1
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
6
|
Gupta A, Décaillot FM, Devi LA. Targeting opioid receptor heterodimers: strategies for screening and drug development. AAPS JOURNAL 2006; 8:E153-9. [PMID: 16584123 PMCID: PMC2751434 DOI: 10.1208/aapsj080118] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-protein-coupled receptors are a major target for the development of new marketable drugs. A growing number of studies have shown that these receptors could bind to their ligands, signal, and be internalized as dimers. Most of the evidence comes from in vitro studies, but recent studies using animal models support an important role for dimerization in vivo and in human pathologies. It is therefore becoming highly relevant to include dimerization in screening campaigns: the increased complexity reached by the ability to target 2 receptors should lead to the identification of more specific hits that could be developed into drugs with fewer side effects. In this review, we have summarized results from a series of studies characterizing the properties of G-protein-coupled receptor dimers using both in vitro and in vivo systems. Since opioid receptors exist as dimers and heterodimerization modulates their pharmacology, we have used them as a model system to develop strategies for the identification of compounds that will specifically bind and activate opioid receptor heterodimers: such compounds could represent the next generation of pain relievers with decreased side effects, including reduced drug abuse liability.
Collapse
Affiliation(s)
- Achla Gupta
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 19-84 Annenberg Building One Gustave L. Levy Place, 10029 New York, NY
| | - Fabien M. Décaillot
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 19-84 Annenberg Building One Gustave L. Levy Place, 10029 New York, NY
| | - Lakshmi A. Devi
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 19-84 Annenberg Building One Gustave L. Levy Place, 10029 New York, NY
| |
Collapse
|
7
|
Charles AC, Mostovskaya N, Asas K, Evans CJ, Dankovich ML, Hales TG. Coexpression of delta-opioid receptors with micro receptors in GH3 cells changes the functional response to micro agonists from inhibitory to excitatory. Mol Pharmacol 2003; 63:89-95. [PMID: 12488540 DOI: 10.1124/mol.63.1.89] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GH3 cells show spontaneous activity characterized by bursts of action potentials and oscillations in [Ca 2+]i. This activity is modulated by the activation of exogenously expressed opioid receptors. In GH3 cells expressing only micro receptors (GH3MOR cells), the micro receptor-specific ligand [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) inhibited spontaneous Ca 2+ signaling by the inhibition of voltage-gated Ca 2+ channels, activation of inward-rectifying K+ channels, and inhibition of adenylyl cyclase. In contrast, in cells expressing both micro and delta receptors (GH3MORDOR cells), DAMGO had an excitatory effect on Ca 2+ signaling that was mediated by phospholipase C and release of Ca 2+ from intracellular stores. The excitatory effect of DAMGO was also inhibited by pretreatment with pertussis toxin. Despite the excitatory effect on Ca 2+ signaling, DAMGO inhibited Ca 2+ channels and activated inward-rectifying K+ channels in GH3MORDOR cells, although to a lesser extent than in GH3MOR cells. Long-term treatment with the delta receptor-specific ligand [D-Pen2,D-Pen5]-enkephalin reduced the excitatory effect of DAMGO in the majority of GH3MORDOR cells and restored the inhibitory response to DAMGO in some cells. The inhibitory effect of somatostatin on Ca 2+ signaling was not different in GH3MORDOR versus GH3MOR cells. These results indicate that interaction between micro- and delta-opioid receptors causes a change in the functional response to micro ligands, possibly by the formation of a micro/delta heterodimer with distinct functional properties.
Collapse
Affiliation(s)
- Andrew C Charles
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Acosta-Martinez M, Etgen AM. The role of delta-opioid receptors in estrogen facilitation of lordosis behavior. Behav Brain Res 2002; 136:93-102. [PMID: 12385794 DOI: 10.1016/s0166-4328(02)00103-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study investigated the role of delta-opioid receptors (ORs) in estrogen facilitation of female rat reproductive behavior (lordosis). Infusion of 2 microg of the selective delta-OR agonist [D-Pen(2),D-Pen(5)]-enkephalin (DPDPE), into the third ventricle facilitated lordosis behavior in ovariectomized (OVX) rats injected with estrogen (E) 48 and 24 h before behavioral testing. Pretreatment with the selective delta-OR antagonist naltrindole (NTDL) blocked DPDPE effects on lordosis behavior. Ventricular infusion of NTDL (40 microg) also suppressed lordosis behavior in fully receptive OVX rats primed with both E and progesterone (P). In addition, NTDL blocked lordosis behavior when infused into the ventromedial nucleus of the hypothalamus (VMH) but not into the medial preoptic area (mPOA). Site-specific infusion of DPDPE into the VMH had dose-dependent, dual effects on lordosis behavior. While a very low dose of DPDPE (0.01 microg) facilitated lordosis behavior, a higher dose (1.0 microg) inhibited receptivity in OVX rats primed with E and a low dose (50 microg) of P. We used 3H-DPDPE to measure the density of delta-ORs in OVX rats treated with vehicle or with E by receptor autoradiography. E treatment did not have any effect on the density of DPDPE binding sites in the VMH, mPOA, medial amygdala, or caudate putamen. The behavioral effects of the ligands used in this study suggest that activation of delta-OR in the VMH by endogenous opioids facilitates estrogen-dependent lordosis behavior.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Autoradiography
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Estrogens/pharmacology
- Female
- Microinjections
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Ovariectomy
- Posture
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Sexual Behavior, Animal/drug effects
- Stereotaxic Techniques
- Ventromedial Hypothalamic Nucleus/physiology
Collapse
Affiliation(s)
- Maricedes Acosta-Martinez
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 113, Bronx, NY 10461, USA.
| | | |
Collapse
|
9
|
He LM, Chen LY, Lou XL, Qu AL, Zhou Z, Xu T. Evaluation of beta-amyloid peptide 25-35 on calcium homeostasis in cultured rat dorsal root ganglion neurons. Brain Res 2002; 939:65-75. [PMID: 12020852 DOI: 10.1016/s0006-8993(02)02549-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accumulation of beta-amyloid (Abeta) protein in brain is an important characteristic for the etiology of Alzheimer's disease. Of all the possible processes generating the neurotoxic effects by Abeta, disruption of intracellular Ca(2+) homeostasis is the primary event. In this process, various intracellular Ca(2+) regulatory mechanisms are reported to be involved. Using patch-clamp techniques, both low and high voltage activated Ca(2+) channel currents were recorded in the cultured dorsal root ganglion (DRG) neurons. Application of Abeta protein fragment, Abeta(25-35) (2 microM), for 30 s increased the amplitude in both currents. The Abeta-triggered facilitation effect of Ca(2+) channel was found in all the depolarized potentials tested, as shown in the current-voltage relationship. Furthermore, after applying single cell Ca(2+) microfluorometric method, it was found that Abeta(25-35) alone could trigger elevations of intracellular Ca(2+) concentration ([Ca(2+)](i)) level in 90% of the cells tested. The elevation diminished completely by cumulatively adding CdCl(2), NiCl(2), thapsigargin (TG), FCCP and Zn(2+) in the normal bath solution. Combining pharmacological approaches, we found that voltage-dependent Ca(2+) channels, Ca(2+) stores and a putative Zn(2+)-sensitive extracellular Ca(2+) entry, respectively, makes 61.0, 25.1, and 13.9% contribution to the [Ca(2+)](i) increase caused by Abeta. When tested in a Ca(2+)-free buffer, mitochondria was found to contribute 41.3% of Abeta produced [Ca(2+)](i) elevation and the remaining 58.7% was attributed to endoplasmic reticulum (ER) release.
Collapse
Affiliation(s)
- L-M He
- Institute of Biophysics and Biochemistry, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | | | | | | | | |
Collapse
|