1
|
Tiwari C, Khan H, Grewal AK, Dhankhar S, Chauhan S, Dua K, Gupta G, Singh TG. Opiorphin: an endogenous human peptide with intriguing application in diverse range of pathologies. Inflammopharmacology 2024; 32:3037-3056. [PMID: 39164607 DOI: 10.1007/s10787-024-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Mammalian zinc ectopeptidases have significant functions in deactivating neurological and hormonal peptide signals on the cell surface. The identification of Opiorphin, a physiological inhibitor of zinc ectopeptidases that inactivate enkephalin, has revealed its strong analgesic effects in both chemical and mechanical pain models. Opiorphin achieves this by increasing the transmission of endogenous opioids, which are dependent on the body's own opioid system. The function of opiorphin is closely linked to the rat sialorphin peptide, which inhibits pain perception by enhancing the activity of naturally occurring enkephalinergic pathways that depend on μ- and δ-opioid receptors. Opiorphin is highly intriguing in terms of its physiological implications within the endogenous opioidergic pathways, particularly in its ability to regulate mood-related states and pain perception. Opiorphin can induce antidepressant-like effects by influencing the levels of naturally occurring enkephalin, which are released in response to specific physical and/or psychological stimuli. This effect is achieved through the modulation of delta-opioid receptor-dependent pathways. Furthermore, research has demonstrated that opiorphin's impact on the cardiovascular system is facilitated by the renin-angiotensin system (RAS), sympathetic ganglia, and adrenal medulla, rather than the opioid system. Hence, opiorphin shows great potential as a solitary candidate for the treatment of several illnesses such as neurodegeneration, pain, and mood disorders.
Collapse
Affiliation(s)
- Chanchal Tiwari
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur Grewal
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Sanchit Dhankhar
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Thakur Gurjeet Singh
- Chikara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
2
|
Todorov J, Calhoun SE, McCarty GS, Sombers LA. Electrochemical Quantification of Enkephalin Peptides Using Fast-Scan Cyclic Voltammetry. Anal Chem 2024. [PMID: 39138126 DOI: 10.1021/acs.analchem.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Endogenous opioid neuropeptides serve as important chemical signaling molecules in both the central and peripheral nervous systems, but there are few analytical tools for directly monitoring these molecules in situ. The opioid peptides share the amino acid motif, Tyr-Gly-Gly-Phe-, at the N-terminus. Met-enkephalin is a small opioid peptide comprised of only five amino acids with methionine (Met) incorporated at the C-terminus. Tyrosine (Tyr) and Met are electroactive, and their distinct electrochemical signatures can be utilized for quantitative molecular monitoring. This work encompasses a thorough voltammetric characterization of Tyr and Met redox chemistry as individual amino acids and when incorporated into small peptide fragments containing the shared Tyr-Gly-Gly-Phe- motif. NMR spectroscopy was used to determine the structure and conformation at near-physiological conditions. Voltammetric data demonstrate how the peak oxidation potential and the rate of electron transfer are dependent on the local chemical environment. Both the proximity of the electroactive residue to the C- or N-terminus and the hydrophobicity of the additional nonelectroactive amino acids profoundly affect sensitivity. Finally, the work uses the electrochemical signal for individual amino acids in a "training set", with a combination of principal component analysis and least-squares regression to accurately predict the voltammetric signal for short peptides comprising different combinations of those amino acids. Overall, this study demonstrates how fast-scan cyclic voltammetry can be utilized to discriminate between peptides with small differences in the chemical structure, thus establishing a framework for reliable quantification of small peptides in a complex signal, broadly speaking.
Collapse
|
3
|
Falconnier C, Caparros-Roissard A, Decraene C, Lutz PE. Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Mol Psychiatry 2023; 28:4568-4584. [PMID: 37723284 PMCID: PMC10914629 DOI: 10.1038/s41380-023-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.
Collapse
Affiliation(s)
- Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Alba Caparros-Roissard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives UMR 7364, 67000, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
4
|
Laurent V, Balleine BW. How predictive learning influences choice: Evidence for a GPCR-based memory process necessary for Pavlovian-instrumental transfer. J Neurochem 2021; 157:1436-1449. [PMID: 33662158 DOI: 10.1111/jnc.15339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Predictive learning endows stimuli with the capacity to signal both the sensory-specific and general motivational properties of their associated rewards or outcomes. These two signals can be distinguished behaviorally by their influence on the selection and performance of instrumental actions, respectively. This review focuses on how sensory-specific predictive learning guides choice between actions that earn otherwise equally desirable outcomes. We describe evidence that outcome-specific predictive learning is encoded in the basolateral amygdala and drives the accumulation of delta-opioid receptors on the surface of cholinergic interneurons located in the nucleus accumbens shell. This accumulation constitutes a novel form of cellular memory, not for outcome-specific predictive learning per se but for the selection of, and choice between, future instrumental actions. We describe recent evidence regarding the cascade of events necessary for the formation and expression of this cellular memory and point to open questions for future research into this process. Beyond these mechanistic considerations, the discovery of this new form of memory is consistent with recent evidence suggesting that intracellular rather than synaptic changes can mediate learning-related plasticity to modify brain circuitry to prepare for future significant events.
Collapse
Affiliation(s)
- Vincent Laurent
- Decision Neuroscience Laboratory, School of Psychology, UNSW SYDNEY, Randwick, NSW, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, UNSW SYDNEY, Randwick, NSW, Australia
| |
Collapse
|
5
|
Derouiche L, Pierre F, Doridot S, Ory S, Massotte D. Heteromerization of Endogenous Mu and Delta Opioid Receptors Induces Ligand-Selective Co-Targeting to Lysosomes. Molecules 2020; 25:molecules25194493. [PMID: 33007971 PMCID: PMC7583997 DOI: 10.3390/molecules25194493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence indicates that native mu and delta opioid receptors can associate to form heteromers in discrete brain neuronal circuits. However, little is known about their signaling and trafficking. Using double-fluorescent knock-in mice, we investigated the impact of neuronal co-expression on the internalization profile of mu and delta opioid receptors in primary hippocampal cultures. We established ligand selective mu–delta co-internalization upon activation by 1-[[4-(acetylamino)phenyl]methyl]-4-(2-phenylethyl)-4-piperidinecarboxylic acid, ethyl ester (CYM51010), [d-Ala2, NMe-Phe4, Gly-ol5]enkephalin (DAMGO), and deltorphin II, but not (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80), morphine, or methadone. Co-internalization was driven by the delta opioid receptor, required an active conformation of both receptors, and led to sorting to the lysosomal compartment. Altogether, our data indicate that mu–delta co-expression, likely through heteromerization, alters the intracellular fate of the mu opioid receptor, which provides a way to fine-tune mu opioid receptor signaling. It also represents an interesting emerging concept for the development of novel therapeutic drugs and strategies.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endocytosis
- Hippocampus/cytology
- Ligands
- Lysosomes
- Mice, Inbred C57BL
- Neurons/metabolism
- Piperidines/pharmacology
- Protein Multimerization
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Lyes Derouiche
- French National Centre for Scientific Research, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (L.D.); (F.P.); (S.O.)
| | - Florian Pierre
- French National Centre for Scientific Research, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (L.D.); (F.P.); (S.O.)
| | - Stéphane Doridot
- French National Centre for Scientific Research, Chronobiotron, 67200 Strasbourg, France;
| | - Stéphane Ory
- French National Centre for Scientific Research, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (L.D.); (F.P.); (S.O.)
| | - Dominique Massotte
- French National Centre for Scientific Research, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (L.D.); (F.P.); (S.O.)
- Correspondence:
| |
Collapse
|
6
|
µ-opioid receptor-mediated downregulation of midline thalamic pathways to basal and central amygdala. Sci Rep 2019; 9:17837. [PMID: 31780740 PMCID: PMC6882837 DOI: 10.1038/s41598-019-54128-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022] Open
Abstract
Brain µ-opioid receptors (MOR) mediate reward and help coping with pain, social rejection, anxiety and depression. The dorsal midline thalamus (dMT) integrates visceral/emotional signals and biases behavior towards aversive or defensive states through projections to the amygdala. While a dense MOR expression in the dMT has been described, the exact cellular and synaptic mechanisms of µ-opioidergic modulation in the dMT-amygdala circuitry remain unresolved. Here, we hypothesized that MORs are important negative modulators of dMT-amygdala excitatory networks. Using retrograde tracers and targeted channelrhodopsin expression in combination with patch-clamp electrophysiology, we found that projections of dMT neurons onto both basal amygdala principal neurons (BA PN) and central amygdala (CeL) neurons are attenuated by stimulation of somatic or synaptic MORs. Importantly, dMT efferents to the amygdala drive feedforward excitation of centromedial amygdala neurons (CeM), which is dampened by MOR activation. This downregulation of excitatory activity in dMT-amygdala networks puts the µ-opioid system in a position to ameliorate aversive or defensive behavioral states associated with stress, withdrawal, physical pain or social rejection.
Collapse
|
7
|
Pierre F, Ugur M, Faivre F, Doridot S, Veinante P, Massotte D. Morphine-dependent and abstinent mice are characterized by a broader distribution of the neurons co-expressing mu and delta opioid receptors. Neuropharmacology 2019; 152:30-41. [PMID: 30858104 DOI: 10.1016/j.neuropharm.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 02/05/2023]
Abstract
Opiate addiction develops as a chronic relapsing disorder upon drug recreational use or following misuse of analgesic prescription. Mu opioid (MOP) receptors are the primary molecular target of opiates but increasing evidence support in vivo functional heteromerization with the delta opioid (DOP) receptor, which may be part of the neurobiological processes underlying opiate addiction. Here, we used double knock-in mice co-expressing fluorescent versions of the MOP and DOP receptors to examine the impact of chronic morphine administration on the distribution of neurons co-expressing the two receptors. Our data show that MOP/DOP neuronal co-expression is broader in morphine-dependent mice and is detected in novel brain areas located in circuits related to drug reward, motor activity, visceral control and emotional processing underlying withdrawal. After four weeks of abstinence, MOP/DOP neuronal co-expression is still detectable in a large number of these brain areas except in the motor circuit. Importantly, chronic morphine administration increased the proportion of MOP/DOP neurons in the brainstem of morphine-dependent and abstinent mice. These findings establish persistent changes in the abstinent state that may modulate relapse and opiate-induced hyperalgesia and also point to the therapeutic potential of MOP/DOP targeting. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Florian Pierre
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Muzeyyen Ugur
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Fanny Faivre
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Doridot
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Centre National de la Recherche Scientifique, Chronobiotron UMS 3415, Strasbourg, France
| | - Pierre Veinante
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
8
|
Abstract
Opioids are the most commonly used and effective analgesic treatments for severe pain, but they have recently come under scrutiny owing to epidemic levels of abuse and overdose. These compounds act on the endogenous opioid system, which comprises four G protein-coupled receptors (mu, delta, kappa, and nociceptin) and four major peptide families (β-endorphin, enkephalins, dynorphins, and nociceptin/orphanin FQ). In this review, we first describe the functional organization and pharmacology of the endogenous opioid system. We then summarize current knowledge on the signaling mechanisms by which opioids regulate neuronal function and neurotransmission. Finally, we discuss the loci of opioid analgesic action along peripheral and central pain pathways, emphasizing the pain-relieving properties of opioids against the affective dimension of the pain experience.
Collapse
Affiliation(s)
- Gregory Corder
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California 94304, USA; .,Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304, USA.,Department of Neurosurgery, Stanford University, Palo Alto, California 94304, USA.,Stanford Neurosciences Institute, Palo Alto, California 94304, USA
| | - Daniel C Castro
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA; .,Division of Basic Research, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California 94304, USA; .,Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304, USA.,Department of Neurosurgery, Stanford University, Palo Alto, California 94304, USA.,Stanford Neurosciences Institute, Palo Alto, California 94304, USA.,New York Stem Cell Foundation - Robertson Investigator, Stanford University, Palo Alto, California 94304, USA
| |
Collapse
|
9
|
Selectivity profiling of NOP, MOP, DOP and KOP receptor antagonists in the rat spinal nerve ligation model of mononeuropathic pain. Eur J Pharmacol 2018. [DOI: 10.1016/j.ejphar.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
11
|
François A, Scherrer G. Delta Opioid Receptor Expression and Function in Primary Afferent Somatosensory Neurons. Handb Exp Pharmacol 2017; 247:87-114. [PMID: 28993838 DOI: 10.1007/164_2017_58] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The functional diversity of primary afferent neurons of the dorsal root ganglia (DRG) generates a variety of qualitatively and quantitatively distinct somatosensory experiences, from shooting pain to pleasant touch. In recent years, the identification of dozens of genetic markers specifically expressed by subpopulations of DRG neurons has dramatically improved our understanding of this diversity and provided the tools to manipulate their activity and uncover their molecular identity and function. Opioid receptors have long been known to be expressed by discrete populations of DRG neurons, in which they regulate cell excitability and neurotransmitter release. We review recent insights into the identity of the DRG neurons that express the delta opioid receptor (DOR) and the ion channel mechanisms that DOR engages in these cells to regulate sensory input. We highlight recent findings derived from DORGFP reporter mice and from in situ hybridization and RNA sequencing studies in wild-type mice that revealed DOR presence in cutaneous mechanosensory afferents eliciting touch and implicated in tactile allodynia. Mechanistically, we describe how DOR modulates opening of voltage-gated calcium channels (VGCCs) to control glutamatergic neurotransmission between somatosensory neurons and postsynaptic neurons in the spinal cord dorsal horn. We additionally discuss other potential signaling mechanisms, including those involving potassium channels, which DOR may engage to fine tune somatosensation. We conclude by discussing how this knowledge may explain the analgesic properties of DOR agonists against mechanical pain and uncovers an unanticipated specialized function for DOR in cutaneous mechanosensation.
Collapse
Affiliation(s)
- Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA. .,Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA. .,Department of Neurosurgery, Stanford Neurosciences Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
12
|
Vicente-Sanchez A, Segura L, Pradhan AA. The delta opioid receptor tool box. Neuroscience 2016; 338:145-159. [PMID: 27349452 DOI: 10.1016/j.neuroscience.2016.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/29/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022]
Abstract
In recent years, the delta opioid receptor has attracted increasing interest as a target for the treatment of chronic pain and emotional disorders. Due to their therapeutic potential, numerous tools have been developed to study the delta opioid receptor from both a molecular and a functional perspective. This review summarizes the most commonly available tools, with an emphasis on their use and limitations. Here, we describe (1) the cell-based assays used to study the delta opioid receptor. (2) The features of several delta opioid receptor ligands, including peptide and non-peptide drugs. (3) The existing approaches to detect delta opioid receptors in fixed tissue, and debates that surround these techniques. (4) Behavioral assays used to study the in vivo effects of delta opioid receptor agonists; including locomotor stimulation and convulsions that are induced by some ligands, but not others. (5) The characterization of genetically modified mice used specifically to study the delta opioid receptor. Overall, this review aims to provide a guideline for the use of these tools with the final goal of increasing our understanding of delta opioid receptor physiology.
Collapse
Affiliation(s)
| | - Laura Segura
- Department of Psychiatry, University of Illinois at Chicago, United States
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, United States.
| |
Collapse
|
13
|
Pradhan AA, Tawfik VL, Tipton AF, Scherrer G. In vivo techniques to investigate the internalization profile of opioid receptors. Methods Mol Biol 2015; 1230:87-104. [PMID: 25293318 DOI: 10.1007/978-1-4939-1708-2_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G-protein-coupled receptors (GPCRs) regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Receptor internalization is commonly observed following agonist binding and activation. Receptor trafficking events have been well characterized in cell systems, but the in vivo significance of GPCR internalization is still poorly understood. To address this issue, we have developed an innovative knock-in mouse model, where an opioid receptor is directly visible in vivo. These knockin mice express functional fluorescent delta opioid receptors (DOR-eGFP) in place of the endogenous receptor, and these receptors are expressed at physiological levels within their native environment. DOR-eGFP mice have proven to be an extraordinary tool in studying receptor neuroanatomy, real-time receptor trafficking in live neurons, and in vivo receptor internalization. We have used this animal model to determine the relationship between receptor trafficking in neurons and receptor function at a behavioral level. Here, we describe in detail the construction and characterization of this knockin mouse. We also outline how to use these mice to examine the behavioral consequences of agonist-specific trafficking at the delta opioid receptor. These techniques are potentially applicable to any GPCR, and highlight the powerful nature of this imaging tool.
Collapse
Affiliation(s)
- Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street, Chicago, IL, 60612, USA,
| | | | | | | |
Collapse
|
14
|
A novel anxiogenic role for the delta opioid receptor expressed in GABAergic forebrain neurons. Biol Psychiatry 2015; 77:404-15. [PMID: 25444168 PMCID: PMC4297504 DOI: 10.1016/j.biopsych.2014.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/15/2014] [Accepted: 07/24/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND The delta opioid receptor (DOR) is broadly expressed throughout the nervous system; it regulates chronic pain, emotional responses, motivation, and memory. Neural circuits underlying DOR activities have been poorly explored by genetic approaches. We used conditional mouse mutagenesis to elucidate receptor function in GABAergic neurons of the forebrain. METHODS We characterized DOR distribution in the brain of Dlx5/6-CreXOprd1(fl/fl) (Dlx-DOR) mice and tested main central DOR functions through behavioral testing. RESULTS The DOR proteins were strongly deleted in olfactory bulb and striatum and remained intact in cortex and basolateral amygdala. Olfactory perception, circadian activity, and despair-like behaviors were unchanged. In contrast, locomotor stimulant effects of SNC80 (DOR agonist) and SKF81297 (D1 agonist) were abolished and increased, respectively. The Dlx-DOR mice showed lower levels of anxiety in the elevated plus maze, opposing the known high anxiety in constitutive DOR knockout animals. Also, Dlx-DOR mice reached the food more rapidly in a novelty suppressed feeding task, despite their lower motivation for food reward observed in an operant paradigm. Finally, c-fos protein staining after novelty suppressed feeding was strongly reduced in amygdala, concordant with the low anxiety phenotype of Dlx-DOR mice. CONCLUSIONS We demonstrate that DORs expressed in the forebrain mediate the described locomotor effect of SNC80 and inhibit D1-stimulated hyperactivity. Our data also reveal an unanticipated anxiogenic role for this particular DOR subpopulation, with a potential novel adaptive role. In emotional responses, DORs exert dual anxiolytic and anxiogenic roles, both of which may have implications in the area of anxiety disorders.
Collapse
|
15
|
Befort K. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Front Pharmacol 2015; 6:6. [PMID: 25698968 PMCID: PMC4318341 DOI: 10.3389/fphar.2015.00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins). The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.
Collapse
Affiliation(s)
- Katia Befort
- CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives - UMR7364, Faculté de Psychologie, Neuropôle de Strasbourg - Université de Strasbourg, Strasbourg France
| |
Collapse
|
16
|
Ceredig RA, Massotte D. Fluorescent knock-in mice to decipher the physiopathological role of G protein-coupled receptors. Front Pharmacol 2015; 5:289. [PMID: 25610398 PMCID: PMC4284998 DOI: 10.3389/fphar.2014.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) modulate most physiological functions but are also critically involved in numerous pathological states. Approximately a third of marketed drugs target GPCRs, which places this family of receptors in the main arena of pharmacological pre-clinical and clinical research. The complexity of GPCR function demands comprehensive appraisal in native environment to collect in-depth knowledge of receptor physiopathological roles and assess the potential of therapeutic molecules. Identifying neurons expressing endogenous GPCRs is therefore essential to locate them within functional circuits whereas GPCR visualization with subcellular resolution is required to get insight into agonist-induced trafficking. Both remain frequently poorly investigated because direct visualization of endogenous receptors is often hampered by the lack of appropriate tools. Also, monitoring intracellular trafficking requires real-time visualization to gather in-depth knowledge. In this context, knock-in mice expressing a fluorescent protein or a fluorescent version of a GPCR under the control of the endogenous promoter not only help to decipher neuroanatomical circuits but also enable real-time monitoring with subcellular resolution thus providing invaluable information on their trafficking in response to a physiological or a pharmacological challenge. This review will present the animal models and discuss their contribution to the understanding of the physiopathological role of GPCRs. We will also address the drawbacks associated with this methodological approach and browse future directions.
Collapse
Affiliation(s)
- Rhian A Ceredig
- CNRS, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 Strasbourg, France
| | - Dominique Massotte
- CNRS, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 Strasbourg, France
| |
Collapse
|
17
|
Gardon O, Faget L, Chu Sin Chung P, Matifas A, Massotte D, Kieffer BL. Expression of mu opioid receptor in dorsal diencephalic conduction system: new insights for the medial habenula. Neuroscience 2014; 277:595-609. [PMID: 25086313 PMCID: PMC4164589 DOI: 10.1016/j.neuroscience.2014.07.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022]
Abstract
The habenular complex, encompassing medial (MHb) and lateral (LHb) divisions, is a highly conserved epithalamic structure involved in the dorsal diencephalic conduction system (DDC). These brain nuclei regulate information flow between the limbic forebrain and the mid- and hindbrain, integrating cognitive with emotional and sensory processes. The MHb is also one of the strongest expression sites for mu opioid receptors (MORs), which mediate analgesic and rewarding properties of opiates. At present however, anatomical distribution and function of these receptors have been poorly studied in MHb pathways. Here we took advantage of a newly generated MOR-mcherry knock-in mouse line to characterize MOR expression sites in the DDC. MOR-mcherry fluorescent signal is weak in the LHb, but strong expression is visible in the MHb, fasciculus retroflexus (fr) and interpeduncular nucleus (IPN), indicating that MOR is mainly present in the MHb-IPN pathway. MOR-mcherry cell bodies are detected both in basolateral and apical parts of MHb, where the receptor co-localizes with cholinergic and substance P (SP) neurons, respectively, representing two main MHb neuronal populations. MOR-mcherry is expressed in most MHb-SP neurons, and is present in only a subpopulation of MHb-cholinergic neurons. Intense diffuse fluorescence detected in lateral and rostral parts of the IPN further suggests that MOR-mcherry is transported to terminals of these SP and cholinergic neurons. Finally, MOR-mcherry is present in septal regions projecting to the MHb, and in neurons of the central and intermediate IPN. Together, this study describes MOR expression in several compartments of the MHb-IPN circuitry. The remarkably high MOR density in the MHb-IPN pathway suggests that these receptors are in a unique position to mediate analgesic, autonomic and reward responses.
Collapse
Affiliation(s)
- O Gardon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - L Faget
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - P Chu Sin Chung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - A Matifas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - D Massotte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France
| | - B L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch, France.
| |
Collapse
|
18
|
Rutten K, Tzschentke TM, Koch T, Schiene K, Christoph T. Pharmacogenomic study of the role of the nociceptin/orphanin FQ receptor and opioid receptors in diabetic hyperalgesia. Eur J Pharmacol 2014; 741:264-71. [PMID: 25169429 DOI: 10.1016/j.ejphar.2014.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/10/2014] [Accepted: 08/05/2014] [Indexed: 01/03/2023]
Abstract
Targeting functionally independent receptors may provide synergistic analgesic effects in neuropathic pain. To examine the interdependency between different opioid receptors (µ-opioid peptide [MOP], δ-opioid peptide [DOP] and κ-opioid peptide [KOP]) and the nociceptin/orphanin FQ peptide (NOP) receptor in streptozotocin (STZ)-induced diabetic polyneuropathy, nocifensive activity was measured using a hot plate test in wild-type and NOP, MOP, DOP and KOP receptor knockout mice in response to the selective receptor agonists Ro65-6570, morphine, SNC-80 and U50488H, or vehicle. Nocifensive activity was similar in non-diabetic wild-type and knockout mice at baseline, before agonist or vehicle administration. STZ-induced diabetes significantly increased heat sensitivity in all mouse strains, but MOP, DOP and KOP receptor knockouts showed a smaller degree of hyperalgesia than wild-type mice and NOP receptor knockouts. For each agonist, a significant antihyperalgesic effect was observed in wild-type diabetic mice (all P<0.05 versus vehicle); the effect was markedly attenuated in diabetic mice lacking the cognate receptor compared with wild-type diabetic mice. Morphine was the only agonist that demonstrated near-full antihyperalgesic efficacy across all non-cognate receptor knockouts. Partial or near-complete reductions in efficacy were observed with Ro65-6570 in DOP and KOP receptor knockouts, with SNC-80 in NOP, MOP and KOP receptor knockouts, and with U50488H in NOP and DOP receptor knockouts. There was no evidence of NOP and MOP receptor interdependency in response to selective agonists for these receptors. These findings suggest that concurrent activation of NOP and MOP receptors, which showed functional independence, may yield an effective and favorable therapeutic analgesic profile.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Hyperalgesia/drug therapy
- Hyperalgesia/genetics
- Hyperalgesia/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
- Nociceptin Receptor
Collapse
Affiliation(s)
- Kris Rutten
- Grünenthal GmbH, Global Preclinical Drug Development, Department of Pain Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany.
| | - Thomas M Tzschentke
- Grünenthal GmbH, Global Preclinical Drug Development, Department of Pain Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Thomas Koch
- Grünenthal GmbH, Global Preclinical Drug Development, Department of Molecular Pharmacology, Aachen, Germany
| | - Klaus Schiene
- Grünenthal GmbH, Global Preclinical Drug Development, Department of Pain Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Thomas Christoph
- Grünenthal GmbH, Global Preclinical Drug Development, Department of Pain Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| |
Collapse
|
19
|
Betke KM, Rose KL, Friedman DB, Baucum AJ, Hyde K, Schey KL, Hamm HE. Differential localization of G protein βγ subunits. Biochemistry 2014; 53:2329-43. [PMID: 24568373 PMCID: PMC4004276 DOI: 10.1021/bi500091p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G protein βγ subunits play essential roles in regulating cellular signaling cascades, yet little is known about their distribution in tissues or their subcellular localization. While previous studies have suggested specific isoforms may exhibit a wide range of distributions throughout the central nervous system, a thorough investigation of the expression patterns of both Gβ and Gγ isoforms within subcellular fractions has not been conducted. To address this, we applied a targeted proteomics approach known as multiple-reaction monitoring to analyze localization patterns of Gβ and Gγ isoforms in pre- and postsynaptic fractions isolated from cortex, cerebellum, hippocampus, and striatum. Particular Gβ and Gγ subunits were found to exhibit distinct regional and subcellular localization patterns throughout the brain. Significant differences in subcellular localization between pre- and postsynaptic fractions were observed within the striatum for most Gβ and Gγ isoforms, while others exhibited completely unique expression patterns in all four brain regions examined. Such differences are a prerequisite for understanding roles of individual subunits in regulating specific signaling pathways throughout the central nervous system.
Collapse
Affiliation(s)
- Katherine M Betke
- Department of Pharmacology, ‡Mass Spectrometry Research Center, §Department of Molecular Physiology and Biophysics, and ∥Department of Biochemistry, Vanderbilt University Medical Center , Nashville, Tennessee 37232-6600, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Erbs E, Faget L, Scherrer G, Matifas A, Filliol D, Vonesch JL, Koch M, Kessler P, Hentsch D, Birling MC, Koutsourakis M, Vasseur L, Veinante P, Kieffer BL, Massotte D. A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct 2014; 220:677-702. [PMID: 24623156 PMCID: PMC4341027 DOI: 10.1007/s00429-014-0717-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 01/27/2014] [Indexed: 12/19/2022]
Abstract
Opioid receptors are G protein-coupled receptors (GPCRs) that modulate brain function at all levels of neural integration, including autonomic, sensory, emotional and cognitive processing. Mu (MOR) and delta (DOR) opioid receptors functionally interact in vivo, but whether interactions occur at circuitry, cellular or molecular levels remains unsolved. To challenge the hypothesis of MOR/DOR heteromerization in the brain, we generated redMOR/greenDOR double knock-in mice and report dual receptor mapping throughout the nervous system. Data are organized as an interactive database offering an opioid receptor atlas with concomitant MOR/DOR visualization at subcellular resolution, accessible online. We also provide co-immunoprecipitation-based evidence for receptor heteromerization in these mice. In the forebrain, MOR and DOR are mainly detected in separate neurons, suggesting system-level interactions in high-order processing. In contrast, neuronal co-localization is detected in subcortical networks essential for survival involved in eating and sexual behaviors or perception and response to aversive stimuli. In addition, potential MOR/DOR intracellular interactions within the nociceptive pathway offer novel therapeutic perspectives.
Collapse
Affiliation(s)
- Eric Erbs
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
| | - Lauren Faget
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
- Present Address: University of California, La Jolla, CA 92093 USA
| | - Gregory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University, Stanford, 94305 CA USA
| | - Audrey Matifas
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
| | - Dominique Filliol
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
| | - Jean-Luc Vonesch
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, BP 10142, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | - Marc Koch
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, BP 10142, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | - Pascal Kessler
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, BP 10142, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | - Didier Hentsch
- Imaging Centre, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, BP 10142, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | | | - Manoussos Koutsourakis
- Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch cedex, France
- Present Address: Sanger Institute, Hinxton, Cambridge CB 10 1SA UK
| | - Laurent Vasseur
- Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch cedex, France
| | - Pierre Veinante
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg cedex 03, France
| | - Brigitte L. Kieffer
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
| | - Dominique Massotte
- Department of Neurogenetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 1 rue Laurent Fries, BP10142, 67404 Illkirch cedex, France
- Institut des Neurosciences Cellulaires et Intégratives CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg cedex 03, France
| |
Collapse
|
21
|
Bardoni R, Tawfik VL, Wang D, François A, Solorzano C, Shuster SA, Choudhury P, Betelli C, Cassidy C, Smith K, de Nooij JC, Mennicken F, O'Donnell D, Kieffer BL, Woodbury CJ, Basbaum AI, MacDermott AB, Scherrer G. Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron 2014; 81:1312-1327. [PMID: 24583022 DOI: 10.1016/j.neuron.2014.01.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 11/24/2022]
Abstract
Cutaneous mechanosensory neurons detect mechanical stimuli that generate touch and pain sensation. Although opioids are generally associated only with the control of pain, here we report that the opioid system in fact broadly regulates cutaneous mechanosensation, including touch. This function is predominantly subserved by the delta opioid receptor (DOR), which is expressed by myelinated mechanoreceptors that form Meissner corpuscles, Merkel cell-neurite complexes, and circumferential hair follicle endings. These afferents also include a small population of CGRP-expressing myelinated nociceptors that we now identify as the somatosensory neurons that coexpress mu and delta opioid receptors. We further demonstrate that DOR activation at the central terminals of myelinated mechanoreceptors depresses synaptic input to the spinal dorsal horn, via the inhibition of voltage-gated calcium channels. Collectively our results uncover a molecular mechanism by which opioids modulate cutaneous mechanosensation and provide a rationale for targeting DOR to alleviate injury-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Carlos Solorzano
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott A Shuster
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Papiya Choudhury
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Chiara Betelli
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Colleen Cassidy
- Graduate Program in Neuroscience, University of Wyoming, Laramie, WY 82071, USA; Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Kristen Smith
- Graduate Program in Neuroscience, University of Wyoming, Laramie, WY 82071, USA; Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Joriene C de Nooij
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Françoise Mennicken
- AstraZeneca R&D Montreal, Department of Translational Science, Montreal, QC H4S 1Z9, Canada
| | - Dajan O'Donnell
- AstraZeneca R&D Montreal, Department of Translational Science, Montreal, QC H4S 1Z9, Canada
| | - Brigitte L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR7104 CNRS/Université de Strasbourg, U964 INSERM, 67400 Illkirch, France
| | - C Jeffrey Woodbury
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amy B MacDermott
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
22
|
Chu Sin Chung P, Kieffer BL. Delta opioid receptors in brain function and diseases. Pharmacol Ther 2013; 140:112-20. [PMID: 23764370 DOI: 10.1016/j.pharmthera.2013.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 01/02/2023]
Abstract
Evidence that the delta opioid receptor (DOR) is an attractive target for the treatment of brain disorders has strengthened in recent years. This receptor is broadly expressed in the brain, binds endogenous opioid peptides, and shows as functional profile highly distinct from those of mu and kappa opioid receptors. Our knowledge of DOR function has enormously progressed from in vivo studies using pharmacological tools and genetic approaches. The important role of this receptor in reducing chronic pain has been extensively overviewed; therefore this review focuses on facets of delta receptor activity relevant to psychiatric and other neurological disorders. Beneficial effects of DOR agonists are now well established in the context of emotional responses and mood disorders. DOR activation also regulates drug reward, inhibitory controls and learning processes, but whether delta compounds may represent useful drugs in the treatment of drug abuse remains open. Epileptogenic and locomotor-stimulating effects of delta agonists appear drug-dependent, and the possibility of biased agonism at DOR for these effects is worthwhile further investigations to increase benefit/risk ratio of delta therapies. Neuroprotective effects of DOR activity represent a forthcoming research area. Future developments in DOR research will benefit from in-depth investigations of DOR function at cellular and circuit levels.
Collapse
Affiliation(s)
- Paul Chu Sin Chung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR7104 CNRS/Université de Strasbourg, U964 INSERM, Illkirch, France
| | | |
Collapse
|
23
|
Neuroanatomical distribution of μ-opioid receptor mRNA and binding in monogamous prairie voles (Microtus ochrogaster) and non-monogamous meadow voles (Microtus pennsylvanicus). Neuroscience 2013; 244:122-33. [PMID: 23537838 DOI: 10.1016/j.neuroscience.2013.03.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/08/2013] [Accepted: 03/16/2013] [Indexed: 01/06/2023]
Abstract
The opiate system has long been implicated in the rewarding properties of social interactions. In particular, the μ-opioid receptor (MOR) mediates multiple forms of social attachment, including the attachment of offspring to the mother and social bonding between mates. We have previously shown that MOR in the caudate-putamen is involved in partner preference formation in monogamous prairie voles. Here, using in situ hybridization and receptor autoradiography, we mapped in detail the distribution of MOR mRNA and ligand binding in monogamous prairie vole brains and compared MOR binding density with that of promiscuous meadow vole brains. Comparison of MOR binding in these closely related species with distinctly different social behavior revealed that while the distribution of MOR is similar, prairie voles have significantly higher densities of MOR than meadow voles in a majority of regions in the forebrain, including the caudate-putamen, nucleus accumbens shell, lateral septum and several thalamic nuclei, including the anteroventral and anteromedial thalamic nuclei. These differences in MOR expression between prairie and meadow voles could potentially contribute to species differences in behavior, including social attachment.
Collapse
|
24
|
Lutz PE, Kieffer BL. The multiple facets of opioid receptor function: implications for addiction. Curr Opin Neurobiol 2013; 23:473-9. [PMID: 23453713 DOI: 10.1016/j.conb.2013.02.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/12/2013] [Accepted: 02/04/2013] [Indexed: 01/31/2023]
Abstract
Addiction is characterized by altered reward processing, disrupted emotional responses and poor decision-making. Beyond a central role in drug reward, increasing evidence indicate that opioid receptors are broadly involved in all these processes. Recent studies establish the mu opioid receptor as a main player in social reward, which attracts increasing attention in psychiatric research. There is growing interest in blocking the kappa opioid receptor to prevent relapse, and alleviate the negative affect of withdrawal. The delta opioid receptor emerges as a potent mood enhancer, whose involvement in addiction is less clear. All three opioid receptors are likely implicated in addiction-depression comorbidity, and understanding of their roles in cognitive deficits associated to drug abuse is only beginning.
Collapse
Affiliation(s)
- Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
25
|
Abstract
Multiple studies in animal models and humans suggest that the endogenous opioid system is an important neurobiological substrate for nicotine addictive properties. In this study, we evaluated the participation of δ-opioid receptors in different behavioral responses of nicotine by using δ-opioid receptor knockout mice. Acute nicotine administration induced hypolocomotion and antinociception in wild-type mice, which were similar in knockout animals. The development of tolerance to nicotine-induced antinociception was also similar in both genotypes. In agreement, the expression and functional activity of δ-opioid receptors were not modified in the different layers of the spinal cord and brain areas evaluated after chronic nicotine treatment. The somatic manifestation of the nicotine withdrawal syndrome precipitated by mecamylamine was also similar in wild-type and δ-opioid receptor knockout mice. In contrast, nicotine induced a conditioned place preference in wild-type animals that was abolished in knockout mice. Moreover, a lower percentage of acquisition of intravenous nicotine self-administration was observed in mice lacking δ-opioid receptors as well as in wild-type mice treated with the selective δ-opioid receptor antagonist naltrindole. Accordingly, in-vivo microdialysis studies revealed that the enhancement in dopamine extracellular levels induced by nicotine in the nucleus accumbens was reduced in mutant mice. In summary, the present results show that δ-opioid receptors are involved in the modulation of nicotine rewarding effects. However, this opioid receptor does not participate either in several acute effects of nicotine or in the development of tolerance and physical dependence induced by chronic nicotine administration.
Collapse
|
26
|
Erbs E, Faget L, Scherrer G, Kessler P, Hentsch D, Vonesch JL, Matifas A, Kieffer BL, Massotte D. Distribution of delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience 2012; 221:203-13. [PMID: 22750239 DOI: 10.1016/j.neuroscience.2012.06.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
Delta opioid receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. We examined the distribution of delta receptor-expressing cells in the hippocampus using fluorescent knock-in mice that express a functional delta receptor fused at its carboxyterminus with the green fluorescent protein in place of the native receptor. Colocalization with markers for different neuronal populations was performed by immunohistochemical detection. Fine mapping in the dorsal hippocampus confirmed that delta opioid receptors are mainly present in GABAergic neurons. Indeed, they are mostly expressed in parvalbumin-immunopositive neurons both in the Ammon's horn and dentate gyrus. These receptors, therefore, most likely participate in the dynamic regulation of hippocampal activity.
Collapse
Affiliation(s)
- E Erbs
- Department of Human Genetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/UdS, 1 Rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Delta opioid receptor analgesia: recent contributions from pharmacology and molecular approaches. Behav Pharmacol 2011; 22:405-14. [PMID: 21836459 DOI: 10.1097/fbp.0b013e32834a1f2c] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Delta opioid receptors represent a promising target for the development of novel analgesics. A number of tools have been developed recently that have significantly improved our knowledge of δ receptor function in pain control. These include several novel δ agonists with potent analgesic properties, and genetic mouse models with targeted mutations in the δ opioid receptor gene. Also, recent findings have further documented the regulation of δ receptor function at cellular level, which impacts on the pain-reducing activity of the receptor. These regulatory mechanisms occur at transcriptional and post-translational levels, along agonist-induced receptor activation, signaling and trafficking, or in interaction with other receptors and neuromodulatory systems. All these tools for in-vivo research, and proposed mechanisms at molecular level, have tremendously increased our understanding of δ receptor physiology, and contribute to designing innovative strategies for the treatment of chronic pain and other diseases such as mood disorders.
Collapse
|
28
|
Borkowski AH, Barnes DC, Blanchette DR, Castellanos FX, Klein DF, Wilson DA. Interaction between δ opioid receptors and benzodiazepines in CO₂-induced respiratory responses in mice. Brain Res 2011; 1396:54-9. [PMID: 21561601 DOI: 10.1016/j.brainres.2011.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 01/07/2023]
Abstract
The false-suffocation hypothesis of panic disorder (Klein, 1993) suggested δ-opioid receptors as a possible source of the respiratory dysfunction manifested in panic attacks occurring in panic disorder (Preter and Klein, 2008). This study sought to determine if a lack of δ-opioid receptors in a mouse model affects respiratory response to elevated CO₂, and whether the response is modulated by benzodiazepines, which are widely used to treat panic disorder. In a whole-body plethysmograph, respiratory responses to 5% CO₂ were compared between δ-opioid receptor knockout mice and wild-type mice after saline, diazepam (1mg/kg), and alprazolam (0.3mg/kg) injections. The results show that lack of δ-opioid receptors does not affect normal response to elevated CO₂, but does prevent benzodiazepines from modulating that response. Thus, in the presence of benzodiazepine agonists, respiratory responses to elevated CO₂ were enhanced in δ-opioid receptor knockout mice compared to wild-type mice. This suggests an interplay between benzodiazepine receptors and δ-opioid receptors in regulating the respiratory effects of elevated CO₂, which might be related to CO₂ induced panic.
Collapse
Affiliation(s)
- Anne H Borkowski
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | | | | | | | | |
Collapse
|
29
|
Umehara T, Usumoto Y, Tsuji A, Kudo K, Ikeda N. Expression of material mRNA in the hypothalamus and frontal cortex in a rat model of fatal hypothermia. Leg Med (Tokyo) 2011; 13:165-70. [PMID: 21377399 DOI: 10.1016/j.legalmed.2011.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Diagnosis of fatal hypothermia is considered to be difficult in forensic practice because of the lack of any specific pathological findings. The mechanism that induces abnormal behavior such as undressing or hiding during the state of hypothermia has not been clarified. In order to solve these problems, we made a rat model of fatal hypothermia and investigated the expression of some mRNA within the hypothalamus and the frontal cortex. The expression of aldehyde dehydrogenase 6 family, member A1 (ALDH6A1), cocaine- and amphetamine-regulated transcript peptide (CARTPT), desmin (DES), heat shock 70kDa protein 4 (HSPA4), serotonin receptor 2A (HTR2A), opioid receptor, delta 1 (OPRD1) and transthyretin (TTR) supposedly related to fatal hypothermia was determined using quantitative real-time PCR. The expression of OPRD1 in the hypothalamus of fatal hypothermia was significantly increased, while the expression of TTR within the frontal cortex was significantly decreased compared to that in the control. These findings suggest that OPRD1 and TTR may be involved in thermoregulation at a low ambient temperature.
Collapse
Affiliation(s)
- Takahiro Umehara
- Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
30
|
Ansonoff MA, Portoghese PS, Pintar JE. Consequences of opioid receptor mutation on actions of univalent and bivalent kappa and delta ligands. Psychopharmacology (Berl) 2010; 210:161-8. [PMID: 20333506 DOI: 10.1007/s00213-010-1826-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION During the past decade, substantial evidence has documented that opioid receptor heterodimers form in cell lines expressing one or more opioid receptors. More recent studies have begun to investigate whether heterodimer formation also occurs in vivo. OBJECTIVES We have used opioid receptor knockout mice to determine whether the in vivo intrathecal (i.t.) pharmacological potency of delta, kappa, and bivalent kappa/delta ligands is altered in the absence of the KOR-1 and/or DOR-1 genes. RESULTS We observe that both NorBNI (a kappa antagonist) and KDN-21 (a kappa/delta bivalent antagonist) specifically inhibit DPDPE but not deltorphin II i.t potency in wild-type mice but that following mutation of KOR-1, the ability of either compound to reduce DPDPE potency is lost. In contrast, knockout of KOR-1 unexpectedly slightly reduces the potency of deltorphin II (delta2) but not DPDPE (delta1). Finally, two compounds with kappa agonist activity, 6'-GNTI (a putative kappa/delta heterodimer selective agonist) and KDAN-18 (kappa agonist/delta antagonist bivalent ligand) show reduced potency in DOR-1 KO mice. CONCLUSIONS These results show, genetically, that bivalent ligands with kappa agonist activity require delta receptors for maximal potency in vivo, which is consistent with the presence of opioid heterodimer/oligomer complexes in vivo, and also highlight the complexity of delta drug action even when complementary pharmacologic and genetic approaches are used.
Collapse
Affiliation(s)
- Michael A Ansonoff
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
31
|
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89:1379-412. [PMID: 19789384 DOI: 10.1152/physrev.00005.2009] [Citation(s) in RCA: 679] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France
| | | | | | | |
Collapse
|
32
|
Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 2009; 137:1148-59. [PMID: 19524516 DOI: 10.1016/j.cell.2009.04.019] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/30/2009] [Accepted: 04/01/2009] [Indexed: 12/22/2022]
Abstract
Delta and mu opioid receptors (DORs and MORs) are inhibitory G protein-coupled receptors that reportedly cooperatively regulate the transmission of pain messages by substance P and TRPV1-expressing pain fibers. Using a DOReGFP reporter mouse we now show that the DOR and MOR are, in fact, expressed by different subsets of primary afferents. The MOR is expressed in peptidergic pain fibers, the DOR in myelinated and nonpeptidergic afferents. Contrary to the prevailing view, we demonstrate that the DOR is trafficked to the cell surface under resting conditions, independently of substance P, and internalized following activation by DOR agonists. Finally, we show that the segregated DOR and MOR distribution is paralleled by a remarkably selective functional contribution of the two receptors to the control of mechanical and heat pain, respectively. These results demonstrate that behaviorally relevant pain modalities can be selectively regulated through the targeting of distinct subsets of primary afferent pain fibers.
Collapse
|
33
|
Walwyn W, John S, Maga M, Evans CJ, Hales TG. Delta receptors are required for full inhibitory coupling of mu-receptors to voltage-dependent Ca(2+) channels in dorsal root ganglion neurons. Mol Pharmacol 2009; 76:134-43. [PMID: 19357247 DOI: 10.1124/mol.109.055913] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recombinant micro and delta opioid receptors expressed in cell lines can form heterodimers with distinctive properties and trafficking. However, a role for opioid receptor heterodimerization in neurons has yet to be identified. The inhibitory coupling of opioid receptors to voltage-dependent Ca(2+) channels (VDCCs) is a relatively inefficient process and therefore provides a sensitive assay of altered opioid receptor function and expression. We examined micro-receptor coupling to VDCCs in dorsal root ganglion neurons of delta(+/+), delta(+/-), and delta(-/-) mice. Neurons deficient in delta receptors exhibited reduced inhibition of VDCCs by morphine and [D-Ala(2),Phe(4),Gly(5)-ol]-enkephalin (DAMGO). An absence of delta receptors caused reduced efficacy of DAMGO without affecting potency. An absence of delta receptors reduced neither the density of VDCCs nor their inhibition by either the GABA(B) receptor agonist baclofen or intracellular guanosine 5'-O-(3-thio)triphosphate. Flow cytometry revealed a reduction in micro-receptor surface expression in delta(-/-) neurons without altered DAMGO-induced internalization. There was no change in micro-receptor mRNA levels. D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)-sensitive mu-receptor-coupling efficacy was fully restored to delta(+/+) levels in delta(-/-) neurons by expression of recombinant delta receptors. However, the dimerization-deficient delta-15 construct expressed in delta(-/-) neurons failed to fully restore the inhibitory coupling of micro-receptors compared with that seen in delta(+/+) neurons, suggesting that, although not essential for micro-receptor function, micro-delta receptor dimerization contributes to full micro-agonist efficacy. Because DAMGO exhibited a similar potency in delta(+/+) and delta(-/-) neurons and caused similar levels of internalization, the role for heterodimerization is probably at the level of receptor biosynthesis.
Collapse
Affiliation(s)
- Wendy Walwyn
- Department of Psychiatry and Biobehavioral Sciences, Center for Health Sciences, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
34
|
Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology 2009; 34:887-98. [PMID: 18704097 PMCID: PMC2639630 DOI: 10.1038/npp.2008.128] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies in experimental animals have shown that individuals exhibiting enhanced sensitivity to the locomotor-activating and rewarding properties of drugs of abuse are at increased risk for the development of compulsive drug-seeking behavior. The purpose of the present study was to assess the effect of constitutive deletion of delta-opioid receptors (DOPr) on the rewarding properties of morphine as well as on the development of sensitization and tolerance to the locomotor-activating effects of morphine. Locomotor activity testing revealed that mice lacking DOPr exhibit an augmentation of context-dependent sensitization following repeated, alternate injections of morphine (20 mg/kg; s.c.; 5 days). In contrast, the development of tolerance to the locomotor-activating effects of morphine following chronic morphine administration (morphine pellet: 25 mg: 3 days) is reduced relative to WT mice. The conditioned rewarding effects of morphine were reduced significantly in DOPrKO mice as compared to WT controls. Similar findings were obtained in response to pharmacological inactivation of DOPr in WT mice, indicating that observed effects are not due to developmental adaptations that occur as a consequence of constitutive deletion of DOPr. Together, these findings indicate that the endogenous DOPr system is recruited in response to both repeated and chronic morphine administration and that this recruitment serves an essential function in the development of tolerance, behavioral sensitization, and the conditioning of opiate reward. Importantly, they demonstrate that DOPr has a distinct role in the development of each of these drug-induced adaptations. The anti-rewarding and tolerance-reducing properties of DOPr antagonists may offer new opportunities for the treatment and prevention of opioid dependence as well as for the development of effective analgesics with reduced abuse liability.
Collapse
|
35
|
Zhu H, Clemens S, Sawchuk M, Hochman S. Unaltered D1, D2, D4, and D5 dopamine receptor mRNA expression and distribution in the spinal cord of the D3 receptor knockout mouse. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:957-62. [PMID: 18797877 DOI: 10.1007/s00359-008-0368-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 01/24/2023]
Abstract
Dopamine (DA) acts through five receptor subtypes (D1-D5). We compared expression levels and distribution patterns of all DA mRNA receptors in the spinal cord of wild-type (WT) and loss of function D3 receptor knockout (D3KO) animals. D3 mRNA expression was increased in D3KO, but no D3 receptor protein was associated with cell membranes, supporting the previously reported lack of function. In contrast, mRNA expression levels and distribution patterns of D1, D2, D4, and D5 receptors were similar between WT and D3KO animals. We conclude that D3KO spinal neurons do not compensate for the loss of function of the D3 receptor with changes in the other DA receptor subtypes. This supports use of D3KO animals as a model to provide insight into D3 receptor dysfunction in the spinal cord.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
36
|
Roth-Deri I, Green-Sadan T, Yadid G. Beta-endorphin and drug-induced reward and reinforcement. Prog Neurobiol 2008; 86:1-21. [PMID: 18602444 DOI: 10.1016/j.pneurobio.2008.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/11/2008] [Indexed: 01/13/2023]
Abstract
Although drugs of abuse have different acute mechanisms of action, their brain pathways of reward exhibit common functional effects upon both acute and chronic administration. Long known for its analgesic effect, the opioid beta-endorphin is now shown to induce euphoria, and to have rewarding and reinforcing properties. In this review, we will summarize the present neurobiological and behavioral evidences that support involvement of beta-endorphin in drug-induced reward and reinforcement. Currently, evidence supports a prominent role for beta-endorphin in the reward pathways of cocaine and alcohol. The existing information indicating the importance of beta-endorphin neurotransmission in mediating the reward pathways of nicotine and THC, is thus far circumstantial. The studies described herein employed diverse techniques, such as biochemical measurements of beta-endorphin in various brain sites and plasma, and behavioral measurements, conducted following elimination (via administration of anti-beta-endorphin antibodies or using mutant mice) or augmentation (by intracerebral administration) of beta-endorphin. We suggest that the reward pathways for different addictive drugs converge to a common pathway in which beta-endorphin is a modulating element. Beta-endorphin is involved also with distress. However, reviewing the data collected so far implies a discrete role, beyond that of a stress response, for beta-endorphin in mediating the substance of abuse reward pathway. This may occur via interacting with the mesolimbic dopaminergic system and also by its interesting effects on learning and memory. The functional meaning of beta-endorphin in the process of drug-seeking behavior is discussed.
Collapse
Affiliation(s)
- Ilana Roth-Deri
- Neuropharmacology Section, The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
37
|
David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P. Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 2008; 33:1746-59. [PMID: 17895918 DOI: 10.1038/sj.npp.1301529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Both mu-opioid receptors (MORs) and delta-opioid receptors (DORs) are expressed in the ventral tegmental area (VTA) and are thought to be involved in the addictive properties of opiates. However, their respective contributions to opiate reward remain unclear. We used intracranial self-administration (ICSA) to study the rewarding effects of morphine microinjections into the VTA of male and female MOR-/- and DOR-/- mice. In brains of mice tested for intra-VTA morphine self-administration, we analyzed regional Fos protein expression to investigate the neural circuitry underlying this behavior. Male and female WT and DOR-/- mice exhibited similar self-administration performances, whereas knockout of the MOR gene abolished intra-VTA morphine self-administration at all doses tested. Naloxone (4 mg/kg) disrupted this behavior in WT and DOR mutants, without triggering physical signs of withdrawal. Morphine ICSA was associated with an increase in Fos within the nucleus accumbens, striatum, limbic cortices, amygdala, hippocampus, the lateral mammillary nucleus (LM), and the ventral posteromedial thalamus (VPM). This latter structure was found to express high levels of Fos exclusively in self-administering WT and DOR-/- mice. Abolition of morphine reward in MOR-/- mice was associated with a decrease in Fos-positive neurons in the mesocorticolimbic dopamine system, amygdala, hippocampus (CA1), LM, and a complete absence within the VPM. We conclude that (i) VTA MORs, but not DORs, are critical for morphine reward and (ii) the role of VTA-thalamic projections in opiate reward deserves to be further explored.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Brain/anatomy & histology
- Brain/drug effects
- Brain/metabolism
- Cell Count/methods
- Conditioning, Operant/drug effects
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotics/administration & dosage
- Neurons/drug effects
- Neurons/metabolism
- Oncogene Proteins v-fos/genetics
- Oncogene Proteins v-fos/metabolism
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Opioid, delta/deficiency
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/metabolism
- Self Administration
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Vincent David
- Centre de Neurosciences Intégratives et Cognitives, CNRS UMR 5228/Universités de Bordeaux 1 et 2, Talence, France.
| | | | | | | | | | | |
Collapse
|
38
|
Fischer SJ, Arguello AA, Charlton JJ, Fuller DC, Zachariou V, Eisch AJ. Morphine blood levels, dependence, and regulation of hippocampal subgranular zone proliferation rely on administration paradigm. Neuroscience 2007; 151:1217-24. [PMID: 18248906 DOI: 10.1016/j.neuroscience.2007.11.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 11/02/2007] [Accepted: 11/28/2007] [Indexed: 11/25/2022]
Abstract
Chronic morphine, administered via s.c. pellet, decreases the number of proliferating cells in the dentate gyrus subgranular zone (SGZ) in both rats and mice. This robust morphine-induced decrease could be used to better understand mechanisms regulating adult hippocampal neurogenesis, as well as to explore the relationship between neurogenesis and drug dependence, withdrawal, and relapse behaviors. Such research would benefit enormously from identifying a route of morphine administration that produces addiction-relevant blood levels of morphine, results in a high degree of dependence, translates to both rat and mouse, and is free of the behavioral confounds of s.c. pellets. Therefore, we examined a classic chronic morphine pellet paradigm (two s.c. pellets over 5 days) versus three chronic morphine injection paradigms (escalating dose i.p. injections over 2, 5, or 10 days) for their effect in adult male C57BL/6J mice. We assessed blood morphine levels, SGZ proliferation, and drug dependence as assessed by tolerance to locomotion sensitization and naloxone-precipitated withdrawal. The pellet paradigm produced high and relatively stable blood levels of morphine, a high degree of dependence, and a significant decrease in SGZ proliferation. In contrast, the three injection paradigms produced transient spikes in morphine blood levels, significantly less dependence than the pellet paradigm, and no significant decrease in SGZ proliferation. These data show that regulation of mouse SGZ proliferation requires high and relatively stable blood levels of morphine, and provide critical knowledge for the design of future studies to probe the relationship between addiction and neurogenesis.
Collapse
Affiliation(s)
- S J Fischer
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bigliardi-Qi M, Gaveriaux-Ruff C, Zhou H, Hell C, Bady P, Rufli T, Kieffer B, Bigliardi P. Deletion of delta-opioid receptor in mice alters skin differentiation and delays wound healing. Differentiation 2007; 74:174-85. [PMID: 16683988 DOI: 10.1111/j.1432-0436.2006.00065.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.
Collapse
Affiliation(s)
- Mei Bigliardi-Qi
- Department of Dermatology, CHUV Hôpital Beaumont, BT 440, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Scherrer G, Tryoen-Tóth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh JL, Gavériaux-Ruff C, Kieffer BL. Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci U S A 2006; 103:9691-6. [PMID: 16766653 PMCID: PMC1480468 DOI: 10.1073/pnas.0603359103] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The combination of fluorescent genetically encoded proteins with mouse engineering provides a fascinating means to study dynamic biological processes in mammals. At present, green fluorescent protein (GFP) mice were mainly developed to study gene expression patterns or cell morphology and migration. Here we used enhanced GFP (EGFP) to achieve functional imaging of a G protein-coupled receptor (GPCR) in vivo. We created mice where the delta-opioid receptor (DOR) is replaced by an active DOR-EGFP fusion. Confocal imaging revealed detailed receptor neuroanatomy throughout the nervous system of knock-in mice. Real-time imaging in primary neurons allowed dynamic visualization of drug-induced receptor trafficking. In DOR-EGFP animals, drug treatment triggered receptor endocytosis that correlated with the behavioral response. Mice with internalized receptors were insensitive to subsequent agonist administration, providing evidence that receptor sequestration limits drug efficacy in vivo. Direct receptor visualization in mice is a unique approach to receptor biology and drug design.
Collapse
Affiliation(s)
- Grégory Scherrer
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Petra Tryoen-Tóth
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Dominique Filliol
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Audrey Matifas
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Delphine Laustriat
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Yu Q. Cao
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5345; and
| | - Allan I. Basbaum
- Department of Anatomy and W. M. Keck Foundation Center for Integrative Neuroscience, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-2610
| | - Andrée Dierich
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Jean-Luc Vonesh
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Claire Gavériaux-Ruff
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Brigitte L. Kieffer
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Gackenheimer SL, Suter TM, Pintar JE, Quimby SJ, Wheeler WJ, Mitch CH, Gehlert DR, Statnick MA. Localization of opioid receptor antagonist [3H]-LY255582 binding sites in mouse brain: comparison with the distribution of mu, delta and kappa binding sites. Neuropeptides 2005; 39:559-67. [PMID: 16289278 DOI: 10.1016/j.npep.2005.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/24/2005] [Indexed: 11/16/2022]
Abstract
Agonist stimulation of opioid receptors increases feeding in rodents, while opioid antagonists inhibit food intake. The pan-opioid antagonist, LY255582, produces a sustained reduction in food intake and body weight in rodent models of obesity. However, the specific receptor subtype(s) responsible for this activity is unknown. To better characterize the pharmacology of LY255582, we examined the binding of a radiolabeled version of the molecule, [(3)H]-LY255582, in mouse brain using autoradiography. In mouse brain homogenates, the K(d) and B(max) for [(3)H]-LY255582 were 0.156 +/- 0.07 nM and 249 +/- 14 fmol/mg protein, respectively. [(3)H]-LY255582 bound to slide mounted sections of mouse brain with high affinity and low non-specific binding. High levels of binding were seen in areas consistent with the known localization of opioid receptors. These areas included the caudate putamen, nucleus accumbens, claustrum, medial habenula, dorsal endopiriform nucleus, basolateral nucleus of the amygdala, hypothalamus, thalamus and ventral tegmental area. We compared the binding distribution of [(3)H]-LY255582 to the opioid receptor antagonist radioligands [(3)H]-naloxone (mu), [(3)H]-naltrindole (delta) and [(3)H]-norBNI (kappa). The overall distribution of [(3)H]-LY255582 binding sites was similar to that of the other ligands. No specific [(3)H]-LY255582 binding was noted in sections of mu-, delta- and kappa-receptor combinatorial knockout mice. Therefore, it is likely that LY255582 produces its effects on feeding and body weight gain through a combination of mu-, delta- and kappa-receptor activity.
Collapse
MESH Headings
- Animals
- Autoradiography
- Binding Sites
- Brain/anatomy & histology
- Brain/metabolism
- Cyclohexanes/chemistry
- Cyclohexanes/metabolism
- Mice
- Mice, Knockout
- Molecular Structure
- Naloxone/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/metabolism
- Narcotic Antagonists/metabolism
- Piperidines/chemistry
- Piperidines/metabolism
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Tritium/chemistry
- Tritium/metabolism
Collapse
Affiliation(s)
- S L Gackenheimer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pradhan AAA, Clarke PBS. Comparison between delta-opioid receptor functional response and autoradiographic labeling in rat brain and spinal cord. J Comp Neurol 2005; 481:416-26. [PMID: 15593339 DOI: 10.1002/cne.20378] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The distribution of delta-opioid receptors (DORs) in the rat central nervous system has been previously characterized by radioligand binding and immunohistochemistry. However, the functional neuroanatomy of DORs has not been mapped in any detail; this is potentially important, because these receptors appear to be primarily cytosolic. Opioid receptors can couple to G(i/o) G proteins, a process that is detected by agonist-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate ([35S]GTPgammaS) binding. The purpose of this study was therefore to determine the distribution of functional DORs, as assessed by [35S]GTPgammaS autoradiographic labeling in response to the DOR agonist deltorphin II. For comparison, adjacent sections were labeled with [125I]deltorphin II or the DOR antagonist [125I]AR-M100613. In all three assays, mu-opioid receptors were blocked pharmacologically. The distributions of [125I]deltorphin II and [125I]AR-M100613 were highly correlated but not identical. Deltorphin II increased [35S]GTPgammaS binding in a concentration-dependent and naltrindole-sensitive manner. The regional [35S]GTPgammaS response to deltorphin II was only moderately predicted by agonist or antagonist radioligand binding (r = 0.67 and 0.50, respectively). [35S]GTPgammaS responses to deltorphin II were strongest in the extended striatum (caudate putamen, nucleus accumbens, olfactory tubercle) and cerebral cortex. In contrast, some areas reported to mediate DOR analgesia (brainstem, spinal cord) possessed a much lower [35S]GTPgammaS response. These findings demonstrate the existence of a partial mismatch between DOR radioligand binding and [35S]GTPgammaS response. This divergence possibly reflects regional heterogeneity in G-protein receptor coupling, or in the subcellular localization of DOR.
Collapse
|
43
|
Jasmin L, Ohara PT. Anatomical identification of neurons responsive to nociceptive stimuli. METHODS IN MOLECULAR MEDICINE 2004; 99:167-88. [PMID: 15131337 DOI: 10.1385/1-59259-770-x:167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We describe methods for labeling and identifying neurons within the central nervous system involved in the transmission of nociceptive stimuli. The most reliable methods are physiological identification followed by intracellular injection or immunocytochemical detection of stimulus-induced markers such as Fos. These latter strategies are used with appropriate controls to distinguish neurons activated secondarily (e.g., motor response or inhibitory neurons) by the nociceptive stimuli. Other methods include location and morphology as determined by standard cytological and tracing methods and/or the presence of specific neurochemical markers such as substance P determined by immunocytochemistry.
Collapse
Affiliation(s)
- Luc Jasmin
- Department of Neurological Surgery, University of California San Francisco, USA
| | | |
Collapse
|
44
|
Abstract
Although far from conclusive, evidence implicating the endogenous opioid system in the development and maintenance of alcoholism is growing. Currently available data suggest that ethanol increases opioid neurotransmission and that this activation is part of the mechanism responsible for its reinforcing effects. Findings from preclinical research indicate that ethanol consumption and ethanol-induced dopamine (DA) release are both reduced by opioid antagonists. Individual differences in endogenous opioid activity have been linked to inherited risks for alcoholism in studies comparing ethanol-preferring and nonpreferring rats, as well as in studies using targeted gene mutation (knockout) strategies. To a large extent, findings from human studies have paralleled those from the preclinical work. Persons who differ in family history of alcoholism have been shown to also differ in basal beta-endorphin activity, beta-endorphin response to alcohol, and subjective and HPA axis hormonal response to opioid antagonists. Findings from clinical trials indicate that opioid antagonists may reduce ethanol consumption in alcoholics, particularly in persons who have resumed drinking. Nevertheless, many questions remain unanswered about the use of opioid antagonists in alcoholism treatment and about the exact role of the opioid system in ethanol preference and reward. The progression of knowledge in this field suggests that many of these questions are imminently answerable, as our ability to characterize relationships between opioid activity and human behavior continues to develop. This paper summarizes both the progress that has been made and the gaps that remain in our understanding of the interactions between the endogenous opioid system and risk for alcoholism.
Collapse
Affiliation(s)
- L M Oswald
- Departments of Medicine and Psychiatry, The Johns Hopkins University, School of Medicine, Ross Research Building, Room 863, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | |
Collapse
|
45
|
Abstract
This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|