1
|
Regalado Núñez K, Bronson D, Chang R, Kalluri R. Vestibular afferent neurons develop normally in the absence of quantal/glutamatergic input. Front Neurol 2024; 15:1441964. [PMID: 39655160 PMCID: PMC11625666 DOI: 10.3389/fneur.2024.1441964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The vestibular nerve is comprised of neuron sub-groups with diverse functions related to their intrinsic biophysical properties. This diversity is partly due to differences in the types and numbers of low-voltage-gated potassium channels found in the neurons' membranes. Expression for some low-voltage gated ion channels like KCNQ4 is upregulated during early post-natal development; suggesting that ion channel composition and neuronal diversity may be shaped by hair cell activity. This idea is consistent with recent work showing that glutamatergic input from hair cells is necessary for the normal diversification auditory neurons. Methods To test if biophysical diversity is similarly dependent on glutamatergic input in vestibular neurons, we examined vestibular function and the maturation of the vestibular epithelium and ganglion neurons by immunohistochemistry and patch-clamp electrophysiology in Vglut3-ko mice whose hair cell synapses lack glutamate. Results The knockout mice showed no obvious balance deficits and crossed challenging balance beams with little difficulty. Immunolabeling of the Vglut3-ko vestibular epithelia showed normal development as indicated by an identifiable striolar zone with calyceal terminals labeled by molecular marker calretinin, and normal expression of KCNQ4 by the end of the second post-natal week. We found similar numbers of Type I and Type II hair cells in the knockout and wild-type animals, regardless of epithelial zone. Thus, the presumably quiescent Type II hair cells are not cleared from the epithelium. Patch-clamp recordings showed that biophysical diversity of vestibular ganglion neurons in the Vglut3-ko mice is comparable to that found in wild-type controls, with a similar range firing patterns at both immature and juvenile ages. However, our results suggest a subtle biophysical alteration to the largest ganglion cells (putative somata of central zone afferents); those in the knockout had smaller net conductance and were more excitable than those in the wild type. Discussion Thus, unlike in the auditory nerve, glutamatergic signaling is unnecessary for producing biophysical diversity in vestibular ganglion neurons. And yet, because the input signals from vestibular hair cells are complex and not solely reliant on quantal release of glutamate, whether diversity of vestibular ganglion neurons is simply hardwired or regulated by a more complex set of input signals remains to be determined.
Collapse
Affiliation(s)
- Katherine Regalado Núñez
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daniel Bronson
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Zilkha Neurogenetic Institute, Department of Otolaryngology, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chang
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Radha Kalluri
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Zilkha Neurogenetic Institute, Department of Otolaryngology, University of Southern California, Los Angeles, CA, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Ono K, Jarysta A, Hughes NC, Jukic A, Chang HHV, Deans MR, Eatock RA, Cullen KE, Kindt KS, Tarchini B. Contributions of mirror-image hair cell orientation to mouse otolith organ and zebrafish neuromast function. eLife 2024; 13:RP97674. [PMID: 39531034 PMCID: PMC11556791 DOI: 10.7554/elife.97674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Otolith organs in the inner ear and neuromasts in the fish lateral-line harbor two populations of hair cells oriented to detect stimuli in opposing directions. The underlying mechanism is highly conserved: the transcription factor EMX2 is regionally expressed in just one hair cell population and acts through the receptor GPR156 to reverse cell orientation relative to the other population. In mouse and zebrafish, loss of Emx2 results in sensory organs that harbor only one hair cell orientation and are not innervated properly. In zebrafish, Emx2 also confers hair cells with reduced mechanosensory properties. Here, we leverage mouse and zebrafish models lacking GPR156 to determine how detecting stimuli of opposing directions serves vestibular function, and whether GPR156 has other roles besides orienting hair cells. We find that otolith organs in Gpr156 mouse mutants have normal zonal organization and normal type I-II hair cell distribution and mechano-electrical transduction properties. In contrast, gpr156 zebrafish mutants lack the smaller mechanically evoked signals that characterize Emx2-positive hair cells. Loss of GPR156 does not affect orientation-selectivity of afferents in mouse utricle or zebrafish neuromasts. Consistent with normal otolith organ anatomy and afferent selectivity, Gpr156 mutant mice do not show overt vestibular dysfunction. Instead, performance on two tests that engage otolith organs is significantly altered - swimming and off-vertical-axis rotation. We conclude that GPR156 relays hair cell orientation and transduction information downstream of EMX2, but not selectivity for direction-specific afferents. These results clarify how molecular mechanisms that confer bi-directionality to sensory organs contribute to function, from single hair cell physiology to animal behavior.
Collapse
Affiliation(s)
- Kazuya Ono
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | | | - Natasha C Hughes
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Hui Ho Vanessa Chang
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Michael R Deans
- Department of Neurobiology, Spencer Fox Eccles School of Medicine, University of UtahSalt Lake CityUnited States
- Department of Otolaryngology - Head & Neck Surgery, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
| | - Ruth Anne Eatock
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Basile Tarchini
- The Jackson LaboratoryBar HarborUnited States
- Tufts University School of MedicineBostonUnited States
| |
Collapse
|
3
|
Lipovsek M. Comparative biology of the amniote vestibular utricle. Hear Res 2024; 448:109035. [PMID: 38763033 DOI: 10.1016/j.heares.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The sensory epithelia of the auditory and vestibular systems of vertebrates have shared developmental and evolutionary histories. However, while the auditory epithelia show great variation across vertebrates, the vestibular sensory epithelia appear seemingly more conserved. An exploration of the current knowledge of the comparative biology of the amniote utricle, a vestibular sensory epithelium that senses linear acceleration, shows interesting instances of variability between birds and mammals. The distribution of sensory hair cell types, the position of the line of hair bundle polarity reversal and the properties of supporting cells show marked differences, likely impacting vestibular function and hair cell regeneration potential.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, UK.
| |
Collapse
|
4
|
Núñez KR, Bronson D, Chang R, Kalluri R. Vestibular afferent neurons develop normally in the absence of quantal/glutamatergic input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.597464. [PMID: 38915604 PMCID: PMC11195208 DOI: 10.1101/2024.06.12.597464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The vestibular nerve is comprised of neuron sub-groups with diverse functions related to their intrinsic biophysical properties. This diversity is partly due to differences in the types and numbers of low-voltage-gated potassium channels found in the neurons' membranes. Expression for some low-voltage gated ion channels like KCNQ4 is upregulated during early post-natal development; suggesting that ion channel composition and neuronal diversity may be shaped by hair cell activity. This idea is consistent with recent work showing that glutamatergic input from hair cells is necessary for the normal diversification auditory neurons. To test if biophysical diversity is similarly dependent on glutamatergic input in vestibular neurons, we examined the maturation of the vestibular epithelium and ganglion neurons in Vglut3-ko mice whose hair cell synapses lack glutamate. Despite lacking glutamatergic input, the knockout mice showed no notable balance deficits and crossed challenging balance beams with little difficulty. Immunolabeling of the Vglut3-ko vestibular epithelia showed normal development as indicated by an identifiable striolar zone with calyceal terminals labeled by molecular marker calretinin, and normal expression of KCNQ4 by the end of the second post-natal week. We found similar numbers of Type I and Type II hair cells in the knockout and wildtype animals, regardless of epithelial zone. Thus, the presumably quiescent Type II hair cells are not cleared from the epithelium. Patch-clamp recordings showed that biophysical diversity of vestibular ganglion neurons in the Vglut3-ko mice is comparable to that found in wildtype controls, with a similar range firing patterns at both immature and juvenile ages. However, our results suggest a subtle biophysical alteration to the largest ganglion cells (putative somata of central zone afferents); those in the knockout had smaller net conductance and were more excitable than those in the wild type. Thus, unlike in the auditory nerve, glutamatergic signaling is unnecessary for producing biophysical diversity in vestibular ganglion neurons. And yet, because the input signals from vestibular hair cells are complex and not solely reliant on quantal release of glutamate, whether diversity of vestibular ganglion neurons is simply hardwired or regulated by a more complex set of input signals remains to be determined.
Collapse
|
5
|
Paplou VG, Schubert NMA, van Tuinen M, Vijayakumar S, Pyott SJ. Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss. Biomolecules 2023; 13:1429. [PMID: 37759828 PMCID: PMC10526133 DOI: 10.3390/biom13091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Age-related loss of vestibular function and hearing are common disorders that arise from the loss of function of the inner ear and significantly decrease quality of life. The underlying pathophysiological mechanisms are poorly understood and difficult to investigate in humans. Therefore, our study examined young (1.5-month-old) and old (24-month-old) C57BL/6 mice, utilizing physiological, histological, and transcriptomic methods. Vestibular sensory-evoked potentials revealed that older mice had reduced wave I amplitudes and delayed wave I latencies, indicating reduced vestibular function. Immunofluorescence and image analysis revealed that older mice exhibited a significant decline in type I sensory hair cell density, particularly in hair cells connected to dimorphic vestibular afferents. An analysis of gene expression in the isolated vestibule revealed the upregulation of immune-related genes and the downregulation of genes associated with ossification and nervous system development. A comparison with the isolated cochlear sensorineural structures showed similar changes in genes related to immune response, chondrocyte differentiation, and myelin formation. These findings suggest that age-related vestibular hypofunction is linked to diminished peripheral vestibular responses, likely due to the loss of a specific subpopulation of hair cells and calyceal afferents. The upregulation of immune- and inflammation-related genes implies that inflammation contributes to these functional and structural changes. Furthermore, the comparison of gene expression between the vestibule and cochlea indicates both shared and distinct mechanisms contributing to age-related vestibular and hearing impairments. Further research is necessary to understand the mechanistic connection between inflammation and age-related balance and hearing disorders and to translate these findings into clinical treatment strategies.
Collapse
Affiliation(s)
- Vasiliki Georgia Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
| | - Nick M. A. Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
- Graduate School of Medical Sciences Research, School of Behavioural and Cognitive Neurosciences, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Marcel van Tuinen
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
| | - Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Sonja J. Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
- Graduate School of Medical Sciences Research, School of Behavioural and Cognitive Neurosciences, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
6
|
Bronson D, Kalluri R. Muscarinic Acetylcholine Receptors Modulate HCN Channel Properties in Vestibular Ganglion Neurons. J Neurosci 2023; 43:902-917. [PMID: 36604171 PMCID: PMC9908319 DOI: 10.1523/jneurosci.2552-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Efferent modulation of vestibular afferent excitability is linked to muscarinic signaling cascades that close low-voltage-gated potassium channels (i.e., KCNQ). Here, we show that muscarinic signaling cascades also depolarize the activation range of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We compared the voltage activation range and kinetics of HCN channels and induced firing patterns before and after administering the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine-M (Oxo-M) in dissociated vestibular ganglion neurons (VGNs) from rats of either sex using perforated whole-cell patch-clamp methods. Oxo-M depolarized HCN channels' half-activation voltage (V 1/2) and sped up the rate of activation near resting potential twofold. HCN channels in large-diameter and/or transient firing VGN (putative cell bodies of irregular firing neuron from central epithelial zones) had relatively depolarized V 1/2 in control solution and were less sensitive to mAChR activation than those found in small-diameter VGN with sustained firing patterns (putatively belonging to regular firing afferents). The impact of mAChR on HCN channels is not a direct consequence of closing KCNQ channels since pretreating the cells with Linopirdine, a KCNQ channel blocker, did not prevent HCN channel depolarization by Oxo-M. Efferent signaling promoted ion channel configurations that were favorable to highly regular spiking in some VGN, but not others. This is consistent with previous observations that low-voltage gated potassium currents in VGN are conducted by mAChR agonist-sensitive and -insensitive channels. Connecting efferent signaling to HCN channels is significant because of the channel's impact on spike-timing regularity and nonchemical transmission between Type I hair cells and vestibular afferents.SIGNIFICANCE STATEMENT Vestibular afferents express a diverse complement of ion channels. In vitro studies identified low-voltage activated potassium channels and hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as crucial for shaping the timing and sensitivity of afferent responses. Moreover, a network of acetylcholine-releasing efferent neurons controls afferent excitability by closing a subgroup of low-voltage activated potassium channels on the afferent neuron. This work shows that these efferent signaling cascades also enhance the activation of HCN channels by depolarizing their voltage activation range. The size of this effect varies depending on the endogenous properties of the HCN channel and on cell type (as determined by discharge patterns and cell size). Simultaneously controlling two ion-channel groups gives the vestibular efferent system exquisite control over afferent neuron activity.
Collapse
Affiliation(s)
- Daniel Bronson
- Hearing and Communications Neuroscience Training Program, University of Southern California, Los Angeles, California 90057
- Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
| | - Radha Kalluri
- Hearing and Communications Neuroscience Training Program, University of Southern California, Los Angeles, California 90057
- Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90057
| |
Collapse
|
7
|
Kalluri R. Similarities in the Biophysical Properties of Spiral-Ganglion and Vestibular-Ganglion Neurons in Neonatal Rats. Front Neurosci 2021; 15:710275. [PMID: 34712112 PMCID: PMC8546178 DOI: 10.3389/fnins.2021.710275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The membranes of auditory and vestibular afferent neurons each contain diverse groups of ion channels that lead to heterogeneity in their intrinsic biophysical properties. Pioneering work in both auditory- and vestibular-ganglion physiology have individually examined this remarkable diversity, but there are few direct comparisons between the two ganglia. Here the firing patterns recorded by whole-cell patch-clamping in neonatal vestibular- and spiral ganglion neurons are compared. Indicative of an overall heterogeneity in ion channel composition, both ganglia exhibit qualitatively similar firing patterns ranging from sustained-spiking to transient-spiking in response to current injection. The range of resting potentials, voltage thresholds, current thresholds, input-resistances, and first-spike latencies are similarly broad in both ganglion groups. The covariance between several biophysical properties (e.g., resting potential to voltage threshold and their dependence on postnatal age) was similar between the two ganglia. Cell sizes were on average larger and more variable in VGN than in SGN. One sub-group of VGN stood out as having extra-large somata with transient-firing patterns, very low-input resistance, fast first-spike latencies, and required large current amplitudes to induce spiking. Despite these differences, the input resistance per unit area of the large-bodied transient neurons was like that of smaller-bodied transient-firing neurons in both VGN and SGN, thus appearing to be size-scaled versions of other transient-firing neurons. Our analysis reveals that although auditory and vestibular afferents serve very different functions in distinct sensory modalities, their biophysical properties are more closely related by firing pattern and cell size than by sensory modality.
Collapse
Affiliation(s)
- Radha Kalluri
- Caruso Department of Otolaryngology-Head and Neck Surgery, Zilkha Neurogenetics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Stone JS, Pujol R, Nguyen TB, Cox BC. The Transcription Factor Sox2 Is Required to Maintain the Cell Type-Specific Properties and Innervation of Type II Vestibular Hair Cells in Adult Mice. J Neurosci 2021; 41:6217-6233. [PMID: 34099510 PMCID: PMC8287988 DOI: 10.1523/jneurosci.1831-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
The sense of balance relies on vestibular hair cells, which detect head motions. Mammals have two types of vestibular hair cell, I and II, with unique morphological, molecular, and physiological properties. Furthermore, each hair cell type signals to a unique form of afferent nerve terminal. Little is known about the mechanisms in mature animals that maintain the specific features of each hair cell type or its postsynaptic innervation. We found that deletion of the transcription factor Sox2 from Type II hair cells in adult mice of both sexes caused many cells in utricles to acquire features unique to Type I hair cells and to lose Type II-specific features. This cellular transdifferentiation, which included changes in nuclear size, chromatin condensation, soma and stereocilium morphology, and marker expression, resulted in a significantly higher proportion of Type I-like hair cells in all epithelial zones. Furthermore, Sox2 deletion from Type II hair cells triggered non-cell autonomous changes in vestibular afferent neurons; they retracted bouton terminals (normally present on only Type II cells) from transdifferentiating hair cells and replaced them with a calyx terminal (normally present on only Type I cells). These changes were accompanied by significant expansion of the utricle's central zone, called the striola. Our study presents the first example of a transcription factor required to maintain the type-specific hair cell phenotype in adult inner ears. Furthermore, we demonstrate that a single genetic change in Type II hair cells is sufficient to alter the morphology of their postsynaptic partners, the vestibular afferent neurons.SIGNIFICANCE STATEMENT The sense of balance relies on two types of sensory cells in the inner ear, Type I and Type II hair cells. These two cell types have unique properties. Furthermore, their postsynaptic partners, the vestibular afferent neurons, have differently shaped terminals on Type I versus Type II hair cells. We show that the transcription factor Sox2 is required to maintain the cell-specific features of Type II hair cells and their postsynaptic terminals in adult mice. This is the first evidence of a molecule that maintains the phenotypes of hair cells and, non-cell autonomously, their postsynaptic partners in mature animals.
Collapse
Affiliation(s)
- Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Rémy Pujol
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
- Institut National de la Santé et de la Recherche Médicale Unit 1051, Institute of Neuroscience, University of Montpellier, 34000 Montpellier, France
| | - Tot Bui Nguyen
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Brandon C Cox
- Departments of Pharmacology and Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9624
| |
Collapse
|
9
|
Reichenberger I, Caussidier-Dechesne CJ, Straka H. Calretinin Immunoreactivity in the VIIIth Nerve and Inner Ear Endorgans of Ranid Frogs. Front Neurosci 2021; 15:691962. [PMID: 34305520 PMCID: PMC8292642 DOI: 10.3389/fnins.2021.691962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Calcium-binding proteins are essential for buffering intracellular calcium concentrations, which are critical for regulating cellular processes involved in neuronal computations. One such calcium-binding protein, calretinin, is present in many neurons of the central nervous system as well as those which innervate cranial sensory organs, although often with differential distributions in adjacent cellular elements. Here, we determined the presence and distribution of calretinin-immunoreactivity in the peripheral vestibular and auditory system of ranid frogs. Calretinin-immunoreactivity was observed in ganglion cells innervating the basilar and amphibian papilla, and in a subpopulation of ganglion cells innervating the saccular epithelium. In contrast, none of the ganglion cells innervating the lagena, the utricle, or the three semicircular canals were calretinin-immunopositive, suggesting that this calcium-binding protein is a marker for auditory but not vestibular afferent fibers in the frog. The absence of calretinin in vestibular ganglion cells corresponds with the lack of type I hair cells in anamniote vertebrates, many of which in amniotes are contacted by the neurites of large, calyx-forming calretinin-immunopositive ganglion cells. In the sensory epithelia of all endorgans, the majority of hair cells were strongly calretinin-immunopositive. Weakly calretinin-immunopositive hair cells were distributed in the intermediate region of the semicircular canal cristae, the central part of the saccular macula, the utricular, and lagenar striola and the medial part of the amphibian papilla. The differential presence of calretinin in the frog vestibular and auditory sensory periphery might reflect a biochemical feature related to firing patterns and frequency bandwidths of self-motion versus acoustic stimulus encoding, respectively.
Collapse
Affiliation(s)
| | | | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany
| |
Collapse
|
10
|
Elliott KL, Kersigo J, Lee JH, Jahan I, Pavlinkova G, Fritzsch B, Yamoah EN. Developmental Changes in Peripherin-eGFP Expression in Spiral Ganglion Neurons. Front Cell Neurosci 2021; 15:678113. [PMID: 34211371 PMCID: PMC8239239 DOI: 10.3389/fncel.2021.678113] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The two types of spiral ganglion neurons (SGNs), types I and II, innervate inner hair cells and outer hair cells, respectively, within the mammalian cochlea and send another process back to cochlear nuclei in the hindbrain. Studying these two neuronal types has been made easier with the identification of unique molecular markers. One of these markers, peripherin, was shown using antibodies to be present in all SGNs initially but becomes specific to type II SGNs during maturation. We used mice with fluorescently labeled peripherin (Prph-eGFP) to examine peripherin expression in SGNs during development and in aged mice. Using these mice, we confirm the initial expression of Prph-eGFP in both types I and II neurons and eventual restriction to only type II perikarya shortly after birth. However, while Prph-eGFP is uniquely expressed within type II cell bodies by P8, both types I and II peripheral and central processes continue to express Prph-eGFP for some time before becoming downregulated. Only at P30 was there selective type II Prph-eGFP expression in central but not peripheral processes. By 9 months, only the type II cell bodies and more distal central processes retain Prph-eGFP expression. Our results show that Prph-eGFP is a reliable marker for type II SGN cell bodies beyond P8; however, it is not generally a suitable marker for type II processes, except for central processes beyond P30. How the changes in Prph-eGFP expression relate to subsequent protein expression remains to be explored.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, CLAS, The University of Iowa, Iowa City, IA, United States.,Department of Otolaryngology, CLAS, The University of Iowa, Iowa City, IA, United States
| | - Jennifer Kersigo
- Department of Biology, CLAS, The University of Iowa, Iowa City, IA, United States.,Department of Otolaryngology, CLAS, The University of Iowa, Iowa City, IA, United States
| | - Jeong Han Lee
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | - Israt Jahan
- Department of Biology, CLAS, The University of Iowa, Iowa City, IA, United States.,Department of Otolaryngology, CLAS, The University of Iowa, Iowa City, IA, United States
| | | | - Bernd Fritzsch
- Department of Biology, CLAS, The University of Iowa, Iowa City, IA, United States.,Department of Otolaryngology, CLAS, The University of Iowa, Iowa City, IA, United States
| | - Ebenezer N Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
11
|
Prins TJ, Myers ZA, Saldate JJ, Hoffman LF. Calbindin expression in adult vestibular epithelia. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:623-637. [PMID: 32350587 DOI: 10.1007/s00359-020-01418-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 01/11/2023]
Abstract
The mammalian vestibular epithelia exhibit a remarkably stereotyped organization featuring cellular characteristics under planar cell polarity (PCP) control. PCP mechanisms are responsible for the organization of hair cell morphologic polarization vectors, and are thought to be responsible for the postsynaptic expression of the calcium-binding protein calretinin that defines the utricular striola and cristae central zone. However, recent analyses revealed that subtle differences in the topographic expression of oncomodulin, another calcium-binding protein, reflects heterogeneous factors driving the subtle variations in expression. Calbindin represents a third calcium-binding protein that has been previously described to be expressed in both hair cells and afferent calyces in proximity to the utricular striola and crista central zone. The objective of the present investigation was to determine calbindin's topographic pattern of expression to further elucidate the extent to which PCP mechanisms might exert control over the organization of vestibular neuroepithelia. The findings revealed that calbindin exhibited an expression pattern strikingly similar to oncomodulin. However, within calyces of the central zone calbindin was colocalized with calretinin. These results indicate that organizational features of vestibular epithelia are governed by a suite of factors that include PCP mechanisms as well others yet to be defined.
Collapse
Affiliation(s)
- Terry J Prins
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA.,Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Zachary A Myers
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA
| | - Johnny J Saldate
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA
| | - Larry F Hoffman
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA. .,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Stewart CE, Bauer DS, Kanicki AC, Altschuler RA, King WM. Intense noise exposure alters peripheral vestibular structures and physiology. J Neurophysiol 2020; 123:658-669. [PMID: 31875485 PMCID: PMC7052639 DOI: 10.1152/jn.00642.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
The otolith organs play a critical role in detecting linear acceleration and gravity to control posture and balance. Some afferents that innervate these structures can be activated by sound and are at risk for noise overstimulation. A previous report demonstrated that noise exposure can abolish vestibular short-latency evoked potential (VsEP) responses and damage calyceal terminals. However, the stimuli that were used to elicit responses were weaker than those established in previous studies and may have been insufficient to elicit VsEP responses in noise-exposed animals. The goal of this study was to determine the effect of an established noise exposure paradigm on VsEP responses using large head-jerk stimuli to determine if noise induces a stimulus threshold shift and/or if large head-jerks are capable of evoking VsEP responses in noise-exposed rats. An additional goal is to relate these measurements to the number of calyceal terminals and hair cells present in noise-exposed vs. non-noise-exposed tissue. Exposure to intense continuous noise significantly reduced VsEP responses to large stimuli and abolished VsEP responses to small stimuli. This finding confirms that while measurable VsEP responses can be elicited from noise-lesioned rat sacculi, larger head-jerk stimuli are required, suggesting a shift in the minimum stimulus necessary to evoke the VsEP. Additionally, a reduction in labeled calyx-only afferent terminals was observed without a concomitant reduction in the overall number of calyces or hair cells. This finding supports a critical role of calretinin-expressing calyceal-only afferents in the generation of a VsEP response.NEW & NOTEWORTHY This study identifies a change in the minimum stimulus necessary to evoke vestibular short-latency evoked potential (VsEP) responses after noise-induced damage to the vestibular periphery and reduced numbers of calretinin-labeled calyx-only afferent terminals in the striolar region of the sacculus. These data suggest that a single intense noise exposure may impact synaptic function in calyx-only terminals in the striolar region of the sacculus. Reduced calretinin immunolabeling may provide insight into the mechanism underlying noise-induced changes in VsEP responses.
Collapse
Affiliation(s)
- C E Stewart
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - D S Bauer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - A C Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - R A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - W M King
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
13
|
Ono K, Keller J, López Ramírez O, González Garrido A, Zobeiri OA, Chang HHV, Vijayakumar S, Ayiotis A, Duester G, Della Santina CC, Jones SM, Cullen KE, Eatock RA, Wu DK. Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations. Nat Commun 2020; 11:63. [PMID: 31896743 PMCID: PMC6940366 DOI: 10.1038/s41467-019-13710-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/21/2019] [Indexed: 01/18/2023] Open
Abstract
Each vestibular sensory epithelium in the inner ear is divided morphologically and physiologically into two zones, called the striola and extrastriola in otolith organ maculae, and the central and peripheral zones in semicircular canal cristae. We found that formation of striolar/central zones during embryogenesis requires Cytochrome P450 26b1 (Cyp26b1)-mediated degradation of retinoic acid (RA). In Cyp26b1 conditional knockout mice, formation of striolar/central zones is compromised, such that they resemble extrastriolar/peripheral zones in multiple features. Mutants have deficient vestibular evoked potential (VsEP) responses to jerk stimuli, head tremor and deficits in balance beam tests that are consistent with abnormal vestibular input, but normal vestibulo-ocular reflexes and apparently normal motor performance during swimming. Thus, degradation of RA during embryogenesis is required for formation of highly specialized regions of the vestibular sensory epithelia with specific functions in detecting head motions.
Collapse
Affiliation(s)
- Kazuya Ono
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Keller
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Qiagen Sciences Inc., Germantown, MD, 20874, USA
| | - Omar López Ramírez
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | | | - Omid A Zobeiri
- Department of Physiology McGill University, Montreal, QC, Canada, H3G 1Y6
| | | | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, 301 Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0738, USA
| | - Andrianna Ayiotis
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gregg Duester
- Neuroscience and Aging Research Center, Stanford Burnham Prebys Medical Discovery Institutes, Stanford, CA, 92037, USA
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, 301 Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0738, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Doris K Wu
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Wang T, Niwa M, Sayyid ZN, Hosseini DK, Pham N, Jones SM, Ricci AJ, Cheng AG. Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells. PLoS Biol 2019; 17:e3000326. [PMID: 31260439 PMCID: PMC6602158 DOI: 10.1371/journal.pbio.3000326] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/30/2019] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells are mechanoreceptors required for hearing and balance functions. From embryonic development, hair cells acquire apical stereociliary bundles for mechanosensation, basolateral ion channels that shape receptor potential, and synaptic contacts for conveying information centrally. These key maturation steps are sequential and presumed coupled; however, whether hair cells emerging postnatally mature similarly is unknown. Here, we show that in vivo postnatally generated and regenerated hair cells in the utricle, a vestibular organ detecting linear acceleration, acquired some mature somatic features but hair bundles appeared nonfunctional and short. The utricle consists of two hair cell subtypes with distinct morphological, electrophysiological and synaptic features. In both the undamaged and damaged utricle, fate-mapping and electrophysiology experiments showed that Plp1+ supporting cells took on type II hair cell properties based on molecular markers, basolateral conductances and synaptic properties yet stereociliary bundles were absent, or small and nonfunctional. By contrast, Lgr5+ supporting cells regenerated hair cells with type I and II properties, representing a distinct hair cell precursor subtype. Lastly, direct physiological measurements showed that utricular function abolished by damage was partially regained during regeneration. Together, our data reveal a previously unrecognized aberrant maturation program for hair cells generated and regenerated postnatally and may have broad implications for inner ear regenerative therapies. During development, sensory hair cells undergo a series of critical maturation steps that are sequential and presumed coupled, but whether regenerated hair cells mature similarly is unknown. This study shows that regenerated vestibular hair cells acquired some mature somatic features, but the apical bundles remained immature.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mamiko Niwa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zahra N. Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Davood K. Hosseini
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicole Pham
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| |
Collapse
|
15
|
Balmer TS, Trussell LO. Selective targeting of unipolar brush cell subtypes by cerebellar mossy fibers. eLife 2019; 8:44964. [PMID: 30994458 PMCID: PMC6469928 DOI: 10.7554/elife.44964] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 01/26/2023] Open
Abstract
In vestibular cerebellum, primary afferents carry signals from single vestibular end organs, whereas secondary afferents from vestibular nucleus carry integrated signals. Selective targeting of distinct mossy fibers determines how the cerebellum processes vestibular signals. We focused on vestibular projections to ON and OFF classes of unipolar brush cells (UBCs), which transform single mossy fiber signals into long-lasting excitation or inhibition respectively, and impact the activity of ensembles of granule cells. To determine whether these contacts are indeed selective, connectivity was traced back from UBC to specific ganglion cell, hair cell and vestibular organ subtypes in mice. We show that a specialized subset of primary afferents contacts ON UBCs, but not OFF UBCs, while secondary afferents contact both subtypes. Striking anatomical differences were observed between primary and secondary afferents, their synapses, and the UBCs they contact. Thus, each class of UBC functions to transform specific signals through distinct anatomical pathways. While out jogging, you have no trouble keeping your eyes fixed on objects in the distance even though your head and eyes are moving with every step. Humans owe this stability of the visual world partly to a region of the brain called the vestibular cerebellum. From its position underneath the rest of the brain, the vestibular cerebellum detects head motion and then triggers compensatory movements to stabilize the head, body and eyes. The vestibular cerebellum receives sensory input from the body via direct and indirect routes. The direct input comes from five structures within the inner ear, each of which detects movement of the head in one particular direction. The indirect input travels to the cerebellum via the brainstem, which connects the brain with the spinal cord. The indirect input contains information on head movements in multiple directions combined with input from other senses such as vision. By studying the mouse brain, Balmer and Trussell have now mapped the direct and indirect circuits that carry sensory information to the vestibular cerebellum. Both types of input activate cells within the vestibular cerebellum called unipolar brush cells (UBCs). There are two types of UBCs: ON and OFF. Direct sensory input from the inner ear activates only ON UBCs. These cells respond to the arrival of sensory input by increasing their activity. Indirect input from the brainstem activates both ON UBCs and OFF UBCs. The latter respond to the input by decreasing their activity. The vestibular cerebellum thus processes direct and indirect inputs via segregated pathways containing different types of UBCs. The next step in understanding how the cerebellum maintains a stable visual world is to identify the circuitry beyond the UBCs. Understanding these circuits will ultimately provide insights into balance disorders, such as vertigo.
Collapse
Affiliation(s)
- Timothy S Balmer
- Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
| | - Laurence O Trussell
- Vollum Institute and Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
| |
Collapse
|
16
|
Meredith FL, Rennie KJ. Regional and Developmental Differences in Na + Currents in Vestibular Primary Afferent Neurons. Front Cell Neurosci 2018; 12:423. [PMID: 30487736 PMCID: PMC6246661 DOI: 10.3389/fncel.2018.00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 02/04/2023] Open
Abstract
The vestibular system relays information about head position via afferent nerve fibers to the brain in the form of action potentials. Voltage-gated Na+ channels in vestibular afferents drive the initiation and propagation of action potentials, but their expression during postnatal development and their contributions to firing in diverse mature afferent populations are unknown. Electrophysiological techniques were used to determine Na+ channel subunit types in vestibular calyx-bearing afferents at different stages of postnatal development. We used whole cell patch clamp recordings in thin slices of gerbil crista neuroepithelium to investigate Na+ channels and firing patterns in central zone (CZ) and peripheral zone (PZ) afferents. PZ afferents are exclusively dimorphic, innervating type I and type II hair cells, whereas CZ afferents can form dimorphs or calyx-only terminals which innervate type I hair cells alone. All afferents expressed tetrodotoxin (TTX)-sensitive Na+ currents, but TTX-sensitivity varied with age. During the fourth postnatal week, 200–300 nM TTX completely blocked sodium currents in PZ and CZ calyces. By contrast, in immature calyces [postnatal day (P) 5–11], a small component of peak sodium current remained in 200 nM TTX. Application of 1 μM TTX, or Jingzhaotoxin-III plus 200 nM TTX, abolished sodium current in immature calyces, suggesting the transient expression of voltage-gated sodium channel 1.5 (Nav1.5) during development. A similar TTX-insensitive current was found in early postnatal crista hair cells (P5–9) and constituted approximately one third of the total sodium current. The Nav1.6 channel blocker, 4,9-anhydrotetrodotoxin, reduced a component of sodium current in immature and mature calyces. At 100 nM 4,9-anhydrotetrodotoxin, peak sodium current was reduced on average by 20% in P5–14 calyces, by 37% in mature dimorphic PZ calyces, but by less than 15% in mature CZ calyx-only terminals. In mature PZ calyces, action potentials became shorter and broader in the presence of 4,9-anhydrotetrodotoxin implicating a role for Nav1.6 channels in firing in dimorphic afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
17
|
Stewart CE, Kanicki AC, Altschuler RA, King WM. Vestibular short-latency evoked potential abolished by low-frequency noise exposure in rats. J Neurophysiol 2018; 119:662-667. [PMID: 29118200 PMCID: PMC5867388 DOI: 10.1152/jn.00668.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
The vestibular system plays a critical role in detection of head movements and is essential for normal postural control. Because of their anatomical proximity to the cochlea, the otolith organs are selectively exposed to sound pressure and are at risk for noise overstimulation. Clinical reports suggest a link between noise exposure and balance problems, but the structural and physiological basis for this linkage is not well understood. The goal of this study was to determine the effects of low-frequency noise (LFN) on the otolith organs by correlating changes in vestibular short-latency evoked potentials (VsEPs) with changes in saccular afferent endings following noise exposure. LFN exposure transiently abolished the VsEP and reduced the number of stained calyces within the sacculus. Although some recovery of the VsEP waveform could be observed within 3 days after noise, at 3 wk recovery was only partial in most animals, consistent with a reduced number of afferents with calyceal endings. These data show that a single intense noise exposure is capable of causing a vestibular deficit that appears to mirror the synaptic deficit associated with hidden hearing loss after noise-induced cochlear injury. NEW & NOTEWORTHY This is the first study to explore the effects of low-frequency high-intensity noise on vestibular short-latency evoked potential (VsEP) responses, which shows a linkage between attenuated noise-induced VsEPs and pathological changes to otolith organ afferents. This finding suggests a potential limitation of the VsEP for evaluation of vestibular dysfunction, since the VsEP measurement may assess the activity of a specific class rather than all afferents.
Collapse
Affiliation(s)
- Courtney E Stewart
- Department of Otolaryngology, University of Michigan , Ann Arbor, Michigan
| | - Ariane C Kanicki
- Department of Otolaryngology, University of Michigan , Ann Arbor, Michigan
| | - Richard A Altschuler
- Department of Otolaryngology, University of Michigan , Ann Arbor, Michigan
- Ann Arbor Department of Veterans Affairs Medical Center , Ann Arbor, Michigan
| | - W M King
- Department of Otolaryngology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
18
|
Johnson Chacko L, Pechriggl EJ, Fritsch H, Rask-Andersen H, Blumer MJF, Schrott-Fischer A, Glueckert R. Neurosensory Differentiation and Innervation Patterning in the Human Fetal Vestibular End Organs between the Gestational Weeks 8-12. Front Neuroanat 2016; 10:111. [PMID: 27895556 PMCID: PMC5108762 DOI: 10.3389/fnana.2016.00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
Balance orientation depends on the precise operation of the vestibular end organs and the vestibular ganglion neurons. Previous research on the assemblage of the neuronal network in the developing fetal vestibular organ has been limited to data from animal models. Insights into the molecular expression profiles and signaling moieties involved in embryological development of the human fetal inner ear have been limited. We present an investigation of the cells of the vestibular end organs with specific focus on the hair cell differentiation and innervation pattern using an uninterrupted series of unique specimens from gestational weeks 8-12. Nerve fibers positive for peripherin innervate the entire fetal crista and utricle. While in rodents only the peripheral regions of the cristae and the extra-striolar region of the statolithic organs are stained. At week 9, transcription factors PAX2 and PAX8 were observed in the hair cells whereas PAX6 was observed for the first time among the supporting cells of the cristae and the satellite glial cells of the vestibular ganglia. Glutamine synthetase, a regulator of the neurotransmitter glutamate, is strongly expressed among satellite glia cells, transitional zones of the utricle and supporting cells in the sensory epithelium. At gestational week 11, electron microscopic examination reveals bouton contacts at hair cells and first signs of the formation of a protocalyx at type I hair cells. Our study provides first-hand insight into the fetal development of the vestibular end organs as well as their pattern of innervation by means of immunohistochemical and EM techniques, with the aim of contributing toward our understanding of balance development.
Collapse
Affiliation(s)
- Lejo Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck Innsbruck, Austria
| | - Elisabeth J Pechriggl
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck Innsbruck, Austria
| | - Helga Fritsch
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck Innsbruck, Austria
| | | | - Michael J F Blumer
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck Innsbruck, Austria
| | | | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of InnsbruckInnsbruck, Austria; University Clinics Innsbruck, Tirol KlinikenInnsbruck, Austria
| |
Collapse
|
19
|
Usman HO, Balaban CD. Distribution of 5-HT 1F Receptors in Monkey Vestibular and Trigeminal Ganglion Cells. Front Neurol 2016; 7:173. [PMID: 27777567 PMCID: PMC5056317 DOI: 10.3389/fneur.2016.00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/27/2016] [Indexed: 01/03/2023] Open
Abstract
Background Evidence of serotonergic involvement in vestibular pathway contributions to migraine and balance disorders is compelling. Serotonergic 5-HT1B and 5-HT1D receptors are expressed extensively in inner ear ganglia of monkeys and rats. The serotonergic 5-HT1F receptor is also a target of triptans. This study describes its distribution in vestibular and trigeminal ganglia of monkeys. Methods Using primary polyclonal antibodies raised against oligopeptides specific for the human 5-HT1F receptor, neuronal somatic area and intensity of immunoreactive vestibular and trigeminal ganglia were quantified. Results and Discussion Virtually all vestibular and considerable trigeminal ganglia showed positive 5-HT1F receptor immunoreactivity. Inferior and superior vestibular ganglia staining appeared confined to distinct cell regions, varying considerably among cells of different sizes: more intense in small, punctate in some medium and regionally polarized in some large cells. Analyses of average somatic vestibular neuronal immunoreactive intensity identified mainly medium sized cells with high standard deviation of intensity corresponding to punctately stained cells. Less variability occurred in somatic intensity staining and cellular distribution among 5-HT1F receptor immunopositive trigeminal ganglia. Most exhibited similar punctate staining patterns, higher mean somatic immunoreactive intensity and larger neuronal somatic size proportions per size distribution subpopulation compared to vestibular ganglia size distribution populations. Centrally directed vestibular ganglion neuronal processes, cochlear inner hair cells, vestibular hair cells and blood vessels in vestibular maculae and cristae were immunoreactive. The 5-HT1F receptor expression in vestibular ganglia shows complex variable staining intensity patterns associated with cell size of immunopositive neurons, not seen in immunopositive trigeminal ganglia and not previously evident with 5-HT1B and 5-HT1D receptor subtype immunoreactivity in vestibular ganglia. These data motivate exploration of 5-HT1 receptor oligomerization and ligand functional selectivity in differential serotonergic involvement in co-morbidity of migraine and balance disorders. Similar findings in cochlear inner hair cell afferents are applicable to migraine-related tinnitus or hypercusis (phonophobia).
Collapse
Affiliation(s)
- Habiba O Usman
- Department of Otolaryngology, University of Pittsburgh , Pittsburgh, PA , USA
| | - Carey D Balaban
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Liu XP, Wooltorton JRA, Gaboyard-Niay S, Yang FC, Lysakowski A, Eatock RA. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents. J Neurophysiol 2016; 115:2536-55. [PMID: 26936982 DOI: 10.1152/jn.00902.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/02/2016] [Indexed: 01/02/2023] Open
Abstract
Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between -30 and -40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Speech and Hearing Bioscience and Technology Program, Harvard-Massachusetts Institute of Technology Health Sciences and Technology Program, Cambridge, Massachusetts; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | | | - Sophie Gaboyard-Niay
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Fu-Chia Yang
- Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois; Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Ruth Anne Eatock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
21
|
Bohuslavova R, Dodd N, Macova I, Chumak T, Horak M, Syka J, Fritzsch B, Pavlinkova G. Pax2-Islet1 Transgenic Mice Are Hyperactive and Have Altered Cerebellar Foliation. Mol Neurobiol 2016; 54:1352-1368. [PMID: 26843111 PMCID: PMC5310572 DOI: 10.1007/s12035-016-9716-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022]
Abstract
The programming of cell fate by transcription factors requires precise regulation of their time and level of expression. The LIM-homeodomain transcription factor Islet1 (Isl1) is involved in cell-fate specification of motor neurons, and it may play a similar role in the inner ear. In order to study its role in the regulation of vestibulo-motor development, we investigated a transgenic mouse expressing Isl1 under the Pax2 promoter control (Tg+/−). The transgenic mice show altered level, time, and place of expression of Isl1 but are viable. However, Tg+/− mice exhibit hyperactivity, including circling behavior, and progressive age-related decline in hearing, which has been reported previously. Here, we describe the molecular and morphological changes in the cerebellum and vestibular system that may cause the hyperactivity of Tg+/− mice. The transgene altered the formation of folia in the cerebellum, the distribution of calretinin labeled unipolar brush cells, and reduced the size of the cerebellum, inferior colliculus, and saccule. Age-related progressive reduction of calbindin expression was detected in Purkinje cells in the transgenic cerebella. The hyperactivity of Tg+/− mice is reduced upon the administration of picrotoxin, a non-competitive channel blocker for the γ-aminobutyric acid (GABA) receptor chloride channels. This suggests that the overexpression of Isl1 significantly affects the functions of GABAergic neurons. We demonstrate that the overexpression of Isl1 affects the development and function of the cerebello-vestibular system, resulting in hyperactivity.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Institute of Biotechnology CAS, Prumyslova 595, Vestec, Prague-West District, 25242, Czech Republic
| | - Nicole Dodd
- Institute of Biotechnology CAS, Prumyslova 595, Vestec, Prague-West District, 25242, Czech Republic
| | - Iva Macova
- Institute of Biotechnology CAS, Prumyslova 595, Vestec, Prague-West District, 25242, Czech Republic
| | - Tetyana Chumak
- Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Martin Horak
- Institute of Physiology CAS, Prague, Czech Republic
| | - Josef Syka
- Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Gabriela Pavlinkova
- Institute of Biotechnology CAS, Prumyslova 595, Vestec, Prague-West District, 25242, Czech Republic.
| |
Collapse
|
22
|
Meredith FL, Kirk ME, Rennie KJ. Kv1 channels and neural processing in vestibular calyx afferents. Front Syst Neurosci 2015; 9:85. [PMID: 26082693 PMCID: PMC4451359 DOI: 10.3389/fnsys.2015.00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/18/2015] [Indexed: 11/13/2022] Open
Abstract
Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine Aurora, Colorado, USA
| | - Matthew E Kirk
- Department of Otolaryngology, University of Colorado School of Medicine Aurora, Colorado, USA
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine Aurora, Colorado, USA ; Department of Physiology and Biophysics, University of Colorado School of Medicine Aurora, Colorado, USA
| |
Collapse
|
23
|
Jordan PM, Fettis M, Holt JC. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse. J Comp Neurol 2015; 523:1258-80. [PMID: 25560461 DOI: 10.1002/cne.23738] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 11/07/2022]
Abstract
In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models used by our laboratory. Here we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to use these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of red-eared turtles (Trachemys scripta elegans), zebra finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide. Comparisons of efferent innervation patterns among the three species are discussed.
Collapse
Affiliation(s)
- Paivi M Jordan
- Department of Otolaryngology, University of Rochester, Rochester, New York
| | | | | |
Collapse
|
24
|
Huwe JA, Logan GJ, Williams B, Rowe MH, Peterson EH. Utricular afferents: morphology of peripheral terminals. J Neurophysiol 2015; 113:2420-33. [PMID: 25632074 DOI: 10.1152/jn.00481.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/23/2015] [Indexed: 11/22/2022] Open
Abstract
The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask whether these macular subdivisions are innervated by distinctive populations of afferents to help us understand the role each subdivision plays in signaling head movements. We quantified the morphology of 173 afferents and identified six afferent classes, which differ in structure and macular locus. Calyceal and dimorphic afferents innervate one striolar band. Bouton afferents innervate a second striolar band; they have elongated terminals and the thickest processes and axons of all bouton units. Bouton afferents in lateral (LES) and medial (MES) extrastriolae have small-diameter axons but differ in collecting area, bouton number, and hair cell contacts (LES >> MES). A fourth, distinctive population of bouton afferents supplies the juxtastriola. These results, combined with our earlier findings on utricular hair cells and the otoconial membrane, suggest the hypotheses that MES and calyceal afferents encode head movement direction with high spatial resolution and that MES afferents are well suited to signal three-dimensional head orientation and striolar afferents to signal head movement onset.
Collapse
Affiliation(s)
- J A Huwe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - G J Logan
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - B Williams
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - M H Rowe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - E H Peterson
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| |
Collapse
|
25
|
Tavazzani E, Tritto S, Spaiardi P, Botta L, Manca M, Prigioni I, Masetto S, Russo G. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells. Front Cell Neurosci 2014; 8:428. [PMID: 25565962 PMCID: PMC4269132 DOI: 10.3389/fncel.2014.00428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022] Open
Abstract
The function of the enzyme glutamate decarboxylase (GAD) is to convert glutamate in γ-aminobutyric acid (GABA). Glutamate decarboxylase exists as two major isoforms, termed GAD65 and GAD67, that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.
Collapse
Affiliation(s)
- Elisa Tavazzani
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Simona Tritto
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Laboratory of Neurophysiology, Brain Connectivity Center, C. Mondino National Neurological Institute Pavia, Italy
| | - Paolo Spaiardi
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Laura Botta
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia Pavia, Italy
| | - Marco Manca
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Ivo Prigioni
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| |
Collapse
|
26
|
Liu W, Davis RL. Calretinin and calbindin distribution patterns specify subpopulations of type I and type II spiral ganglion neurons in postnatal murine cochlea. J Comp Neurol 2014; 522:2299-318. [PMID: 24414968 DOI: 10.1002/cne.23535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/27/2013] [Accepted: 01/04/2014] [Indexed: 01/02/2023]
Abstract
As the first neural element in the auditory pathway, neurons in the spiral ganglion shape the initial coding of sound stimuli for subsequent processing. Within the ganglion, type I and type II neurons form divergent and convergent innervation patterns, respectively, with their hair cell sensory receptors, indicating that very different information is gathered and conveyed. Layered onto these basic innervation patterns are structural and electrophysiological features that provide additional levels of processing multifaceted sound stimuli. To understand the nature of this additional complexity of signal coding, we characterized the distribution of calretinin and calbindin, two regulators of intracellular calcium that serve as markers for neuronal subpopulations. We showed in acute preparations and in vitro that calretinin and calbindin staining levels were heterogeneous. Immunocytochemical analysis of colocalization further showed that high levels of staining for the two molecules rarely overlapped. Although varied amounts of calbindin and calretinin were found within each tonotopic location and neuronal type, some distinct subdistributions were noted. For example, calretinin levels were highest in neurons innervating the midcochlea region, whereas calbindin levels were similar across the entire ganglion. Furthermore, we noted that apical type II neurons, identified by antiperipherin labeling, had significantly lower levels of calretinin and higher levels of calbindin. We also established that the endogenous firing feature of onset tau of the subthreshold response showed a pattern related to quantified calretinin and calbindin staining levels. Taken together, our results suggest an additional dimension of complexity within the spiral ganglion beyond that currently categorized.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, 08854
| | | |
Collapse
|
27
|
Meredith FL, Rennie KJ. Zonal variations in K+ currents in vestibular crista calyx terminals. J Neurophysiol 2014; 113:264-76. [PMID: 25343781 DOI: 10.1152/jn.00399.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action potential firing was observed in 25% of current-clamp recordings and was either regular or irregular in both zones. Firing was abolished when extracellular choline replaced Na(+) but persisted when hair cell mechanotransduction channels or calyx AMPA receptors were blocked. This suggests that ion channels intrinsic to the calyx can generate spontaneous firing. In response to depolarizing voltage steps, outward K(+) currents were observed at potentials above -60 mV. K(+) currents in PZ calyces showed significantly more inactivation than currents in CZ calyces. Underlying K(+) channel populations contributing to these differences were investigated. The KCNQ channel blocker XE991 dihydrochloride blocked a slowly activating, sustained outward current in both PZ and CZ calyces, indicating the presence of KCNQ channels. Mean reduction was greatest in PZ calyces. XE991 also reduced action potential firing frequency in CZ and PZ calyces and broadened mean action potential width. The K(+) channel blocker 4-aminopyridine (10-50 μM) blocked rapidly activating, moderately inactivating currents that were more prevalent in PZ calyces. α-Dendrotoxin, a selective blocker of KV1 channels, reduced outward currents in CZ calyces but not in PZ calyces. Regional variations in K(+) conductances may contribute to different firing responses in calyx afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; and Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
28
|
Schuth O, McLean WJ, Eatock RA, Pyott SJ. Distribution of Na,K-ATPase α subunits in rat vestibular sensory epithelia. J Assoc Res Otolaryngol 2014; 15:739-54. [PMID: 25091536 DOI: 10.1007/s10162-014-0479-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/01/2014] [Indexed: 10/24/2022] Open
Abstract
The afferent encoding of vestibular stimuli depends on molecular mechanisms that regulate membrane potential, concentration gradients, and ion and neurotransmitter clearance at both afferent and efferent relays. In many cell types, the Na,K-ATPase (NKA) is essential for establishing hyperpolarized membrane potentials and mediating both primary and secondary active transport required for ion and neurotransmitter clearance. In vestibular sensory epithelia, a calyx nerve ending envelopes each type I hair cell, isolating it over most of its surface from support cells and posing special challenges for ion and neurotransmitter clearance. We used immunofluorescence and high-resolution confocal microscopy to examine the cellular and subcellular patterns of NKAα subunit expression within the sensory epithelia of semicircular canals as well as an otolith organ (the utricle). Results were similar for both kinds of vestibular organ. The neuronal NKAα3 subunit was detected in all afferent endings-both the calyx afferent endings on type I hair cells and bouton afferent endings on type II hair cells-but was not detected in efferent terminals. In contrast to previous results in the cochlea, the NKAα1 subunit was detected in hair cells (both type I and type II) but not in supporting cells. The expression of distinct NKAα subunits by vestibular hair cells and their afferent endings may be needed to support and shape the high rates of glutamatergic neurotransmission and spike initiation at the unusual type I-calyx synapse.
Collapse
Affiliation(s)
- Olga Schuth
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC, 28403, USA
| | | | | | | |
Collapse
|
29
|
Takimoto Y, Ishida Y, Nakamura Y, Kamakura T, Yamada T, Kondo M, Kitahara T, Uno A, Imai T, Horii A, Okazaki S, Nishiike S, Inohara H, Shimada S. 5-HT(3) receptor expression in the mouse vestibular ganglion. Brain Res 2014; 1557:74-82. [PMID: 24530269 DOI: 10.1016/j.brainres.2014.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
The 5-hydroxytryptamine type 3 (5-HT3) receptor is a ligand-gated ion channel and a member of the Cys-loop family of receptors. Previous studies have shown 5-HT3 receptor expression in various neural cells of the central and peripheral nervous systems. Although the function and distribution of the 5-HT3 receptor has been well established, its role in the inner ear is still poorly understood. Moreover, no study has yet determined its localization and function in the peripheral vestibular nervous system. In the present study, we reveal mRNA expression of both 5-HT3A and 5-HT3B receptor subunits in the mouse vestibular ganglion (VG) by RT-PCR and in situ hybridization (ISH). We also show by ISH that 5-HT3 receptor mRNA is only expressed in the VG (superior and inferior division) in the peripheral vestibular nervous system. Moreover, we performed Ca(2+) imaging to determine whether functional 5-HT3 receptors are present in the mouse VG, using a selective 5-HT3 receptor agonist, SR57227A. In wild mice, 32% of VG neurons responded to the agonist, whereas there was no response in 5-HT3A receptor knockout mice. These results indicate that VG cells express functional 5-HT3 receptor channels and might play a modulatory role in the peripheral vestibular nervous system.
Collapse
Affiliation(s)
- Yasumitsu Takimoto
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusuke Ishida
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yukiko Nakamura
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takefumi Kamakura
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Yamada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Kitahara
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuhiko Uno
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Imai
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Arata Horii
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suzuyo Okazaki
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suetaka Nishiike
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Dimiccoli M, Girard B, Berthoz A, Bennequin D. Striola magica. A functional explanation of otolith geometry. J Comput Neurosci 2013; 35:125-54. [DOI: 10.1007/s10827-013-0444-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/22/2013] [Accepted: 01/27/2013] [Indexed: 10/27/2022]
|
31
|
Temporal and spatial distribution of gentamicin in the peripheral vestibular system after transtympanic administration in guinea pigs. Hear Res 2013; 298:49-59. [PMID: 23380663 DOI: 10.1016/j.heares.2013.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/28/2012] [Accepted: 01/15/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Transtympanic administration of gentamicin is effective for treating patients with intractable vertigo. This study explored the spatial and temporal distribution of gentamicin in vestibular end-organs after transtympanic administration. METHODS Thirty guinea pigs were transtympanically injected with gentamicin conjugated to Texas Red (GTTR) and their vestibular end-organs examined after various survival periods. Another 9 guinea pigs received GTTR at different doses. Nine animals received Texas Red only and served as controls. We used confocal microscopy to determine the cellular distribution of GTTR in semicircular canal cristae, as well as the utricular and saccular maculae. RESULTS The most intense GTTR labeling was present in the saccule compared to other vestibular end-organs. GTTR fluorescence was detected predominantly in type I hair cells, type II hair cells and transitional cells after a single transtympanic dose of GTTR (0.1 mg/ml, 0.05 ml), while only weak fluorescence was observed in non-sensory cells such as supporting cells, dark cells and lumenal epithelial cells. Transitional cells displayed intense GTTR fluorescence in the supra-nuclear regions 24 h after transtympanic injection that was retained for at least 4 weeks. A decreasing spatial gradient of GTTR fluorescence was observed sensory epithelial regions containing central type I to peripheral type I and then type II hair cells in the crista ampullaris, and from striolar to extra-striolar hair cells within the vestibular macula. GTTR fluorescence extended from being restricted to the apical cytoplasm at lower doses to the entire cell body of type I hair cells with increasing dose. GTTR fluorescence reached peak intensities for individual regions of interest within the cristae and maculae between 3 and 7 days after transtympanic injection. CONCLUSION The saccular uptake of GTTR is greater than other vestibular end-organs after transtympanic injection in the semicircular canals.
Collapse
|
32
|
Zakir M, Wu LQ, Dickman JD. Morphology and innervation of the vestibular lagena in pigeons. Neuroscience 2012; 209:97-107. [PMID: 22387112 DOI: 10.1016/j.neuroscience.2012.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 11/26/2022]
Abstract
The morphological characteristics of the pigeon lagena were examined using histology, scanning electron microscopy, and biotinylated dextran amine (BDA) neural tracers. The lagena epithelium was observed to lie partially in a parasagittal plane, but was also U-shaped with orthogonal (lateral) directed tips. Hair cell planar polarities were oriented away from a central reversal line that ran nearly the length of the epithelium. Similar to the vertebrate utricle and saccule, three afferent classes were observed based upon their terminal innervation pattern, which include calyx, dimorph, and bouton fibers. Calyx and dimorph afferents innervated the striola region of the lagena, whereas bouton afferents innervated the extrastriola and a small region of the central striola known as the type II band. Calyx units had large calyceal terminal structures that innervated only type I hair cells. Dimorph afferents innervated both type I and II hair cells, with calyx and bouton terminals. Bouton afferents had the largest most complex innervation patterns and the greatest terminal areas contacting many hair cells.
Collapse
Affiliation(s)
- M Zakir
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
33
|
Meredith FL, Li GQ, Rennie KJ. Postnatal expression of an apamin-sensitive k(ca) current in vestibular calyx terminals. J Membr Biol 2011; 244:81-91. [PMID: 22057903 DOI: 10.1007/s00232-011-9400-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/15/2011] [Indexed: 11/25/2022]
Abstract
Afferent innervation patterns in the vestibular periphery are complex, and vestibular afferents show a large variation in their regularity of firing. Calyx fibers terminate on type I vestibular hair cells and have firing characteristics distinct from the bouton fibers that innervate type II hair cells. Whole-cell patch clamp was used to investigate ionic currents that could influence firing patterns in calyx terminals. Underlying K(Ca) conductances have been described in vestibular ganglion cells, but their presence in afferent terminals has not been investigated previously. Apamin, a selective blocker of SK-type calcium-activated K(+) channels, was tested on calyx afferent terminals isolated from gerbil semicircular canals during postnatal days 1-50. Lowering extracellular calcium or application of apamin (20-500 nM) reduced slowly activating outward currents in voltage clamp. Apamin also reduced the action potential afterhyperpolarization (AHP) in whole-cell current clamp, but only after the first two postnatal weeks. K(+) channel expression increased during the first postnatal month, and SK channels were found to contribute to the AHP, which may in turn influence discharge regularity in calyx vestibular afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado at Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
34
|
Eatock RA, Songer JE. Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci 2011; 34:501-34. [PMID: 21469959 DOI: 10.1146/annurev-neuro-061010-113710] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vestibular epithelia of the inner ear detect head motions over a wide range of amplitudes and frequencies. In mammals, afferent nerve fibers from central and peripheral zones of vestibular epithelia form distinct populations with different response dynamics and spike timing. Central-zone afferents are large, fast conduits for phasic signals encoded in irregular spike trains. The finer afferents from peripheral zones conduct more slowly and encode more tonic, linear signals in highly regular spike trains. The hair cells are also of two types, I and II, but the two types do not correspond directly to the two afferent populations. Zonal differences in afferent response dynamics may arise at multiple stages, including mechanoelectrical transduction, voltage-gated channels in hair cells and afferents, afferent transmission at calyceal and bouton synapses, and spike generation in regular and irregular afferents. In contrast, zonal differences in spike timing may depend more simply on the selective expression of low-voltage-activated ion channels by irregular afferents.
Collapse
Affiliation(s)
- Ruth Anne Eatock
- Department of Otology and Laryngology, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
35
|
|
36
|
Simmons DD, Tong B, Schrader AD, Hornak AJ. Oncomodulin identifies different hair cell types in the mammalian inner ear. J Comp Neurol 2010; 518:3785-802. [PMID: 20653034 DOI: 10.1002/cne.22424] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tight regulation of Ca(2+) is essential for inner ear function, and yet the role of Ca(2+) binding proteins (CaBPs) remains elusive. By using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR), we investigated the expression of oncomodulin (Ocm), a member of the parvalbumin family, relative to other EF-hand CaBPs in cochlear and vestibular organs in the mouse. In the mouse cochlea, Ocm is found only in outer hair cells and is localized preferentially to the basolateral outer hair cell membrane and to the base of the hair bundle. Developmentally, Ocm immunoreactivity begins as early as postnatal day (P) 2 and shows preferential localization to the basolateral membrane and hair bundle after P8. Unlike the cochlea, Ocm expression is substantially reduced in vestibular tissues at older adult ages. In vestibular organs, Ocm is found in type I striolar or central hair cells, and has a more diffuse subcellular localization throughout the hair cell body. Additionally, Ocm immunoreactivity in vestibular hair cells is present as early as E18 and is not obviously affected by mutations that cause a disruption of hair bundle polarity. We also find Ocm expression in striolar hair cells across mammalian species. These data suggest that Ocm may have distinct functional roles in cochlear and vestibular hair cells.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
37
|
Kalluri R, Xue J, Eatock RA. Ion channels set spike timing regularity of mammalian vestibular afferent neurons. J Neurophysiol 2010; 104:2034-51. [PMID: 20660422 DOI: 10.1152/jn.00396.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the mammalian vestibular nerve, some afferents have highly irregular interspike intervals and others have highly regular intervals. To investigate whether spike timing is determined by the afferents' ion channels, we studied spiking activity in their cell bodies, isolated from the vestibular ganglia of young rats. Whole cell recordings were made with the perforated-patch method. As previously reported, depolarizing current steps revealed distinct firing patterns. Transient neurons fired one or two onset spikes, independent of current level. Sustained neurons were more heterogeneous, firing either trains of spikes or a spike followed by large voltage oscillations. We show that the firing pattern categories are robust, occurring at different temperatures and ages, both in mice and in rats. A difference in average resting potential did not cause the difference in firing patterns, but contributed to differences in afterhyperpolarizations. A low-voltage-activated potassium current (I(LV)) was previously implicated in the transient firing pattern. We show that I(LV) grew from the first to second postnatal week and by the second week comprised Kv1 and Kv7 (KCNQ) components. Blocking I(LV) converted step-evoked firing patterns from transient to sustained. Separated from their normal synaptic inputs, the neurons did not spike spontaneously. To test whether the firing-pattern categories might correspond to afferent populations of different regularity, we injected simulated excitatory postsynaptic currents at pseudorandom intervals. Sustained neurons responded to a given pattern of input with more regular firing than did transient neurons. Pharmacological block of I(LV) made firing more regular. Thus ion channel differences that produce transient and sustained firing patterns in response to depolarizing current steps can also produce irregular and regular spike timing.
Collapse
Affiliation(s)
- Radha Kalluri
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA.
| | | | | |
Collapse
|
38
|
Huss D, Navaluri R, Faulkner KF, Dickman JD. Development of otolith receptors in Japanese quail. Dev Neurobiol 2010; 70:436-55. [PMID: 20155736 DOI: 10.1002/dneu.20787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study examined the morphological development of the otolith vestibular receptors in quail. Here, we describe epithelial growth, hair cell density, stereocilia polarization, and afferent nerve innervation during development. The otolith maculae epithelial areas increased exponentially throughout embryonic development reaching asymptotic values near posthatch day P7. Increases in hair cell density were dependent upon macular location; striolar hair cells developed first followed by hair cells in extrastriola regions. Stereocilia polarization was initiated early, with defining reversal zones forming at E8. Less than half of all immature hair cells observed had nonpolarized internal kinocilia with the remaining exhibiting planar polarity. Immunohistochemistry and neural tracing techniques were employed to examine the shape and location of the striolar regions. Initial innervation of the maculae was by small fibers with terminal growth cones at E6, followed by collateral branches with apparent bouton terminals at E8. Calyceal terminal formation began at E10; however, no mature calyces were observed until E12, when all fibers appeared to be dimorphs. Calyx afferents innervating only Type I hair cells did not develop until E14. Finally, the topographic organization of afferent macular innervation in the adult quail utricle was quantified. Calyx and dimorph afferents were primarily confined to the striolar regions, while bouton fibers were located in the extrastriola and Type II band. Calyx fibers were the least complex, followed by dimorph units. Bouton fibers had large innervation fields, with arborous branches and many terminal boutons.
Collapse
Affiliation(s)
- David Huss
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
39
|
Schweizer FE, Savin D, Luu C, Sultemeier DR, Hoffman LF. Distribution of high-conductance calcium-activated potassium channels in rat vestibular epithelia. J Comp Neurol 2009; 517:134-45. [PMID: 19731297 DOI: 10.1002/cne.22148] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development.
Collapse
Affiliation(s)
- Felix E Schweizer
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
40
|
Lysakowski A, Goldberg JM. Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). J Comp Neurol 2008; 511:47-64. [PMID: 18729176 DOI: 10.1002/cne.21827] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Type I hair cells outnumber type II hair cells (HCs) in squirrel monkey (Saimiri sciureus) cristae by a nearly 3:1 ratio. Associated with this type I HC preponderance, calyx fibers make up a much larger fraction of the afferent innervation than in rodents (Fernández et al. [1995] J. Neurophysiol. 73:1253-1269). To study how this affects synaptic architecture, we used disector methods to estimate various features associated with type I and type II HCs in central (CZ) and peripheral (PZ) zones of monkey cristae. Each type I HC makes, on average, 5-10 ribbon synapses with the inner face of a calyx ending. Inner-face synapses outnumber those on calyx outer faces by a 40:1 ratio. Expressed per afferent, there are, on average, 15 inner-face ribbon synapses, 0.38 outer-face ribbons, and 2.6 efferent boutons on calyx-bearing endings. Calyceal invaginations per type I HC range from 19 in CZ to 3 in PZ. For type II HCs, there are many more ribbons and afferent boutons in PZ than in CZ, whereas efferent innervation is relatively uniform throughout the neuroepithelium. Despite outer-face ribbons being more numerous in chinchilla than in squirrel monkey, afferent discharge properties are similar (Lysakowski et al. [1995] J. Neurophysiol. 73:1270-1281), reinforcing the importance of inner-face ribbons in synaptic transmission. Comparisons across mammalian species suggest that the prevalence of type I HCs is a primate characteristic, rather than an arboreal life-style adaptation. Unlike cristae, type II HCs predominate in monkey maculae. Differences in hair-cell counts may reflect the stimulus magnitudes handled by semicircular canals and otolith organs.
Collapse
Affiliation(s)
- Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Illinois 60612, USA.
| | | |
Collapse
|
41
|
Distribution of two-pore-domain potassium channels in the adult rat vestibular periphery. Hear Res 2008; 246:1-8. [PMID: 18838117 DOI: 10.1016/j.heares.2008.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/31/2008] [Accepted: 09/03/2008] [Indexed: 12/24/2022]
Abstract
Constitutively active background or "leak" two-pore-domain potassium (K(+)) channels (Kcnk family), as defined by lack of voltage and time dependency are central to electrical excitability of cells by controlling resting membrane potential and membrane resistance. Inhibition of these channels by several neurotransmitters, e.g. glutamate, or acetylcholine, induces membrane depolarization and subsequent action potential firing as well as increases membrane resistance amplifying responses to synaptic inputs. In contrast, their opening contributes to hyperpolarization. Because of their central role in determining cellular excitability and response to synaptic stimulation, these channels likely play a role in the differential effects of vestibular efferent neurons on afferent discharge. Microarray data from previous experiments showed Kcnk 1, 2, 3, 6, 12 and 1 5 mRNA in Scarpa's ganglia. Real-time RT-PCR showed Kcnk 1, 2, 3, 6, 12 and 15 mRNA expression in Scarpa's ganglia and Kcnk 1, 2, 3, 6, 12 but not 15 mRNA expression in the crista ampullaris. We studied the distribution of two-pore-domain potassium channels K(2P)1.1, 2.1, 3.1 and 6.1 like immunoreactivity (corresponding to Kcnk genes 1, 2, 3 and 6) in the vestibular periphery. K(2P)1.1 (TWIK 1) immunoreactivity was detected along nerve terminals, supporting cells and blood vessels of the crista ampullaris and in the cytoplasm of neurons of the Scarpa's ganglia. K(2P)2.1 (TREK 1) immunoreactivity was detected in nerve terminals and transitional cells of the crista ampullaris, in the vestibular dark cells and in neuronal fibers and somata of neurons of Scarpa's ganglia. K(2P)3.1 (TASK 1) immunoreactivity was detected in supporting cells and transitional cells of the crista ampullaris, in vestibular dark cells and in neuron cytoplasm within Scarpa's ganglia. K(2P)6.1 (TWIK 2) immunoreactivity was detected in nerve terminals, blood vessels hair cells and transitional cells of the crista ampullaris and in the somata and neuron fibers of Scarpa's ganglia.
Collapse
|
42
|
Eatock RA, Xue J, Kalluri R. Ion channels in mammalian vestibular afferents may set regularity of firing. J Exp Biol 2008; 211:1764-74. [PMID: 18490392 PMCID: PMC3311106 DOI: 10.1242/jeb.017350] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rodent vestibular afferent neurons offer several advantages as a model system for investigating the significance and origins of regularity in neuronal firing interval. Their regularity has a bimodal distribution that defines regular and irregular afferent classes. Factors likely to be involved in setting firing regularity include the morphology and physiology of the afferents' contacts with hair cells, which may influence the averaging of synaptic noise and the afferents' intrinsic electrical properties. In vitro patch clamp studies on the cell bodies of primary vestibular afferents reveal a rich diversity of ion channels, with indications of at least two neuronal populations. Here we suggest that firing patterns of isolated vestibular ganglion somata reflect intrinsic ion channel properties, which in vivo combine with hair cell synaptic drive to produce regular and irregular firing.
Collapse
Affiliation(s)
- Ruth Anne Eatock
- Otology and Laryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
43
|
Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 2007; 9:65-89. [PMID: 18157569 DOI: 10.1007/s10162-007-0106-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/25/2007] [Indexed: 12/20/2022] Open
Abstract
Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear.
Collapse
Affiliation(s)
- Elizabeth C Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, CHDD CD176, Box 357923, Seattle, WA 98195-7923, USA.
| | | | | | | | | |
Collapse
|
44
|
Leonard RB, Kevetter GA. Vestibular efferents contain peripherin. Neurosci Lett 2006; 408:104-7. [PMID: 16997461 DOI: 10.1016/j.neulet.2006.08.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 08/11/2006] [Accepted: 08/24/2006] [Indexed: 10/24/2022]
Abstract
Vestibular efferents have a common origin with the motoneurons of the facial nerve. In adults they share a number of common features, such as the same transmitter. Here we show using retrograde transport and immunohistochemistry, that the vestibular efferents, like facial motoneurons, contain peripherin. This supports the suggestion that peripherin-positive fibers at the apex of the cristae ampullaris are efferents.
Collapse
Affiliation(s)
- Robert B Leonard
- Department of Neurosciences and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1043, USA.
| | | |
Collapse
|
45
|
Wooltorton JRA, Gaboyard S, Hurley KM, Price SD, Garcia JL, Zhong M, Lysakowski A, Eatock RA. Developmental changes in two voltage-dependent sodium currents in utricular hair cells. J Neurophysiol 2006; 97:1684-704. [PMID: 17065252 DOI: 10.1152/jn.00649.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two kinds of sodium current (I(Na)) have been separately reported in hair cells of the immature rodent utricle, a vestibular organ. We show that rat utricular hair cells express one or the other current depending on age (between postnatal days 0 and 22, P0-P22), hair cell type (I, II, or immature), and epithelial zone (striola vs. extrastriola). The properties of these two currents, or a mix, can account for descriptions of I(Na) in hair cells from other reports. The patterns of Na channel expression during development suggest a role in establishing the distinct synapses of vestibular hair cells of different type and epithelial zone. All type I hair cells expressed I(Na,1), a TTX-insensitive current with a very negative voltage range of inactivation (midpoint: -94 mV). I(Na,2) was TTX sensitive and had less negative voltage ranges of activation and inactivation (inactivation midpoint: -72 mV). I(Na,1) dominated in the striola at all ages, but current density fell by two-thirds after the first postnatal week. I(Na,2) was expressed by 60% of hair cells in the extrastriola in the first week, then disappeared. In the third week, all type I cells and about half of type II cells had I(Na,1); the remaining cells lacked sodium current. I(Na,1) is probably carried by Na(V)1.5 subunits based on biophysical and pharmacological properties, mRNA expression, and immunoreactivity. Na(V)1.5 was also localized to calyx endings on type I hair cells. Several TTX-sensitive subunits are candidates for I(Na,2).
Collapse
|
46
|
Hurley KM, Gaboyard S, Zhong M, Price SD, Wooltorton JRA, Lysakowski A, Eatock RA. M-like K+ currents in type I hair cells and calyx afferent endings of the developing rat utricle. J Neurosci 2006; 26:10253-69. [PMID: 17021181 PMCID: PMC6674627 DOI: 10.1523/jneurosci.2596-06.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/18/2006] [Accepted: 08/21/2006] [Indexed: 12/17/2022] Open
Abstract
Type I vestibular hair cells have large K+ currents that, like neuronal M currents, activate negative to resting potential and are modulatable. In rodents, these currents are acquired postnatally. In perforated-patch recordings from rat utricular hair cells, immature hair cells [younger than postnatal day 7 (P7)] had a steady-state K+ conductance (g(-30)) with a half-activation voltage (V1/2) of -30 mV. The size and activation range did not change in maturing type II cells, but, by P16, type I cells had added a K conductance that was on average fourfold larger and activated much more negatively. This conductance may comprise two components: g(-60) (V1/2 of -60 mV) and g(-80) (V1/2 of -80 mV). g(-80) washed out during ruptured patch recordings and was blocked by a protein kinase inhibitor. M currents can include contributions from KCNQ and ether-a-go-go-related (erg) channels. KCNQ and erg channel blockers both affected the K+ currents of type I cells, with KCNQ blockers being more potent at younger than P7 and erg blockers more potent at older than P16. Single-cell reverse transcription-PCR and immunocytochemistry showed expression of KCNQ and erg subunits. We propose that KCNQ channels contribute to g(-30) and g(-60) and erg subunits contribute to g(-80). Type I hair cells are contacted by calyceal afferent endings. Recordings from dissociated calyces and afferent endings revealed large K+ conductances, including a KCNQ conductance. Calyx endings were strongly labeled by KCNQ4 and erg1 antisera. Thus, both hair cells and calyx endings have large M-like K+ conductances with the potential to control the gain of transmission.
Collapse
Affiliation(s)
- Karen M. Hurley
- The Bobby R. Alford Department of Otorhinolaryngology, Head and Neck Surgery and
| | - Sophie Gaboyard
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612
| | - Meng Zhong
- The Bobby R. Alford Department of Otorhinolaryngology, Head and Neck Surgery and
| | - Steven D. Price
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612
| | | | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612
| | - Ruth Anne Eatock
- The Bobby R. Alford Department of Otorhinolaryngology, Head and Neck Surgery and
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, and
| |
Collapse
|
47
|
Cunningham LL, Brandon CS. Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. J Assoc Res Otolaryngol 2006; 7:299-307. [PMID: 16794914 PMCID: PMC2504613 DOI: 10.1007/s10162-006-0043-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/11/2006] [Indexed: 12/19/2022] Open
Abstract
Human hearing and balance impairments are often attributable to the death of sensory hair cells in the inner ear. These cells are hypersensitive to death induced by noise exposure, aging, and some therapeutic drugs. Two major classes of ototoxic drugs are the aminoglycoside antibiotics and the antineoplastic agent cisplatin. Exposure to these drugs leads to hair cell death that is mediated by the activation of specific apoptotic proteins, including caspases. The induction of heat shock proteins (HSPs) in response to cellular stress is a ubiquitous and highly conserved response that can significantly inhibit apoptosis in some systems by inhibiting apoptotic proteins. Induction of HSPs occurs in hair cells in response to a variety of stimuli. Given that HSPs can directly inhibit apoptosis, we hypothesized that heat shock may inhibit apoptosis in hair cells exposed to ototoxic drugs. To test this hypothesis, we developed a method for inducing HSP expression in the adult mouse utricle in vitro. In vitro heat shock reliably produces a robust up-regulation of HSP-70 mRNA and protein, as well as more modest up-regulation of HSP-90 and HSP-27. The heat shock does not result in death of hair cells. Heat shock has a significant protective effect against both aminoglycoside- and cisplatin-induced hair cell death in the utricle preparation in vitro. These data indicate that heat shock can inhibit ototoxic drug-induced hair cell death, and that the utricle preparation can be used to examine the molecular mechanism(s) underlying this protective effect.
Collapse
Affiliation(s)
- Lisa L Cunningham
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Box 250908, Charleston, SC 29425, USA.
| | | |
Collapse
|
48
|
Haque A, Huss D, Dickman JD. Afferent innervation patterns of the pigeon horizontal crista ampullaris. J Neurophysiol 2006; 96:3293-304. [PMID: 16943311 DOI: 10.1152/jn.00930.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vestibular semicircular canals are responsible for detection of rotational head motion although the precise mechanisms underlying the transduction and encoding of movement information are still under study. In the present investigation, we utilized neural tracers and immunohistochemistry to quantitatively examine the topology and afferent innervation patterns of the horizontal semicircular canal crista (HCC) in pigeons (Columba livia). Two hundred and eighty-six afferents from five horizontal canal organs were identified of which 92 units were sufficiently labeled and isolated to perform anatomical reconstructions. In addition, a three-dimensional contour map of the crista was constructed. Bouton afferents were located only in the peripheral regions of the receptor epithelium. Bouton afferents had the most complex innervation patterns with significantly longer and more numerous branches as well as a higher branch order than any other fiber type. Bouton fibers also contained significantly more bouton terminals than did dimorph afferents. Calyx afferents were located only in the apex and central planar regions. Calyx fibers had the largest axonal diameters yet the smallest fiber lengths and innervation areas, the fewest number of branches, the lowest branch order, and the fewest total number of terminals of all fiber types. Dimorph afferents were located throughout the central crista with afferent terminations that were larger and more complex than calyx fibers but less so than bouton fibers. Overall, the pigeon HCC morphology and innervation shares many common features with those of other animal classes.
Collapse
Affiliation(s)
- Asim Haque
- Department of Anatomy and Neurobiology--Box 8108, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
49
|
Mercado F, López IA, Acuna D, Vega R, Soto E. Acid-sensing ionic channels in the rat vestibular endorgans and ganglia. J Neurophysiol 2006; 96:1615-24. [PMID: 16790596 DOI: 10.1152/jn.00378.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acid-sensing ionic channels (ASICs) are members of the epithelial Na+ channel/degenerin (ENaC/DEG) superfamily. ASICs are widely distributed in the central and peripheral nervous system. They have been implicated in synaptic transmission, pain perception, and the mechanoreception in peripheral tissues. Our objective was to characterize proton-gated currents mediated by ASICs and to determine their immunolocation in the rat vestibular periphery. Voltage clamp of cultured afferent neurons from P7 to P10 rats showed a proton-gated current with rapid activation and complete desensitization, which was carried almost exclusively by sodium ions. The current response to protons (H+) has a pH0.5 of 6.2. This current was reversibly decreased by amiloride, gadolinium, lead, acetylsalicylic acid, and enhanced by FMRFamide and zinc, and negatively modulated by raising the extracellular calcium concentration. Functional expression of the current was correlated with smaller-capacitance neurons. Acidification of the extracellular pH generated action potentials in vestibular neurons, suggesting a functional role of ASICs in their excitability. Immunoreactivity to ASIC1a and ASIC2a subunits was found in small vestibular ganglion neurons and afferent fibers that run throughout the macula utricle and crista stroma. ASIC2b, ASIC3, and ASIC4 were expressed to a lesser degree in vestibular ganglion neurons. The ASIC1b subunit was not detected in the vestibular endorgans. No acid-pH-sensitive currents or ASIC immunoreactivity was found in hair cells. Our results indicate that proton-gated current is carried through ASICs and that ionic current activated by H+ contributes to shape the vestibular afferent neurons' response to its synaptic input.
Collapse
Affiliation(s)
- Francisco Mercado
- Instituto de Fisiología, Universidad Autónoma de Pubela, Puebla, Mexico.
| | | | | | | | | |
Collapse
|
50
|
Lopez I, Ishiyama G, Tang Y, Tokita J, Baloh RW, Ishiyama A. Regional estimates of hair cells and supporting cells in the human crista ampullaris. J Neurosci Res 2006; 82:421-31. [PMID: 16211560 DOI: 10.1002/jnr.20652] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regional estimates of type I and type II vestibular hair cells (HC) and supporting cell (SC) numbers were obtained from the horizontal crista ampullaris by using design-based stereology in human. Cristae were microdissected from temporal bones obtained post-mortem (N=16, age range 26-98 years). Three groups were made according to age: group 1, n=5, ages between 26 and 67 years, average age 51 years; group 2, n=4, average age 84 years; and group 3, n=7, average age 94 years. For group 1, the average total HC number was 8,005+/-214, corresponding to 4,119+/-107 type I HC, 3,886+/-117 type II HC, and 10,274+/-224 SC. The type I:type II HC ratio was 1.06+/-0.01, and HC density was 0.80 cells/100 microm2. For group 2, the average total HC number was 7,074+/-489, corresponding to 3,733+/-212 type I HC, 3,341+/-314 type II HC, and 9,321+/-858 SC. The type I:II HC ratio was 1.12+/-0.06, and HC density was 0.75 cells/100 microm2. For group 3, the average HC number was 6,009+/-327, corresponding to 3,380+/-223 type I HC, 2,628+/-235 type II HC, and 10,185+/-182 SC. The type I:II HC ratio was 1.34+/-0.10, and HC density was 0.63 cells/100 microm2. A significant decline in type I, type II, and total HC number and density was found in groups 2 and 3, with individuals exceeding the average human life span.
Collapse
Affiliation(s)
- Ivan Lopez
- Surgery Department, Division of Head and Neck, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|