1
|
Menescal-de-Oliveira L, Brentegani MR, Teixeira FP, Giusti H, Saia RS. Immune-mediated impairment of tonic immobility defensive behavior in an experimental model of colonic inflammation. Pflugers Arch 2024; 476:1743-1760. [PMID: 39218820 DOI: 10.1007/s00424-024-03011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Ulcerative colitis has been associated with psychological distress and an aberrant immune response. The immunomodulatory role of systemic cytokines produced during experimental intestinal inflammation in tonic immobility (TI) defensive behavior remains unknown. The present study characterized the TI defensive behavior of guinea pigs subjected to colitis induction at the acute stage and after recovery from intestinal mucosa injury. Moreover, we investigated whether inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-10, and prostaglandins) act on the mesencephalic nucleus, periaqueductal gray matter (PAG). Colitis was induced in guinea pigs by intrarectal administration of acetic acid. The TI defensive behavior, histology, cytokine production, and expression of c-FOS, IBA-1, and cyclooxygenase (COX)-2 in PAG were evaluated. Colitis reduced the duration of TI episodes from the first day, persisting throughout the 7-day experimental period. Neuronal c-FOS immunoreactivity was augmented in both columns of the PAG (ventrolateral (vlPAG) and dorsal), but there were no changes in IBA-1 expression. Dexamethasone, infliximab, and parecoxib treatments increased the duration of TI episodes, suggesting a modulatory role of peripheral inflammatory mediators in this behavior. Immunoneutralization of TNF-α, IL-1β, and IL-8 in the vlPAG reversed all effects produced by colitis. In contrast, IL-10 neutralization further reduced the duration of TI episodes. Our results reveal that peripherally produced inflammatory mediators during colitis may modulate neuronal functioning in mesencephalic structures such as vlPAG.
Collapse
Affiliation(s)
- Leda Menescal-de-Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Mariulza Rocha Brentegani
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fernanda Pincelli Teixeira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Humberto Giusti
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Simone Saia
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Avenida Dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| |
Collapse
|
2
|
Sudhahar S, Ozer B, Chang J, Chadwick W, O'Donovan D, Campbell A, Tulip E, Thompson N, Roberts I. An experimentally validated approach to automated biological evidence generation in drug discovery using knowledge graphs. Nat Commun 2024; 15:5703. [PMID: 38977662 PMCID: PMC11231212 DOI: 10.1038/s41467-024-50024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Explaining predictions for drug repositioning with biological knowledge graphs is a challenging problem. Graph completion methods using symbolic reasoning predict drug treatments and associated rules to generate evidence representing the therapeutic basis of the drug. Yet the vast amounts of generated paths that are biologically irrelevant or not mechanistically meaningful within the context of disease biology can limit utility. We use a reinforcement learning based knowledge graph completion model combined with an automatic filtering approach that produces the most relevant rules and biological paths explaining the predicted drug's therapeutic connection to the disease. In this work we validate the approach against preclinical experimental data for Fragile X syndrome demonstrating strong correlation between automatically extracted paths and experimentally derived transcriptional changes of selected genes and pathways of drug predictions Sulindac and Ibudilast. Additionally, we show it reduces the number of generated paths in two case studies, 85% for Cystic fibrosis and 95% for Parkinson's disease.
Collapse
|
3
|
Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 2020; 42:389-417. [PMID: 33030712 DOI: 10.1007/s10571-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Gut inflammation or injury causes intestinal hypersensitivity (IHS) and hyperalgesia, which can persist after the initiating pathology resolves, are often referred to somatic regions and exacerbated by psychological stress, anxiety or depression, suggesting the involvement of both the spinal cord and the brain. The supraspinal mechanisms of IHS remain to be fully elucidated, however, over the last decades the series of intestinal pathology-associated neuroplastic changes in the brain has been revealed, being potentially responsible for the phenomenon. This paper reviews current clinical and experimental data, including the authors' own findings, on these functional, structural, and neurochemical/molecular changes within cortical, subcortical and brainstem regions processing and modulating sensory signals from the gut. As concluded in the review, IHS can develop and maintain due to the bowel inflammation/injury-induced persistent hyperexcitability of viscerosensory brainstem and thalamic nuclei and sensitization of hypothalamic, amygdala, hippocampal, anterior insular, and anterior cingulate cortical areas implicated in the neuroendocrine, emotional and cognitive modulation of visceral sensation and pain. An additional contribution may come from the pathology-triggered dysfunction of the brainstem structures inhibiting nociception. The mechanism underlying IHS-associated regional hyperexcitability is enhanced NMDA-, AMPA- and group I metabotropic receptor-mediated glutamatergic neurotransmission in association with altered neuropeptide Y, corticotropin-releasing factor, and cannabinoid 1 receptor signaling. These alterations are at least partially mediated by brain microglia and local production of cytokines, especially tumor necrosis factor α. Studying the IHS-related brain neuroplasticity in greater depth may enable the development of new therapeutic approaches against chronic abdominal pain in inflammatory bowel disease.
Collapse
|
4
|
Enhanced spinal neuronal responses as a mechanism for increased number and size of active acupoints in visceral hyperalgesia. Sci Rep 2020; 10:10312. [PMID: 32587303 PMCID: PMC7316812 DOI: 10.1038/s41598-020-67242-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/04/2020] [Indexed: 11/27/2022] Open
Abstract
Acupuncture has been used to treat a variety of illness and involves the insertion and manipulation of needles into specific points on the body (termed “acupoints”). It has been suggested that acupoints are not merely discrete, static points, but can be dynamically changed according to the pathological state of internal organs. We investigated in a rat model of mustard oil (MO)-induced visceral hyperalgesia whether the number and size of acupoints were modified according to the severity of the colonic pain, and whether the changes were associated with enhanced activity of the spinal dorsal horn. In MO-treated rats, acupoints showing neurogenic inflammation (termed “neurogenic spots” or Neuro-Sps) were found both bilaterally and unilaterally on the leg. The number and size of these acupoints increased along with increasing doses of MO. Electroacupuncture of the acupoints generated analgesic effects on MO-induced visceral hypersensitivity. The MO-treated rats showed an increase in c-Fos expression in spinal dorsal horn neurons and displayed increased evoked activity and a prolonged after-discharge in spinal wide dynamic response (WDR) neurons in response to colorectal distension. Increased number and size of neurogenic inflammatory acupoints following MO treatment were reduced by inhibiting AMPA and NMDA receptors in the spinal cord. Our findings suggest that acupoints demonstrate increased number and size along with severity of visceral pain, which may be associated with enhanced neuronal responses in spinal dorsal horn neurons.
Collapse
|
5
|
Lomax AE, Pradhananga S, Sessenwein JL, O'Malley D. Bacterial modulation of visceral sensation: mediators and mechanisms. Am J Physiol Gastrointest Liver Physiol 2019; 317:G363-G372. [PMID: 31290688 DOI: 10.1152/ajpgi.00052.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The potential role of the intestinal microbiota in modulating visceral pain has received increasing attention during recent years. This has led to the identification of signaling pathways that have been implicated in communication between gut bacteria and peripheral pain pathways. In addition to the well-characterized impact of the microbiota on the immune system, which in turn affects nociceptor excitability, bacteria can modulate visceral afferent pathways by effects on enterocytes, enteroendocrine cells, and the neurons themselves. Proteases produced by bacteria, or by host cells in response to bacteria, can increase or decrease the excitability of nociceptive dorsal root ganglion (DRG) neurons depending on the receptor activated. Short-chain fatty acids generated by colonic bacteria are involved in gut-brain communication, and intracolonic short-chain fatty acids have pronociceptive effects in rodents but may be antinociceptive in humans. Gut bacteria modulate the synthesis and release of enteroendocrine cell mediators, including serotonin and glucagon-like peptide-1, which activate extrinsic afferent neurons. Deciphering the complex interactions between visceral afferent neurons and the gut microbiota may lead to the development of improved probiotic therapies for visceral pain.
Collapse
Affiliation(s)
- Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Sabindra Pradhananga
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Jessica L Sessenwein
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Dervla O'Malley
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Differential responses of neurons in the rat caudal ventrolateral medulla to visceral and somatic noxious stimuli and their alterations in colitis. Brain Res Bull 2019; 152:299-310. [PMID: 31377442 DOI: 10.1016/j.brainresbull.2019.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
Visceral and somatic types of pain have been reported to manifest crucial differences not only in the experience, but also in their peripheral and central processing. However, the precise neuronal mechanisms that responsible for the modality-specific transmission of pain signals, especially at the supraspinal level, remain unclear. Very little is known also about the potential involvement of such mechanisms in the development of viscero-somatic hyperalgesia. Therefore, in the present study performed on urethane-anesthetized adult male Wistar rats we examined responses of neurons in the caudal ventrolateral medulla (CVLM)-the first site for supraspinal processing of both internal and external pain signals-to visceral (colorectal distension, CRD) and somatic (squeezing of the tail) noxious stimulations and evaluated alterations in response properties of these cells after the induction of colitis. It has been found out that the CVLM of healthy control rats, along with harboring of cells excited by both stimulations (23.7%), contained neurons that were activated by either visceral (31.9%) or somatic noxious stimuli (44.4%). In inflamed animals, the percentages of the visceral and somatic nociceptive cells were decreased (to 18.3% and 34.3%, correspondingly) and the number of bimodal neurons was increased (up to 47.4%); these alterations were associated with substantially enhanced responses of both the modality-specific and convergent CVLM neurons not only to CRD, but also to squeezing of the tail. Under these conditions, visceral and somatic pain stimuli induced similar changes in arterial blood pressure and respiratory rate, whereas in the absence of intestinal inflammation noxious CRD and tail stimulation evoked predominantly divergent autonomic reactions. The data obtained can benefit to a deeper understanding of the neuronal mechanisms that underlie differential supraspinal processing of visceral and somatic noxious stimuli and can potentially contribute to the realization of specific cardiovascular and respiratory accompaniments inherent to a particular type of pain. Therewith, results of the study elucidate colitis-induced alterations in these mechanisms, which may be responsible for the combined development of visceral hypersensitivity and somatic hyperalgesia.
Collapse
|
7
|
Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 2018; 142:183-196. [PMID: 30031817 DOI: 10.1016/j.brainresbull.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
There is considerable clinical and experimental evidence that intestinal inflammation is associated with altered visceral nociceptive processing in the spinal cord and brain, but the underlying neuronal mechanisms, especially acting at the supraspinal level, remain unclear. Considering that the caudal ventrolateral medulla (CVLM) and the nucleus tractus solitarius (NTS) are the first sites for supraspinal processing of visceral pain signals, in the present study we evaluated the experimental colitis-induced changes in response properties of CVLM and NTS medullary neurons to noxious colorectal distension (CRD) in urethane-anesthetized adult male Wistar rats. To determine if gut inflammation alters the 5-HT3 receptor-dependent modulation of visceral pain-related CVLM and NTS cells, we examined the effects of intravenously administered selective 5-HT3 antagonist granisetron on ongoing and CRD-evoked activity of CVLM and NTS neurons in healthy control and colitic animals. In the absence of colonic pathology, the CVLM neurons were more excited by noxious CRD that the NTS cells, which demonstrated a greater tendency to be inhibited by the stimulation. The difference was eliminated after the development of colitis due to the increase in the proportion of CRD-excited neurons in both medullary regions associated with enhanced magnitude of the neuronal nociceptive responses. Intravenous granisetron (1 or 2 mg/kg) produced the dose-dependent suppression of the ongoing and evoked firing of CRD-excited cells within both the CVLM and NTS in normal conditions as well as was able to substantially reduce excitability of the caudal medullary neurons in the presence of colonic inflammation, arguing for the potential efficacy of the 5-HT3 receptor blockade with granisetron against both acute and inflammatory abdominal pain. Taken together, the data obtained can contribute to a deeper understanding of supraspinal serotonergic mechanisms responsible for the persistence of visceral hypersensitivity and hyperalgesia triggered by colonic inflammation.
Collapse
|
8
|
Altered intrinsic and synaptic properties of lumbosacral dorsal horn neurons in a mouse model of colitis. Neuroscience 2017; 362:152-167. [DOI: 10.1016/j.neuroscience.2017.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022]
|
9
|
Castro J, Harrington AM, Garcia-Caraballo S, Maddern J, Grundy L, Zhang J, Page G, Miller PE, Craik DJ, Adams DJ, Brierley SM. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABA B receptors. Gut 2017; 66:1083-1094. [PMID: 26887818 PMCID: PMC5532460 DOI: 10.1136/gutjnl-2015-310971] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/22/2015] [Accepted: 01/14/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVE α-Conotoxin Vc1.1 is a small disulfide-bonded peptide from the venom of the marine cone snail Conus victoriae. Vc1.1 has antinociceptive actions in animal models of neuropathic pain, but its applicability to inhibiting human dorsal root ganglion (DRG) neuroexcitability and reducing chronic visceral pain (CVP) is unknown. DESIGN We determined the inhibitory actions of Vc1.1 on human DRG neurons and on mouse colonic sensory afferents in healthy and chronic visceral hypersensitivity (CVH) states. In mice, visceral nociception was assessed by neuronal activation within the spinal cord in response to noxious colorectal distension (CRD). Quantitative-reverse-transcription-PCR, single-cell-reverse-transcription-PCR and immunohistochemistry determined γ-aminobutyric acid receptor B (GABABR) and voltage-gated calcium channel (CaV2.2, CaV2.3) expression in human and mouse DRG neurons. RESULTS Vc1.1 reduced the excitability of human DRG neurons, whereas a synthetic Vc1.1 analogue that is inactive at GABABR did not. Human DRG neurons expressed GABABR and its downstream effector channels CaV2.2 and CaV2.3. Mouse colonic DRG neurons exhibited high GABABR, CaV2.2 and CaV2.3 expression, with upregulation of the CaV2.2 exon-37a variant during CVH. Vc1.1 inhibited mouse colonic afferents ex vivo and nociceptive signalling of noxious CRD into the spinal cord in vivo, with greatest efficacy observed during CVH. A selective GABABR antagonist prevented Vc1.1-induced inhibition, whereas blocking both CaV2.2 and CaV2.3 caused inhibition comparable with Vc1.1 alone. CONCLUSIONS Vc1.1-mediated activation of GABABR is a novel mechanism for reducing the excitability of human DRG neurons. Vc1.1-induced activation of GABABR on the peripheral endings of colonic afferents reduces nociceptive signalling. The enhanced antinociceptive actions of Vc1.1 during CVH suggest it is a novel candidate for the treatment for CVP.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Andrea M Harrington
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Luke Grundy
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | | | - Guy Page
- Anabios, San Diego, California, USA
| | | | - David J Craik
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David J Adams
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, Faculty of Health Sciences, The University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
10
|
McIlwrath SL, Nesemeier R, Ma F, Oz HS, Zhang L, Westlund KN. Inflammatory 'double hit' model of temporomandibular joint disorder with elevated CCL2, CXCL9, CXCL10, RANTES and behavioural hypersensitivity in TNFR1/R2-/- mice. Eur J Pain 2017; 21:1209-1223. [PMID: 28318085 DOI: 10.1002/ejp.1021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Patients with temporomandibular joint disorders (TMD), reactive arthritis and rheumatoid arthritis often have combined etiology of hereditary and microenvironmental factors contributing to joint pain. Multiple clinical and animal studies indicate 'double-hit' inflammatory insults can cause chronic inflammation. The first inflammatory insult primes the immune system and subsequent insults elicit amplified responses. The present 'double hit' study produced a chronic orofacial pain model in mice with genetic deletion of both TNFα receptors (TNFR1/R2-/-), investigating the main nociceptive signalling pathways in comparisons to wild type mice. METHODS An initial inflammatory insult was given unilaterally into the temporomandibular joint (TMJ). Secondary hypersensitivity was tested on the skin over the TMJ throughout the experiment. Three weeks later after complete reversal of hypersensitivity, a second inflammatory insult was imposed on the colon. Pharmacological interventions were tested for efficacy after week 10 when hypersensitivity was chronic in TNFR1/R2-/- mice. Serum cytokines were analysed at Days 1, 14, and Week 18. RESULTS The double hit insult produced chronic hypersensitivity continuing through the 4-month experimental timeline in the absence of TNFα signalling. P2X7 and NMDA receptor antagonists temporarily attenuated chronic hypersensitivity. Serum cytokine/chemokine analysis on Day 14 when CFA induced hypersensitivity was resolved identified increased levels of pro-inflammatory cytokines CCL2, CXCL9, CXCL10, RANTES and decreased levels of anti-inflammatory cytokines IL-1ra and IL-4 in TNFR1/R2-/- compared to WT mice. CONCLUSIONS These data suggest a causal feed-forward signalling cascade of these little studied cytokines have the potential to cause recrudescence in this orofacial inflammatory pain model in the absence of TNFα signalling. SIGNIFICANCE Using a mouse model of chronic inflammatory temporomandibular joint disorder, we determined that absence of functional TNFR1/R2 induces aberrant inflammatory signalling caused by other increased pro-inflammatory and decreased anti-inflammatory cytokines that could serve as blood biomarkers and may predict disease progression.
Collapse
Affiliation(s)
- S L McIlwrath
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, USA
| | - R Nesemeier
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, USA
| | - F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, USA
| | - H S Oz
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, USA
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, USA
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, USA
| |
Collapse
|
11
|
Hyland NP, Golubeva AV. GABA B receptors in the bladder and bowel: therapeutic potential for positive allosteric modulators?: Commentary on Kalinichev et al., Br J Pharmacol 171: 995-1006. Br J Pharmacol 2015; 172:4588-4590. [PMID: 24641323 DOI: 10.1111/bph.12617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/16/2014] [Accepted: 01/30/2014] [Indexed: 02/01/2023] Open
Abstract
LINKED ARTICLE This article is a Commentary on Kalinichev M, Palea S, Haddouk H, Royer-Urios I, Guilloteau V, Lluel P, Schneider M, Saporito M and Poli S (2014). ADX71441, a novel, potent and selective positive allosteric modulator of the GABAB receptor, shows efficacy in rodent models of overactive bladder. Br J Pharmacol 171: 995-1006. doi: 10.1111/bph.12517.
Collapse
Affiliation(s)
- Niall P Hyland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Jin S, Merchant ML, Ritzenthaler JD, McLeish KR, Lederer ED, Torres-Gonzalez E, Fraig M, Barati MT, Lentsch AB, Roman J, Klein JB, Rane MJ. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators. PLoS One 2015; 10:e0121637. [PMID: 25848767 PMCID: PMC4388838 DOI: 10.1371/journal.pone.0121637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI.
Collapse
Affiliation(s)
- Shunying Jin
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Michael L. Merchant
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jeffrey D. Ritzenthaler
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Eleanor D. Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Edilson Torres-Gonzalez
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Mostafa Fraig
- Department of Pathology, University of Louisville, Louisville, Kentucky, United States of America
| | - Michelle T. Barati
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Alex B. Lentsch
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Jon B. Klein
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Madhavi J. Rane
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
13
|
Kannampalli P, Sengupta JN. Role of principal ionotropic and metabotropic receptors in visceral pain. J Neurogastroenterol Motil 2015; 21:147-58. [PMID: 25843070 PMCID: PMC4398235 DOI: 10.5056/jnm15026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 02/24/2015] [Accepted: 03/26/2015] [Indexed: 12/13/2022] Open
Abstract
Visceral pain is the most common form of pain caused by varied diseases and a major reason for patients to seek medical consultation. It also leads to a significant economic burden due to workdays lost and reduced productivity. Further, long-term use of non-specific medications is also associated with side effects affecting the quality of life. Despite years of extensive research and the availability of several therapeutic options, management of patients with chronic visceral pain is often inadequate, resulting in frustration for both patients and physicians. This is, most likely, because the mechanisms associated with chronic visceral pain are different from those of acute pain. Accumulating evidence from years of research implicates several receptors and ion channels in the induction and maintenance of central and peripheral sensitization during chronic pain states. Understanding the specific role of these receptors will facilitate to capitalize on their unique properties to augment the therapeutic efficacy while at the same time minimizing unwanted side effects. The aim of this review is to provide a concise review of the recent literature that reports on the role of principal ionotropic receptors and metabotropic receptors in the modulation visceral pain. We also include an overview of the possibility of these receptors as potential new targets for the treatment of chronic visceral pain conditions.
Collapse
Affiliation(s)
- Pradeep Kannampalli
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jyoti N Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|
15
|
Ahn JH, Shin MC, Park JH, Kim IH, Lee JC, Yan BC, Hwang IK, Moon SM, Ahn JY, Ohk TG, Lee TH, Cho JH, Shin HC, Won MH. Increased immunoreactivity of c‑Fos in the spinal cord of the aged mouse and dog. Mol Med Rep 2014; 11:1043-8. [PMID: 25351722 DOI: 10.3892/mmr.2014.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
Abstract
Expression of c‑Fos in the spinal cord following nociceptive stimulation is considered to be a neurotoxic biomarker. In the present study, the immunoreactivity of c‑Fos in the spinal cord was compared between young adult (2‑3 years in dogs and 6 months in mice) and aged (10‑12 years in dogs and 24 months in mice) Beagle dogs and C57BL/6J mice. In addition, changes to neuronal distribution and damage to the spinal cord were also investigated. There were no significant differences in neuronal loss or degeneration of the spinal neurons observed in either the aged dogs or mice. Weak c‑Fos immunoreactivity was observed in the spinal neurons of the young adult animals; however, c‑Fos immunoreactivity was markedly increased in the nuclei of spinal neurons in the aged dogs and mice, as compared with that of the young adults. In conclusion, c‑Fos immunoreactivity was significantly increased without any accompanying neuronal loss in the aged spinal cord of mice and dogs, as compared with the spinal cords of the young adult animals.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Myoung Chul Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, Gyeonggi 445‑170, Republic of Korea
| | - Ji Yun Ahn
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Tae Hun Lee
- Department of Emergency Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Hyung-Cheul Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
16
|
A systematic review of the evidence for central nervous system plasticity in animal models of inflammatory-mediated gastrointestinal pain. Inflamm Bowel Dis 2014; 20:176-95. [PMID: 24284415 DOI: 10.1097/01.mib.0000437499.52922.b1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain frequently accompanies inflammatory disorders of the gastrointestinal tract (GIT), and animal models of GIT inflammation have been developed to explore the role of the central nervous system (CNS) in this process. Here, we summarize the evidence from animal studies for CNS plasticity following GIT inflammation. METHODS A systematic review was conducted to identify studies that: (1) used inflammation of GIT organs, (2) assessed pain or visceral hypersensitivity, and (3) presented evidence of CNS involvement. Two hundred and eight articles were identified, and 79 were eligible for analysis. RESULTS Rats were most widely used (76%). Most studies used adult animals (42%) with a bias toward males (74%). Colitis was the most frequently used model (78%) and 2,4,6-trinitrobenzenesulfonic acid the preferred inflammatory agent (33%). Behavioral (58%), anatomical/molecular (44%), and physiological (24%) approaches were used alone or in combination to assess CNS involvement during or after GIT inflammation. Measurement times varied widely (<1 h-> 2 wk after inflammation). Blinded outcomes were used in 42% studies, randomization in 10%, and evidence of visceral inflammation in 54%. Only 3 studies fulfilled our criteria for high methodological quality, and no study reported sample size calculations. CONCLUSIONS The included studies provide strong evidence for CNS plasticity following GIT inflammation, specifically in the spinal cord dorsal horn. This evidence includes altered visceromotor responses and indices of referred pain, elevated neural activation and peptide content, and increased neuronal excitability. This evidence supports continued use of this approach for preclinical studies; however, there is substantial scope to improve study design.
Collapse
|
17
|
Matricon J, Muller E, Accarie A, Meleine M, Etienne M, Voilley N, Busserolles J, Eschalier A, Lazdunski M, Bourdu S, Gelot A, Ardid D. Peripheral contribution of NGF and ASIC1a to colonic hypersensitivity in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 2013; 25:e740-54. [PMID: 23902154 DOI: 10.1111/nmo.12199] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder associated with idiopathic colonic hypersensitivity (CHS). However, recent studies suggest that low-grade inflammation could underlie CHS in IBS. The pro-inflammatory mediator nerve growth factor (NGF) plays a key role in the sensitization of peripheral pain pathways and several studies have reported its contribution to visceral pain development. NGF modulates the expression of Acid-Sensing Ion Channels (ASICs), which are proton sensors involved in sensory neurons sensitization. This study examined the peripheral contribution of NGF and ASICs to IBS-like CHS induced by butyrate enemas in the rat colon. METHODS Colorectal distension and immunohistochemical staining of sensory neurons were used to evaluate NGF and ASICs contribution to the development of butyrate-induced CHS. KEY RESULTS Systemic injection of anti-NGF antibodies or the ASICs inhibitor amiloride prevented the development of butyrate-induced CHS. A significant increase in NGF and ASIC1a protein expression levels was observed in sensory neurons of rats displaying butyrate-induced CHS. This increase was specific of small- and medium-diameter L1 + S1 sensory neurons, where ASIC1a was co-expressed with NGF or trkA in CGRP-immunoreactive somas. ASIC1a was also overexpressed in retrogradely labeled colon sensory neurons. Interestingly, anti-NGF antibody administration prevented ASIC1a overexpression in sensory neurons of butyrate-treated rats. CONCLUSIONS & INFERENCES Our data suggest that peripheral NGF and ASIC1a concomitantly contribute to the development of butyrate-induced CHS NGF-ASIC1a interplay may have a pivotal role in the sensitization of colonic sensory neurons and as such, could be considered as a potential new therapeutic target for IBS treatment.
Collapse
Affiliation(s)
- J Matricon
- NEURO-DOL, Pharmacologie Fondamentale et Clinique de la Douleur, Faculté de Médecine, INSERM/UdA, UMR 1107, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Westlund KN, Zhang L, Ma F, Oz HS. Chronic inflammation and pain in a tumor necrosis factor receptor (TNFR) (p55/p75-/-) dual deficient murine model. Transl Res 2012; 160:84-94. [PMID: 22687964 PMCID: PMC3376023 DOI: 10.1016/j.trsl.2011.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 12/17/2022]
Abstract
Many aspects of tissue damage after acute or chronic inflammatory reactions can be attributed directly to the concomitant biosynthesis and release of inducible early proinflammatory cytokine tumor necrosis factor alpha (TNFα). Conversely, systemic inflammation is impacted by the consequences of tissue damage. Dysregulated TNFα contributes to numerous pathophysiologic conditions including inflammatory bowel disease (IBD) and arthritis. Inflammatory stimuli trigger proteolytic cleavage and shedding of extracellular domains of TNFα receptors giving rise to 2 soluble fragments (p55 soluble tumor necrosis factor receptor 1 (sTNFR1) and p75 sTNFR2) that block the additional binding, activity, and synthesis of TNFα. We hypothesized that absence of sTNFR inhibitory feedback control would result in accumulated high levels of TNFα and other inflammatory factors promoting the cardinal signs of chronic inflammation and pain. The current study reports a translational murine model of chronic arthritis precipitated by 2 consecutive inflammatory insults. The "double hit" procedures provoke a chronic inflammatory response and pain-related behaviors in mice that are dually deficient in p55 (TNFR1) and p75 (TNFR2). The inflammation- and pain-related behaviors are transient in similarly treated wild-type (WT) mice. The complete Freund's adjuvant (CFA) method was used initially to induce knee joint inflammation, tactile mechanical and heat hypersensitivity, and gait disturbance. After these transient effects of the insult were resolved, a recrudescence persisting at least through 23 weeks was promoted by gastrointestinal (GI) insult with dilute intracolonic mustard oil (MO) only in the mutant mice and was reversed by a P2X7 antagonist. A serum proteome profiling analysis revealed high levels of serum inflammatory factors TNFα, regulated upon activation normally T-cell expressed and secreted (RANTES), chemokine (C-X-C motif) ligand 9 [CXCL9 (MIG)], chemokine (C-X-C motif) ligand 10 [CXCL10 (IP-10)], and chemokine (C-C motif) ligand 2 [CCL2 (MCP-1)]. These data suggest that impaired signaling of TNFα as a result of the deficit of the 2 protective soluble p55 and p75 sTNFR inhibitory factors plays a pivotal role in the reactivation of the immune response to GI insult that can produce recrudescence of inflammatory injury and a chronic pain state through promotion of high levels of serum inflammatory factors.
Collapse
Affiliation(s)
- Karin N Westlund
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | | | | | | |
Collapse
|
19
|
Yu SJ, Xia CM, Kay JC, Qiao LY. Activation of extracellular signal-regulated protein kinase 5 is essential for cystitis- and nerve growth factor-induced calcitonin gene-related peptide expression in sensory neurons. Mol Pain 2012; 8:48. [PMID: 22742729 PMCID: PMC3502118 DOI: 10.1186/1744-8069-8-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/24/2012] [Indexed: 11/23/2022] Open
Abstract
Background Cystitis causes considerable neuronal plasticity in the primary afferent pathways. The molecular mechanism and signal transduction underlying cross talk between the inflamed urinary bladder and sensory sensitization has not been investigated. Results In a rat cystitis model induced by cyclophosphamide (CYP) for 48 h, the mRNA and protein levels of the excitatory neurotransmitter calcitonin gene-related peptide (CGRP) are increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. Cystitis-induced CGRP expression in L6 DRG is triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reverses CGRP up-regulation during cystitis. CGRP expression in the L6 DRG neurons is also enhanced by retrograde NGF signaling when NGF is applied to the nerve terminals of the ganglion-nerve two-compartmented preparation. Characterization of the signaling pathways in cystitis- or NGF-induced CGRP expression reveals that the activation (phosphorylation) of extracellular signal-regulated protein kinase (ERK)5 but not Akt is involved. In L6 DRG during cystitis, CGRP is co-localized with phospho-ERK5 but not phospho-Akt. NGF-evoked CGRP up-regulation is also blocked by inhibition of the MEK/ERK pathway with specific MEK inhibitors U0126 and PD98059, but not by inhibition of the PI3K/Akt pathway with inhibitor LY294002. Further examination shows that cystitis-induced cAMP-responsive element binding protein (CREB) activity is expressed in CGRP bladder afferent neurons and is co-localized with phospho-ERK5 but not phospho-Akt. Blockade of NGF action in vivo reduces the number of DRG neurons co-expressing CGRP and phospho-CREB, and reverses cystitis-induced increases in micturition frequency. Conclusions A specific pathway involving NGF-ERK5-CREB axis plays an essential role in cystitis-induced sensory activation.
Collapse
Affiliation(s)
- Sharon J Yu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | | | | |
Collapse
|
20
|
Davis MP. Drug management of visceral pain: concepts from basic research. PAIN RESEARCH AND TREATMENT 2012; 2012:265605. [PMID: 22619712 PMCID: PMC3348642 DOI: 10.1155/2012/265605] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Visceral pain is experienced by 40% of the population, and 28% of cancer patients suffer from pain arising from intra- abdominal metastasis or from treatment. Neuroanatomy of visceral nociception and neurotransmitters, receptors, and ion channels that modulate visceral pain are qualitatively or quantitatively different from those that modulate somatic and neuropathic pain. Visceral pain should be recognized as distinct pain phenotype. TRPV1, Na 1.8, and ASIC3 ion channels and peripheral kappa opioid receptors are important mediators of visceral pain. Mu agonists, gabapentinoids, and GABAB agonists reduce pain by binding to central receptors and channels. Combinations of analgesics and adjuvants in animal models have supra-additive antinociception and should be considered in clinical trials. This paper will discuss the neuroanatomy, receptors, ion channels, and neurotransmitters important to visceral pain and provide a basic science rationale for analgesic trials and management.
Collapse
Affiliation(s)
- Mellar P. Davis
- Cleveland Clinic Lerner School of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Solid Tumor Division, Harry R. Horvitz Center for Palliative Medicine, Taussig Cancer Institute, USA
| |
Collapse
|
21
|
Matricon J, Gelot A, Etienne M, Lazdunski M, Muller E, Ardid D. Spinal cord plasticity and acid-sensing ion channels involvement in a rodent model of irritable bowel syndrome. Eur J Pain 2011; 15:335-43. [PMID: 20888277 DOI: 10.1016/j.ejpain.2010.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastro-intestinal disorder characterized by intractable chronic abdominal pain. In this study, we examined the possible spinal mechanisms underlying colonic hypersensitivity (CHS) using a non-inflammatory rat model of IBS induced by rectal enemas of butyrate, a short-chain fatty acid. We hypothesized that spinal plasticity could be responsible for CHS and that ASIC channels, which are known to support pain-elicited currents in the spinal cord, could contribute to central sensitization in our model of IBS. First, in order to determine if visceral pain relies on changes in spinal activity, we analyzed Fos expression in the spinal cord of rats treated with butyrate following a challenge with repetitive noxious colorectal distension. We found that Fos immunoreactivity was increased in thoracic T10-11-12, lumbar L1-2-6 and sacral S1 spinal segments. In control rats treated with saline, noxious repetitive colorectal distensions evoked Fos expression only in L1-2-6 and S1 spinal segments. Secondly, intrathecal injection of PcTx1, a specific ASIC1A antagonist, in the lumbar spinal cord completely prevented the development of CHS induced by butyrate. ASIC1 and 2 mRNAs, especially ASIC1A, were upregulated in the lumbar spinal cord. ASIC1A could thus contribute to spinal sensitization in our model of IBS, as it is supported by spinal colocalization of ASIC1A and Fos proteins. The whole data pinpoint a potential critical role of thoracic spinal cord in non-inflammatory pain states such as IBS and suggest that ASIC channels are part of the molecular effectors of central sensitization leading to visceral pain.
Collapse
Affiliation(s)
- Julien Matricon
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de douleur, Laboratoire de Pharmacologie Médicale, BP 10448, F-63000 Clermont-Ferrand, Inserm U 766, F-63001 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
22
|
Liu LS, Shenoy M, Pasricha PJ. The analgesic effects of the GABAB receptor agonist, baclofen, in a rodent model of functional dyspepsia. Neurogastroenterol Motil 2011; 23:356-61, e160-1. [PMID: 21199535 DOI: 10.1111/j.1365-2982.2010.01649.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The amino acid γ-aminobutyric acid (GABA) is an important modulator of pain but its role in visceral pain syndromes is just beginning to be studied. Our aims were to investigate the effect and mechanism of action of the GABA(B) receptor agonist, baclofen, on gastric hypersensitivity in a validated rat model of functional dyspepsia (FD). METHODS 10-day-old male rats received 0.2 mL of 0.1% iodoacetamide in 2% sucrose daily by oral gavages for 6 days. Control group received 2% sucrose. At 8-10 weeks rats treated with baclofen (0.3, 1, and 3 mg kg(-1) bw) or saline were tested for behavioral and electromyographic (EMG) visceromotor responses; gastric spinal afferent nerve activity to graded gastric distention and Fos protein expression in dorsal horn of spinal cord segments T8-T10 to noxious gastric distention. KEY RESULTS Baclofen administration was associated with a significant attenuation of the behavioral and EMG responses (at 1 and 3 mg kg(-1)) and expression of Fos in T8 and T9 segments in neonatal iodoacetamide sensitized rats. However, baclofen administration did not significantly affect splanchnic nerve activity to gastric distention. Baclofen (3 mg kg(-1)) also significantly reduced the expression of spinal Fos in response to gastric distention in control rats to a lesser extent than sensitized rats. CONCLUSIONS & INFERENCES Baclofen is effective in attenuating pain associated responses in an experimental model of FD and appears to act by central mechanisms. These results provide a basis for clinical trials of this drug in FD patients.
Collapse
Affiliation(s)
- L S Liu
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, CA 94305-5187, USA
| | | | | |
Collapse
|
23
|
Mitrovic M, Shahbazian A, Bock E, Pabst MA, Holzer P. Chemo-nociceptive signalling from the colon is enhanced by mild colitis and blocked by inhibition of transient receptor potential ankyrin 1 channels. Br J Pharmacol 2010; 160:1430-42. [PMID: 20590633 DOI: 10.1111/j.1476-5381.2010.00794.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential ankyrin 1 (TRPA1) channels are expressed by primary afferent neurones and activated by irritant chemicals including allyl isothiocyanate (AITC). Here we investigated whether intracolonic AITC causes afferent input to the spinal cord and whether this response is modified by mild colitis, morphine or a TRPA1 channel blocker. EXPERIMENTAL APPROACH One hour after intracolonic administration of AITC to female mice, afferent signalling was visualized by expression of c-Fos in laminae I-II(o) of the spinal dorsal horn at sacral segment S1. Mild colitis was induced by dextran sulphate sodium (DSS) added to drinking water for 1 week. KEY RESULTS Relative to vehicle, AITC (2%) increased expression of c-Fos in the spinal cord. Following induction of mild colitis by DSS (2%), spinal c-Fos responses to AITC, but not vehicle, were augmented by 41%. Colonic inflammation was present (increased myeloperoxidase content and disease activity score), whereas colonic histology, locomotion, feeding and drinking remained unchanged. Morphine (10 mg.kg(-1)) or the TRPA1 channel blocker HC-030031 (300 mg.kg(-1)) inhibited the spinal c-Fos response to AITC, in control and DSS-pretreated animals, whereas the response to intracolonic capsaicin (5%) was blocked by morphine but not HC-030031. CONCLUSIONS AND IMPLICATIONS Activation of colonic TRPA1 channels is signalled to the spinal cord. Mild colitis enhanced this afferent input that, as it is sensitive to morphine, is most likely of a chemonociceptive nature. As several irritant chemicals can be present in chyme, TRPA1 channels may mediate several gastrointestinal pain conditions.
Collapse
Affiliation(s)
- Martina Mitrovic
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
24
|
Hyland NP, Cryan JF. A Gut Feeling about GABA: Focus on GABA(B) Receptors. Front Pharmacol 2010; 1:124. [PMID: 21833169 PMCID: PMC3153004 DOI: 10.3389/fphar.2010.00124] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 09/07/2010] [Indexed: 12/15/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the body and hence GABA-mediated neurotransmission regulates many physiological functions, including those in the gastrointestinal (GI) tract. GABA is located throughout the GI tract and is found in enteric nerves as well as in endocrine-like cells, implicating GABA as both a neurotransmitter and an endocrine mediator influencing GI function. GABA mediates its effects via GABA receptors which are either ionotropic GABA(A) or metabotropic GABA(B). The latter which respond to the agonist baclofen have been least characterized, however accumulating data suggest that they play a key role in GI function in health and disease. Like GABA, GABA(B) receptors have been detected throughout the gut of several species in the enteric nervous system, muscle, epithelial layers as well as on endocrine-like cells. Such widespread distribution of this metabotropic GABA receptor is consistent with its significant modulatory role over intestinal motility, gastric emptying, gastric acid secretion, transient lower esophageal sphincter relaxation and visceral sensation of painful colonic stimuli. More intriguing findings, the mechanisms underlying which have yet to be determined, suggest GABA(B) receptors inhibit GI carcinogenesis and tumor growth. Therefore, the diversity of GI functions regulated by GABA(B) receptors makes it a potentially useful target in the treatment of several GI disorders. In light of the development of novel compounds such as peripherally acting GABA(B) receptor agonists, positive allosteric modulators of the GABA(B) receptor and GABA producing enteric bacteria, we review and summarize current knowledge on the function of GABA(B) receptors within the GI tract.
Collapse
Affiliation(s)
- Niall P Hyland
- Alimentary Pharmabiotic Centre and Department of Pharmacology and Therapeutics, University College Cork Cork, Ireland
| | | |
Collapse
|
25
|
Peng HY, Chen GD, Lai CY, Hsieh MC, Hsu HH, Wu HC, Lin TB. PI3K modulates estrogen-dependent facilitation of colon-to-urethra cross-organ reflex sensitization in ovariectomized female rats. J Neurochem 2010; 113:54-66. [DOI: 10.1111/j.1471-4159.2010.06577.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Abstract
The mechanism of visceral pain is still less understood compared with that of somatic pain. This is primarily due to the diverse nature of visceral pain compounded by multiple factors such as sexual dimorphism, psychological stress, genetic trait, and the nature of predisposed disease. Due to multiple contributing factors there is an enormous challenge to develop animal models that ideally mimic the exact disease condition. In spite of that, it is well recognized that visceral hypersensitivity can occur due to (1) sensitization of primary sensory afferents innervating the viscera, (2) hyperexcitability of spinal ascending neurons (central sensitization) receiving synaptic input from the viscera, and (3) dysregulation of descending pathways that modulate spinal nociceptive transmission. Depending on the type of stimulus condition, different neural pathways are involved in chronic pain. In early-life psychological stress such as maternal separation, chronic pain occurs later in life due to dysregulation of the hypothalamic-pituitary-adrenal axis and significant increase in corticotrophin releasing factor (CRF) secretion. In contrast, in early-life inflammatory conditions such as colitis and cystitis, there is dysregulation of the descending opioidergic system that results excessive pain perception (i.e., visceral hyperalgesia). Functional bowel disorders and chronic pelvic pain represent unexplained pain that is not associated with identifiable organic diseases. Often pain overlaps between two organs and approximately 35% of patients with chronic pelvic pain showed significant improvement when treated for functional bowel disorders. Animal studies have documented that two main components such as (1) dichotomy of primary afferent fibers innervating two pelvic organs and (2) common convergence of two afferent fibers onto a spinal dorsal horn are contributing factors for organ-to-organ pain overlap. With reports emerging about the varieties of peptide molecules involved in the pathological conditions of visceral pain, it is expected that better therapy will be achieved relatively soon to manage chronic visceral pain.
Collapse
|
27
|
Zhou Q, Nicholas Verne G. NMDA Receptors and Colitis: Basic Science and Clinical Implications. ACTA ACUST UNITED AC 2008; 10:33-43. [PMID: 20574552 DOI: 10.3727/154296108783994013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, research focusing primarily on alterations in the peripheral and central nervous system has improved our understanding of the pathophysiological mechanisms of chronic visceral pain. These studies have demonstrated significant physiological changes following injury to the viscera in the firing patterns of both primary afferent neurons that transmit nociceptive information from the viscera and in central neurons that process the nociceptive information. A number of receptors, neurotransmitters, cytokines, and second messenger systems in these neurons have been implicated in the enhancement of visceral nociception. N-methyl-d-aspartic acid (NMDA) receptors play an important role in chronic visceral pain and hypersensitivity that is present in the setting of colonic inflammation. NMDA receptors are found in the peripheral nervous system as well as the central terminal of primary afferent neurons and have been shown to play an important role in regulating the release of nociceptive neurotransmitters. Recent work has demonstrated the presence of NMDA receptors in the enteric nervous system. In this article, we will discuss more recent evidence of the role of NMDA receptors in visceral pain associated with colitis.
Collapse
Affiliation(s)
- Qiqi Zhou
- Department of Medicine, University of Florida Colleges of Medicine, Gainesville, FL, USA
| | | |
Collapse
|
28
|
Abstract
AIM: To determine the expression of c-Fos, caspase-3 and interleukin-1β (IL-1β) in the cervical cord and stomach of rats with cervical spondylosis, to analyze their relationship, and to offer an explanation of one possible cause for functional dyspepsia (FD) and irritable bowel syndrome (IBS) caused by cervical spondylosis.
METHODS: The cervical spondylosis model in rats was established by destroying the stability of cervical posterior column. The cord segments C4-6 and gastric antrum were collected 3 mo and 5 mo after the operation. Rats with the sham operation were used as controls. The expressions of c-Fos, caspase-3 and IL-1β in the cervical cord and gastric antrum were determined by immunohistochemistry and/or Western blot.
RESULTS: Immunohistochemical staining showed a few c-Fos, caspase-3 and IL-1β-positive cells in the cervical cord and antrum in the control. There was a significant increase in c-Fos, caspase-3 and IL-1β expression in model groups compared to the control groups at 3 mo and 5 mo after operation. More importantly, there was a significant (P < 0.05) increase in c-Fos, caspase-3 and IL-1β expression in the model group rats at 3 mo compared to those at 5 mo after the operation (c-Fos: 11.20 ± 2.26 vs 27.68 ± 4.36 in the cervical cord, 11.3 ± 2.3 vs 29.3 ± 4.6 in the gastric antrum; caspase-3: 33.83 ± 3.71 vs 36.32 ± 4.01 in the cervical cord, 13.23 ± 3.21 vs 26.32 ± 4.01 in the gastric antrum; IL-1β: 42.06 ± 2.95 vs 45.91 ± 3.98 in the cervical cord, 26.56 ± 2.65 vs 32.01 ± 2.98 in the gastric antrum). Western blot analysis showed time-dependent changes of caspase-3 and IL-1β protein in the cervical cord and gastric antrum of rats with cervical spondylosis; there was no significant expression of caspase-3 and IL-1β protein in the control group at 3 mo and 5 mo after the sham operation, whereas there was a significant difference in caspase-3 and IL-1β protein levels between the model group rats followed up for 3 mo and those for 5 mo (P < 0.05).
CONCLUSION: There is a significant association of c-Fos, caspase-3 and IL-1β expressions in the gastric antrum with that in the spinal cord in rats with cervical spondylosis, suggesting that the gastrointestinal function may be affected by cervical spondylosis.
Collapse
Affiliation(s)
- Xing-Hua Song
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uighur Autonomous Region, China
| | | | | | | | | | | |
Collapse
|
29
|
Kimball ES, Prouty SP, Pavlick KP, Wallace NH, Schneider CR, Hornby PJ. Stimulation of neuronal receptors, neuropeptides and cytokines during experimental oil of mustard colitis. Neurogastroenterol Motil 2007; 19:390-400. [PMID: 17509021 DOI: 10.1111/j.1365-2982.2007.00939.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oil of mustard (OM), administered intracolonically, produces severe colitis in mice that is maximized within 3 days. The purpose of this study was to characterize the cytokine response, and to establish expression patterns of enteric neuronal mediators and neuronal receptors affected during active colitis. We measured the changes in the mRNA levels for neuronal receptors and mediators by real-time PCR, and cytokine and chemokine protein levels in the affected tissue. Significant increases in neuronal receptors, such as transient receptor potential A1 (TRPA1), cannabinoid type 1 receptor, neurokinin 1 receptor (NK1R) and delta-opioid receptor; prokineticin-1 receptor; and soluble mediators, such as prodynorphin, proenkephalin1, NK1, prokineticin-1 and secretory leukocyte protease inhibitor, occurred. Significant increases in cytokines, such as interleukin (IL)-1beta, IL-6 and granulocyte macrophage colony stimulating factor (GM-CSF), and in chemokines, such as macrophage chemotactic protein 1 (MCP-1), macrophage inflammatory protein 1 (MIP-1alpha) and Kupffer cell derived chemokine (KC), were detected, with no changes in T-cell-derived cytokines. Furthermore, immunodeficient C57Bl/6 RAG2(-/-) mice exhibited OM colitis of equal severity as seen in wt C57Bl/6 and CD-1 mice. The results demonstrate rapidly increased levels of mRNA for neuronal receptors and soluble mediators associated with pain and inflammation, and increases in cytokines associated with macrophage and neutrophil activation and recruitment. Collectively, the data support a neurogenic component in OM colitis coupled with a myeloid cell-related, T- and B-cell-independent inflammatory component.
Collapse
Affiliation(s)
- E S Kimball
- Enterology Research Team, Johnson and Johnson Pharmaceutical Research and Development, Spring House, PA 19477, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Qiao LY, Grider JR. Up-regulation of calcitonin gene-related peptide and receptor tyrosine kinase TrkB in rat bladder afferent neurons following TNBS colitis. Exp Neurol 2007; 204:667-79. [PMID: 17303123 PMCID: PMC1906719 DOI: 10.1016/j.expneurol.2006.12.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/15/2006] [Accepted: 12/04/2006] [Indexed: 12/30/2022]
Abstract
Colonic inflammation has profound effects on the urinary bladder physiology and produces hypersensitivity of bladder afferent neurons and neurogenic bladder overactivity. Calcitonin gene-related peptide (CGRP) expressed in dorsal root ganglia (DRG) plays an important role in mediating sensory perception following visceral inflammation. In the present study, we determined that the expression of CGRP was increased in bladder afferent neurons in lumbosacral DRG following tri-nitrobenzene sulfonic acid (TNBS)-induced colitis in rat. After colitis, the percentage of bladder afferent neurons expressing CGRP was increased in L1 (61.2+/-2.9% in colitis vs. 37.7+/-5.1% in controls; p<0.05) and S1 DRG (26.3+/-2.3% in colitis vs. 15.5+/-1.9% in controls; p<0.01). We also demonstrated that the expression of tyrosine kinase receptor TrkB was increased in L1 (39.7+/-2.9% in colitis vs. 25.2+/-4.3% in controls; p<0.05) and S1 DRG (45.6+/-3.8% in colitis vs. 38.3+/-3.6% in controls; p<0.01) following colitis. CGRP and TrkB were co-stored in a subpopulation of DRG neurons in control and colitic animals and the number of DRG cells co-expressing CGRP and TrkB was significantly increased in L1 (2.7-fold, p<0.01) and S1 DRG (2.4-fold, p<0.01) following colitis. In cultured DRG, exogenous BDNF application significantly increased CGRP expression, which was blocked by TrkB selective inhibitor K252a. These results suggest that up-regulation of CGRP and TrkB in bladder afferent neurons may play a role in colon-to-bladder cross-sensitization following colitis.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Departments of Physiology and Internal Medicine, Medical College of Virginia Campus, Box 980551, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| | | |
Collapse
|
31
|
Kimball ES, Schneider CR, Wallace NH, Hornby PJ. Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol Gastrointest Liver Physiol 2006; 291:G364-71. [PMID: 16574988 DOI: 10.1152/ajpgi.00407.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oil of mustard (OM) is a potent neuronal activator that is known to elicit visceral hyperalgesia when given intracolonically, but the full extent to which OM is also proinflammatory in the gastrointestinal tract is not known. We have previously shown that male CD-1 mice given a single administration of 0.5% OM develop a severe colitis that is maximum at day 3 and that gradually lessens until essentially absent by day 14. OM-induced neuronal stimulation is reported to be reduced by cannabinoid agonists, and cannabinoid receptor 1 (CB1R)-/- mice have exacerbated experimental colitis. Therefore, we examined the role of cannabinoids in this OM-induced 3-day model of colitis in CD-1 mice and in a 7-day dextran sulfate sodium (DSS) colitis model in BALB/c mice. In OM colitis, the CB1R-selective agonist ACEA and the CB2R-selective agonist JWH-133 reduced (P < 0.05) colon weight gain (means +/- SE; 82 +/- 13% and 47 +/- 15% inhibition, respectively), colon shrinkage (98 +/- 24% and 42 +/- 12%, respectively), colon inflammatory damage score (49 +/- 11% and 40 +/- 12%, respectively), and diarrhea (58 +/- 12% and 43 +/- 11%, respectively). Histological damage was similarly reduced by these treatments. Likewise, CBR agonists attenuated DSS colitis, albeit at higher doses; ACEA at 10 mg/kg, twice daily, inhibited (P < 0.05) macroscopic and microscopic scores (46 +/- 9% and 63 +/- 7%, respectively); whereas 20 mg/kg, twice daily, of JWH-133 was required to diminish (P < 0.05) macroscopic and microscopic scores (29 +/- 7% and 43 +/- 5%, respectively). CB1R and CB2R immunostaining of colon sections revealed that CB1R in enteric neurons was more intense in colitic vs. control mice; however, CB1R was also increased in the endothelial layer in OM colitis only. CB2R immunostaining was more marked in infiltrated immune cells in OM colitis. These findings validate the OM colitis model with respect to the DSS model and provide strong support to the emerging idea that cannabinoid receptor activation mediates protective mechanisms in experimental colitis. The demonstration of CB1R agonist effects in colitis support the neurogenic nature of the OM-induced colitis model and reinforce the importance of neuronal activation in intestinal inflammation.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/administration & dosage
- Cannabinoids/administration & dosage
- Colitis/chemically induced
- Colitis/metabolism
- Colitis/pathology
- Colitis/prevention & control
- Dextran Sulfate
- Disease Models, Animal
- Male
- Mice
- Mice, Inbred BALB C
- Mustard Plant
- Plant Oils
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Edward S Kimball
- Enterology Research Team, Johnson and Johnson Pharmaceutical Research and Development, PA 19477-0776, USA.
| | | | | | | |
Collapse
|
32
|
Ji Y, Tang B, Traub RJ. Modulatory effects of estrogen and progesterone on colorectal hyperalgesia in the rat. Pain 2006; 117:433-442. [PMID: 16154701 DOI: 10.1016/j.pain.2005.07.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/27/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
The contribution of estrogen and progesterone to colorectal hyperalgesia was examined in female rats. The electromyogram recorded from the abdominal wall (visceromotor response, vmr) and the discharge of lumbosacral dorsal horn neurons to colorectal distention (CRD) were measured in intact female, ovariectomized (OVx) and estradiol replaced OVx (E2; 50mug, 48h) rats with and without colonic inflammation. Colorectal hyperalgesia was transient in intact rats, but persisted at least 4h in E2 and OVx rats. The magnitude of hyperalgesia in E2 rats was greater than OVx which was greater than intact rats. Dorsal horn neurons that responded to CRD with an Abrupt (on and off with stimulus) excitatory discharge showed similar sensitivity to estradiol as the vmr following colonic inflammation. In contrast, inflammation did not increase the magnitude of response of excitatory neurons with sustained afterdischarges in any of the treatment groups. Intact female rats have a comparable plasma estrogen concentration to E2 rats, suggesting the difference in responses may have been due to antinociceptive effects of progesterone. This was tested by administering E2+/- progesterone (1mg) and measuring the vmr. Progesterone reduced the facilitation of the vmr produced by E2 before and following colonic inflammation. The present study suggests that estrogen replacement enhances visceral signal processing following colonic inflammation. Furthermore, progesterone may counteract the effects of estrogen on colorectal sensitivity.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Biomedical Sciences and Research Center for Neuroendocrine Influences on Pain, University of Maryland Dental School, 666 W. Baltimore St., Rm 5-A-22, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
33
|
Zhang FF, Mo JZ, Chen XY, Peng YS, Chen SL, Xiao SD. Gastric distention enhances FOS and calcitonin gene-related peptide expression in the spinal cord and brain of rats. ACTA ACUST UNITED AC 2006; 7:19-23. [PMID: 16412033 DOI: 10.1111/j.1443-9573.2006.00239.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the pathway and mode of transmission of visceral stimuli by investigating the distribution of the FOS and calcitonin gene-related peptide (CGRP) proteins in the central nervous system. METHODS Twenty-four Sprague-Dawley rats were divided into three groups: study group (n = 12), sham control group (n = 6), and normal control group (n = 6). A balloon was implanted into the stomach of the rats in the study and sham control groups. After 48 h, the rats in the study group had the stomach distended (80 mmHg) for 2 h, after which they were killed and the antrum, thoracic spinal cord and brain were isolated or dissected. The expression of Fos and CGRP in these tissues was detected immunohistochemically. RESULTS FOS expression in the dorsal horn of the spinal cord, dorsal nucleus of the vagal nerve, nucleus of the solitary tract in the study rats was significantly higher than in the sham and normal controls. However, no difference was found between the three groups in FOS expression in the myenteric plexus. Similarly, gastric distention enhanced CGRP expression significantly in the spinal cord and medulla oblongata and correlated closely with FOS expression in these two areas. CONCLUSIONS Gastric distention can activate the limbic system, and CGRP plays an important role in the input of visceral stimuli.
Collapse
Affiliation(s)
- Fei Fei Zhang
- Department of Gastroenterology, Shanghai Armed Police Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
Sun YN, Luo JY, Rao ZR, Lan L, Duan L. GFAP and Fos immunoreactivity in lumbo-sacral spinal cord and medulla oblongata after chronic colonic inflammation in rats. World J Gastroenterol 2005; 11:4827-32. [PMID: 16097052 PMCID: PMC4398730 DOI: 10.3748/wjg.v11.i31.4827] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the response of astrocytes and neurons in rat lumbo-sacral spinal cord and medulla oblongata induced by chronic colonic inflammation, and the relationship between them.
METHODS: Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group (n = 17), colonic inflammation was induced by intra-luminal administration of trinitrobenzenesulfonic acid (TNBS); control group (n = 16), saline was administered intra-luminally. After 3, 7, 14, and 28 d of administration, the lumbo-sacral spinal cord and medulla oblongata were removed and processed for anti-glial fibrillary acidic protein (GFAP), Fos and GFAP/Fos immunohistochemistry.
RESULTS: Activated astrocytes positive for GFAP were mainly distributed in the superficial laminae (laminae I-II) of dorsal horn, intermediolateral nucleus (laminae V), posterior commissural nucleus (laminae X) and anterolateral nucleus (laminae IX). Fos-IR (Fos-immunoreactive) neurons were mainly distributed in the deeper laminae of the spinal cord (laminae III-IV, V-VI). In the medulla oblongata, both GFAP-IR astrocytes and Fos-IR neurons were mainly distributed in the medullary visceral zone (MVZ). The density of GFAP in the spinal cord of experimental rats was significantly higher after 3, 7, and 14 d of TNBS administration compared with the controls (50.4±16.8, 29.2±6.5, 24.1±5.6, P<0.05). The density of GFAP in MVZ was significantly higher after 3 d of TNBS administration (34.3±2.5, P<0.05). After 28 d of TNBS administration, the density of GFAP in the spinal cord and MVZ decreased and became comparable to that of the controls (18.0±4.9, 14.6±6.4, P>0.05).
CONCLUSION: Astrocytes in spinal cord and medulla oblongata can be activated by colonic inflammation. The activated astrocytes are closely related to Fos-IR neurons. With the recovery of colonic inflammation, the activity of astrocytes in the spinal cord and medulla oblongata is reduced.
Collapse
Affiliation(s)
- Yi-Ning Sun
- Department of Gastroenterology, The Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | | | | | | | | |
Collapse
|
35
|
Kimball ES, Palmer JM, D'Andrea MR, Hornby PJ, Wade PR. Acute colitis induction by oil of mustard results in later development of an IBS-like accelerated upper GI transit in mice. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1266-73. [PMID: 15691868 DOI: 10.1152/ajpgi.00444.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oil of mustard (OM) is a potent neuronal activator that promotes allodynia and hyperalgesia within minutes of application. In this study, OM was used to induce an acute colitis. We also investigated whether intracolonic OM-induced inflammation alters gastrointestinal (GI) function over a longer time frame as a model of postinflammatory irritable bowel syndrome (PI-IBS). Mice given a single administration of 0.5% OM developed a severe colitis that peaked at day 3, was reduced at day 7, and was absent by day 14. At the peak response, there was body weight loss, colon shrinkage, thickening and weight increases, distension of the proximal colon, and diarrhea. Macroscopic inspection of the distal colon revealed a discontinuous pattern of inflammatory damage and occasional transmural ulceration. Histological examination showed loss of epithelium, an inflammatory infiltrate, destruction of mucosal architecture, edema, and loss of circular smooth muscle architecture. OM administration increased transit of a carmine dye bolus from 58% of the total length of the upper GI tract in untreated age-matched controls to as high as 74% when tested at day 28 post-OM. Mice in the latter group demonstrated a significantly more sensitive response to inhibition of upper GI transit by the mu-opioid receptor agonist loperamide compared with normal mice. OM induces a rapid, acute, and transient colitis and, in the longer term, functional changes in motility that are observed when there is no gross inflammation and thereby is a model of functional bowel disorders that mimic aspects of PI-IBS in humans.
Collapse
Affiliation(s)
- Edward S Kimball
- Enterology Research Team, Johnson and Johnson Pharmaceutical, Research and Development, Welsh and McKean Roads, PO Box 776, Spring House, PA, 19477-0776, USA.
| | | | | | | | | |
Collapse
|
36
|
Song PS, Kong KM, Niu CY, Qi WL, Wu LF, Wang XJ, Han W, Huang K, Chen ZF. Expression of c-fos in gastric myenteric plexus and spinal cord of rats with cervical spondylosis. World J Gastroenterol 2005; 11:529-33. [PMID: 15641140 PMCID: PMC4250805 DOI: 10.3748/wjg.v11.i4.529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the expression of c-fos in gastric myenteric plexus and spinal cord of rats with cervical spondylosis and its clinical significance.
METHODS: A cervical spondylosis model was established in rats by destroying the stability of cervical posterior column, and the cord segments C4-6 and gastric antrum were collected 3, 4 and 5 mo after the operation. Rats with sham operation were used as controls. c-fos neuronal counter-staining was performed with an immunohistochemistry method. Every third sections from C4-6 segments were drawn. The 10 most labeled c-fos-immunoreactive (Fos-IR) neurons were counted, and the average number was used for statistical analysis. The mean of Fos-IR neurons in myenteric plexus was calculated after counting Fos-IR neurons in 25 ganglia from each antral preparation, and expressed as a mean count per myenteric ganglion.
RESULTS: There were a few c-fos-positive neurons in the cervical cord and antrum in the control group. There was an increased c-fos expression in model group 3, 4 and 5 mo after operation, whereas there was no significant increase in c-fos expression in the control group at 3, 4 and 5 mo. More importantly, there was a significant difference in c-fos expression between rats followed up for 3 mo and those for 5 mo in the model group (11.20±2.26 vs 27.68±4.36, P<0.05, for the cervical cord; and 11.3±2.3 vs 29.3±4.6, P<0.05, for the gastric antrum). There was no significant difference between rats followed up for 3 mo and those for 4 mo and between rats followed up for 4 mo and those for 5 mo in the model group.
CONCLUSION: c-fos expression in gastric myenteric plexus was dramatically associated with that in the spinal cord in rats with cervical spondylosis, suggesting that the gastrointestinal function may be affected by cervical spondylosis. If this hypothesis is confirmed by further studies, functional gastrointestinal diseases such as functional dyspepsia and irritable bowel syndrome could be explained by neurogastroenterology.
Collapse
Affiliation(s)
- Pei-Song Song
- Department of Joint and Spine, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Porcher C, Sinniger V, Juhem A, Mouchet P, Bonaz B. Neuronal activity and CRF receptor gene transcription in the brains of rats with colitis. Am J Physiol Gastrointest Liver Physiol 2004; 287:G803-14. [PMID: 15178552 DOI: 10.1152/ajpgi.00135.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We aimed to characterize neuronal and corticotropin-releasing factor (CRF) pathways at the acute phase of a model of colitis in rats. Male rats received an intracolonic injection of either vehicle (controls) or trinitrobenzenesulfonic acid (TNBS) and were killed 1, 2, 3, 4, 6, 12, or 24 h later. Coronal frozen sections of the brain were cut and mRNAs encoding the rat c-fos, CRF1 receptor, and CRF2alpha,beta receptors were assayed by in situ hybridization histochemistry. Localization of these transcripts within CRF-immunoreactive (CRF-ir) neurons of the paraventricular nucleus (PVN) of the hypothalamus was also determined. Intracolonic TNBS induced c-fos mRNA expression in brain nuclei involved in the autonomic, behavioral, and neuroendocrine response to a stimulus (PVN, amygdala, locus coeruleus, parabrachial nucleus, nucleus of the solitary tract) and in circumventricular organs (lamina terminalis, subfornical organ, area postrema). CRF pathways, particularly in the PVN, were activated in this model as represented by a robust signal of c-fos and CRF1 receptor transcripts in the PVN and numerous CRF-ir neurons expressed c-fos or CRF1 receptor transcripts in the PVN of TNBS-treated animals. No expression of CRF2 receptor transcripts was observed in the PVN, either in basal conditions or after TNBS. These neuroanatomical data argue for an involvement of CRF pathways, through CRF1 receptor, within the PVN in TNBS-induced colitis.
Collapse
Affiliation(s)
- Christophe Porcher
- Groupe d'Etude du Stress et des Interactions Neuro-Digestives (EA 3744), Hôpital Albert Michallon, Centre Hospitalier Universitaire, 38043 Grenoble Cedex 09, France
| | | | | | | | | |
Collapse
|
38
|
Sun YN, Luo JY. Effects of tegaserod on Fos, substance P and calcitonin gene-related peptide expression induced by colon inflammation in lumbarsacral spinal cord. World J Gastroenterol 2004; 10:1830-3. [PMID: 15188517 PMCID: PMC4572280 DOI: 10.3748/wjg.v10.i12.1830] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the mechanisms of tegaserod, a partial 5-HT4 agonist, in reducing visceral sensitivity by observing Fos, substance P (SP) and calcitonin gene-related peptide (CGRP) expression in the lumbarsacral spinal cord induced by colonic inflammation in rats.
METHODS: Twenty-four male rats with colonic inflammation induced by intraluminal instillation of trinitrobenzenesulfonic acid (TNBS) were divided into 3 groups. Treatment group 1: intra-gastric administration of tegaserod, 2 mg/kg·d; Treatment group 2: intra-gastric administration of tegaserod, 1 mg/kg·d; Control group: intra-gastric administration of saline, 2.0 mL/d. After 7 d of intra-gastric administration, lumbarsacral spinal cord was removed and processed for Fos, SP and CGRP immunohistochemistry.
RESULTS: In rats of the control group, the majority of Fos labeled neurons was localized in deeper laminae of the lumbarsacral spinal cord (L5-S1). SP and CGRP were primarily expressed in the superficial laminae of the spinal cord after TNBS injection. Intra-gastric administration of tegaserod (2 mg/kg·d) resulted in a significant decrease of Fos labeled neurons (22.0 ± 7.7) and SP density (12.5 ± 1.4) in the dorsal horn in the lumbarsacral spinal cord compared to those of the control group (62.2 ± 18.9, 35.9 ± 8.9, P < 0.05). However, CGRP content in dorsal horn did not significantly reduce in rats of treatment group 1 (1.2 ± 1.1) compared to that of the control group (2.8 ± 2.4, P > 0.05). Neither Fos expression nor SP or CGRP density in the dorsal horn significantly declined in rats of treatment group 2 compared to those of the control group (P > 0.05).
CONCLUSION: Tegaserod can significantly reduce Fos labeled neurons in the lumbarsacral spinal cord induced by colonic inflammation. Tegaserod may reduce visceral sensitivity by inhibiting SP expression in the dorsal horn of spinal cord.
Collapse
Affiliation(s)
- Yi-Ning Sun
- Department of Gastroenterology, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | | |
Collapse
|
39
|
Nystedt JM, Lemberg K, Lintunen M, Mustonen K, Holma R, Kontinen VK, Kalso E, Panula P. Pain- and morphine-associated transcriptional regulation of neuropeptide FF and the G-protein-coupled NPFF2 receptor gene. Neurobiol Dis 2004; 16:254-62. [PMID: 15207282 DOI: 10.1016/j.nbd.2004.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 02/05/2004] [Accepted: 02/10/2004] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide FF (NPFF) is involved in pain modulation, especially plasticity during inflammatory and neuropathic pain, and opiate interactions. Its nociceptive functions may be mediated by the NPFF2 receptor. To elucidate the role of the NPFF system in plasticity associated with pathologic pain, we studied the changes of NPFF mRNA and NPFF2 receptor mRNA in rat models of acute colonic inflammation, inflammatory pain, and neuropathic pain. Furthermore, we studied the mRNA levels of both NPFF and NPFF2 receptor in morphine-tolerant rats and after acute morphine injections. We found an activation of spinal NPFF and NPFF2 receptor during early inflammatory pain. Supraspinally, we found an up-regulation of NPFF2 receptor mRNA during acute colonic inflammation and neuropathic pain. Acute, but not chronic, morphine activated the genes supraspinally. The results give further evidence for the involvement of the NPFF system in pain modulation and may provide new therapeutic opportunities for pathologic pain.
Collapse
|
40
|
Shukla Y, Arora A. Enhancing effects of mustard oil on preneoplastic hepatic foci development in Wistar rats. Hum Exp Toxicol 2003; 22:51-5. [PMID: 12693827 DOI: 10.1191/0960327103ht338oa] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dietary habits are known to be the major contributory factor in the development of cancer. Mustard oil, which is extensively used in India and elsewhere as a flying and cooking medium, is reported to induce an inflammatory response. The development of altered hepatic foci is an early carcinogenic change in rat liver in diethylnitrosamine (DEN)-induced hepatocarcinogenesis. In the present study, the development of preneoplastic lesions was observed following administration of mustard oil (0.5 mL/day for 8 weeks) in DEN-initiated and partially hepatomized Wistar rats. A significant decrease in the relative and absolute liver weight of mustard oil-exposed rats was recorded. The results revealed a significant increase in the number and area of placental glutathione-S-transferase (GST-P) and gamma-glutamyl transpeptidase (GGT)-positive foci in mustard oil-administered animals. The GST-P- and GGT-positive foci were more prominent in the animals given boiled (up to 300 degrees C for 3 hours) mustard oil in comparison to the animals given fresh mustard oil. These results indicate the possible tumourigenic risk associated with mustard oil consumption.
Collapse
Affiliation(s)
- Yogeshwer Shukla
- Environmental Carcinogenesis Division, Industrial Toxicology Research Centre, MG Marg, PO Box No. 80, Lucknow 226 001, India.
| | | |
Collapse
|
41
|
Vera-Portocarrero LP, Lu Y, Westlund KN. Nociception in persistent pancreatitis in rats: effects of morphine and neuropeptide alterations. Anesthesiology 2003; 98:474-84. [PMID: 12552208 PMCID: PMC4654116 DOI: 10.1097/00000542-200302000-00029] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Most animal models of pancreatitis are short-lived or very invasive. A noninvasive animal model of pancreatitis developed in highly inbred rats by Merkord with symptoms persisting for 3 weeks was adopted in the current study to test its validity as a model of visceral pain in commercially available rats. METHODS The persistent pancreatitis model was established by tail vein injection of dibutyltin dichloride. Animals were given 10% alcohol in their drinking water to enhance the pancreatitis attack. Blood serum pancreatic enzymes and nociceptive state were monitored for 3 weeks after dibutyltin dichloride or vehicle. Behavioral testing included reflexive withdrawal to mechanical and thermal stimulation of the abdominal area. The effect of morphine on nociceptive behaviors was tested. Histologic analysis of the pancreas and immunohistochemical analysis of substance P and calcitonin gene-related peptide in the spinal cord are included in the study. RESULTS Compared with naïve and vehicle-only injected control groups, rats receiving dibutyltin dichloride demonstrated an increase in withdrawal events after von Frey stimulation and decreased withdrawal latency after thermal stimulation, signaling a sensitized nociceptive state through 7 days. These pain-related measures were abrogated by morphine. Blood serum concentrations of amylase and lipase as well as tissue inflammatory changes and substance P were also significantly elevated during this same time period. CONCLUSIONS These results indicate that animals with the dibutyltin dichloride-induced experimental pancreatitis expressed serum, histologic, and behavioral characteristics similar in duration to those present during acute attacks experienced by patients with chronic pancreatitis. These findings and responsivity to morphine suggest the utility of this model developed in a commercially available strain of rats for study of persistent visceral pain.
Collapse
Affiliation(s)
- Louis P Vera-Portocarrero
- Department of Anatomy and Neurosciences, University of Texas Medical Branch at Galveston, 77555, USA
| | | | | |
Collapse
|
42
|
Sengupta JN, Medda BK, Shaker R. Effect of GABA(B) receptor agonist on distension-sensitive pelvic nerve afferent fibers innervating rat colon. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1343-51. [PMID: 12388205 DOI: 10.1152/ajpgi.00124.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spinal afferents innervating the gastrointestinal tract are the major pathways for visceral nociception. Many centrally acting analgesic drugs attenuate responses of visceral primary afferent fibers by acting at the peripheral site. Gamma-amino butyric acid (GABA), a major inhibitory neurotransmitter, acts via metobotropic GABA(B) and ionotropic GABA(A)/GABA(C) receptors. The aim of this study was to test the peripheral effect of selective GABA(B) receptor agonist baclofen on responses of the pelvic nerve afferent fibers innervating the colon of the rat. Distension-sensitive pelvic nerve afferent fibers were recorded from the S(1) sacral dorsal root in anesthetized rats. The effect of baclofen (1-300 micromol/kg) was tested on responses of these fibers to colorectal distension (CRD; 60 mmHg, 30 s). A total of 21 pelvic nerve afferent fibers was recorded. Mechanosensitive properties of four fibers were also recorded before and after bilateral transections of T(12)-S(3) ventral roots (VR). Effect of baclofen was tested on 15 fibers (7 in intact rats, 4 in rats with transected VR, and 4 in rats pretreated with CGP 54626). In nine fibers (5/7 in intact and 4/4 in VR transected rats), baclofen produced dose-dependent inhibition of response to CRD. Pretreatment with selective GABA(B) receptor antagonist CGP 54626 (1 micromol/kg) reversed the inhibitory effect of baclofen. Results suggest a peripheral role of GABA(B) receptors in the inhibition of mechanotransduction property of distension-sensitive pelvic nerve afferent fibers.
Collapse
Affiliation(s)
- Jyoti N Sengupta
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | |
Collapse
|