1
|
Ha CM, Kim DH, Lee TH, Kim HR, Choi J, Kim Y, Kang D, Park JW, Ojeda SR, Jeong JK, Lee BJ. Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression. Mol Cells 2022; 45:537-549. [PMID: 35950455 PMCID: PMC9385569 DOI: 10.14348/molcells.2022.2051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/23/2022] Open
Abstract
Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-likelike 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.
Collapse
Affiliation(s)
- Chang Man Ha
- Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute, Daegu 41068, Korea
| | - Dong Hee Kim
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Han Rae Kim
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Jungil Choi
- Bioenvironmental Science & Technology Division, Korea Institute of Toxicology, Jinju 52834, Korea
| | - Yoonju Kim
- Brain Research Core Facilities and Global Relation Center of Research Strategy Office, Korea Brain Research Institute, Daegu 41068, Korea
| | - Dasol Kang
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Sergio R. Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| |
Collapse
|
2
|
5-HT 2A Receptor-Induced Morphological Reorganization of PKCγ-Expressing Interneurons Gates Inflammatory Mechanical Allodynia in Rat. J Neurosci 2018; 38:10489-10504. [PMID: 30355630 DOI: 10.1523/jneurosci.1294-18.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/03/2018] [Accepted: 10/14/2018] [Indexed: 12/12/2022] Open
Abstract
Mechanical allodynia, a widespread pain symptom that still lacks effective therapy, is associated with the activation of a dorsally directed polysynaptic circuit within the spinal dorsal horn (SDH) or medullary dorsal horn (MDH), whereby tactile inputs into deep SDH/MDH can gain access to superficial SDH/MDH, eliciting pain. Inner lamina II (IIi) interneurons expressing the γ isoform of protein kinase C (PKCγ+) are key elements for allodynia circuits, but how they operate is still unclear. Combining behavioral, ex vivo electrophysiological, and morphological approaches in an adult rat model of facial inflammatory pain (complete Freund's adjuvant, CFA), we show that the mechanical allodynia observed 1 h after CFA injection is associated with the following (1) sensitization (using ERK1/2 phosphorylation as a marker) and (2) reduced dendritic arborizations and enhanced spine density in exclusively PKCγ+ interneurons, but (3) depolarized resting membrane potential (RMP) in all lamina IIi PKCγ+/PKCγ- interneurons. Blocking MDH 5HT2A receptors (5-HT2AR) prevents facial mechanical allodynia and associated changes in the morphology of PKCγ+ interneurons, but not depolarized RMP in lamina IIi interneurons. Finally, activation of MDH 5-HT2AR in naive animals is enough to reproduce the behavioral allodynia and morphological changes in PKCγ+ interneurons, but not the electrophysiological changes in lamina IIi interneurons, induced by facial inflammation. This suggests that inflammation-induced mechanical allodynia involves strong morphological reorganization of PKCγ+ interneurons via 5-HT2AR activation that contributes to open the gate for transmission of innocuous mechanical inputs to superficial SDH/MDH pain circuitry. Preventing 5-HT2AR-induced structural plasticity in PKCγ+ interneurons might represent new avenues for the specific treatment of inflammation-induced mechanical hypersensitivity.SIGNIFICANCE STATEMENT Inflammatory or neuropathic pain syndromes are characterized by pain hypersensitivity such as mechanical allodynia (pain induced by innocuous mechanical stimuli). It is generally assumed that mechanisms underlying mechanical allodynia, because they are rapid, must operate at only the level of functional reorganization of spinal or medullary dorsal horn (MDH) circuits. We discovered that facial inflammation-induced mechanical allodynia is associated with rapid and strong structural remodeling of specifically interneurons expressing the γ isoform of protein kinase C (PKCγ) within MDH inner lamina II. Moreover, we elucidated a 5-HT2A receptor to PKCγ/ERK1/2 pathway leading to the behavioral allodynia and correlated morphological changes in PKCγ interneurons. Therefore, descending 5-HT sensitize PKCγ interneurons, a putative "gate" in allodynia circuits, via 5-HT2A receptor-induced structural reorganization.
Collapse
|
3
|
Chondroitin sulfate attenuates formalin-induced persistent tactile allodynia. J Pharmacol Sci 2016; 131:275-8. [DOI: 10.1016/j.jphs.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 11/18/2022] Open
|
4
|
Bao X, Cai Y, Wang Y, Zhao J, He X, Yu D, Huang J, Jing S, Du Z, Yang T, Warner M, Gustafsson JA, Fan X. Liver X Receptor β Is Involved in Formalin-Induced Spontaneous Pain. Mol Neurobiol 2016; 54:1467-1481. [PMID: 26846362 DOI: 10.1007/s12035-016-9737-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
Increasing evidence indicates that the liver X receptor(LXR) β modulates inflammatory pain. However, the molecular mechanisms through which LXRβ modulates pain are unclear. Here, we found that LXRβ-null mice responded more strongly to acute noxious stimuli than wild-type (WT) littermates (in the hot plate and Hargreaves tests) and had augmented tonic inflammatory pain (in the formalin test). This increased reactivity to inflammatory pain was accompanied by enhanced formalin-evoked Fos and pERK staining of second-order nociceptive neurons. Immunohistochemistry showed that the expression of CGRP, SP, and IB4 was increased in the lamina I-II of the lumbar dorsal horns in formalin-injected LXRβ knockout (KO) mice compared with the WT controls. In addition, LXRβ deletion in the mice enhanced the formalin-induced inflammation with more activated microglia and astrocytes in the spinal cord. Furthermore, the levels of pro-inflammatory cytokines (IL-1β ,TNF-α) as well as NFκB in the formalin-injected paw were elevated by the loss of LXRβ. Taken together, these data indicate that LXRβ is involved in acute as well as inflammatory pain, and thus, it may be considered as a new target for the development of analgesics.
Collapse
Affiliation(s)
- Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.,Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ying Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xie He
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Dan Yu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Sheng Jing
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Zhiyong Du
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Tiande Yang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | - Margaret Warner
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77054, USA
| | - Jan-Ake Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77054, USA. .,Department of Biosciences and Nutrition, Karolinska Institute, Novum, Novum, 141 86, Sweden.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
5
|
Möser CV, Stephan H, Altenrath K, Kynast KL, Russe OQ, Olbrich K, Geisslinger G, Niederberger E. TANK-binding kinase 1 (TBK1) modulates inflammatory hyperalgesia by regulating MAP kinases and NF-κB dependent genes. J Neuroinflammation 2015; 12:100. [PMID: 25997745 PMCID: PMC4449530 DOI: 10.1186/s12974-015-0319-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TANK-binding kinase (TBK1) is a non-canonical IκB kinase (IKK) involved in the regulation of type I interferons and of NF-κB signal transduction. It is activated by viral infections and inflammatory mediators and has therefore been associated with viral diseases, obesity, and rheumatoid arthritis. Its role in pain has not been investigated so far. Due to the important roles of NF-κB, classical IκB Kinases and the IKK-related kinase, IKKε, in inflammatory nociception, we hypothesized that TBK1, which is suggested to form a complex with IKKε under certain conditions, might also alter the inflammatory nociceptive response. METHODS We investigated TBK1 expression and regulation in "pain-relevant" tissues of C57BL/6 mice by immunofluorescence, quantitative PCR, and Western blot analysis. Furthermore, nociceptive responses and the underlying signal transduction pathways were assessed using TBK1(-/-) mice in two models of inflammatory nociception. RESULTS Our data show that TBK1 is expressed and regulated in the spinal cord after peripheral nociceptive stimulation and that a deletion of TBK1 alleviated the inflammatory hyperalgesia in mice while motor function and acute nociception were not altered. TBK1-mediated effects are at least partially mediated by regulation of NF-κB dependent COX-2 induction but also by alteration of expression of c-fos via modulation of MAP kinases as shown in the spinal cord of mice and in cell culture experiments. CONCLUSION We suggest that TBK1 exerts pronociceptive effects in inflammatory nociception which are due to both modulation of NF-κB dependent genes and regulation of MAPKs and c-fos. Inhibition of TBK1 might therefore constitute a novel effective tool for analgesic therapy.
Collapse
Affiliation(s)
- Christine V Möser
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Heike Stephan
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Katharina Altenrath
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Katharina L Kynast
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Otto Q Russe
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Katrin Olbrich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Ellen Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Guan XH, Fu QC, Shi D, Bu HL, Song ZP, Xiong BR, Shu B, Xiang HB, Xu B, Manyande A, Cao F, Tian YK. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats. Exp Neurol 2015; 263:39-49. [DOI: 10.1016/j.expneurol.2014.09.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/30/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022]
|
7
|
Worsley MA, Allen CE, Billinton A, King AE, Boissonade FM. Chronic tooth pulp inflammation induces persistent expression of phosphorylated ERK (pERK) and phosphorylated p38 (pp38) in trigeminal subnucleus caudalis. Neuroscience 2014; 269:318-30. [PMID: 24709040 PMCID: PMC4030309 DOI: 10.1016/j.neuroscience.2014.03.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/13/2014] [Accepted: 03/27/2014] [Indexed: 12/29/2022]
Abstract
Chronic inflammation of tooth pulp activates pERK and pp38 in the trigeminal nucleus Activation is persistent and bilateral, and further increased by acute stimulation This altered signaling may be relevant in the development of chronic pulpitic pain pERK and pp38 are more sensitive markers of central change than Fos expression Sequential activation in different cell types may be linked to pain progression
Background Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase are transiently phosphorylated (activated) in the spinal cord and trigeminal nucleus by acute noxious stimuli. Acute stimulation of dental pulp induces short-lived ERK activation in trigeminal subnucleus caudalis (Vc), and p38 inhibition attenuates short-term sensitization in Vc induced by acute pulpal stimulation. We have developed a model to study central changes following chronic inflammation of dental pulp that induces long-term sensitization. Here, we examine the effects of chronic inflammation and acute stimulation on the expression of phosphorylated ERK (pERK), phosphorylated p38 (pp38) and Fos in Vc. Results Chronic inflammation alone induced bilateral expression of pERK and pp38 in Vc, but did not induce Fos expression. Stimulation of both non-inflamed and inflamed pulps significantly increased pERK and pp38 bilaterally; expression was greatest in inflamed, stimulated animals, and was similar following 10-min and 60-min stimulation. Stimulation for 60 min, but not 10 min, induced Fos in ipsilateral Vc; Fos expression was significantly greater in inflamed, stimulated animals. pERK was present in both neurons and astrocytes; pp38 was present in neurons and other non-neuronal, non-astrocytic cell types. Conclusions This study provides the first demonstration that chronic inflammation of tooth pulp induces persistent bilateral activation of ERK and p38 within Vc, and that this activation is further increased by acute stimulation. This altered activity in intracellular signaling is likely to be linked to the sensitization that is seen in our animal model and in patients with pulpitis. Our data indicate that pERK and pp38 are more accurate markers of central change than Fos expression. In our model, localization of pERK and pp38 within specific cell types differs from that seen following acute stimulation. This may indicate specific roles for different cell types in the induction and maintenance of pulpitic and other types of pain.
Collapse
Affiliation(s)
- M A Worsley
- Unit of Oral & Maxillofacial Medicine & Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - C E Allen
- Unit of Oral & Maxillofacial Medicine & Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | | | - A E King
- School of Biomedical Sciences, University of Leeds, UK
| | - F M Boissonade
- Unit of Oral & Maxillofacial Medicine & Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| |
Collapse
|
8
|
Kuwahata H, Komatsu T, Katsuyama S, Corasaniti MT, Bagetta G, Sakurada S, Sakurada T, Takahama K. Peripherally injected linalool and bergamot essential oil attenuate mechanical allodynia via inhibiting spinal ERK phosphorylation. Pharmacol Biochem Behav 2013; 103:735-41. [DOI: 10.1016/j.pbb.2012.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/29/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|
9
|
Freitas K, Carroll FI, Damaj MI. The antinociceptive effects of nicotinic receptors α7-positive allosteric modulators in murine acute and tonic pain models. J Pharmacol Exp Ther 2012; 344:264-75. [PMID: 23115222 DOI: 10.1124/jpet.112.197871] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) subtype is abundantly expressed in the central nervous system and in the periphery. Recent evidence suggests that α7 nAChR subtypes, which can be activated by an endogenous cholinergic tone, comprising acetylcholine and the α7 nAChR agonist choline, play an important role in subchronic pain and inflammation. This study's objective was to test whether α7 nAChR positive allosteric modulators (PAMs) produce antinociception in in vivo mouse models of acute and persistent pain. Testing type I [N-(5-chloro-2-hydroxyphenyl)-N'-[2-chloro-5-(trifluoromethyl)phenyl] (NS1738)] and type II [1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl) (PNU-120596)] α7 nAChR PAMs in acute and persistent pain, we found that, although neither reduced acute thermal pain, only PNU-120596 dose-dependently attenuated paw-licking behavior in the formalin test. The long-acting effect of PNU-120596 in this test was in discordance with its pharmacokinetic profile in mice, which suggests the involvement of postreceptor signaling mechanisms. Our results with selective mitogen-activated protein kinase kinase inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene monoethanolate (U0126) argues for an important role of extracellular signal-regulated kinase-1/2 pathways activation in PNU-120596's antinociceptive effects. The α7 antagonist MLA, administered intrathecally, reversed PNU-120596's effects, confirming PNU-120596's action, in part, through central α7 nAChRs. Importantly, tolerance to PNU-120596 was not developed after subchronic treatment of the drug. Surprisingly, PNU-120596's antinociceptive effects were blocked by NS1738. Our results indicate that type II α7 nAChR PAM PNU-120596, but not type I α7 nAChR PAM NS1738, shows significant antinociception effects in persistent pain models in mice.
Collapse
Affiliation(s)
- Kelen Freitas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA 23298-0613, USA
| | | | | |
Collapse
|
10
|
Extracellular signal-regulated kinases in pain of peripheral origin. Eur J Pharmacol 2010; 650:8-17. [PMID: 20950608 DOI: 10.1016/j.ejphar.2010.09.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/01/2010] [Accepted: 09/23/2010] [Indexed: 12/17/2022]
Abstract
Activation of members of the family of enzymes known as extracellular signal-regulated kinases (ERKs) is now known to be involved in the development and/or maintenance of the pain associated with many inflammatory conditions, such as herniated spinal disc pain, chronic inflammatory articular pain, and the pain associated with bladder inflammation. Moreover, ERKs are implicated in the development of neuropathic pain signs in animals which are subjected to the lumbar 5 spinal nerve ligation model and the chronic constriction injury model of neuropathic pain. The position has now been reached where all scientists working on pain subjects ought to be aware of the importance of ERKs, if only because certain of these enzymes are increasingly employed as experimental markers of nociceptive processing. Here, we introduce the reader, first, to the intracellular context in which these enzymes function. Thereafter, we consider the involvement of ERKs in mediating nociceptive signalling to the brain resulting from noxious stimuli at the periphery which will be interpreted by the brain as pain of peripheral origin.
Collapse
|
11
|
Staudt MD, De Oliveira CV, Lehman MN, McKenna KE, Coolen LM. Activation of MAP Kinase in Lumbar Spinothalamic Cells Is Required for Ejaculation. J Sex Med 2010; 7:2445-57. [DOI: 10.1111/j.1743-6109.2010.01741.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Campillo A, González-Cuello A, Cabañero D, Garcia-Nogales P, Romero A, Milanés MV, Laorden ML, Puig MM. Increased Spinal Dynorphin Levels and Phospho-Extracellular Signal-Regulated Kinases 1 and 2 and c-Fos Immunoreactivity after Surgery under Remifentanil Anesthesia in Mice. Mol Pharmacol 2009; 77:185-94. [DOI: 10.1124/mol.109.059790] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Cruz CD, Ferreira D, McMahon SB, Cruz F. The activation of the ERK pathway contributes to the spinal c-fosexpression observed after noxious bladder stimulation. Somatosens Mot Res 2009; 24:15-20. [PMID: 17558919 DOI: 10.1080/08990220601143265] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
C-fos is an immediate-early gene whose expression in the spinal cord has been extensively used as a marker of peripheral noxious stimulation. The Fos protein accumulates in the nuclei of spinal neurons, reaching detectable levels 2 h after stimulation. The ERK pathway is an important signalling pathway in spinal cord neurons. ERK is activated upon phosphorylation on specific amino acid residues. Its activation in the spinal cord, following noxious stimulation, has been shown to contribute to the establishment and maintenance of long-term neuronal alterations associated with chronic pain. Phosphorylated ERK can target several cellular elements, including transcription factors, which indicates that ERK participates in the regulation of gene expression. The relation between ERK and c-fos is at present still unclear. Some in vitro studies have reached the conclusion that ERK contributes to c-fos regulation whereas others have provided evidence of ERK-independent c-fos expression. In fact, in the spinal cord the occurrence of c-fos expression in the absence of ERK phosphorylation has been reported. In this study we investigated in vivo the contribution of ERK to c-fos expression in the spinal cord. By inhibiting spinal ERK activation with intrathecal administration of PD98059, we verified that ERK phosphorylation does contribute to regulate c-fos expression upon noxious bladder stimulation.
Collapse
Affiliation(s)
- Célia D Cruz
- Faculty of Medicine, Institute of Histology and Embryology, University of Porto and IBMC, Portugal.
| | | | | | | |
Collapse
|
14
|
Activation of Extracellular Signal-Regulated Protein Kinase is Associated with Colorectal Distension-Induced Spinal and Supraspinal Neuronal Response and Neonatal Maternal Separation-Induced Visceral Hyperalgesia in Rats. J Mol Neurosci 2008; 37:274-87. [DOI: 10.1007/s12031-008-9134-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 07/01/2008] [Indexed: 01/12/2023]
|
15
|
Pang XY, Liu T, Jiang F, Ji YH. Activation of spinal ERK signaling pathway contributes to pain-related responses induced by scorpion Buthus martensi Karch venom. Toxicon 2008; 51:994-1007. [PMID: 18328523 DOI: 10.1016/j.toxicon.2008.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/24/2007] [Accepted: 01/09/2008] [Indexed: 01/15/2023]
Abstract
It has been demonstrated that spontaneous nociceptive behaviors, cutaneous hyperalgesia and paw edema can be induced by intraplantar injection of scorpion Buthus martensi Karch (BmK) venom in rats. In the present study, activation of spinal extracellular signal-regulated kinase (ERK) signaling pathway and its contribution to pain-related responses induced by scorpion BmK venom were investigated. It was found that ERK was activated not only in the superficial layers but also in deep layers of L4-L5 spinal cord dorsal horn, which started at 2 min, peaked at 30-60 min and almost disappeared at 4h following intraplantar injection of BmK venom. Intrathecal injection of U0126 (0.1, 1.0 and 10 microg), a widely used specific MAP kinase kinase (MEK) inhibitor, suppressed spontaneous nociceptive responses and reduced primary heat hyperalgesia and bilateral mechanical hyperalgesia induced by BmK venom. In addition, BmK venom-induced spinal c-Fos expression could be inhibited by U0126 dose-dependently. Intrathecal delivery of NMDA receptor antagonist (5R, 10S)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a,d]-cyclohepten-5-10-imine hydrogen maleate (MK-801) and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) could partially inhibit activation of spinal ERK induced by BmK venom at 30 min. Thus, activation of ERK in spinal cord dorsal horn, partially mediated by NMDA and non-NMDA receptor, potentially contributes to BmK venom-induced pain-related behaviors.
Collapse
Affiliation(s)
- Xue-Yan Pang
- School of Life Sciences, Shanghai University, Shang-Da Road 99, Shanghai 200444, PR China
| | | | | | | |
Collapse
|
16
|
Jimenez-Andrade JM, Martin CD, Koewler NJ, Freeman KT, Sullivan LJ, Halvorson KG, Barthold CM, Peters CM, Buus RJ, Ghilardi JR, Lewis JL, Kuskowski MA, Mantyh PW. Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture. Pain 2007; 133:183-96. [PMID: 17693023 DOI: 10.1016/j.pain.2007.06.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/08/2007] [Accepted: 06/15/2007] [Indexed: 11/21/2022]
Abstract
Current therapies to treat skeletal fracture pain are extremely limited. Some non-steroidal anti-inflammatory drugs have been shown to inhibit bone healing and opiates induce cognitive dysfunction and respiratory depression which are especially problematic in the elderly suffering from osteoporotic fractures. In the present report, we developed a closed femur fracture pain model in the mouse where skeletal pain behaviors such as flinching and guarding of the fractured limb are reversed by 10mg/kg morphine. Using this model we showed that the administration of a monoclonal antibody against nerve growth factor (anti-NGF) reduced fracture-induced pain-related behaviors by over 50%. Treatment with anti-NGF reduced c-Fos and dynorphin up-regulation in the spinal cord at day 2 post-fracture. However, anti-NGF treatment did not reduce p-ERK and c-Fos expression at 20 and 90 min, respectively, following fracture. This suggests NGF is involved in maintenance but not the acute generation of fracture pain. Anti-NGF therapy did not inhibit bone healing as measured by callus formation, bridging of the fracture site or mechanical strength of the bone. As the anti-NGF antibody does not appreciably cross the blood-brain barrier, the present data suggest that the anti-hyperalgesic action of anti-NGF therapy results from blockade of activation and/or sensitization of the CGRP/trkA positive fibers that normally constitute the majority of sensory fibers that innervate the bone. These results demonstrate that NGF plays a significant role in driving fracture pain and that NGF sequestering therapies may be efficacious in attenuating this pain.
Collapse
Affiliation(s)
- Juan M Jimenez-Andrade
- Neurosystems Center and Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fukui T, Dai Y, Iwata K, Kamo H, Yamanaka H, Obata K, Kobayashi K, Wang S, Cui X, Yoshiya S, Noguchi K. Frequency-dependent ERK phosphorylation in spinal neurons by electric stimulation of the sciatic nerve and the role in electrophysiological activity. Mol Pain 2007; 3:18. [PMID: 17631690 PMCID: PMC1941723 DOI: 10.1186/1744-8069-3-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 07/16/2007] [Indexed: 01/08/2023] Open
Abstract
The phosphorylation of extracellular signal-regulated kinase (pERK) in DRG and dorsal horn neurons is induced by the C-fiber electrical stimulation to the peripheral nerve. The present study was designed to investigate the expression and modulation of pERK in the rat dorsal horn neurons produced by repetitive electrical stimulation, and its involvement in the electrophysiological activity of dorsal horn neurons. Electrical stimulation of C-fiber intensity at different frequencies was applied to the sciatic nerve; the stimuli-induced pERK expression and the activity in dorsal horn neurons were studied by immunohistochemistry and extracellular recording, respectively. Electrical stimulation of C-fibers (3 mA) induced pERK expression in dorsal horn neurons in a frequency-dependent manner, indicating that the frequency of electrical stimulation is an important factor which activates the intracellular signal pathway in the spinal cord. To demonstrate the underlying mechanism of this frequency-dependent pERK expression, an NMDA receptor antagonist, MK-801, and a voltage sensitive calcium channel antagonist, nifedipine, were administrated intrathecally before the stimulation. We found that high frequency (0.5 Hz and 10 Hz) but not low frequent (0.05 Hz) stimulus-evoked pERK was partially inhibited by MK-801. Both high and low frequency stimulus-evoked pERK were inhibited by the nifedipine treatment. The extracellular single unit activities were recorded from the laminae I-II and V of the L4-5 dorsal horn, and we found that blockage of the intracellular ERK signal suppressed the wind-up responses in a dose-dependent manner. In contrast, any change in the mechanically evoked responses was not observed following the administration of ERK inhibitor. These observations indicate that ERK activation plays an important role in the induction of the wind-up responses in dorsal horn nociceptive neurons.
Collapse
Affiliation(s)
- Tomokazu Fukui
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Iwata
- Department of Physiology, School of Dentistry, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Hiroshi Kamo
- Department of Physiology, School of Dentistry, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Obata
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Kimiko Kobayashi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Shenglan Wang
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Xiuyu Cui
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P.R. China
| | - Shinichi Yoshiya
- Department of Orthopaedic Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
18
|
Abstract
AIM: To determine the expression of c-Fos, caspase-3 and interleukin-1β (IL-1β) in the cervical cord and stomach of rats with cervical spondylosis, to analyze their relationship, and to offer an explanation of one possible cause for functional dyspepsia (FD) and irritable bowel syndrome (IBS) caused by cervical spondylosis.
METHODS: The cervical spondylosis model in rats was established by destroying the stability of cervical posterior column. The cord segments C4-6 and gastric antrum were collected 3 mo and 5 mo after the operation. Rats with the sham operation were used as controls. The expressions of c-Fos, caspase-3 and IL-1β in the cervical cord and gastric antrum were determined by immunohistochemistry and/or Western blot.
RESULTS: Immunohistochemical staining showed a few c-Fos, caspase-3 and IL-1β-positive cells in the cervical cord and antrum in the control. There was a significant increase in c-Fos, caspase-3 and IL-1β expression in model groups compared to the control groups at 3 mo and 5 mo after operation. More importantly, there was a significant (P < 0.05) increase in c-Fos, caspase-3 and IL-1β expression in the model group rats at 3 mo compared to those at 5 mo after the operation (c-Fos: 11.20 ± 2.26 vs 27.68 ± 4.36 in the cervical cord, 11.3 ± 2.3 vs 29.3 ± 4.6 in the gastric antrum; caspase-3: 33.83 ± 3.71 vs 36.32 ± 4.01 in the cervical cord, 13.23 ± 3.21 vs 26.32 ± 4.01 in the gastric antrum; IL-1β: 42.06 ± 2.95 vs 45.91 ± 3.98 in the cervical cord, 26.56 ± 2.65 vs 32.01 ± 2.98 in the gastric antrum). Western blot analysis showed time-dependent changes of caspase-3 and IL-1β protein in the cervical cord and gastric antrum of rats with cervical spondylosis; there was no significant expression of caspase-3 and IL-1β protein in the control group at 3 mo and 5 mo after the sham operation, whereas there was a significant difference in caspase-3 and IL-1β protein levels between the model group rats followed up for 3 mo and those for 5 mo (P < 0.05).
CONCLUSION: There is a significant association of c-Fos, caspase-3 and IL-1β expressions in the gastric antrum with that in the spinal cord in rats with cervical spondylosis, suggesting that the gastrointestinal function may be affected by cervical spondylosis.
Collapse
Affiliation(s)
- Xing-Hua Song
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uighur Autonomous Region, China
| | | | | | | | | | | |
Collapse
|
19
|
Worsley MA, Davies SL, Clayton NM, Bountra C, Loescher AR, Robinson PP, Boissonade FM. The effect of inflammation on Fos expression in the ferret trigeminal nucleus. Eur J Oral Sci 2007; 115:40-7. [PMID: 17305715 DOI: 10.1111/j.1600-0722.2007.00411.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have previously carried out detailed characterization and identification of Fos expression within the trigeminal nucleus after tooth pulp stimulation in ferrets. The aim of this study was to determine the effect of pulpal inflammation on the excitability of central trigeminal neurons following tooth pulp stimulation. Adult ferrets were prepared under anesthesia to allow tooth pulp stimulation, recording from the digastric muscle, and intravenous injections at a subsequent experiment. In some animals, pulpal inflammation was induced by introducing human caries into a deep buccal cavity. After 5 d, animals were re-anaethetized, and the teeth were stimulated at 10 times the threshold of the jaw-opening reflex. Stimulation of all tooth pulps induced ipsilateral Fos in the trigeminal subnuclei caudalis and oralis. All non-stimulated animals showed negligible Fos labeling, with no differences recorded between inflamed and non-inflamed groups. Following tooth pulp stimulation, Fos expression was greater in animals with inflamed teeth than in animals with non-inflamed teeth, with the greatest effect seen in the subnucleus caudalis. These results suggest that inflammation increases the number of trigeminal brainstem neurons activated by tooth pulp stimulation; this may be mediated by peripheral or central mechanisms.
Collapse
Affiliation(s)
- Matthew A Worsley
- Department of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hu HJ, Carrasquillo Y, Karim F, Jung WE, Nerbonne JM, Schwarz TL, Gereau RW. The kv4.2 potassium channel subunit is required for pain plasticity. Neuron 2006; 50:89-100. [PMID: 16600858 DOI: 10.1016/j.neuron.2006.03.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/10/2005] [Accepted: 03/03/2006] [Indexed: 01/22/2023]
Abstract
A-type potassium currents are important determinants of neuronal excitability. In spinal cord dorsal horn neurons, A-type currents are modulated by extracellular signal-regulated kinases (ERKs), which mediate central sensitization during inflammatory pain. Here, we report that Kv4.2 mediates the majority of A-type current in dorsal horn neurons and is a critical site for modulation of neuronal excitability and nociceptive behaviors. Genetic elimination of Kv4.2 reduces A-type currents and increases excitability of dorsal horn neurons, resulting in enhanced sensitivity to tactile and thermal stimuli. Furthermore, ERK-mediated modulation of excitability in dorsal horn neurons and ERK-dependent forms of pain hypersensitivity are absent in Kv4.2(-/-) mice compared to wild-type littermates. Finally, mutational analysis of Kv4.2 indicates that S616 is the functionally relevant ERK phosphorylation site for modulation of Kv4.2-mediated currents in neurons. These results show that Kv4.2 is a downstream target of ERK in spinal cord and plays a crucial role in pain plasticity.
Collapse
Affiliation(s)
- Hui-Juan Hu
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Takahashi N, Kikuchi S, Shubayev VI, Campana WM, Myers RR. TNF-alpha and phosphorylation of ERK in DRG and spinal cord: insights into mechanisms of sciatica. Spine (Phila Pa 1976) 2006; 31:523-9. [PMID: 16508545 DOI: 10.1097/01.brs.0000201305.01522.17] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Characterize extracellular signal-regulated kinase (ERK) and its phosphorylation (pERK) in neural tissues after topical application of tumor necrosis factor-alpha (TNF-alpha) to L5 nerve root. OBJECTIVE Identify time-course, localization, and expression of pERK. SUMMARY OF BACKGROUND DATA TNF-alpha has a key role in disc herniation and sciatica as an inflammatory component of the nucleus pulposus. ERK is associated with neuronal signal transduction and nociception. METHODS We studied tissue from naive rats, vehicle-treated rats, and rats receiving rat recombinant TNF-alpha using Western blots of total and phosphorylated ERK (pERK). We used immunohistochemistry of pERK with neuronal nuclear (NeuN) antibody to identify its cellular distribution. RESULTS Topical application of TNF-alpha to rat nerve root increased pERK in ipsilateral dorsal root ganglion (DRG) neurons and glia within 5 hours. pERK was not expressed in DRG during the first hour after TNF-alpha application, nor was it seen at anytime in spinal cord dorsal horn. DRG satellite cells had increased pERK 5 hours after TNF-alpha or vehicle treatment. TNF-alpha treatment increased pERK in small- and medium-sized DRG neurons and to a lesser degree in large neurons. CONCLUSIONS These findings suggest that ERK signaling plays a role in the activation of DRG cells following inflammatory injuries to nerve roots and further documents the importance of inflammation in the pathogenesis of painful spine disorders.
Collapse
Affiliation(s)
- Naoto Takahashi
- Department of Anesthesiology, University of California, School of Medicine, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
22
|
Karim F, Hu HJ, Adwanikar H, Kaplan D, Gereau RW. Impaired inflammatory pain and thermal hyperalgesia in mice expressing neuron-specific dominant negative mitogen activated protein kinase kinase (MEK). Mol Pain 2006; 2:2. [PMID: 16412244 PMCID: PMC1382249 DOI: 10.1186/1744-8069-2-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/16/2006] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Numerous studies have implicated spinal extracellular signal-regulated kinases (ERKs) as mediators of nociceptive plasticity. These studies have utilized pharmacological inhibition of MEK to demonstrate a role for ERK signaling in pain, but this approach cannot distinguish between effects of ERK in neuronal and non-neuronal cells. The present studies were undertaken to test the specific role of neuronal ERK in formalin-induced inflammatory pain. Dominant negative MEK (DN MEK) mutant mice in which MEK function is suppressed exclusively in neurons were tested in the formalin model of inflammatory pain. RESULTS Formalin-induced second phase spontaneous pain behaviors as well as thermal hyperalgesia measured 1 - 3 hours post-formalin were significantly reduced in the DN MEK mice when compared to their wild type littermate controls. In addition, spinal ERK phosphorylation following formalin injection was significantly reduced in the DN MEK mice. This was not due to a reduction of the number of unmyelinated fibers in the periphery, since these were almost double the number observed in wild type controls. Further examination of the effects of suppression of MEK function on a downstream target of ERK phosphorylation, the A-type potassium channel, showed that the ERK-dependent modulation of the A-type currents is significantly reduced in neurons from DN MEK mice compared to littermate wild type controls. CONCLUSION Our results demonstrate that the neuronal MEK-ERK pathway is indeed an important intracellular cascade that is associated with formalin-induced inflammatory pain and thermal hyperalgesia.
Collapse
Affiliation(s)
- Farzana Karim
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8054, St. Louis MO 63110, USA
| | - Hui-Juan Hu
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8054, St. Louis MO 63110, USA
| | - Hita Adwanikar
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77551, USA
| | - David Kaplan
- Department of Medical Genetics and Microbiology, University of Toronto and The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8054, St. Louis MO 63110, USA
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis MO 63110, USA
| |
Collapse
|
23
|
Noguchi K. Chapter 20 Central sensitization following nerve injury: molecular mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:277-291. [PMID: 18808842 DOI: 10.1016/s0072-9752(06)80024-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
24
|
Doya H, Ohtori S, Takahashi K, Aoki Y, Ino H, Takahashi Y, Moriya H, Yamashita T. Extracellular signal-regulated kinase mitogen-activated protein kinase activation in the dorsal root ganglion (DRG) and spinal cord after DRG injury in rats. Spine (Phila Pa 1976) 2005; 30:2252-6. [PMID: 16227886 DOI: 10.1097/01.brs.0000182091.53834.08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN We investigated the extracellular signal-regulated kinase (ERK) activation by immunohistochemically detecting phosphorylated ERK (pERK) in the dorsal root ganglion (DRG) and spinal cord. OBJECTIVE To clarify the ERK activation in the rat nervous system following DRG injury. SUMMARY OF BACKGROUND DATA Radicular pain is known to be associated with DRG injury caused by intervertebral disc herniation. ERK is activated by phosphorylation in the DRG and spinal cord by noxious stimuli, which are related to pain hypersensitivity. METHODS From 2 minutes to 24 hours after the left L4 DRG crush injury, L4 DRGs and spinal cords were resected to prepare serial sections, which were investigated immunohistochemically. RESULTS In the DRG, ERK activation was detected in neurons and satellite cells at 2 minutes; the former was maintained at increased levels for 20 minutes, and the latter for 4 hours. At 30 minutes, pERK immunoreactivity was observed in Schwann cells, which continued for up to 24 hours. In the spinal cord, pERK-positive neurons were detected at 2 minutes, and the pERK levels were maintained at increased levels for 20 minutes. CONCLUSIONS Profiles of pERK induction in neurons after DRG injury were similar between the DRG and spinal cord, whereas pERK induction in the satellite cells was more long lasting. The pERK induction in Schwann cells in the DRG was late onset and the most long lasting.
Collapse
Affiliation(s)
- Hideo Doya
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, Befort K, Woolf CJ, Ji RR. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 2005; 24:8310-21. [PMID: 15385614 PMCID: PMC6729681 DOI: 10.1523/jneurosci.2396-04.2004] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Molecular mechanisms underlying C-fiber stimulation-induced ERK (extracellular signal-regulated kinase) activation in dorsal horn neurons and its contribution to central sensitization have been investigated. In adult rat spinal slice preparations, activation of C-fiber primary afferents by a brief exposure of capsaicin produces an eightfold to 10-fold increase in ERK phosphorylation (pERK) in superficial dorsal horn neurons. The pERK induction is reduced by blockade of NMDA, AMPA/kainate, group I metabotropic glutamate receptor, neurokinin-1, and tyrosine receptor kinase receptors. The ERK activation produced by capsaicin is totally suppressed by inhibition of either protein kinase A (PKA) or PKC. PKA or PKC activators either alone or more effectively together induce pERK in superficial dorsal horn neurons. Inhibition of calcium calmodulin-dependent kinase (CaMK) has no effect, but pERK is reduced by inhibition of the tyrosine kinase Src. The induction of cAMP response element binding protein phosphorylation (pCREB) in spinal cord slices in response to C-fiber stimulation is suppressed by preventing ERK activation with the MAP kinase kinase inhibitor 2-(2-diamino-3-methoxyphenyl-4H-1-benzopyran-4-one (PD98059) and by PKA, PKC, and CaMK inhibitors. Similar signaling contributes to pERK induction after electrical stimulation of dorsal root C-fibers. Intraplantar injection of capsaicin in an intact animal increases expression of pCREB, c-Fos, and prodynorphin in the superficial dorsal horn, changes that are prevented by intrathecal injection of PD98059. Intrathecal PD98059 also attenuates capsaicin-induced secondary mechanical allodynia, a pain behavior reflecting hypersensitivity of dorsal horn neurons (central sensitization). We postulate that activation of ionotropic and metabotropic receptors by C-fiber nociceptor afferents activates ERK via both PKA and PKC, and that this contributes to central sensitization through post-translational and CREB-mediated transcriptional regulation in dorsal horn neurons.
Collapse
Affiliation(s)
- Yasuhiko Kawasaki
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 2005; 114:149-59. [PMID: 15733640 DOI: 10.1016/j.pain.2004.12.022] [Citation(s) in RCA: 616] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 12/03/2004] [Accepted: 12/13/2004] [Indexed: 12/30/2022]
Abstract
Activation of extracellular signal-regulated kinase (ERK), a mitogen activated-protein kinase (MAPK), in dorsal horn neurons contributes to inflammatory pain by transcription-dependent and -independent means. We have now investigated if ERK is activated in the spinal cord after a spinal nerve ligation (SNL) and if this contributes to the neuropathic pain-like behavior generated in this model. An L5 SNL induces an immediate (<10 min) but transient (<6 h) induction of phosphoERK (pERK) restricted to neurons in the superficial dorsal horn. This is followed by a widespread induction of pERK in spinal microglia that peaks between 1 and 3 days post-surgery. On Day 10, pERK is expressed both in astrocytes and microglia, but by Day 21 predominantly in astrocytes in the dorsal horn. In the L5 DRG SNL transiently induces pERK in neurons at 10 min, and in satellite cells on Day 10 and 21. Intrathecal injection of the MEK (ERK kinase) inhibitor PD98059 on Day 2, 10 or 21 reduces SNL-induced mechanical allodynia. Our results suggest that ERK activation in the dorsal horn, as well as in the DRG, mediates pain through different mechanisms operating in different cells at different times. The sequential activation of ERK in dorsal horn microglia and then in astrocytes might reflect distinct roles for these two subtypes of glia in the temporal evolution of neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Ye Zhuang
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
27
|
Song PS, Kong KM, Niu CY, Qi WL, Wu LF, Wang XJ, Han W, Huang K, Chen ZF. Expression of c-fos in gastric myenteric plexus and spinal cord of rats with cervical spondylosis. World J Gastroenterol 2005; 11:529-33. [PMID: 15641140 PMCID: PMC4250805 DOI: 10.3748/wjg.v11.i4.529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the expression of c-fos in gastric myenteric plexus and spinal cord of rats with cervical spondylosis and its clinical significance.
METHODS: A cervical spondylosis model was established in rats by destroying the stability of cervical posterior column, and the cord segments C4-6 and gastric antrum were collected 3, 4 and 5 mo after the operation. Rats with sham operation were used as controls. c-fos neuronal counter-staining was performed with an immunohistochemistry method. Every third sections from C4-6 segments were drawn. The 10 most labeled c-fos-immunoreactive (Fos-IR) neurons were counted, and the average number was used for statistical analysis. The mean of Fos-IR neurons in myenteric plexus was calculated after counting Fos-IR neurons in 25 ganglia from each antral preparation, and expressed as a mean count per myenteric ganglion.
RESULTS: There were a few c-fos-positive neurons in the cervical cord and antrum in the control group. There was an increased c-fos expression in model group 3, 4 and 5 mo after operation, whereas there was no significant increase in c-fos expression in the control group at 3, 4 and 5 mo. More importantly, there was a significant difference in c-fos expression between rats followed up for 3 mo and those for 5 mo in the model group (11.20±2.26 vs 27.68±4.36, P<0.05, for the cervical cord; and 11.3±2.3 vs 29.3±4.6, P<0.05, for the gastric antrum). There was no significant difference between rats followed up for 3 mo and those for 4 mo and between rats followed up for 4 mo and those for 5 mo in the model group.
CONCLUSION: c-fos expression in gastric myenteric plexus was dramatically associated with that in the spinal cord in rats with cervical spondylosis, suggesting that the gastrointestinal function may be affected by cervical spondylosis. If this hypothesis is confirmed by further studies, functional gastrointestinal diseases such as functional dyspepsia and irritable bowel syndrome could be explained by neurogastroenterology.
Collapse
Affiliation(s)
- Pei-Song Song
- Department of Joint and Spine, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mizushima T, Obata K, Yamanaka H, Dai Y, Fukuoka T, Tokunaga A, Mashimo T, Noguchi K. Activation of p38 MAPK in primary afferent neurons by noxious stimulation and its involvement in the development of thermal hyperalgesia. Pain 2005; 113:51-60. [PMID: 15621364 DOI: 10.1016/j.pain.2004.09.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 08/27/2004] [Accepted: 09/28/2004] [Indexed: 12/11/2022]
Abstract
Alterations in the intracellular signal transduction pathway in primary afferents may contribute to pain hypersensitivity. We demonstrated that very rapid phosphorylation of p38 mitogen-activated protein kinase occurred in dorsal root ganglion (DRG) neurons that were participating in the transmission of noxious signals. Capsaicin injection induced phosphorylated-p38 (p-p38) in small-to-medium diameter sensory neurons with a peak at 2 min after capsaicin injection. Furthermore, we examined the p-p38 labeling in the DRG after noxious thermal stimuli and found a stimulus intensity-dependent increase in labeled cell size and the number of activated neurons. Most of these p-p38-immunoreactive (IR) neurons were small- and medium-sized neurons, which coexpressed transient receptor potential ion channel TRPV1 and phosphorylated-extracellular signal-regulated protein kinase. Intrathecal administration of the p38 inhibitor, FR167653, reversed the thermal hyperalgesia produced by the capsaicin injection. Inhibition of p38 activation was confirmed by the decrease in the number of p-p38-IR neurons in the DRG following capsaicin injection. Taken together, these findings suggest that the activation of p38 pathways in primary afferents by noxious stimulation in vivo may be, at least in part, correlated with functional activity, and further, involved in the development of thermal hyperalgesia.
Collapse
Affiliation(s)
- Toshiyuki Mizushima
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Adwanikar H, Karim F, Gereau RW. Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. Pain 2004; 111:125-35. [PMID: 15327816 DOI: 10.1016/j.pain.2004.06.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 04/23/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
Group I metabotropic glutamate receptors (mGluRs) and their downstream signaling pathways, which involve the extracellular signal-regulated kinases (ERKs), have been implicated as mediators of plasticity in several pain models. In this study, we report that inflammation leads to a long-lasting enhancement of behavioral responses induced by activation of spinal group I mGluRs. Thus, the nocifensive response to intrathecal injection of the group I mGluR agonist (RS)-3,5-Dihydroxyphenylglycine (DHPG) is significantly potentiated seven days following Complete Freund's Adjuvant (CFA)-induced inflammation of the hind paw. This potentiation is not associated with increased mGlu1 or mGlu5 receptor expression but is associated with increased levels of phosphorylated ERK in dorsal horn neurons. We also tested whether the increased behavioral response to DHPG following inflammation may be explained by enhanced coupling of the group I mGluRs to ERK activation. DHPG-induced ERK phosphorylation in the dorsal horn is not potentiated following inflammation. However, inhibiting ERK activation using a MEK inhibitor, U0126, following inflammation attenuates the intrathecal DHPG-induced behavioral responses to a greater extent than in control animals. The results from this study indicate that persistent ERK activation is required for the enhanced behavioral responses to spinal group I mGluR activation following inflammation and suggest that tonic modulation of ERK activity may underlie a component of central sensitization in dorsal horn neurons.
Collapse
Affiliation(s)
- Hita Adwanikar
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
30
|
Abstract
Damage to the nervous system can cause neuropathic pain, which is in general poorly treated and involves mechanisms that are incompletely known. Currently available animal models for neuropathic pain mainly involve partial injury of peripheral nerves. Multiple inflammatory mediators released from damaged tissue not only acutely excite primary sensory neurons in the peripheral nervous system, producing ectopic discharge, but also lead to a sustained increase in their excitability. Hyperexcitability also develops in the central nervous system (for instance, in dorsal horn neurons), and both peripheral and spinal elements contribute to neuropathic pain, so that spontaneous pain may occur or normally innocuous stimuli may produce pain. Inflammatory mediators and aberrant neuronal activity activate several signaling pathways [including protein kinases A and C, calcium/calmodulin-dependent protein kinase, and mitogen-activated protein kinases (MAPKs)] in primary sensory and dorsal horn neurons that mediate the induction and maintenance of neuropathic pain through both posttranslational and transcriptional mechanisms. In particular, peripheral nerve lesions result in activation of MAPKs (p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase) in microglia or astrocytes in the spinal cord, or both, leading to the production of inflammatory mediators that sensitize dorsal horn neurons. Activity of dorsal horn neurons, in turn, enhances activation of spinal glia. This neuron-glia interaction involves positive feedback mechanisms and is likely to enhance and prolong neuropathic pain even in the absence of ongoing peripheral external stimulation or injury. The goal of this review is to present evidence for signaling cascades in these cell types that not only will deepen our understanding of the genesis of neuropathic pain but also may help to identify new targets for pharmacological intervention.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
31
|
Liu Y, Obata K, Yamanaka H, Dai Y, Fukuoka T, Tokunaga A, Noguchi K. Activation of extracellular signal-regulated protein kinase in dorsal horn neurons in the rat neuropathic intermittent claudication model. Pain 2004; 109:64-72. [PMID: 15082127 DOI: 10.1016/j.pain.2004.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 12/12/2003] [Accepted: 01/12/2004] [Indexed: 10/26/2022]
Abstract
Extracellular signal-regulated protein kinase (ERK) is a mitogen-activated protein kinase (MAPK) that mediates several cellular responses to mitogenic and differentiation signals, and activation of ERK in dorsal horn neurons by noxious stimulation is known to contribute to pain hypersensitivity. In order to elucidate the pathophysiological mechanisms of the cauda equina syndrome, secondary to spinal canal stenosis, we evaluated walking dysfunction triggered by forced exercise and activation of ERK in the dorsal horn using a rat model of neuropathic intermittent claudication. Rats in the lumbar canal stenosis (LCS) group showed a shorter running distance from 1 to 14 days after surgery. Two minutes after running on the treadmill apparatus, phosphorylation of ERK was induced in neurons in the superficial laminae in the LCS group but not in the sham group, whereas there was no change in the deeper laminae. Intrathecal administration of the MAPK kinase inhibitor, U0126, 30 min before running, clearly increased the running distance, whereas there was no significant change in the vehicle control group 3 days after surgery. In addition, a prostaglandin E1 analog, OP-1206 alpha-CD, administered orally, improved the walking dysfunction, and further, inhibited activation of ERK following running 7 days after surgery. These findings suggest that intermittent claudication triggered by forced walking might affect the phosphorylation of ERK in the superficial laminae, possibly via transient (partial) ischemia of the spinal cord. ERK activation in the dorsal horn neurons may be involved in the transient pain in the neuropathic intermittent claudication model.
Collapse
Affiliation(s)
- Yi Liu
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | |
Collapse
|