otherwise, and that lowering it or affecting the consequences of its action may be of therapeutic benefit. The findings also bear on the question of the extent to which accepting blood donations from HH individuals may be desirable or otherwise.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, University of Pretoria, Arcadia, South Africa
- * E-mail:
| | - Janette Bester
- Department of Physiology, University of Pretoria, Arcadia, South Africa
| | - Natasha Vermeulen
- Department of Physiology, University of Pretoria, Arcadia, South Africa
| | - Boguslaw Lipinski
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Douglas B. Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Lancs, United Kingdom
| |
Collapse
|
26
|
Borges RS, Barros TG, Pereira GAN, Batista Jr. J, Beleza Filho RFGP, Veiga AAS, Hamoy M, Mello VJ, Silva ABFD, Barros CAL. A Structure and Antioxidant Activity Study of Paracetamol and Salicylic Acid. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/pp.2014.513130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Zheng M, Ahuja M, Bhattacharya D, Clement TP, Hayworth JS, Dhanasekaran M. Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life Sci 2013; 95:108-17. [PMID: 24361361 DOI: 10.1016/j.lfs.2013.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 01/03/2023]
Abstract
AIMS The British Petroleum (BP) oil spill has raised several ecological and health concerns. As the first response, BP used a chemical dispersant, Corexit-9500, to disperse the crude oil in the Gulf of Mexico to limit shoreline contamination problems. Nevertheless, portions of this oil/Corexit mixture reached the shoreline and still remain in various Gulf shore environments. The use of Corexit itself has become a significant concern since its impacts on human health and environment is unclear. MAIN METHODS In this study, in vitro cytotoxic effects of Corexit were evaluated using different mammalian cells. KEY FINDINGS Under serum free conditions, the LC50 value for Corexit in BL16/BL6 cell was 16 ppm, in 1321N1 cell was 33 ppm, in H19-7 cell was 70 ppm, in HEK293 was 93 ppm, and in HK-2 cell was 95 ppm. With regard to the mechanisms of cytotoxicity, we hypothesize that Corexit can possibly induce cytotoxicity in mammalian cells by altering the intracellular oxidative balance and inhibiting mitochondrial functions. Corexit induced increased reactive oxygen species and lipid peroxide levels; also, it depleted glutathione content and altered catalase activity in H19-7 cells. In addition, there was mitochondrial complex-I inhibition and increase in the pro-apoptotic factors including caspase-3 and BAX expression. SIGNIFICANCE The experimental results show changes in intracellular oxidative radicals leading to mitochondrial dysfunctions and apoptosis in Corexit treatments, possibly contributing to cell death. Our findings raise concerns about using large volumes of Corexit, a potential environmental toxin, in sensitive ocean environments.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Manuj Ahuja
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Dwipayan Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - T Prabhakar Clement
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | - Joel S Hayworth
- Department of Civil Engineering, 212 Harbert Engineering Center, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
28
|
Madathil SK, Karuppagounder SS, Mohanakumar KP. Sodium salicylate protects against rotenone-induced Parkinsonism in rats. Synapse 2013; 67:502-14. [DOI: 10.1002/syn.21658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 02/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Sindhu K. Madathil
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Saravanan S. Karuppagounder
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Kochupurackal P. Mohanakumar
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| |
Collapse
|
29
|
Zhu G, Wang X, Wu S, Li X, Li Q. Neuroprotective effects of puerarin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease model in mice. Phytother Res 2013; 28:179-86. [PMID: 23512787 DOI: 10.1002/ptr.4975] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
Abstract
Puerarin, an active component of Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep is well-known for its anti-oxidative and neuroprotective activities. Although anti-Parkinson's disease activity of puerarin was reported in both of in vivo and in vitro model, detailed mechanisms are not clarified. In this study, we addressed that puerarin attenuated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral deficits, dopaminergic neuronal degeneration and dopamine depletion. Puerarin administration enhanced glutathione (GSH) activity, glial cell line-derived neurotrophic factor (GDNF) expression and PI3K/Akt pathway activation, which might ameliorate MPTP injection-induced progressive elevation of reactive oxygen species (ROS) formation in mice. In addition to the effect on ROS, puerarin ameliorated MPTP-reduced lysosome-associated membrane protein type 2A (Lamp 2A) expression. Taken together, our data demonstrate that puerarin attenuates MPTP-induced dopaminergic neuronal degeneration via modulating GDNF expression, PI3K/Akt pathway and GSH activation, which subsequently ameliorate MPTP-induced ROS formation and decrease of Lamp 2A expression.
Collapse
Affiliation(s)
- Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, 230038, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, 91766, USA
| | | | | | | | | |
Collapse
|
30
|
PGE2 EP1 receptor deletion attenuates 6-OHDA-induced Parkinsonism in mice: old switch, new target. Neurotox Res 2013; 23:260-6. [PMID: 23385625 DOI: 10.1007/s12640-013-9381-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Recent experimental data on Parkinson's disease (PD) predicts the critical role of inflammation in the progression of neurodegeneration and the promising preventive effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Previous studies suggest that NSAIDs minimize cyclooxygenase-2 (COX-2) activity and thereby attenuate free radical generation. Prostaglandin E2 (PGE2) is an important product of COX activity and plays an important role in various physiologic and pathophysiologic conditions through its EP receptors (EP1-EP4). Part of the toxic effect of PGE2 in the central nervous system has been reported to be through the EP1 receptor; however, the effect of the EP1 receptor in PD remains elusive. Therefore, in our pursuit to determine if deletion of the PGE2 EP1 receptor will attenuate 6-hydroxy dopamine (6-OHDA)-induced Parkinsonism, mice were given a unilateral 6-OHDA injection into the medial forebrain bundle. We found that apomorphine-induced contralateral rotations were significantly attenuated in the 6-OHDA-lesioned EP1(-/-) mice compared with the 6-OHDA-lesioned WT mice. Quantitative analysis showed significant protection of dopaminergic neurons in the substantia nigra pars compacta of the 6-OHDA-lesioned EP1(-/-) mice. To the best of our knowledge, this is the first in vivo study to implicate the PGE2 EP1 receptor in toxin-induced Parkinsonism. We propose the PGE2 EP1 receptor as a new target to better understand some of the mechanisms leading to PD.
Collapse
|
31
|
Wang J, Song N, Jiang H, Wang J, Xie J. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta Mol Basis Dis 2013; 1832:618-25. [PMID: 23376588 DOI: 10.1016/j.bbadis.2013.01.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/11/2012] [Accepted: 01/24/2013] [Indexed: 12/24/2022]
Abstract
Both inflammatory processes associated with microglia activation and abnormal iron deposit in dopaminergic neurons are involved in the pathogenesis of Parkinson's disease (PD). However, the relationship between neuroinflammation and iron accumulation was not fully elucidated. In the present study, we aimed to investigate whether the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) released by microglia, could affect cellular iron transportation in primary cultured ventral mesencephalic (VM) neurons. The results showed that IL-1β or TNF-α treatment led to increased ferrous iron influx and decreased iron efflux in these cells, due to the upregulation of divalent metal transporter 1 with the iron response element (DMT1+IRE) and downregulation of ferroportin1 (FPN1). Increased levels of iron regulatory protein 1 (IRP1), transferrin receptor 1 (TfR1) and hepcidin were also observed in IL-1β or TNF-α treated VM neurons. IRP1 upregulation could be fully abolished by co-administration of radical scavenger N-acetyl-l-cysteine and inducible NO synthetase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride. Further experiments demonstrated that IL-1β and TNF-α release was remarkably enhanced by iron load in activated microglia triggered by lipopolysaccharide or 1-methyl-4-phenylpyridinium (MPP(+)). In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice, salicylate application could not block DMT1+IRE upregulation in dopaminergic neurons of substantia nigra. These results suggested that IL-1β and TNF-α released by microglia, especially under the condition of iron load, might contribute to iron accumulation in VM neurons by upregulating IRP1 and hepcidin levels through reactive oxygen/nitrogen species production. This might provide a new insight into unraveling that microglia might aggravate this iron mediated neuropathologies in PD.
Collapse
Affiliation(s)
- Jia Wang
- Department of Physiology, Medical College of Qingdao University, Qingdao, China
| | | | | | | | | |
Collapse
|
32
|
Subramaniam SR, Ellis EM. Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson's disease. J Neurosci Res 2012. [DOI: 10.1002/jnr.23164] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Thakur P, Nehru B. Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson's disease. Neuroscience 2012; 231:420-31. [PMID: 23159314 DOI: 10.1016/j.neuroscience.2012.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/05/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder manifesting in motor, cognitive and behavioral anomalies. Loss of dopaminergic neurons in the substantia nigra region of the brain is the hallmark feature of PD, which is attributed to oxidative and inflammatory stress besides other diverse factors and hence drugs targeting these pathways hold promise as neuro-therapeutics. The anti-oxidative as well as anti-inflammatory properties of sodium salicylate (SS), suggest its neuroprotective potentials in PD. Since PD is a progressive neurodegenerative disorder, the mechanistic basis for utilizing SS as a neuroprotectant in PD could be better understood in the chronic models. The present study utilizes a rotenone-based model of PD to evaluate the neuro-modulatory efficacy of SS. Subcutaneous injection of rotenone (2mg/kg body weight) was given to male SD rats every day, for a period of 5 weeks, which developed all the essential features of PD in these animals. Simultaneously, another group was injected SS intraperitoneally at the dose of 100mg/kg body weight, in addition to the rotenone. In the animals receiving rotenone+SS, significant improvement was observed in the various characteristic hallmarks of PD such as dopamine and tyrosine hydroxylase levels as well as the motor dysfunction symptoms. It attenuated the reactive oxygen species levels significantly but failed to reduce the levels of protein carbonylation and lipid peroxidation. However, SS effectively abridged the levels of inflammatory mediators like cyclooxygenase-2 (COX-2), nuclear factor kappa B and inducible nitric oxide synthase. Correspondingly, a significant decrease in the levels of pro-inflammatory cytokines interleukin-6, interleukin-1β and tumor necrosis factor-α was also observed following SS co-treatment. Thus, neuroprotective efficacy of SS in this chronic model of PD can be largely attributed to its anti-inflammatory effects rather than its free radical-scavenging properties.
Collapse
Affiliation(s)
- P Thakur
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| | | |
Collapse
|
34
|
Ginkgo biloba extract (EGb 761) modulates the expression of dopamine-related genes in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neuroscience 2012; 223:246-57. [PMID: 22885234 DOI: 10.1016/j.neuroscience.2012.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 02/07/2023]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic neurotoxicity and behavioral impairment in rodents similar to Parkinson's disease. The MPTP mouse model is widely used to evaluate new protective agents. EGb 761 is a well-defined mixture of active compounds extracted from Ginkgo biloba leaves according to a standardized procedure. We have shown that EGb 761 attenuates the loss of striatal dopamine levels and prevents the neurodegeneration of the nigrostriatal pathway induced by MPTP. This finding shows that neuroprotective effects of EGb 761 act, in part, on the dopamine system. Therefore, this study investigates whether EGb 761 exerts dopaminergic neuroprotection through the regulation of dopamine-related gene expression in MPTP-induced Parkinsonism. Male C57BL/6J mice were injected with MPTP (30 mg/kg, i.p.) for 5 days and later with EGb 761 (40 mg/kg, i.p.) daily for 18 days. The expression of selected genes was evaluated in the striatum and midbrain by quantitative PCR. The genes for tyrosine hydroxylase (Th), vesicular monoamine transporter 2 (Vmat2), dopamine transporter (Dat), dopamine D2 receptor (Da-d2r), and transcription factors (Pitx3 and Nurr1) related to dopamine neurotransmission were selected for the analysis. EGb 761 administration to MPTP-treated mice protected Th (41%), Vmat2 (15%), Dat (102%), Da-d2r (46%), Pitx3 (63%), and Nurr1 (148%) mRNA levels in the midbrain, all of which were up-regulated. However, EGb 761 partially reversed the MPTP effect exclusively for Th (48%) and Nurr1 (96%) mRNA in the striatum. Only Th and Nurr1 mRNA and protein levels were regulated by EGb 761 in both regions of the nigrostriatal pathway. This result could be related to the regulation of their transcription. Our results suggest that EGb 761-associated neuroprotection against MPTP neurotoxicity is related to the regulation of the dopamine genes. Moreover, this neuroprotection also involves the regulation of transcription factors such as Nurr1 that are important for the functional maintenance of dopaminergic neurons.
Collapse
|
35
|
Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology 2012; 62:2154-68. [PMID: 22361232 DOI: 10.1016/j.neuropharm.2012.01.028] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/13/2012] [Accepted: 01/31/2012] [Indexed: 12/19/2022]
Abstract
Idiopathic Parkinson's disease (PD) represents a complex interaction between the inherent vulnerability of the nigrostriatal dopaminergic system, a possible genetic predisposition, and exposure to environmental toxins including inflammatory triggers. Evidence now suggests that chronic neuroinflammation is consistently associated with the pathophysiology of PD. Activation of microglia and increased levels of pro-inflammatory mediators such as TNF-α, IL-1β and IL-6, reactive oxygen species and eicosanoids has been reported after post-mortem analysis of the substantia nigra from PD patients and in animal models of PD. It is hypothesised that chronically activated microglia secrete high levels of pro-inflammatory mediators which damage neurons and further activate microglia, resulting in a feed forward cycle promoting further inflammation and neurodegeneration. Moreover, nigrostriatal dopaminergic neurons are more vulnerable to pro-inflammatory and oxidative mediators than other cell types because of their low intracellular glutathione concentration. Systemic inflammation has also been suggested to contribute to neurodegeneration in PD, as lymphocyte infiltration has been observed in brains of PD patients and in animal models of PD, substantiating the current theory of a fundamental role of inflammation in neurodegeneration. We will examine the current evidence in the literature which offers insight into the premise that both central and systemic inflammation may contribute to neurodegeneration in PD. We will discuss the emerging possibility of the use of diagnostic tools such as imaging technologies for PD patients. Finally, we will present the immunomodulatory therapeutic strategies that are now under investigation and in clinical trials as potential neuroprotective drugs for PD.
Collapse
Affiliation(s)
- Louise M Collins
- Department of Anatomy and Neuroscience, University College Cork, Biosciences Institute, Western Road, Cork, Ireland
| | | | | | | |
Collapse
|
36
|
Investigate the Chronic Neurotoxic Effects of Diquat. Neurochem Res 2012; 37:1102-11. [DOI: 10.1007/s11064-012-0715-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 01/05/2023]
|
37
|
Wang W, Ye SD, Zhou KQ, Wu LM, Huang YN. High doses of salicylate and aspirin are inhibitory on acid-sensing ion channels and protective against acidosis-induced neuronal injury in the rat cortical neuron. J Neurosci Res 2011; 90:267-77. [PMID: 21969311 DOI: 10.1002/jnr.22742] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 12/16/2022]
Abstract
Aspirin and its main metabolite salicylate are widely used to relieve pain, treat inflammatory diseases, and prevent ischemic stroke. Multiple pathways are responsible for the therapeutic actions exerted by these drugs. One of the pathways is targeting neuronal receptors/ion channels in the central nervous system. Correspondingly, increasing evidence has implicated acid-sensing ion channels (ASICs) in the processes of the diseases that are medicated by aspirin and salicylate. We therefore employed whole-cell patch-clamp recordings to examine the effects of salicylate as well as aspirin on ASICs in cultured cortical neurons of the rat. We recorded rapid and reversible inhibition of ASIC current by millimolar concentrations of aspirin and salicylate and found that salicylate reduced acidosis-induced membrane depolarization. These data suggest that ASICs in the cortex are molecular targets of high doses of aspirin and salicylate. In addition, the results from lactate dehydrogenase release measurement showed that high doses of aspirin and salicylate protected the cortical neuron from acidosis-induced neuronal injury. These findings may contribute to a better understanding of the therapeutic mechanisms of aspirin and salicylate actions in the brain and provide new evidence on aspirin and salicylate used as neuroprotective agents in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.
| | | | | | | | | |
Collapse
|
38
|
Protective effects of valproic acid on the nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neuroscience 2011; 194:189-94. [PMID: 21846494 DOI: 10.1016/j.neuroscience.2011.08.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 07/29/2011] [Accepted: 08/03/2011] [Indexed: 11/22/2022]
Abstract
The use of animal models (including the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP] mouse model) to mimic dopaminergic (DAergic) cell loss and striatal dopamine (DA) depletion, as seen in Parkinson's disease (PD), has implicated a multitude of factors that might be associated with DAergic cell death in PD including excitotoxicity, inflammation, and oxidative stress. All of these factors have been shown to be reduced by administration of histone deacetylase (HDAC) inhibitors (HDACis) resulting in some degree of neuroprotection in various models of neurodegenerative disease including in Huntington's disease and amyotrophic lateral sclerosis. However, there is limited information of effects of HDACis in PD models. We have previously shown HDACis to be partially protective against 1-methyl-4-phenylpyridinium (MPP(+))-mediated cell loss in vitro. The present study was conducted to extend these findings to an in vivo PD model. The HDACi valproic acid (VPA) was co-administered with MPTP for 5 days to male FVBn mice and continued for an additional 2 weeks, throughout the period of active neurodegeneration associated with MPTP-mediated DAergic cell loss. VPA was able to partially prevent striatal dopamine depletion and almost completely protect against substantia nigra DAergic cell loss. These results suggest that VPA may be a potential disease-modifying therapy for PD.
Collapse
|
39
|
Fernández M, Negro S, Slowing K, Fernández-Carballido A, Barcia E. An effective novel delivery strategy of rasagiline for Parkinson's disease. Int J Pharm 2011; 419:271-80. [PMID: 21807080 DOI: 10.1016/j.ijpharm.2011.07.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/18/2011] [Accepted: 07/18/2011] [Indexed: 12/21/2022]
Abstract
This is the first report on the efficacy of a new controlled release system developed for rasagiline mesylate (RM) in a rotenone-induced rat model of Parkinson's disease (PD). PLGA microspheres in vitro released RM at a constant rate of 62.3 μg/day for two weeks. Intraperitoneal injection of rotenone (2 mg/kg/day) to Wistar rats produced typical PD symptoms. Catalepsy, akinesia and swim tests outcomes in animals receiving RM either in solution or within microspheres showed a reversal in descent latency when compared to rotenone-treated animals, being this reversal specially pronounced in animals receiving RM microspheres (dose equivalent to 1 mg/kg/day RM injected i.p. every 15 days). Nissl-staining of brain sections showed selective degeneration of the substantia nigra (SNc) dopaminergic neurons in rotenone-treated animals which was markedly reverted by RM microspheres. PET/CT with (18)F-DG resulted in mean increases of accumulation of radiotracer in striatum and SNc of around 40% in animals treated with RM microspheres which also had significant beneficial effects on Bcl-2, Bax, TNF-α mRNA and SOD2 levels as detected by real-time RT-PCR. Our results confirm the robust effect achieved by the new controlled release system developed for RM which exhibited better in vivo efficacy than RM given in solution.
Collapse
Affiliation(s)
- Marcos Fernández
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
40
|
Driver JA, Logroscino G, Lu L, Gaziano JM, Kurth T. Use of non-steroidal anti-inflammatory drugs and risk of Parkinson's disease: nested case-control study. BMJ 2011; 342:d198. [PMID: 21252104 PMCID: PMC3023971 DOI: 10.1136/bmj.d198] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To evaluate the relation between Parkinson's disease and prior use of non-steroidal anti-inflammatory drugs (NSAIDs) in a large cohort of men. DESIGN Case-control analysis nested in the Physicians' Health Study. PARTICIPANTS 22,007 male physicians aged 40-84 years without indications for or contraindications to regular NSAID use and free of Parkinson's disease at baseline. Cases and controls were matched by age alone or by age and scores for confounders (comorbidity and indicators of NSAID use). Up to five controls were matched to each of 616 cases by age and 565 cases by age and confounder scores. SETTING United States. MAIN OUTCOME MEASURES Odds of having been exposed to prior non-aspirin NSAID or aspirin use by participants with Parkinson's disease and by their controls in each case-control set. RESULTS Participants who had ever used non-aspirin NSAIDs had an increased risk of Parkinson's disease (odds ratio 1.28 (95% CI 1.05 to 1.56) in the age matched group but not in the group also matched on confounder scores (odds ratio 1.17 (0.94 to 1.46)). There was an increased risk of Parkinson's disease in men who had 1-2 years of regular non-aspirin NSAID use (odds ratio 1.35 (1.07 to 1.70)), a finding that remained significant after matching for confounder scores as well (odds ratio 1.35 (1.05 to 1.75)). In contrast, the significant association of use of non-aspirin NSAIDs for ≥ 5 years (odds ratio 1.48 (1.05 to 2.09)) in the age matched group was entirely attenuated in the group also matched on confounder scores (1.03 (0.70 to 1.53)). There was also a suggestion that men who regularly used aspirin had an increased risk of Parkinson's disease. Positive associations between non-aspirin NSAID or aspirin and risk of Parkinson's disease tended to disappear when analyses were limited to drug use ≥ 5 years before the disease diagnosis. CONCLUSIONS This case-control study did not find evidence that NSAID use reduces Parkinson's disease risk. The positive associations observed between NSAID use and Parkinson's disease might have been due to confounding by indication as the use was clustered in the few years before disease diagnosis.
Collapse
Affiliation(s)
- Jane A Driver
- Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, MA 02120, USA.
| | | | | | | | | |
Collapse
|
41
|
Mazzio EA, Close F, Soliman KFA. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. Int J Mol Sci 2011; 12:506-69. [PMID: 21340000 PMCID: PMC3039966 DOI: 10.3390/ijms12010506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA; E-Mails: (E.A.M.); (F.C.)
| | | | | |
Collapse
|
42
|
Cumming P, Borghammer P. Molecular imaging and the neuropathologies of Parkinson's disease. Curr Top Behav Neurosci 2011; 11:117-48. [PMID: 22034053 DOI: 10.1007/7854_2011_165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main motor symptoms of Parkinson's disease (PD) are linked to degeneration of the nigrostriatal dopamine (DA) fibers, especially those innervating the putamen. This degeneration can be assessed in molecular imaging studies with presynaptic tracers such as [(18)F]-fluoro-L-DOPA (FDOPA) and ligands for DA transporter ligands. However, the pathologies of PD are by no means limited to nigrostriatal loss. Results of post mortem and molecular imaging studies reveal parallel degenerations of cortical noradrenaline (NA) and serotonin (5-HT) innervations, which may contribute to affective and cognitive changes of PD. Especially in advanced PD, cognitive impairment can come to resemble that seen in Alzheimer's dementia, as can the degeneration of acetylcholine innervations arising in the basal forebrain. The density of striatal DA D(2) receptors increases in early untreated PD, consistent with denervation upregulation, but there is an accelerated rate of DA receptor loss as the disease advances. Animal studies and post mortem investigations reveal changes in brain opioid peptide systems, but these are poorly documented in imaging studies of PD. Relatively minor changes in the binding sites for GABA are reported in cortex and striatum of PD patients. There remains some controversy about the expression of the 18 kDa translocator protein (TSPO) in activated microglia as an indicator of an active inflammatory component of neurodegeneration in PD. A wide variety of autonomic disturbances contribute to the clinical syndrome of PD; the degeneration of myocardial sympathetic innervation can be revealed in SPECT studies of PD patients with autonomic failure. Considerable emphasis has been placed on investigations of cerebral blood flow and energy metabolism in PD. Due to the high variance of these physiological estimates, researchers have often employed normalization procedures for the sensitive detection of perturbations in relatively small patient groups. However, a widely used normalization to the global mean must be used with caution, as it can result in spurious findings of relative hypermetabolic changes in subcortical structures. A meta-analysis of the quantitative studies to date shows that there is in fact widespread hypometabolism and cerebral blood flow in the cerebral cortex, especially in frontal cortex and parietal association areas. These changes can bias the use of global mean normalization, and probably represent the pathophysiological basis of the cognitive impairment of PD.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Ludwig-Maximilian's University of Munich, Munich, Germany,
| | | |
Collapse
|
43
|
Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Maldonado PD, Ruiz-Sánchez E. S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinsonism in mice. J Nutr Biochem 2010; 22:937-44. [PMID: 21190833 DOI: 10.1016/j.jnutbio.2010.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/01/2010] [Accepted: 08/13/2010] [Indexed: 11/16/2022]
Abstract
S-Allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse has been the most widely used model for assessing neuroprotective agents for Parkinson's disease. 1-Methyl-4-phenylpyridinium (MPP(+)) is the stable metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and it causes nigrostriatal dopaminergic neurotoxicity. Previous studies suggest that oxidative stress, via free radical production, is involved in MPP(+)-induced neurotoxicity. Here, we report on the neuroprotective effect of SAC against oxidative stress induced by MPP(+) in the striatum of C57BL/6J mice. Mice were pretreated with SAC (125 mg/kg ip) daily for 17 days, followed by administration of MPP(+) (0.72 mg/kg icv), and were sacrificed 24 h later to evaluate lipid peroxidation, different antioxidant enzyme activities, spontaneous locomotor activity and dopamine (DA) content. MPP(+) administration resulted in a significant decrease in DA levels in the striatum. Mice receiving SAC (125 mg/kg ip) had significantly attenuated MPP(+)-induced loss of striatal DA levels (32%). The neuroprotective effect of SAC against MPP(+) neurotoxicity was associated with blocked (100% of protection) of lipid peroxidation and reduction of superoxide radical production - indicated by an up-regulation of Cu-Zn-superoxide dismutase activity - both of which are indices of oxidative stress. Behavioral analyses showed that SAC improved MPP(+)-induced impairment of locomotion (35%). These findings suggest that in mice, SAC attenuates MPP(+)-induced neurotoxicity in the striatum and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects.
Collapse
Affiliation(s)
- Patricia Rojas
- Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery, "Manuel Velasco Suárez," SS, Mexico City, D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
44
|
Antiparkinsonian Effects of Aqueous Methanolic Extract of Hyoscyamus niger Seeds Result From its Monoamine Oxidase Inhibitory and Hydroxyl Radical Scavenging Potency. Neurochem Res 2010; 36:177-86. [DOI: 10.1007/s11064-010-0289-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
|
45
|
Kosloski LM, Ha DM, Stone DK, Hutter JAL, Pichler MR, Reynolds AD, Gendelman HE, Mosley RL. Adaptive immune regulation of glial homeostasis as an immunization strategy for neurodegenerative diseases. J Neurochem 2010; 114:1261-76. [PMID: 20524958 PMCID: PMC2923270 DOI: 10.1111/j.1471-4159.2010.06834.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurodegenerative diseases, notably Alzheimer's and Parkinson's diseases, are amongst the most devastating disorders afflicting the elderly. Currently, no curative treatments or treatments that interdict disease progression exist. Over the past decade, immunization strategies have been proposed to combat disease progression. Such strategies induce humoral immune responses against misfolded protein aggregates to facilitate their clearance. Robust adaptive immunity against misfolded proteins, however, accelerates disease progression, precipitated by induced effector T cell responses that lead to encephalitis and neuronal death. Since then, mechanisms that attenuate such adaptive neurotoxic immune responses have been sought. We propose that shifting the balance between effector and regulatory T cell activity can attenuate neurotoxic inflammatory events. This review summarizes advances in immune regulation to achieve a homeostatic glial response for therapeutic gain. Promising new ways to optimize immunization schemes and measure their clinical efficacy are also discussed.
Collapse
Affiliation(s)
| | | | - David K. Stone
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Jessica A. L. Hutter
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Michael R. Pichler
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Ashley D. Reynolds
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| |
Collapse
|
46
|
Taylor TN, Greene JG, Miller GW. Behavioral phenotyping of mouse models of Parkinson's disease. Behav Brain Res 2010; 211:1-10. [PMID: 20211655 PMCID: PMC2862121 DOI: 10.1016/j.bbr.2010.03.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/01/2010] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder afflicting millions of people in the United States. The advent of transgenic technologies has contributed to the development of several new mouse models, many of which recapitulate some aspects of the disease; however, no model has been demonstrated to faithfully reproduce the full constellation of symptoms seen in human PD. This may be due in part to the narrow focus on the dopamine-mediated motor deficits. As current research continues to unmask PD as a multi-system disorder, animal models should similarly evolve to include the non-motor features of the disease. This requires that typically cited behavioral test batteries be expanded. The major non-motor symptoms observed in PD patients include hyposmia, sleep disturbances, gastrointestinal dysfunction, autonomic dysfunction, anxiety, depression, and cognitive decline. Mouse behavioral tests exist for all of these symptoms and while some models have begun to be reassessed for the prevalence of this broader behavioral phenotype, the majority has not. Moreover, all behavioral paradigms should be tested for their responsiveness to L-DOPA so these data can be compared to patient response and help elucidate which symptoms are likely not dopamine-mediated. Here, we suggest an extensive, yet feasible, battery of behavioral tests for mouse models of PD aimed to better assess both non-motor and motor deficits associated with the disease.
Collapse
Affiliation(s)
- Tonya N. Taylor
- Center for Neurodegenerative Disease, Rollins School of Public Health, Emory University, Atlanta, GA 30322
- Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - James G. Greene
- Department of Neurology, Emory University, Atlanta, GA 30322
- Department of Pharmacology, Emory University, Atlanta, GA 30322
| | - Gary W. Miller
- Center for Neurodegenerative Disease, Rollins School of Public Health, Emory University, Atlanta, GA 30322
- Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322
- Department of Neurology, Emory University, Atlanta, GA 30322
- Department of Pharmacology, Emory University, Atlanta, GA 30322
| |
Collapse
|
47
|
Borah A, Mohanakumar KP. Salicylic acid protects against chronic l-DOPA-induced 6-OHDA generation in experimental model of parkinsonism. Brain Res 2010; 1344:192-9. [DOI: 10.1016/j.brainres.2010.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
48
|
Yong-Kee CJ, Salomonczyk D, Nash JE. Development and Validation of a Screening Assay for the Evaluation of Putative Neuroprotective Agents in the Treatment of Parkinson’s Disease. Neurotox Res 2010; 19:519-26. [DOI: 10.1007/s12640-010-9174-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/13/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
|
49
|
Thrash B, Thiruchelvan K, Ahuja M, Suppiramaniam V, Dhanasekaran M. Methamphetamine-induced neurotoxicity: the road to Parkinson's disease. Pharmacol Rep 2010; 61:966-77. [PMID: 20081231 DOI: 10.1016/s1734-1140(09)70158-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 10/29/2009] [Indexed: 01/22/2023]
Abstract
Studies have implicated methamphetamine exposure as a contributor to the development of Parkinson's disease. There is a significant degree of striatal dopamine depletion produced by methamphetamine, which makes the toxin useful in the creation of an animal model of Parkinson's disease. Parkinson's disease is a progressive neurodegenerative disorder associated with selective degeneration of nigrostriatal dopaminergic neurons. The immediate need is to understand the substances that increase the risk for this debilitating disorder as well as these substances'neurodegenerative mechanisms. Currently, various approaches are being taken to develop a novel and cost-effective anti-Parkinson's drug with minimal adverse effects and the added benefit of a neuroprotective effect to facilitate and improve the care of patients with Parkinson's disease. Amethamphetamine-treated animal model for Parkinson's disease can help to further the understanding of the neurodegenerative processes that target the nigrostriatal system. Studies on widely used drugs of abuse, which are also dopaminergic toxicants, may aid in understanding the etiology, pathophysiology and progression of the disease process and increase awareness of the risks involved in such drug abuse. In addition, this review evaluates the possible neuroprotective mechanisms of certain drugs against methamphetamine-induced toxicity.
Collapse
Affiliation(s)
- Bessy Thrash
- Department of Pharmacological Sciences, Harrison School of Pharmacy, Auburn University, 4306 Walker building, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|
50
|
Grace CE, Schaefer TL, Herring NR, Graham DL, Skelton MR, Gudelsky GA, Williams MT, Vorhees CV. Effect of a neurotoxic dose regimen of (+)-methamphetamine on behavior, plasma corticosterone, and brain monoamines in adult C57BL/6 mice. Neurotoxicol Teratol 2010; 32:346-55. [PMID: 20096350 DOI: 10.1016/j.ntt.2010.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/22/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE In rats, neurotoxic doses of methamphetamine (MA) induce astrogliosis, long lasting monoamine reductions, reuptake transporter down-regulation, and learning impairments. OBJECTIVE We tested whether comparable effects occur in C57BL/6 mice. METHOD C57BL/6 mice were treated with 10mg/kgs.c.x4 MA on a single day and evaluated at various intervals thereafter. RESULTS The neurotoxic dose regimen of MA caused the predicted acute hyperthermia and increased striatal glial fibrillary acidic protein and reduced neostriatal dopamine. The MA-treated mice were hypoactive 24h later but not 48h later. MA-treated mice also showed exaggerated initial hyperactivity after a pharmacological dose of MA used to stimulate locomotion followed by a later phase of hypoactivity compared to saline-treated mice. No differences were observed on learning or memory tests (novel object recognition, egocentric, or spatial learning/memory). MA-treated mice showed a trend toward increased prepulse inhibition but not baseline acoustic startle reactivity. After testing, MA-treated mice showed reduced neostriatal dopamine and increased basal plasma corticosterone. CONCLUSIONS A neurotoxic/binge regimen of MA in mice that produces the typical pattern of neurotoxic changes to those seen in rats, results in few behavioral changes. This may limit the utility of C57BL/6 mice for modeling the cognitive and behavioral effects described in human MA users who show such changes even after prolonged abstinence.
Collapse
Affiliation(s)
- Curtis E Grace
- Division of Neurology, Dept. of Pediatrics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States
| | | | | | | | | | | | | | | |
Collapse
|